北师大版数学九年级下册2.4 第2课时 利用二次函数解决实物抛物线问题

合集下载

北师大版九年级数学下册:2.4《二次函数的应用》说课稿

北师大版九年级数学下册:2.4《二次函数的应用》说课稿

北师大版九年级数学下册:2.4《二次函数的应用》说课稿一. 教材分析北师大版九年级数学下册2.4《二次函数的应用》这一节主要介绍了二次函数在实际生活中的应用,通过学习,学生能够理解二次函数在实际生活中的意义,掌握二次函数解决实际问题的方法。

教材通过实例引导学生利用二次函数解决实际问题,培养学生的数学应用能力。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。

但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题,因此,在教学过程中,教师需要引导学生将实际问题抽象为二次函数模型,并运用二次函数的知识解决实际问题。

三. 说教学目标1.让学生理解二次函数在实际生活中的应用,体会数学与生活的联系。

2.培养学生将实际问题转化为二次函数模型,并运用二次函数解决实际问题的能力。

3.提高学生的数学思维能力,培养学生的数学素养。

四. 说教学重难点1.教学重点:让学生掌握二次函数解决实际问题的方法,培养学生的数学应用能力。

2.教学难点:如何引导学生将实际问题转化为二次函数模型,并运用二次函数的知识解决实际问题。

五.说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数学问题,运用数学知识解决实际问题。

2.利用多媒体教学手段,展示二次函数在实际生活中的应用实例,增强学生的直观感受。

3.采用小组合作学习的方式,让学生在讨论中思考,培养学生的团队合作能力。

六. 说教学过程1.导入:通过展示一些实际问题,如抛物线形的物体运动、最大利润问题等,引导学生发现这些问题都可以用二次函数来解决,激发学生的学习兴趣。

2.新课导入:介绍二次函数在实际生活中的应用,引导学生理解二次函数的实际意义。

3.实例讲解:通过具体实例,讲解如何将实际问题转化为二次函数模型,并运用二次函数解决实际问题。

4.课堂练习:让学生尝试解决一些实际问题,巩固所学知识。

5.总结提升:引导学生总结二次函数解决实际问题的方法,提高学生的数学应用能力。

北师大版九年级下册数学2.4.2二次函数的应用(教案)

北师大版九年级下册数学2.4.2二次函数的应用(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数的基本概念。二次函数是形如y = ax^2 + bx + c(a≠0)的函数。它在生活中有着广泛的应用,如最优化问题、几何图形等。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示二次函数在实际中的应用,以及它如何帮助我们解决问题。
-二次函数的最值问题:掌握求解最大(小)值的方法,理解最值与抛物线开口方向、顶点坐标的关系;
-实际问题中的二次函数模型构建:如何将实际问题转化为二次函数模型,并应用相关知识解决问题。
举例解释:讲解二次函数标准形式时,通过具体例子(如y = 2x^2 + 4x + 1)说明a、b、c的取值如何影响抛物线的开口、宽度、平移等。
在学生小组讨论环节,我发现大家对于二次函数在实际生活中的应用有很多独特的见解,这充分展示了他们的创新思维。但同时,我也发现有些学生在分析问题时思路不够清晰,需要我在旁边给予适当的引导。因此,我认为在今后的教学中,应该多设置一些开放性的问题,培养学生的逻辑思维和分析能力。
总之,今天的课堂教学让我认识到,在教授二次函数这部分内容时,要关注学生的理解程度和实际应用能力。在今后的教学中,我将不断调整和改进教学方法,努力提高学生们的数学核心素养。
北师大版九年级下册数学2.4.2二次函数的应用(教案)
一、教学内容
本节课选自北师大版九年级下册数学第二章“函数与方程”第四节“二次函数”的2.4.2小节“二次函数的应用”。教学内容主要包括以下几部分:
1.二次函数在实际问题中的应用,如求解最大(小)值问题;
2.利用二次函数的性质解决几何问题,如抛物线与坐标轴的交点、对称轴、顶点等;
2.思维与探究:培养学生通过观察、分析、归纳等方法,发现二次函数的规律和特点,提升逻辑推理和数学探究的核心素养;

北师大版初中数学九年级下册2.4《二次函数的应用》教学课件

北师大版初中数学九年级下册2.4《二次函数的应用》教学课件

挑战新高
(2)增种多少棵橙子树,可以使橙子的总产量 在59375个以上?
y/个
60600
60500
60400
60300
பைடு நூலகம்
60200
增增种种5多、6少、棵7、橙8子、9树、, 60100
可10以、1使1、橙1子2、的1总3、产14量 在或 橙子1559的棵3总橙7产5子个量树在以,都5上可93?以75使
个以上.
60000
O
x1
x2
5 10 15
X1=5, X2=15
20 x/棵
拓展
某商店购进一批单价为20元的日用品,如果以 单价30元销售,那么半个月内可以售出400件. 根据销售经验,提高单价会导致销售量的减少, 即销售单价每提高1元,销售量相应减少20件. (1)如何提高售价,才能在半个月内获得最大 利润? (2)若规定销售单价不得高于33元,则如何提 高售价,可在半月内获得最大利润?
北师大版九年级数学下册 第二章
(最大利润问题)
学习目标:
1、学会分析和表示实际问题中变量之间的二次 函数关系;
2、学会运用二次函数的性质求出实际问题的最 大值和最小值;
3、借助二次函数的图像,在给定自变量的范 围时,求出函数的最大值和最小值;
4、借助二次函数的图像,在给定函数值的范 围时,求出对应的自变量范围;
从特殊到一般引入新课
某大型商场经营 T恤衫,已知成批购进时成本
价是20元.根据市场调查,销售量与销售单价满
足如下关系:在一段时间内,售价是35元时,销
售量是60件,而单价每降低1元,就可以多销售20
件.(1)当售价为30元时,销售量为

当售价为x元时,销售量为

北师版九年级数学下册_2.4二次函数的应用

北师版九年级数学下册_2.4二次函数的应用

感悟新知
知1-练
3-2[中考·滨州] 如图,一小球沿与地面成一定角度的方 向飞出. 小球的飞行路线是一条抛物线. 如果不考虑空 气阻力, 小球的飞行高度y(单位:m) 与飞行时间x(单 位:s)之间具有函数关系y=-5x2+20x,请根据要求解 答下列问题.
感悟新知
知1-练
(1)在飞行过程中,当小球的飞行高度为15 m时,飞行的时 间是多少? 解:当y=15时,15=-5x2+20x, 解得x1=1,x2=3. 答:在飞行过程中,当小球的飞行高度为15m时, 飞行的时间是1 s或3s.
感悟新知
要点解读
知1-讲
1. 用二次函数解实际问题时,审题是关键,检验容易被
忽略,求得的结果除了要满足题中的数量关系,还要
符合实际问题的意义.
2. 在实际问题中求最值时,用配方法把函数表达式化为
y=a(x-h)2+k 的形式求函数的最值,或者针对函数表
达式用顶点坐标公式求函数的最值.
感悟新知
知1-练
最大面积为24 3 m2.
感悟新知
知1-练
2-1. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠 墙(墙长50 m),中间用两道墙隔开(如图). 已知计划中 的建筑材料可建墙的总长度为48 m,求能建成的三间 长方形种牛饲养室的总占地面积的最大值.
感悟新知
知1-练
解:设总占地面积为S m2,AB=x m, 可得S=AB·BH=x(48-4x)=-4(x-6)2+144, ∴当x=6(BH=24 m<50 m)时,S取得最大值,最大 值为144. ∴能建成的三间长方形种牛饲养室的总占地面积的 最大值为144 m2.
解:当x=0 时,y=- 1 ×(0-3)2+5= 16 .

北师大九年级数学下册练习:2.4 二次函数的应用

北师大九年级数学下册练习:2.4 二次函数的应用

2.4 二次函数的应用第1课时利用二次函数解决面积问题类型1 利用二次函数解决简单面积最值问题1.已知一个直角三角形两直角边之和为20 cm,则这个直角三角形的最大面积为(B)A.25 cm2B.50 cm2C.100 cm2D.不确定2.用长8 m的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是(C)A.6425 m2 B.43m2C.83m2 D.4 m23.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x,y分别为(D)A.x=10,y=14B.x=14,y=10C.x=12,y=15D.x=15,y=124.如图,ABCD是一块边长为2 m的正方形铁板,在边AB上选取一点M,分别以AM和MB为边截取两块相邻的正方形板料.当AM的长为1m时,截取两块相邻的正方形板料的总面积最小.5.某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体,抽屉底面周长为180 cm,高为20 cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)解:根据题意,得y=20x(90-x).整理,得y=-20x2+1 800x.∵y=-20(x-45)2+40 500,且a=-20<0,∴当x=45时,函数有最大值,y最大=40 500,即当底面的宽为45 cm时,抽屉的体积最大,最大为40 500 cm3.类型2 利用二次函数解决围成图形面积最值问题6.(六盘水中考)如图,假设篱笆(虚线部分)的长度为16 m,则所围成矩形ABCD的最大面积是(C)A.60 m2B.63 m2C.64 m2D .66 m 27.某农场拟建三间长方形养牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m ,则这三间长方形养牛饲养室的总占地面积的最大值为144m 2.8.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27 m ,则能建成的饲养室面积最大为75m 2.9.如图,有两面夹角为45°的墙体(∠ABC=45°),且墙AB =3 2 m ,墙BC =10 m ,小张利用8 m 长的篱笆围成一个四边形菜园,如图,四边形BDEF ,DE∥BC,∠E=90°(靠墙部分不使用篱笆),设EF =x m ,四边形BDEF 的面积为S m 2. (1)用含x 的代数式表示BD ,DE 的长;(2)求出S 关于x 的函数关系式,并写出x 的取值范围; (3)求S 的最大值.解:(1)过点D 作DG⊥BC 于点G. ∵DE∥BC,∠E=90°,∴∠EFG=90°. ∴四边形DEFG 是矩形. ∴DG=EF =x ,∵∠ABC=45°,∴BG=x ,BD =2x. 则DE =8-x.(2)S =(DE +BF )·EF 2=-12x 2+8x ,∵2x≤32, ∴0<x≤3.(3)∵S=-12x 2+8x =-12(x -8)2+32.当x <8时,S 随x 的增大而增大, ∵0<x≤3,∴当x =3时,S 取得最大值,最大值为392.10.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB ,BC 两边),设AB =x m. (1)若花园的面积为192 m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值. 解:(1)∵AB=x m ,则BC =(28-x)m , ∴x(28-x)=192. 解得x 1=12,x 2=16. 答:x 的值为12或16.(2)由题意,得S =x(28-x)=-x 2+28x =-(x -14)2+196. ∵在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,∴⎩⎪⎨⎪⎧x≥6,28-x≥15.解得6≤x≤13. ∴当x =13时,S 取最大值为S =-(13-14)2+196=195. 答:花园面积S 的最大值为195 m 2.易错点 求实际问题中的二次函数最值未考虑取值范围11.用一根长为40 cm 的绳子围成一个面积为a cm 2的长方形,那么a 的值不可能为(D) A .20 B .40 C .100 D .120 类型3 利用二次函数解决动态几何面积的最值问题12.如图,在△ABC 中,∠B=90°,AB =12 mm ,BC =24 mm ,动点P 从点A 开始沿边AB 向B 以2 mm/s 的速度移动(不与点B 重合).动点Q 从点B 开始沿边BC 向C 以4 mm/s 的速度移动(不与点C 重合).如果P ,Q 分别从A ,B 同时出发,那么经过3s ,△PBQ 的面积最大. 综合题13.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80 m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为x m ,矩形区域ABCD 的面积为y m 2.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 为何值时,y 有最大值?最大值是多少?解:(1)∵三块矩形区域的面积相等,∴矩形AEFD 面积是矩形BCFE 面积的2倍.∴AE=2BE.设BE =FC =a ,则AE =HG =DF =2a ,∴DF+FC +HG +AE +EB +EF +BC =80,即8a +2x =80.∴a =-14x +10.∴3a=-34x +30.∴y=(- 34x +30)x =-34x 2+30x.∵a=-14x +10>0,∴x<40.则y =-34x 2+30x(0<x <40).(2)∵y=-34x 2+30x =-34(x -20)2+300(0<x <40),且二次项系数为-34<0,∴当x =20时,y 有最大值,最大值为300平方米.第2课时 利用二次函数解决实物抛物线问题类型1 拱桥(隧道)问题1.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-1400(x -80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,且AC⊥x 轴.若OA =10米,则桥面离水面的高度AC 为(B) A .16940米 B.174米 C .16740米 D.154米 2.如图的一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线.以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线表达式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线表达式是y =-19(x +6)2+4.3.(·绵阳)如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m ,水面下降2 m ,水面宽度增加(42-4) m.类型2 其他建筑物问题4.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x(单位:米)的一部分,则水喷出的最大高度是(A) A .4米 B .3米 C .2米 D .1米5.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为 1.8 m ,他在不弯腰的情况下,在棚内的横向活动范围是3m.6.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点与地面的距离为0.5米.7.(·德州)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了一个圆形喷水池,在水池中心竖直安装了一根高为2 m 的喷水管,它喷出的抛物线形水柱在水池中心的水平距离为1 m 处达到最高,水柱落地处离池中心3 m.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数表达式;(2)求出水柱的最大高度为多少?解:(1)如图所示:以水管与地面交点为原点,原点与水柱落地点所在直线为x 轴,水管所在直线为y 轴,建立平面直角坐标系.设抛物线的表达式为y =a(x -1)2+h , 代入(0,2)和(3,0),得 ⎩⎪⎨⎪⎧4a +h =0,a +h =2.解得⎩⎪⎨⎪⎧a =-23,h =83.∴抛物线的表达式为y =-23(x -1)2+83,即y =-23x 2+43x +2(0≤x≤3).(2)∵y=-23(x -1)2+83(0≤x≤3),∴当x =1时,y 最大=83.答:水柱的最大高度为83 m.类型3 物体运动类问题8.标枪飞行的路线是一条抛物线,不考虑空气阻力,标枪距离地面的高度h(单位:m)与标枪被掷出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 … h8141820201814…下列结论:①标枪距离地面的最大高度大于20 m ;②标枪飞行路线的对称轴是直线t =92;③标枪被掷出9 s 时落地;④标枪被掷出1.5 s 时,距离地面的高度是11 m ,其中正确的结论有(C) A .1个 B .2个 C .3个 D .4个 9.(·滨州)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y =-5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是多少? (2)在飞行过程中,小球从飞出到落地所用时间是多少? (3)在飞行过程中,小球飞行高度何时最大?最大高度是多少? 解:(1)当y =15时,15=-5x 2+20x ,解得x 1=1,x 2=3.答:在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是1 s 或3 s. (2)当y =0时,0=-5x 2+20x , 解得x 1=0,x 2=4, ∵4-0=4,∴在飞行过程中,小球从飞出到落地所用时间是4 s. (3)y =-5x 2+20x =-5(x -2)2+20, ∴当x =2时,y 取得最大值,y 最大=20.答:在飞行过程中,第2 s 时小球飞行高度最大,最大高度是20 m. 综合题10.(教材P48习题T3变式)如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的平面直角坐标系,抛物线可以用y =-16x 2+bx +c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为172m.(1)求抛物线的函数表达式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6 m ,宽为4 m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m ,那么两排灯的水平距离最小是多少米?解:(1)由题意得:点B 的坐标为(0,4),点C 的坐标为(3,172),代入表达式,得⎩⎪⎨⎪⎧4=-16×02+b×0+c ,172=-16×32+b×3+c.解得⎩⎪⎨⎪⎧b =2,c =4.∴该抛物线的函数表达式为y =-16x 2+2x +4.∵y=-16x 2+2x +4=-16(x -6)2+10,∴拱顶D 到地面OA 的距离为10 m.(2)抛物线的对称轴为直线x =6,汽车宽4 m ,当x =6+4=10时,y =-16×102+2×10+4=223>6,∴这辆货车能安全通过.(3)当y =8时,-16x 2+2x +4=8,即x 2-12x +24=0,解得x 1=6+23,x 2=6-2 3.∴两排灯的水平距离的最小值为6+23-(6-23)=43(m).第3课时利用二次函数解决利润问题类型1 简单销售问题中的最大利润1.某公司的生产利润原来是a万元,经过连续两年的增长达到了y万元,如果每年增长的百分率都是x,那么y与x的函数关系是(D)A.y=x2+aB.y=a(x-1)2C.y=a(1-x)2D.y=a(1+x)22.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,可卖出(350-10x)件商品,则商品所获利润y元与售价x元之间的函数关系为(B)A.y=-10x2-560x+7 350B.y=-10x2+560x-7 350C.y=-10x2+350xD.y=-10x2+350x-7 3503.生产节性产品的企业,当它的产品无利润时就会及时停产.现有一生产节性产品的企业,其一年中获得的利润y和月份n之间的函数关系式为y=-n2+14n-24,则该企业一年中应停产的月份是(C) A.1月、2月、3月 B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月4.我市某镇的一种特产由于运输原因,只能长期在当地销售.当地政府对该特产的销售投资与收益的关系为:每投入x万元,可获得利润P=-1100(x-60)2+41(万元).每年最多可投入100万元的销售投资,则5年所获利润的最大值是205万元.5.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为25元.类型2 每……每……问题6.喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x元(x为正整数),每星期销售该商品的利润为y元,则y与x的函数表达式为(A)A.y=-10x2+100x+2 000B.y=10x2+100x+2 000C.y=-10x2+200xD.y=-10x2-100x+2 0007.一件工艺品的进价为100元,标价135元出售,每天可售出100件,根据销售统计,一件工艺品每降价1元,则每天可多售出4件,要使每天获得的利润最大,则每件需降价(B) A .3.6元 B .5元 C .10元 D .12元8.某水果店销售一批水果,每箱进价为40元,售价为60元,每天可卖50箱,则一天的销售利润为1__000元.由于积压时间不能太长,所以该店决定降价售出,若每降价5元,则每天可多售出10箱.若现在售价为x 元(40<x <60),则现在每天可多卖出(120-2x)箱,每天共卖出(170-2x)箱,每箱的利润为(x -40)元,即每天的总利润为(x -40)(170-2x)元.9.(教材P50习题T2变式)某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.设果园增种x 棵橘子树,果园橘子总个数为y 个,则果园里增种10棵橘子树,橘子总个数最多.10.(·衡阳)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示. (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少? 解:(1)设y 与x 的函数关系式为y =kx +b.将(10,30),(16,24)代入,得⎩⎪⎨⎪⎧10k +b =30,16k +b =24.解得⎩⎪⎨⎪⎧k =-1,b =40.∴y 与x 的函数关系式为y =-x +40(10≤x≤16). (2)根据题意知,W =(x -10)y =(x -10)(-x +40) =-x 2+50x -400 =-(x -25)2+225. ∵a=-1<0,∴当x <25时,W 随x 的增大而增大, ∵10≤x≤16,∴当x =16时,W 取得最大值,最大值为144.答:当每件销售价为16元时,每天的销售利润最大,最大利润是144元.11.(·安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元; ②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为W 1,W 2(单位:元).(1)用含x 的代数式分别表示W 1,W 2;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少? 解:(1)第二期培植的盆景比第一期增加x 盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意,得W 1=(50+x)(160-2x)=-2x 2+60x +8 000,W 2=19(50-x)=-19x +950.(2)W =W 1+W 2=-2x 2+60x +8 000+(-19x +950)=-2x 2+41x +8 950.∵-2<0,-412×(-2)=10.25,x 为整数, ∴当x =10时,W 最大,W 最大=-2×102+41×10+8 950=9 160(元).12.某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y 1(元)与销售时间第x 月之间存在如图1所示(一条线段)的变化趋势,每千克成本y 2(元)与销售时间第x 月满足函数表达式y 2=mx 2-8mx +n ,其变化趋势如图2所示.(1)求y 2的表达式;(2)第几月销售这种水果,每千克所获得的利润最大?最大利润是多少?解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7.解得⎩⎪⎨⎪⎧m =18,n =638.∴y 2的表达式为y 2=18x 2-x +638(1≤x≤12). (2)设y 1=kx +b.∵函数y 1的图象过(4,11),(8,10)两点,∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10.解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的表达式为y 1=-14x +12(1≤x≤12). 设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638) =-18x 2+34x +338, ∴w=-18(x -3)2+214(1≤x≤12). ∴当x =3时,w 取最大值214. 答:第3月销售这种水果,每千克所获得的利润最大,最大利润是214元/千克.。

2.4 二次函数的应用(2)——抛物线形问题 教案 2021—2022学年北师大版数学九年级下册

2.4 二次函数的应用(2)——抛物线形问题 教案 2021—2022学年北师大版数学九年级下册

2.4 二次函数的应用(2)——抛物线形问题教案一、教学目标1.理解抛物线形问题的概念及其应用背景;2.掌握通过二次函数求解抛物线形问题的方法;3.能够运用二次函数解决实际问题。

二、教学重点1.理解抛物线形问题的概念;2.掌握通过二次函数求解抛物线形问题的方法。

三、教学难点1.运用二次函数解决实际问题;2.分析问题中所给条件,建立数学模型。

四、教学过程1. 引入•引导学生思考下面的问题:–什么是二次函数?–二次函数有什么特点?•解答学生的问题,简要介绍二次函数。

2. 了解抛物线形问题•通过实际例子,引入抛物线形问题的概念。

•解释抛物线形问题与二次函数的关系。

3. 运用二次函数求解抛物线形问题•通过示例,详细讲解如何运用二次函数解决抛物线形问题。

•引导学生思考步骤,并进行示范。

4. 实践练习•给学生提供一些实际问题,并要求他们运用二次函数解决。

•分组讨论,学生之间相互交流思路。

•点名让各组发表他们的解题思路和答案。

5. 拓展延伸•引导学生思考更复杂的抛物线形问题,并让他们自己尝试解决。

•鼓励学生进行积极思考和探索,提高问题解决能力。

6. 小结•对本课所学内容进行总结和归纳。

7. 作业布置•布置作业:要求学生完成课本上的相关练习题,并要求写出详细解题思路。

五、教学反思通过本节课的教学,学生对抛物线形问题有了更深入的了解,并能够熟练运用二次函数解决相关问题。

课堂上进行了实践练习,有利于学生独立思考和解决问题的能力的培养。

在拓展延伸环节,带领学生探索更复杂的问题,提高了学生的解决问题的灵活性。

整体而言,本节课教学效果良好。

北师大版九年级数学下册:第二章 2.4.2《二次函数的应用》精品教案

北师大版九年级数学下册:第二章 2.4.2《二次函数的应用》精品教案

北师大版九年级数学下册:第二章 2.4.2《二次函数的应用》精品教案一. 教材分析《二次函数的应用》是北师大版九年级数学下册第二章第四节的一部分。

这部分内容主要让学生了解二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。

教材通过生动的例题和练习题,使学生掌握二次函数图像的特点,学会通过二次函数图像解决实际问题。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。

但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题。

因此,在教学过程中,教师需要帮助学生建立实际问题与二次函数之间的联系,提高学生运用数学知识解决实际问题的能力。

三. 教学目标1.让学生掌握二次函数图像的特点,了解二次函数在实际生活中的应用。

2.培养学生运用数学知识解决实际问题的能力。

3.提高学生对数学的兴趣,培养学生的创新意识。

四. 教学重难点1.教学重点:让学生掌握二次函数图像的特点,学会通过二次函数图像解决实际问题。

2.教学难点:如何将实际问题转化为二次函数问题,如何引导学生运用数学知识解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中发现数学问题,培养学生的数学思维。

2.利用多媒体辅助教学,展示二次函数图像,让学生更直观地了解二次函数的特点。

3.采用分组讨论的教学方法,鼓励学生合作交流,提高学生的团队协作能力。

六. 教学准备1.准备相关的实际问题,用于引导学生转化为二次函数问题。

2.准备多媒体教学课件,展示二次函数图像。

3.准备练习题,巩固学生对二次函数应用的掌握。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如抛物线运动、物体运动等,引导学生思考这些问题是否可以转化为二次函数问题。

让学生认识到二次函数在实际生活中的重要性。

2.呈现(10分钟)教师利用多媒体课件,展示二次函数图像的特点,如开口方向、顶点坐标、对称轴等。

同时,教师通过举例讲解,让学生了解如何从实际问题中提取二次函数的信息。

2020北师版九年级数学下册 2.4二次函数的应用

2020北师版九年级数学下册 2.4二次函数的应用

2.4 二次函数的应用第1课时二次函数的应用(1)【知识与技能】能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能利用二次函数的知识解决实际问题.【过程与方法】经历运用二次函数解决实际问题的探究过程,进一步体验运用数学方法描述变量之间的依赖关系,体会二次函数是解决实际问题的重要模型,提高运用数学知识解决实际问题的能力.【情感态度】1.体验函数是有效的描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具.2.敢于面对在解决实际问题时碰到的困难,积累运用知识解决问题的成功经验.【教学重点】用抛物线的知识解决拱桥类问题.【教学难点】将实际问题转化为抛物线的知识来解决.一、情境导入,初步认识通过预习P29页的内容,完成下面各题.动脑筋中“拱顶离水面的高度变化情况”,你准备采取什1.要求出教材P29么办法?2.根据教材P 29图1-18,你猜测是什么样的函数呢?3.怎样建立直角坐标系比较简便呢?试着画一画它的草图看看!4.根据图象你能求出函数的解析式吗?试一试!二、思考探究,获取新知探究 直观图象的建模应用例1 某工厂的大门是一抛物线形水泥建筑物,大门的地面宽度为8m ,两侧距地面3m 高处各有一盏壁灯,两壁灯之间的水平距离是6m,如图所示,则厂门的高(水泥建筑物厚度不计,精确到0.1m)约为( )A.6.9mB.7.0mC.7.1mD.6.8m【分析】因为大门是抛物线形,所以建立二次函数模型来解决问题.先建立平面直角坐标系,如图,设大门地面宽度为AB,两壁灯之间的水平距离为CD,则B,D 坐标分别为(4,0),(3,3),设抛物线解析式为y=ax2+h.把(3,3),(4,0)代入解析式求得h ≈6.9.故选A.【教学说明】根据直观图象建立恰当的直角坐标系和解析式.例2 小红家门前有一座抛物线形拱桥,如图,当水面在l 时,拱顶离水面2m,水面宽4m,水面下降1m 时,水面宽度增加多少?【分析】拱桥类问题一般是转化为二次函数的知识来解决.解:由题意建立如图的直角坐标系,设抛物线的解析式y=ax 2,∵抛物线经过点A (2,-2),∴-2=4a,∴a=-12,即抛物线的解析式为y=-12x 2, 当水面下降1m 时,点B 的纵坐标为-3.将y=-3代入二次函数解析式,得y=-12x 2,得-3=-12x 2→x 2=6→x=∴此时水面宽度为即水面下降1m 时,水面宽度增加了【教学说明】用二次函数知识解决拱桥类的实际问题一定要建立适当的直角坐标系;抛物线的解析式假设恰当会给解决问题带来方便.三、运用新知,深化理解1.某溶洞是抛物线形,它的截面如图所示.现测得水面宽AB=1.6m,溶洞顶点O 到水面的距离为2.4m,在图中直角坐标系内,溶洞所在抛物线的函数关系式是( ) A.y=154 x 2 B.y=154x 2+125C.y=-154x 2D.y=-154x 2+1252.某公园草坪的防护栏是由100段形状相同的抛物线形组成的,为了牢固起见,每段护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A.50mB.100mC.160mD.200m第2题图 第3题图 3.如图,济南建邦大桥有一段抛物线形的拱梁,抛物线的表达式为y=ax 2+bx,小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需 秒.4.(浙江金华中考)如图,足球场上守门员在O 处踢出一高球,球从离地面1米处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)足球第一次落地点C距守门员是多少米?(取5)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?【教学说明】学生自觉完成上述习题,加深对新知的理解,并适当加以分析,提示如第4题,由图象的类型及已知条件,设其解析式为y=a(x-6)2+4,过点A(0,1),可求出a;(2)令y=0可求出x的值,x<0舍去;(3)令y=0,求出C点坐标(,0),设抛物线CND为y=-1(x-k)2+2,代入C点坐标可求出k值(k12>).再令y=0可求出C、D的坐标,进而求出BD.【答案】1.C 2.C 3.36 4.解:(1)y=-1(x-6)2+4(2)令y=0,可求C点到12守门员约13米. (3)向前约跑17米.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评.3.建立二次实际问题的一般步骤:(1)根据题意建立适当的平面直角坐标系.(2)把已知条件转化为点的坐标.(3)合理设出函数解析式.(4)利用待定系数法求出函数解析式.(5)根据求得的解析式进一步分析,判断并进行有关的计算.1.教材P第1、2题.312.完成同步练习册中本课时的练习.本节课主要是利用二次函数解决生活中的实际问题,其主要思路是建立适当的直角坐标系,使求出的二次函数模型更简捷,解决问题更方便,让学生学会运用所学知识解决实际问题,体验应用知识的成就感,激发他们学习的兴趣.第2课时二次函数的应用(2)【知识与技能】1.经历探索实际问题中两个变量的过程,使学生理解用抛物线知识解决最值问题的思路.2.初步学会运用抛物线知识分析和解决实际问题.【过程与方法】经历优化问题的探究过程,认识数学与人类生活的密切联系及对人类历史发展的作用,发展我们运用数学知识解决实际问题的能力.【情感态度】体会数学与人类社会的密切联系,了解数学的价值,增加对数学的理解和学好数学的信心.【教学重点】能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值.【教学难点】二次函数最值在实际中生活中的应用,激发学生的学习兴趣.一、情境导入,初步认识问题1 同学们完成下列问题:已知y=x 2-2x-3①x= 时,y 有最 值,其值为 ;②当-1≤x ≤4时,y 最小值为 ,y 最大值为 .答案:①1,小,-4;②-4,5【教学说明】解决上述问题既是对前面所学知识的巩固,又是本节课解决优化最值问题的理论依据.二、思考探究,获取新知教学点1 最大面积问题阅读教材P 30动脑筋,回答下列问题.1.若设窗框的宽为xm ,则窗框的高为 m,x 的取值范围是 .2.窗框的透光面积S 与x 之间的关系式是什么?3.如何由关系式求出最大面积?答案:1.832x - 0<x<832.S=-32x 2+4x,0<x<833.S max =83m 2. 例1 如图,从一张矩形纸片较短的边上找一点E ,过E 点剪下两个正方形,它们的边长分别是AE ,DE ,要使剪下的两个正方形的面积和最小,点E 应选在何处?为什么?解:设矩形纸较短边长为a,设DE=x ,则AE=a-x,那么两个正方形的面积和:y=x 2+(a-x)2=2x 2-2ax+a 2当x=-21222a a -=⨯时,y 最小值=2×(12a )2-2a ×12a+a 2=1a22即点E选在矩形纸较短边的中点时,剪下的两个正方形的面积和最小.【教学说明】此题要充分利用几何关系建立二次函数模型,再利用二次函数性质求解.教学点2 最大利润问题例2 讲解教材P31例题【教学说明】通过例题讲解使学生初步认识到解决实际问题中的最值,首先要找出最值问题的二次函数关系式,利用二次函数的性质为理论依据来解决问题.例3某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大?【分析】找出进价,售价,销售,总利润之间的关系,建立二次函数,再求最大值.列表分析如下:关系式:每件利润=售价-进价,总利润=每件利润×销量.解:设降价x元,总利润为y元,由题意得y=(10-x-8)(100+100x)=-100x2+100x+200=-100(x-0.5)2+225.当x=0.5时,总利润最大为225元.∴当商品的售价降低0.5元时,销售利润最大.三、运用新知,深化理解1.如图,点C是线段AB上的一个支点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是( )A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大C.当C为AB的三点分点时,S最小D.当C是AB的三等分点时,S最大第1题图第2题图2.如图,某水渠的横断面是等腰梯形,底角为120°,两腰与下底的和为4cm,当水渠深x为时,横断面面积最大,最大面积是 .3.某经销店为某工厂代销一种建筑材料,当每吨售价为260元时,月销售量为45吨,该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出1吨建筑材料共需支付厂家及其他费用100元,设每吨材料售价为x(元),该经销店的月利润为y(元).①当每吨售价是240元时,计算此时的月销售量;②求出y与x的函数关系式(不要求写出x的取值范围);③该经销店要获得最大月利润,售价应定为每吨多少元?④小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.【答案】cm23.解:①45+26024010-×7.5=60(吨).②y=(x-100)(45+26010x-×7.5).化简,得y=-34x2+315x-24 000.③y=-34x2+315x-24 000=-34(x-210)2+9 075.此经销店要获得最大月利润,材料的售价应定为每吨210元.④我认为,小静说得不对.理由:当月利润最大时,x为210元,每月销售额W=x(45+26010x×7.5=-34 (x-160)2+19 200.当x为160元时,月销售额W最大.∴当x为210元时,月销售额W不是最大的.∴小静说得不对.【教学说明】1.先列出函数的解析式,再根据其增减性确定最值.2.要分清利润,销售量与售价的关系;分清最大利润与最大销售额之间的区别.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:能根据实际问题建立二次函数的关系式并确定自变量取值范围,并能求出实际问题的最值.1.教材P31第1、2题.2.完成同步练习册中本课时的练习.本节课主要是用二次函数理论知识解决最大面积问题和最大利润问题,通过对此问题的探究解决,使学生认识到数学知识和生活实际的紧密联系,提高学习数学的积极性.。

北师大版九年级下册数学:2.4 二次函数在几何方面的应用 课件 (共29张PPT)

北师大版九年级下册数学:2.4 二次函数在几何方面的应用 课件  (共29张PPT)
对称轴 位置
开口方向 增减性 最值
y=ax2+bx+c(a>0)
2ba,
4acb2 4a
直线 x b
2a
由a,b和c的符号确定
向上
y=ax2+bx+c(a<0)
2ba,
4acb2 4a
直线 x b
2a
由a,b和c的符号确定
向下
在对称轴的左侧,y随着x的增大而减小. 在对称轴的左侧,y随着x的增大而增大.
6 6
6
6
4
4
4
4
x=1
2 x=1
2
x=1
2
2 x=1
15 22
13
-2
2
0
10 15
5
2
10
5
5
10
15 5
10
5
10
55
-2
10
45
15
10
15
2
2
2
2
4
4
4
4
6
6
6
6
8
8
8
8
10
10
10
10
由以上例子你能得出什么规律? 规律总结:
1:首先求出对称轴
2: 判断对称轴与区间的关系
若对称轴在区间的外面,函数在区间 上单调,最值在端点处取得;若对称轴 在区间的内部,函数在区间上不单调, 最值在端点和顶点分别取得。 3:利用好函数的图像
思考1:如何 求函数y=x2-2x-3在 x∈[0, k] 时的最值?
y
0 12
-2
-1
3
x
思考2:如何 求函数y=x2-2x-3在 x∈[k,k+2]时的最值?

北师版九年级数学下册课件 第二章 二次函数 二次函数的应用 第2课时 利用二次函数解决实物抛物线问题

北师版九年级数学下册课件 第二章 二次函数 二次函数的应用 第2课时 利用二次函数解决实物抛物线问题

(1)当h=2时,①求抛物线的表达式;②排球过网后,如果对方没有拦住球,判断 排球能否落在界内,并说明理由;
(2)若排球既能过网(不触网)又不出界(不接触边界),求h的取值范围.
解:根据题意可知抛物线的顶点坐标为(6,2.5),∴可设抛物线的表达式为 y=
a(x-6)2+2.5.
(1) ①当 h=2 时,2=(0-6)2a+2.5,解得 a=- 1 ,∴y=- 1 (x-6)2+2.5
6.(10分)如图,一位身高1.8 m的篮球运动员在距篮圈中心水平距离4 m处起跳投 篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m时达到最大高度3.5 m,然后 准确落入篮框内.已知篮圈中心到地面的距离为3.05 m.
(1)按如图所示的直角坐标系,求该抛物线的函数表达式; (2)在这次跳投中,球在该运动员头顶上方0.25 m处出手,问球出手时他跳离地面 的高度是多少?
解:(1)设该抛物线的函数表达式为 y=ax2+3.5,将点(1.5,3.05)代入,得 2.25a +3.5=3.05,解得 a=-0.2,∴该抛物线的函数表达式为 y=-0.2x2+3.5
(2)当 x=-2.5 时,y=-0.2x2+3.5=2.25,∴球出手时他跳离地面的高度为 2.25 -1.8-0.25=0.2(m)
450
450
50
②当抛物线经过点(18,0)时,(18-6)2a+2.5=0,解得 a=- 5 ,∴此时 y= 288
- 5 (x-6)2+2.5,∴此时 h=- 5 ×(0-6)2+2.5=15 .∴若排球既能过网(不触
288
288
8
网)又不出界(不接触边界),h
的取值范围是73 50
<h<185
第二章 二次函数

北师大版九年级数学下册:2.4《二次函数的应用》教案

北师大版九年级数学下册:2.4《二次函数的应用》教案

北师大版九年级数学下册:2.4《二次函数的应用》教案一. 教材分析北师大版九年级数学下册第2.4节《二次函数的应用》主要介绍了二次函数在实际生活中的应用,包括二次函数图像的识别和利用二次函数解决实际问题。

这部分内容是学生在学习了二次函数的性质和图像后,对二次函数知识的进一步拓展,使学生能够将所学知识应用到实际生活中,提高解决实际问题的能力。

二. 学情分析九年级的学生已经学习了二次函数的基本知识和图像,对二次函数有一定的理解。

但学生在解决实际问题时,可能会对将理论知识和实际问题相结合感到困难。

因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的应用能力。

三. 教学目标1.理解二次函数在实际生活中的应用;2.学会利用二次函数解决实际问题;3.提高学生的数学应用能力。

四. 教学重难点1.二次函数在实际生活中的应用;2.利用二次函数解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题,引导学生思考;通过案例分析,使学生理解二次函数在实际生活中的应用;通过小组合作,让学生在讨论中解决问题,提高学生的合作能力和解决问题的能力。

六. 教学准备1.准备相关的案例和问题;2.准备多媒体教学设备。

七. 教学过程1.导入(5分钟)通过一个实际问题引出二次函数的应用,例如:一个农场计划种植两种作物,种植面积为固定的10亩。

如果种植苹果树,每亩收益为2000元;如果种植梨树,每亩收益为3000元。

请问如何分配种植苹果树和梨树的面积,才能使总收益最大?2.呈现(10分钟)呈现教材中的案例,让学生了解二次函数在实际生活中的应用。

例如,教材中有一个关于抛物线形跳板的问题,通过二次函数来求解跳板的长度。

3.操练(10分钟)让学生根据教材中的案例,尝试解决实际问题。

例如,教材中有一个关于二次函数图像的问题,让学生根据图像信息,求解相关参数。

4.巩固(10分钟)通过小组合作,让学生解决一些实际问题。

2.4二次函数的应用 第二课时- 九年级数学下册课件(北师大版)

2.4二次函数的应用 第二课时-  九年级数学下册课件(北师大版)
A.4 m B.5 m C.6 m D.7 m
3 足球运动员将足球沿与地面成一定角度的方向踢出,足球飞 行的路线是一条抛物线,不考虑空气阻力,足球距离地面的
高度h (单位:m)与足球被踢出后经过的时间t (单位:s)之间
的关系如下表:
t 01 2 3 4 5 6 7 … h 0 8 14 18 20 20 18 14 …
1 =a(0-4)2+h,
A.第9.5 s
B.第10 s
C.第10.5 s
D.第11 s
3 如图,隧道的截面由抛物线和长方形构成,长方形的长是
12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可
以用 y=-1 x 2+bx+c 表示,且抛物线上的点C 到墙面
OB
6 的水平距离为3
m,到地面OA
的距离为
17
m.
2
(1)求该抛物线对应的函数表达式,并计算出拱顶D 到地面OA 的距离.
(2)一辆货运汽车载一长方体集装箱后高为6 m,宽为4 m,如果隧道内 设双向行车道,那么这辆货运汽车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果 灯离地面的高度不超过8 m,那么两排灯的水平距离最小是多少米?
解:(1)根据题意得B
(0,4),C
3,
17 2
9
(x-6)2+4,则选取点B 为坐标原点时抛物线对应的函数表达式是
____y_____19__(_x___6_)_2 __4___.
2 向上发射一枚炮弹,经x s后的高度为y m,且时间与高度之间 的关系为 y=ax 2+bx.若此炮弹在第7 s与第14 s时的高度相等,
则在下列哪一个时间的高度是最高的( C )

2024北师大版数学九年级下册2.4.2《二次函数的应用》教案

2024北师大版数学九年级下册2.4.2《二次函数的应用》教案

2024北师大版数学九年级下册2.4.2《二次函数的应用》教案一. 教材分析《二次函数的应用》是北师大版数学九年级下册第2章《二次函数》的第4节内容。

本节课主要让学生掌握二次函数在实际生活中的应用,培养学生的实际问题解决能力。

教材通过生活实例引入二次函数的应用,使学生感受到数学与生活的紧密联系。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有了初步了解。

但学生在应用二次函数解决实际问题时,往往会因为不能很好地将实际问题转化为数学模型而感到困难。

因此,在教学过程中,教师需要引导学生正确地将实际问题转化为二次函数模型,并运用二次函数的知识解决问题。

三. 教学目标1.让学生掌握二次函数在实际生活中的应用。

2.培养学生将实际问题转化为数学模型并解决的能力。

3.提高学生对数学与生活紧密联系的认识。

四. 教学重难点1.重点:二次函数在实际生活中的应用。

2.难点:将实际问题转化为二次函数模型,并运用二次函数的知识解决问题。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、合作交流,提高学生解决实际问题的能力。

六. 教学准备1.准备相关的生活实例和案例分析。

2.准备教学课件和板书设计。

七. 教学过程1.导入(5分钟)通过一个生活实例引入二次函数的应用,让学生感受到数学与生活的紧密联系。

例如,假设某商场举行打折活动,商品的原价为100元,打折力度为x(0≤x≤1),求打折后的价格。

2.呈现(10分钟)呈现教材中的案例分析,引导学生将实际问题转化为二次函数模型。

例如,某工厂生产一批产品,生产成本为c元,生产数量为x(x≥0),求总成本。

3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,尝试将其转化为二次函数模型,并运用二次函数的知识解决问题。

教师巡回指导,为学生提供帮助。

4.巩固(10分钟)选取几组学生解决的实际问题,让学生分享自己的解题过程和心得。

九年级 下册 数学 PPT课件 第2课时 利用二次函数解决实物抛物线问题

九年级 下册 数学 PPT课件  第2课时  利用二次函数解决实物抛物线问题

解二
如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物 线的对称轴为y轴,建立平面直角坐标系.
此时,抛物线的顶点为(0,2)
∴可设这条抛物线所表示 的二次函数的解析式为:
y ax2 2
当拱桥离水面2m时,水面宽4m 即:抛物线过点(2,0)
0 a22 2
a 0.5 ∴这条抛物线所表示的二次函数为:
【解析】(1)设每千克应涨价x元,列方程得:
(5+x)(200-10x)=1 500,
解得:x1=10, x2=5.因为要顾客得到实惠,5<10 所以 x=5.
答:每千克应涨价5元.
(2)设商场每天获得的利润为y元,则根据题意,得
y=( x +5)(200-10x)= -10x2+150x+1 000,
x1 2 6 , x2 2 6
∴这时水面的宽度为:
x2 x1 2 6m
∴当水面下降1m时,水面宽度 增加了 (2 6 4)m
一般步骤:
(1)建立适当的直角系,并将已知条件转化为点的 坐标,
(2)合理地设出所求的函数的表达式,并代入已知条 件或点的坐标,求出关系式,
(3)利用关系式求解实际问题.
当x=
时,y有最大值.
因此,这种水果每千克涨价7.5元,能使商场获利最多.
探究3
图中是抛物线形拱桥,当水面在 l 时,拱顶离 水面2m,水面宽4m,水面下降1m时,水面宽度 增加了多少?
解一 以抛物线的顶点为原点,以抛物线的对称轴为 y轴,建立平
面直角坐标系,如图所示. ∴可设这条抛物线所表示 的二次函数的解析式为:
9
所以可求出抛物线的解析式为
y 1 (x 4)2 4
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 利用二次函数解决实物抛物线问题
基础题
知识点 利用二次函数解决实物抛物线问题
1.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面的函数表达式:h =-5(t -1)2+6,则小球距离地面的最大高度是( )
A .1米
B .5米
C .6米
D .7米
2.(金华中考)图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-1
400(x -80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,
有AC⊥x 轴.若OA =10米,则桥面离水面的高度AC 为( )
A .16940米 B.174米 C .16740米 D.154

3.比赛中羽毛球的某次运动路线可以看作是一条抛物线.若不考虑其他因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系y =-29x 2+89x +10
9
,则羽毛球飞出的水平距离为____________米.
4.军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行的高度y(m)与飞行时间x(s)的关系满足y =-1
5x 2
+10x.经过____________秒炮弹到达它的最高点,最高点的高度是____________米,经过____________秒炮弹落到地上爆炸了.
5.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为____________米.
6.(绍兴中考)如图的一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线.以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线表达式是y =-1
9(x -6)2+4,则选取点B 为
坐标原点时的抛物线表达式是____________.
7.如图1,三孔桥截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB =20米,顶点M 距水面6米(即MO =6米),小孔顶点N 距水面4.5米(即NC =4.5米).当水位上涨刚好淹没小孔时,借助图
2中的平面直角坐标系,求此时大孔的水面宽度EF.
中档题
8.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h =3.5t -4.9t 2(t 的单位:s ,h 的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )
A .0.71 s
B .0.70 s
C .0.63 s
D .0.36 s
9.(天门中考)如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为__________米.
10.(台州中考)竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t 秒时在空中与第二个小球的离地高度相同,则t =____________.
11.某大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地面4米高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6米.求校门的高(结果精确到0.1米,水泥建筑物厚度忽略不计).
综合题
12.(青岛中考)如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y =-16x 2+bx +c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为17
2 m.
(1)求抛物线的函数表达式,并计算出拱顶D 到地面OA 的距离;
(3)在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m ,那么两排灯的水平距离最小是多少米?
参考答案
1.C 2.B 3.5 4.25 125 50 5.0.5 6.y =-1
9
(x +6)2+4
7.设大孔对应的抛物线所对应的函数表达式为y =ax 2+6.依题意,得B(10,0).
∴a×102+6=0.解得a =-0.06.即y =-0.06x 2+6.当y =4.5时,-0.06x 2+6=4.5.解得x =±5. ∴DF =5,EF =10. ∴水面宽度为10米. 8.D 9.2 6 10.1.6
11.以大门地面为x 轴,它的中垂线为y 轴建立直角坐标系.则抛物线过(-4,0),(4,0),(-3,4)三点. ∵抛物线关于y 轴对称,可设表达式为y =ax 2
+c ,则⎩
⎨⎧16a +c =0,
9a +c =4.解得⎩⎪⎨⎪⎧a =-4
7,c =647.
∴表达式为y =-47x 2+64
7.
∴顶点坐标为(0,64
7).
∴校门的高为64
7
≈9.1(米).
12.(1)由题意得点B 的坐标为(0,4),点C 的坐标为(3,172),代入表达式,得⎩
⎪⎨⎪⎧4=-16×02
+b×0+c ,
172=-16
×32+b×3+c.解得⎩
⎨⎧b =2,
c =4.
∴该抛物线的函数表达式为y =-1
6x 2+2x +4.
∵y=-16x 2+2x +4=-1
6(x -6)2+10,
∴拱顶D 到地面OA 的距离为10 m.
(2)抛物线的对称轴为x =6,汽车宽4米,当x =6+4=10时,y -16×102+2×10+4=22
3>6,
∴这辆货车能安全通过.
(3)当y =8时,-1
6x 2+2x +4=8,即x 2-12x +24=0,解得x 1=6+23,x 2=6-2 3.
∴两排灯的水平距离的最小值是:6+23-(6-23)=43(m).。

相关文档
最新文档