仪表着陆系统
《仪表着陆系统》课件
作用:为飞行员提供实时的飞 行数据和性能参数,以便及时
调整飞行状态
评估:对飞行数据进行分析和 评估,为飞行员提供飞行建议
和改进措施
提供飞机的航向、高度、速度等信息 引导飞机按照预定航线飞行 提供飞机与跑道的距离和角度信息 帮助飞行员判断飞机的着陆时机和位置
提供飞机的精确位置信息 引导飞机安全降落到跑道上 提供飞机相对于跑道的位置信息 提供飞机相对于跑道的航向信息 提供飞机相对于跑道的高度信息 提供飞机相对于跑道的速度信息
夜间着陆:为夜间着陆提供安全引 导
ICAO(国际民 用航空组织) 发布的仪表着 陆系统技术标
准
FAA(美国联 邦航空局)发 布的仪表着陆 系统技术规范
EASA(欧洲航 空安全局)发 布的仪表着陆 系统技术规范
I ATA ( 国 际 航 空运输协会) 发布的仪表着 陆系统技术规
范
国家标准:GB/T 17676-2008《民用航空 器仪表着陆系统》
,
汇报人:
01
02
03
04
05
06
定义:仪表着陆系统是一种用于引 导飞机安全降落到跑道上的导航系 统。
特点:自动化程度高,操作简便, 可靠性强。
添加标题
添加标题
添加标题
添加标题
作用:提供精确的导航信息,帮助 飞行员在恶劣天气或夜间条件下安 全降落。
应用:广泛应用于民航、军用航空 等领域。
仪表着陆系统是一 种用于引导飞机安 全降落的导航系统。
提供飞机偏离跑道 或下滑道的警告
提供飞机接近跑道 或下滑道末端的警 告
提供飞机接近跑道 或下滑道末端的警 告
提供飞机接近跑道 或下滑道末端的警 告
仪表着陆系统培训
什么是仪表着陆系统(ILS)?
仪表着陆系统是“非目视”进近和着陆的标准助航系统。它为飞机提供对准跑道的航向信号和指导飞机下降的下滑道信号,再加上适当的距离指示信号,使飞机能在低的能见度和恶劣天气条件下借助这些仪表提供的信号指示就可以安全着陆。
下滑频率(UHF):328-336 MHz
频率
水平极化波,辐射CSB、SBO和Clearance
90+150,90-150,1020
辐射
调制
B
D
A
C
ILS提供的主要信号
指示飞机降落角度的 下滑信号
对准跑道中心线的 航道信号
与跑道入口之间的 距离信号
仪表着陆系统的分类
导航管理室 张斯佳
单击添加副标题
仪表着陆系统培训课件
仪表着陆系统的英文全称是Instrument Landing System,简称ILS。由机载航向、下滑、指点信标接收机和地面航向、下滑、指点信标发射机组成,它为飞机提供航向道、下滑道和距跑道着陆端的距离信息,用于复杂气象条件下,按仪表指示引导飞机进场着陆。
为什么要重视场地保护区?
航向信标台场地及其环境要求
航向信标台的场地保护区是一个由圆和长方形合成的区域。圆的中心即天线阵中心,其半径为75m。长方形和长度为从天线阵开始沿跑道中心线延长线向跑道方向延伸至300m或跑道末端(以大者为准),宽度为120m,图1中所示,如果使用单方向辐射的天线阵,天线的辐射场型前后场强比20dB以上,则保护区不包括图中的斜线区。
仪表着陆系统 ILS 说明
ⅢC类无决断高和无跑道视程的限制,也就是说“伸手不见五指”的情况下,凭借盲降引导可自动驾驶安全着陆滑行。目前ICAO还没有批准ⅢC类运行。
盲降是仪表着陆系统 ILS (Instrument Landing System)的俗称。因为仪表着陆系统能在低天气标准或飞行员看不到任何目视参考的天气下,引导飞机进近着陆,所以人们就把仪表着陆系统称为盲降。 仪表着陆系统是飞机进近和着陆引导的国际标准系统,它是二战后于1947年由国际民航组织ICAO确认的国际标准着陆设备。全世界的仪表着陆系统都采用ICAO的技术性能要求,因此任何配备盲降的飞机在全世界任何装有盲降设备的机场都能得到统一的技术服务。 仪表着陆系统通常由一个甚高频(VHF)航向信标台、一个特高频(UHF)下滑信标台和几个甚高频(VHF)指点标组成。航向信标台给出与跑道中心线对准的航向面,下滑信标给出仰角2.5°—3.5°的下滑面,这两个面的交线即是仪表着陆系统给出的飞机进近着陆的准确路线。指点标沿进近路线提供键控校准点即距离跑道入口一定距离处的高度校验,以及距离入口的距离。飞机从建立盲降到最后着陆阶段,若飞机低于盲降提供的下滑线,盲降系统就会发出告警。 盲降的作用在天气恶劣、能见度低的情况下显得尤为突出。它可以在飞行员肉眼难以发现跑道或标志时,给飞机提供一个可靠的进近着陆通道,以便让飞行员掌握位置、方位、下降高度,从而安全着陆。根据盲降的精密度,盲降给飞机提供的进近着陆标准不一样,因此盲降可分为ⅠⅡⅢ类标准。 Ⅰ类盲降的天气标准是前方能见度不低于800米(半英里)或跑道视程不小于550米,着陆最低标准的决断高不低于60米(200英尺),也就是说,Ⅰ类盲降系统可引导飞机在下滑道上,自动驾驶下降至机轮距跑道标高高度60米的高度。若在此高度飞行员看清跑道即可实施落地,否则就得复飞。 Ⅱ类盲降标准是前方能见ቤተ መጻሕፍቲ ባይዱ为400米(1/4英里)或跑道视程不小于350米,着陆最低标准的决断高不低于30米(100英尺)。同Ⅰ类一样,自动驾驶下降至决断高度30米,若飞行员目视到跑道,即可实施着陆,否则就得复飞。
仪表着陆系统
航向信标:航向信标天线产生的辐射场,在通过跑道中心延 长线的垂直平面内,形成航向面或叫航向道。如下图所示,用 来提供飞机偏离航向道的横向引导信号。 下滑信标:下滑信标台天线产生的辐射场形成下滑面(见下 图),下滑面和跑道水平平面的夹角,根据机场的净空条件, 0 0 可在2 4 之间选择。
指点信标:指点信标台为2个或3个,装在顺着着陆方向的跑道中心延长线的 规定距离上,分别叫内、中、外指点信标(见下图1)。每个指点信标台发射垂 直向上的扇形波束。只有在飞机飞越指点信标台上空的不大范围时,机载接 收机才能收到发射信号。由于各指点信标台发射信号的调制频率和识别码不 同,机载接收机就分别使驾驶舱仪表板上不同颜色的识别灯亮,同时驾驶员 耳机中也可以听到不同音调的频率和识别码。驾驶员就可以判断飞机在那个 信标台的上空,即知道飞机离跑道头的距离。 图2表示飞机进场的示意图。航向信标和下滑信标发射信号组合的结果, 在空间形成一个矩形延长的角锥形进场航道。其中航向道宽度为40,下滑道 宽度为1.40(指示器满刻度偏转的角度)。
一、着陆标准等级
国际民航组织根据在不同气象条件下的着陆能力,规定 了三类着陆标准,使用跑道视距(RVR)和决断高度(DH)两个量 来表示。其规定如下表所示。
类别 Ⅰ Ⅱ Ⅲa Ⅲb Ⅲc
跑道视距(RVR) 800m(2600ft) 400m(1200ft) 200m(700ft) 50m(150ft) 0
航道扇区:DDM等于0.155的射线所包含的角度θ,称航道扇 区(如下图所示)。θ随着航向信标台与跑道入口之间的距离不 同而变。
标准的航道偏离指示器满刻度偏转对应于0.155 DDM,即飞 机偏离航道中心线20—30。并在ILS基准数据点横向偏转灵敏度 等于0.00145DDM/m。
仪表着陆系统原理PPT课件
改进型M阵列天线系统 如果条件限制,使的反射区面积小,那就要选择该天线系统。由上中下三幅天线组成,三幅天线等间隔。 SBO→上天线 CSB+SBO→中天线 CSB+SBO→下天线
机场类别和系统类别的区别
机场运行类别和仪表着陆系统的类别 机场运行达到Ⅱ类,相应的仪表着陆系统必须达到Ⅱ类标准。 仪表着陆系统达到Ⅱ类标准,还需其他设施或项目(如:灯光;围界;运行程序等)达到Ⅱ类标准,机场才能达到Ⅱ类运行标准,这是系统工程。
系统现状
我国现有仪表着陆系统的情况 现有仪表着陆系统100套,在80个机场。 Ⅱ类仪表着陆系统 3套,首都机场,虹桥机场,白云机场 Ⅲ类仪表着陆系统1套,上海浦东机场。 其他均为Ⅰ类仪表着陆系统 呼和白塔机场目前为Ⅰ类仪表着陆系统
仪表着陆系统概述
导航的概念:所谓导航就是将飞行器或舰船从一地引导到另一地的控制过程。 导航分为无线电导航、惯性导航、天文导航、多普勒和仪表导航等,方法上来看主要是测角和测距。 ILS (Instrument Landing System)仪表着陆系统是国际范围内被广泛运用于航空器进近和着陆的一种辅助导航设备。这个系统主要由航向台、下滑台和一系列的指点标构成。指点标有Outer marker, Middle marker在一些特殊情况下也包含Inner marker。
M150Hz 〉M90Hz
下滑信标
CSB和SBO信号场型
航向(Localizer) 航向产生的射频信号频率范围为108-112MHz,其中小数点后为奇数的频段由航向使用,小数点后为偶数的频段留给全向信标使用。一个航向台和一个航向台的频率间隔为50KHz,可用频点为40个。需要注意的是航向台的频率确定后,下滑台的频率也就随之确定了。呼和浩特机场08号108.9兆,26号109.5兆。 在±10度扇区范围内,覆盖距离大于25海里。 ±35度扇区覆盖大于17海里。
仪表着陆系统飞行校验科目
仪表着陆系统飞行校验科目摘要:一、仪表着陆系统简介1.定义与作用2.系统组成部分二、飞行校验科目的目的与要求1.目的2.要求三、飞行校验科目的具体内容1.设备检查与准备2.校验飞行实施3.数据处理与分析四、飞行校验对仪表着陆系统的重要性1.确保飞行安全2.提高着陆精度3.符合国际民航组织标准五、我国飞行校验的发展趋势1.技术进步2.行业规范与标准的完善3.国际合作与交流正文:一、仪表着陆系统简介仪表着陆系统(Instrument Landing System,简称ILS)是一种利用无线电信号实现飞机自动着陆的导航设备,通过对飞行员提供水平引导、垂直引导以及滑跑指示等信息,帮助飞行员在低能见度条件下精确地实施着陆。
仪表着陆系统在航空领域具有重要作用,不仅提高了航班的准点率,还大大降低了因低能见度引发的飞行安全风险。
仪表着陆系统主要由地面设备、机载设备和数据处理设备三部分组成。
地面设备主要包括发射机、天线阵、下滑道和航道信号器等;机载设备主要包括接收机、指示器、下滑道和航道信号接收天线等;数据处理设备则负责处理和显示来自地面设备和机载设备的信息,为飞行员提供直观的导航数据。
二、飞行校验科目的目的与要求飞行校验科目的主要目的是确保仪表着陆系统的性能符合国际民航组织(ICAO)的规定和我国民航局的相关要求,以保障飞行安全。
飞行校验要求包括:地面设备、机载设备的功能正常;设备间的通信顺畅;导航数据准确可靠;飞行员操作简便易行。
三、飞行校验科目的具体内容飞行校验科目的具体内容包括设备检查与准备、校验飞行实施和数据处理与分析。
设备检查与准备阶段,要对地面设备、机载设备的功能和性能进行检查,确保设备正常;校验飞行实施阶段,要根据校验计划,进行实际飞行操作,对仪表着陆系统进行实时测试;数据处理与分析阶段,要对飞行过程中收集的数据进行处理和分析,评估仪表着陆系统的性能,形成校验报告。
四、飞行校验对仪表着陆系统的重要性飞行校验对仪表着陆系统具有重要意义,可以确保飞行安全、提高着陆精度以及符合国际民航组织标准。
仪表着陆系统工作原理
仪表着陆系统工作原理仪表着陆系统(Instrument Landing System,简称ILS)是一种基于雷达和无线电导航技术的自动着陆辅助系统,用于帮助飞行员在恶劣天气条件下进行精确的着陆。
ILS由三个主要组件组成:1. 放导航信号的地面设备:这个设备通常被称为“局部器”(Localizer),它通过无线电信号发射和导航系统通信。
局部器发射两个信号,水平信号和垂直信号,协助飞行员控制飞机的水平和垂直位置。
飞行员可以通过接收这些信号来确保飞机在正确的航向和下降路径上。
2. 安装在飞机上的接收设备:在飞机上安装了称为接收局部器信号的接收设备。
接收设备接收地面发出的信号,并将其显示在驾驶舱的显示器上。
飞行员通过这个显示器来确定飞机的位置和航向,以便进行准确的着陆。
3. 自动着陆系统(Autoland System):许多现代飞机可以配备自动着陆系统,它使用ILS技术并结合自动驾驶系统,可以在没有飞行员干预的情况下完成整个着陆过程。
自动着陆系统监测ILS信号,并通过控制飞机的引导系统和动力系统来自动调整飞机的飞行姿态和速度,确保精确地着陆。
ILS的工作原理是基于地面设备发射的无线电信号和飞机上的接收设备接收信号。
地面设备发射水平和垂直信号,飞机上的接收设备接收这些信号,并将其显示在驾驶舱的显示器上。
飞行员使用这些信号来导航飞机,以确保飞机安全地降落在目标跑道上。
ILS是民用和军用飞机着陆过程中一项重要的辅助技术,可以大大提高飞行员在恶劣天气条件下的着陆能力。
除了上述提到的基本工作原理外,仪表着陆系统还有其他一些相关的技术和功能。
首先,仪表着陆系统通常配备了仪表陀螺系统,用于提供飞机的姿态和水平信息。
这些信息对于飞行员来说至关重要,因为在低能见度条件下,他们无法依赖外界视觉进行导航和操控。
仪表陀螺系统可以通过加速度计和陀螺仪测量飞机的滚转、俯仰和偏航信息,并将其显示在仪表板上,帮助飞行员保持飞机的平稳飞行。
仪表着陆系统
仪表着陆系统(ILS)简介ILS的原理ILS的作用和历史仪表着陆系统ILS(Instrument Landing System)是“非目视”进近和着陆的标准助航系统。
它为飞机提供对准跑道的航向信号和指导飞机下降的下滑道信号,再加上适当的距离指示信号,使飞机能在低的能见度和恶劣天气条件下借助这些仪表提供的信号指示就可以安全着陆。
随着新技术和新器件在ILS上的应用,ILS所提供的精确导航信号使得全天候的着陆成为可能。
为了着陆飞机的安全,在目视着陆飞行条例(VFR)中规定,目视着陆的水平能见度必须大于4.8Km,云底高不小于300M。
在很大一部分机场的气象条件都不能满足这一要求,这时着陆的飞机必须依靠ILS提供的引导进行着陆。
ILS是采用“等信号”原理来实现的,即通过比较两个信号的幅度差来给出左右和上下指示,当飞行器处于指定航线时,两个信号幅度相等,差值为零。
最早的ILS雏形出现在上个世纪三十年代,那时有一种叫“AN系统”的设备来帮助飞机着陆。
如图一所示。
它将“A”和“N”两个字母的MORSE码分开发射,当飞机偏离跑道中心线时,飞行员只能听到其中一个字母的MORSE 码,“A”或“N”,只有飞机对准跑道时,才能同时听到两个字母。
而飞机下滑的角度是这样形成的:飞机沿着一个固定信号强度(比如100uA)降落。
后来这两个MORSE 码被两个音频所代替(90Hz 和150Hz ),并且载波提高,航向为VHF ,下滑为UHF 。
如图二所示。
但上述两种系统的缺点是显而易见的,就是误差大,波瓣宽度十分大,容易受干扰。
现代的ILS 通过采用多个对数周期天线,并添加其它技术元素,如采用双频系统、分离辐射和空间调制、信号频谱精确控制和变换等措施来提高ILS 的精度和可靠性。
图一:AN 系统图二:双音频系统ILS的有关述语决断高度(DH):ILS引导飞机到达飞行员能看见跑道的最低允许高度,在这个高度上,驾驶员必须做出继续着陆还是复飞的决定。
仪表着陆系统
• ILS “A”点
在进近方向,沿着跑道中心延长线,距跑道入口7.5 公里处测得的下滑道上的一点。
名词术语
• ILS “B”点
在进近方向,沿着跑道中心延长线,距跑道入口
1050米处测得的下滑道上的一点。
• ILS “C”点
标称下滑道直线部分在包含跑道入口的水平面上方30 米高度处所通过的一点。
名词术语
• 不同制式的下滑信标 零基准下滑信标,场地的要求严 边带基准下滑信标,用于特殊的场地 扑获效应下滑信标是双频制,降低地 面障碍物反射的影响,用于复杂地形 • 不同的下滑信标对场地要求、投资、保 障的类别都不同,要因地制宜的采用
下滑信标
零基准下滑信标
扑获效应下滑信标
下滑信标
扑获效应下滑信标天线阵
名词术语
• Ⅲ类设施性能的仪表着陆系统
借助必要的辅助设备,从仪表着陆系统覆盖区边缘到 跑道表面能提供引导信息的仪表着陆系统。
• 前向航道扇区
位于航向信标台与跑道相同一侧的航道扇区。
• 半航道扇区
包含航道线的水平面内,由靠近航道线的DDM等于 0.0775的各点轨迹所限定的扇区。
名词术语
• 下滑道
• 航道宽度
α = 2 arc tg 105
d1+d2
其中: α 航道宽度,航道左右DDM为0.155 所限制 的扇区角,以角度表示 d1 跑道长度,米 d2 航向天线到跑道终端的距离长度,米
下滑计算公式
• 下滑天线位置
H+Y
D=
其中: D H Y θ α
tg(θ + α)
下滑天线距入口的内撤距离 下滑道在跑道入口处的高度,15 米 在入口,跑道面和下滑反射面的高差 下滑角,3 度 下滑反射面的纵向坡度角
仪表着陆系统
(二) 下降中方向偏差的判断及其修正
A
(二) 下降中方向偏差的判断及其修正
B A
(二) 下降中方向偏差的判断及其修正
C B A
(二) 下降中方向偏差的判断及其修正
D C B A
(二) 下降中方向偏差的判断及其修正
E D
C B A
(二) 下降中方向偏差的判断及其修正
大偏左 小偏右 电台相对方位角剩余角(F剩) 76° 53° 28° 10° 0°
两剩余角差(X剩- F剩)
14° 7° 2°
0° 0°
(一) 转弯中方向偏差的判断及其修正
航向剩余角(X剩)
90° 60° 30° 10° 0°
电台相对方位角剩余角(F剩) 76° 53° 28° 10° 0°
两剩余角差(X剩- F剩)
系 统 概 述
仪表着陆系统是一种比较先进的着陆设 备,它能够形象地指示飞机与着陆航道和下 滑道的相关位置,利用这种设备着陆可以保 证飞机在最低气象条件下顺利着陆,是昼夜 复杂气象条件下进近着陆的重要方法之一。
(一) 地面设备
边界指点信标台近距信标台 航向信标台
下滑信标台
远距信标台
(二) 机载设备
(二) 进入四转弯和转弯中的检查
(二) 进入四转弯和转弯中的检查
(三) 五边按航向道飞行的方法
(四) 进入下滑道飞行的方法
(四) 进入下滑道飞行的方法
(四) 进入下滑道飞行的方法
(一) 转弯中方向偏差的判断及其修正
X剩-F剩
X剩 F剩
航向剩余角(X剩)
90° 60° 30° 10° 0°
14° 7° 2°
0° 0°
(一) 转弯中方向偏差的判断及其修正
仪表着陆系统三类标准
仪表着陆系统三类标准
仪表着陆系统(ILS)的三类标准如下:
一类盲降:这是最低标准的盲降方式,适用于前方能见度不低于800米或跑道视程不小于550米的情况,此时着陆决断高度不应低于60米。
1
二类盲降:在这种条件下,能见度为400米或跑道视程不小于350米时,着陆决断高度不应低于30米。
三类盲降:这是一种更高级别的盲降方式,分为三个子类别:
IIIA类:在这种情况下,能见度为200米,且云比高不超过15米;决断高度为15米。
如果飞行员能够清晰看到跑道并确认可以降落,则可以进行降落;如果不确定,则需要复飞。
IIIB类:能见度降至50米,且云比为零;这种情况下没有固定的决断高度,飞行员需要根据实际情况判断是否能降落,同样需要复飞。
IIIC类:这是最极端的一种情况,能见度和云比都为零,
意味着在任何情况下都不能进行降落,只能复飞。
仪表着陆系统
仪表着陆系统(ILS )简介ILS 的原理ILS 的作用和历史仪表着陆系统ILS (Instrument Landing System )是“非目视”进近和着陆的标准助航系统。
它为飞机提供对准跑道的航向信号和指导飞机下降的下滑道信号,再加上适当的距离指示信号,使飞机能在低的能见度和恶劣天气条件下借助这些仪表提供的信号指示就可以安全着陆。
随着新技术和新器件在ILS 上的应用,ILS 所提供的精确导航信号使得全天候的着陆成为可能。
为了着陆飞机的安全,在目视着陆飞行条例(VFR )中规定,目视着陆的水平能见度必须大于4.8Km ,云底高不小于300M 。
在很大一部分机场的气象条件都不能满足这一要求,这时着陆的飞机必须依靠ILS 提供的引导进行着陆。
ILS 是采用“等信号”原理来实现的,即通过比较两个信号的幅度差来给出左右和上下指示,当飞行器处于指定航线时,两个信号幅度相等,差值为零。
最早的ILS 雏形出现在上个世纪三十年代,那时有一种叫“AN 系统”的设备来帮助飞机着陆。
如图一所示。
它将“A ”和“N ”两个字母的MORSE 码分开发射,当飞机偏离跑道中心线时,飞行员只能听到其中一个字母的MORSE 码,“A ”或“N ”,只有飞机对准跑道时,才能同时听到两个字母。
而飞机下滑的角度是这样形成的:飞机沿着一个固定信号强度(比如100uA )降落。
后来这两个MORSE 码被两个音频所代替(90Hz 和150Hz ),并且载波提高,航向为VHF ,下滑为UHF 。
如图二所示。
但上述两种系统的缺点是显而易见的,就是误差大,波瓣宽度十分大,容易受干扰。
现代的ILS 通过采用多个对数周期天线,并添加其它技术元素,如采用双频系统、分离辐射和空间调制、信号频谱精确控制和变换等措施来提高ILS 的精度和可靠性。
图一:AN 系统图二:双音频系统ILS的有关述语决断高度(DH):ILS引导飞机到达飞行员能看见跑道的最低允许高度,在这个高度上,驾驶员必须做出继续着陆还是复飞的决定。
仪表着陆系统
仪表着陆系统:精准导航,助力飞行员安全降落仪表着陆系统:守护飞行安全的幕后英雄在飞行员的眼中,仪表着陆系统就像是一位无形的导航员,无论风雨如何肆虐,它都能稳定地指引着飞机穿越云层,直至平稳触地。
这套系统由地面设备和机载设备两大部分组成,它们协同工作,确保每一次降落都精确无误。
地面设备,包括方位信标台和下滑信标台,它们位于跑道末端,各自扮演着至关重要的角色。
方位信标台发射的信号帮助飞机确定正确的航向,而下滑信标台则提供垂直引导,确保飞机沿着正确的下滑路径下降。
这些信号如同无形的指引线,将飞机一步步引向跑道。
机载设备,则是飞行员与仪表着陆系统沟通的桥梁。
飞机上的导航显示器能够接收地面设备发出的信号,并将其转换为直观的飞行指引。
飞行员通过这些信息,可以清晰地了解飞机与跑道中心线的相对位置,以及是否处于正确的下滑道上。
值得一提的是,仪表着陆系统的设计考虑了极高的可靠性。
它采用了多重备份和故障检测机制,确保在关键时刻系统能够稳定工作。
即使在部分设备出现故障的情况下,系统也能自动切换到备用模式,继续为飞行员提供必要的导航信息。
在飞行过程中,仪表着陆系统不仅提高了飞行的安全性,也极大地提升了机场的运行效率。
它让飞机能够在能见度极低的情况下依然能够进行正常的起降操作,减少了因天气原因导致的航班延误和取消。
仪表着陆系统是现代航空安全的重要组成部分,它的存在让每一次航班降落都多了一份安全保障,也让飞行员在面对复杂气象条件时,能够更加从容不迫。
这位守护飞行安全的幕后英雄,虽然不常被提及,但其贡献却是不可估量的。
仪表着陆系统:技术成就与飞行员信任的交汇点每一次飞机在恶劣天气中安全降落,都是对仪表着陆系统精确性和可靠性的无声赞颂。
这套系统的精细之处,不仅体现在其高科技的设计上,更在于它赢得了飞行员的深深信赖。
技术的精进,体现在仪表着陆系统的不断优化中。
随着航空技术的发展,ILS系统也在不断地更新换代。
例如,如今的系统普遍采用了更先进的固态发射机,这些发射机不仅体积更小、功耗更低,而且故障率显著下降,进一步提升了系统的整体性能。
仪器降落系统ILS
03 ILS系统的分类
I类ILS
跑道视程(RVR)范围
通常为550至800米,允许飞机在较低的能见度条件下着陆。
系统组成
包括航向台、下滑台和外指点标。
导航精度
仪器降落系统ILS(仪表着陆系统)
目录
• 引言 • ILS系统概述 • ILS系统的分类 • ILS系统的应用 • ILS系统的优势与局限性 • ILS系统的未来发展 • 结论
01 引言
主题简介
• 仪器降落系统ILS(仪表着陆系统):一种用于引导飞机着陆的 电子系统,通过地面发射的无线电信号提供方向、下滑道和距 离信息,使飞机在视觉条件不佳或完全看不见的情况下安全着 陆。
ILS系统通过精确的引导信息,帮助飞行员在低能见度条 件下安全着陆,降低了着陆过程中的风险。
全天候工作能力
ILS不受光照、云层和天气条件的影响,可以在任何时间 、任何天气条件下为飞行员提供准确的着陆引导信息。
提高机场运行效率
ILS系统允许飞机在复杂的天气条件下连续进场着陆,提 高了机场的运行效率,减少了航班延误和取消的情况。
未来发展趋势与展望
01
02
03
集成化与模块化
未来ILS系统将朝着集成化 和模块化方向发展,实现 更高效的系统集成和灵活 的扩展升级。
Hale Waihona Puke 智能化与自动化随着人工智能和自动化技 术的发展,ILS系统将更加 智能化和自动化,提高系 统的自主性和适应性。
绿色环保
未来ILS系统将更加注重环 保和节能设计,减少对环 境的影响,促进可持续发 展。
仪表着陆系统飞行校验科目
仪表着陆系统飞行校验科目1. 仪表着陆系统简介仪表着陆系统(Instrument Landing System,简称ILS)是一种先进的航空导航设备,用于辅助飞行员在恶劣天气条件下进行仪表着陆。
ILS通过无线电信号提供准确的水平和垂直引导,使飞机能够安全地降落在跑道上。
ILS由三个主要组件组成: - 本地izer(Localizer):提供水平引导,确保飞机在正确的航向上进行着陆。
- 俯仰角指示器(Glide Slope Indicator):提供垂直引导,确保飞机以正确的下降角度接近跑道。
- 远程通信设备(Marker Beacon):提供关键的航向和高度信息。
2. 仪表着陆系统飞行校验科目的重要性仪表着陆系统飞行校验科目是飞行员获得合格执照的必要要求之一。
飞行员必须通过合格的训练和考试,证明他们能够熟练操作和使用ILS系统,以确保在恶劣天气条件下的安全着陆。
ILS飞行校验科目的重要性体现在以下几个方面: - 安全性:恶劣天气条件下的着陆是飞行员面临的最大挑战之一。
ILS系统的正确使用可以大大提高着陆的安全性,减少事故的风险。
- 准确性:ILS系统具有高度的准确性,可以提供精确的水平和垂直引导。
飞行员通过飞行校验科目的训练,可以学习如何正确地解读和应用ILS系统提供的信息。
- 自信心:掌握ILS系统的使用可以增强飞行员的自信心,使他们能够在恶劣天气条件下更加从容地应对着陆挑战。
- 法规要求:航空管理部门对飞行员的资质和技能有严格的要求。
通过完成ILS飞行校验科目,飞行员可以满足法规要求,获得合格执照。
3. ILS飞行校验科目的内容ILS飞行校验科目通常包括以下内容:3.1 ILS系统的原理和工作方式•学习ILS系统的组成和功能,理解本地izer、俯仰角指示器和远程通信设备的作用。
•了解ILS系统的工作原理,包括无线电信号的发射和接收过程。
•理解ILS系统的精度和可靠性,以及在不同天气条件下的适用性。
仪表着陆系统 ILS
ILS的未来
美国最近研制了了一种先进灵活的仪表着陆系统,它比 装在机场的常规ILS可靠性高,价格低。这套以计算机 为基础的先进着陆系统(ALS=Automatic Landing System )与正在研制中的星基系统不同,ALS采用现有 的机载ILS设备。 ALS更适用于那些小型、低容量且 受地形限制的机场。
6、航向信表系统
工作频率 108.00-111.95MHZ 小数点后第一位为奇数。 a、航向信标发射工作框图
1 6
调幅电路 3
功放 uSBO(t)
右天线,fR(q) 8 9 · · · · · · +q
载波振荡 放大器
· 90° 2
150Hz、90Hz 正弦信号发生器 4 调幅电路 · 5 7 功放
ILS的发展趋势
新一代更先进的MLS一定会在将来取代ILS。根据我国研制 ML S 的状况, 目前要安装一套ML S 系统的耗资极其巨大, 我国机场规模小, 分布范围广, 所使用的跑道数量和飞行流量 之间并没有十分突出的矛盾, IL S 尚能满足要求。 IL S 在我国已经使用了几十年 。作为一种廉价可靠的着陆 设备, 未来一段时间, 在推广MLS 的同时, ILS 不可能被完全 取代, 必然是MLS与ILS结合共同来支持飞机导航及引导着陆。 飞机也必须有兼具ILS以ML S 双重功能的组合着陆系统来保 障机安全着陆的需要
混合 差端 天线 -90° 网络 和端 uCSB(t) 分配网络
0°
跑道中心线(0°)
-q
左天线,fL(q)
模拟开关 Morse码 发生器
1020Hz正弦 信号产生器
键控识别音频 信号产生器
b、航向信标接受机
300~3000Hz BP滤波器 · 1 接收机 2 包络 3 · 检波器 150Hz BP 滤波器
仪表着陆系统
ILS导航台精密进近程序是指利用那些导航精度高,而且既能提供方位信号,又能提供下滑道信号的导航设备设计的仪表进近程序。
目前,能够作为精密进近程序的导航设备有仪表着陆系统(ILS)、微波着陆系统(MLS)、精密进近雷达(PAR)以及由全球导航卫星系统提供垂直引导的进近(GNSS APV)。
目前我国主用的精密进近导航设备是仪表着陆系统(ILS)。
仪表着陆系统的地面系统由航向台(Localizer)、下滑台(Glide Slope)、指点信标(Marker)和灯光系统四个部分组成。
仪表着陆系统的机载系统是由无线电接收机和仪表组成,它的任务是给驾驶员指示出跑道中心线并给出按照规定的坡度降落到跑道上的路径。
1.ILS导航台的组成及其布局(1)航向台LLZ:Localizer航向台由一个甚高频发射机、调制器、分流器及天线阵组成。
航向台的天线安装在跑道末端的中心延长线上,通常距跑道末端400至500m。
航向台发射两个等强度的无线电波束,称为航向信标波束,使用的频率为108.10~111.95MHz,两个波束分布在沿跑道中心线的两侧,使用两种调幅频率,左侧是90Hz调幅,右侧是150Hz调幅。
如果飞机的接收机收到的两个电波强度相等,机上的ILS仪表指针指在正中,说明飞机飞在跑道中心线向上延伸的垂直平面上,飞机可沿着波束方向准确地在跑道中线上着陆。
􀂄在LLZ的有效范围内,驾驶员即可根据飞行仪表(HIS、ADI)的指示,使航空器切入航道对准跑道中心线飞行。
(2)下滑台GS:Glide Slope下滑台由超高频发射机、调制器和上、下天线等组成。
下滑台的天线安装在跑道入口内的一侧,一般距入口250m前后,与跑道中心线的横向距离为150m左右。
该设备能产生一个与跑道平面成一定角度的下滑面。
该下滑面与航向道相结合形成一个下滑道。
下滑道在跑道入口处的高称为ILS基准高(RDH),其数值为15±3m(标准15m)。
INSTRUMENT LANDING SYSTEM(仪表着陆系统)
目视参考系统
精密进近轨迹指示器(Precision 精密进近轨迹指示器(Precision Approach Path Indicator, PAPI),提供 PAPI),提供 飞行器相对正确的下滑道的位置的目 视参考。
MB Tips
航路信标台通常距离飞机垂直高度比较远,接收的 信号较弱,而航道信标台距离飞机较近,信号较 强,如果接收机灵敏度设置一样,则会出现信号 接收不到或信号过强的情况,因此MB控制器上有 接收不到或信号过强的情况,因此MB控制器上有 灵敏度高低切换开关。 现代ILS系统中常用DME台代替MB台,DME可以连 现代ILS系统中常用DME台代替MB台,DME可以连 续提高距离信息,其功能强于MB台。对于安装 续提高距离信息,其功能强于MB台。对于安装 DME台的机场来说,要求实施ILS进近的飞机至少 DME台的机场来说,要求实施ILS进近的飞机至少 安装一台DME接收机设备。 安装一台DME接收机设备。
机载设备
航道指示器(左座)
下滑接收天线 航向下滑组 合接收机
航道指示器(右座)
航向接收天线 控制盒
ILS系统组成及分系统工作原理 ILS系统组成及分系统工作原理 和作用 ILS系统的组成 ILS系统的组成
ILS系统包括三个分系统:提供横向引 ILS系统包括三个分系统:提供横向引 导的航向信标(Localize)、提供垂直 导的航向信标(Localize)、提供垂直 引导的下滑道信标(Glideslope)、提 引导的下滑道信标(Glideslope)、提 供距离引导的指点信标(Marker 供距离引导的指点信标(Marker Beacon)。 Beacon)。
反航道(Back Course) 反航道(Back Course)Tips
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仪表着陆系统的测试
AMM34-31-42,MMR401拆装测试
329.15—335 UHF 振荡器 MHz
90Hz 调制器
150Hz 产生器
150Hz 调制器
仪表着陆
150Hz调幅 跑道
90Hz调幅
90Hz和150Hz信号 强度相等
仪表着陆系统地面设备
指点信标的发射信号
外、中、内 信标频率
调制器
固定为 75MHz
指点信标 外指点标 中指点标 内指点标 反航道信标
◆下滑信标(G/S)发射信号的频率为: 329.15——335 MHz中,间隔为150KHz的40个 波道。
◆指点信标(MB)发射信号频率为固定的 75MHz。
仪表着陆系统使用频率的规律
航向信标和下滑信标工作频率是配对工作的:
航向信标/MHz 108.10 108.15 108.30 108.35 108.50 108.55 ~~~~~~ 109.95
下滑信标/MHz 334.70 334.55 334.10 333.95 329.90 329.75 ~~~~~~ 330.95
航向信标的发射信号
航向信标天线安装在顺着着陆方向跑道远端 300~400m的跑道中心延长线上。 150Hz 产生器
108.1—111.95 VHF 振荡器 MHz
150Hz 调制器
面
着陆标准
仪表着陆系统是由地面设备和机载 设备所组成,根据地面设备的精度和机 载接收设备的分辨能力以及机场的净空 条件、跑道视距和决断高度等因素。 国际民航组织(ICAO)为使用仪表 着陆系统(ILS)的飞机指定了三类着 陆标准,以跑道视距(RVR)和决断高 度(DH)来划分。
跑道视距和决断高度
仪表着陆系统的功能
6.5~12km 400~500m
1050±150m
75-450m
150m 航向天线阵 300m 下滑信标台
内指点信标
外指点信标
中指点信标
机场俯视图
仪表着陆系统的功能
航向天线阵
下滑信标台
指点信标
机场侧视图
ILS系统使用的频率
◆航向信标(LOC)发射信号的频率为: 108.1~111.95 MHz中,十分位为奇数且间隔为 50KHz的40个波道。
仪表着陆系统
——Instrument Landing System
仪表着陆系统课程导航
仪表着陆 的功能 仪表着陆 系统原理 仪表着陆 系统组成 更换MMR 拆装测试 目视着陆 的条件 航向信标 工作原理 仪表着陆 地面设备 下滑信标 工作原理 指点信标 工作原理
组件位置
测试准备
测试分析
测试显示
仪表着陆系统的功能
7、34-32-11,401 MARKER BEACON ANTENNA
仪表着陆系统的组成
英文名称 ILS GLIDE SLOPE ANTENNA LOCALIZER ANTENNA ILS AND MULTI-MODE RECEIVER NAVAGATION CONTROL PANEL 中文名称 下滑天线 航向天线 多模式接收机 导航控制面板
1、34-31-21,401 ILS GLIDE SLOPE ANTENNA
2、34-31-31,401 LOCALIZER ANTENNA
3、34-31-42,401 ILS AND MULTI-MODE RECEIVER 4、34-31-52,401 NAVAGATION CONTROL PANEL 5、34-31-62,401 RF POWER DIVIDER 6、34-31-72,401 LOCALIZER ANTENNA SWITCH
仪表着陆系统的组成
仪表着陆系统的功能
★航向信标系统:提供航向引导,即飞机 和跑道之间的偏差角度。 ★下滑信标系统:提供垂直引导,即飞机
和下滑道之间的偏差角度。
★指点信标系统:提供距离引导,即飞机
和跑道起点的距离。
航向和下滑信标的功能
航向面
跑道
下滑面
航向天线阵
航向天线阵
下滑信标台
下滑信标台
安徽屯溪机场
多模式接收机
多模式接收机
737-800AMM(34-31-41)
导航控制面板
当前频率窗口
备用频率窗口
导航控制 面板
测试电门
频率转换开关
频率调节旋钮
P8通信 面板
射频功率分离器
射频功率分离器
射频分离器
737-800AMM(34-31-62)
航向天线转换开关
航向天线转换电门
航向天线转换开关
737-800AMM(34-31-72)
跑道视觉距/m 决断高度/m >=800 60 >=400 30 >=200 50 0
各类着陆标准的跑道视距和决断高度
着陆标准
Ⅰ类:RVR>=800m,引导飞机至DH=60m
Ⅱ类:RVR>=400m,引导飞机至DH=30m Ⅲ类:RVR>=200m,引导飞机至跑道表面
目前ILS系统只能满足Ⅰ、 Ⅱ类着陆标准
仪表着陆系统的测试
测试前准备:2、将EFIS控制面板设置成APP进近模式
下滑信标哪去了?
仪表着陆系统的测试 当计划航线(Course)和目前航向 (Heading)相差90度以上时,仪表着陆系统 判定当前飞行为“反航向飞行”,在反航向飞 行时,只有航向指引,没有下滑指引。
仪表着陆系统的测试
Course和 Heading相差 90度以上称为 “反航向飞行”
RF POWER DIVIDER
LOCALIZER ANTENNA SWITCH MARKER BEACON ANTENNA
射频功率分离器
航向天线转换开关 指点信标天线
下滑天线(G/S ANT)
下滑天线
737-800AMM(34-31-21)
航向天线(LOC ANT)
航向天线
737-800AMM(34-31-31)
指点信标天线
指点信标天线
指点信标天线
737-800AMM(34-32-11)
仪表着陆系统工作原理
仪表着陆系统的测试
背景: 更换ILS1号收发组后,需要进行拆装测试,参考737800AMM34-31-42,401(E. Installation Test),进行测试
仪表着陆系统的测试
测试前准备:将频率调节到108.1MHz
★跑道视距(RVR):是指跑道的能见度, 即在跑道表面的水平方向上能在天空背景上 看见物体的最大距离(白天),可用仪器测 量。(Runway Visual Range)
★决断高度(DH):是指驾驶员对飞机着 陆或复飞做出决断的最低高度。(Decision Height)
着陆标准
类别 Ⅰ Ⅱ ⅢA ⅢB ⅢC
75MHz载波 3000Hz调制
跑道
内指点标 中指点标 外指点标
仪表着陆系统的指示
下滑道的指示 G/S
航向指示 LOC
PFD上仪表着陆系统的指示仪表着陆系统的指示航向指示 LOC
下滑道的指示 G/S
ND上仪表着陆系统的指示
仪表着陆系统的指示
仪表着陆系统的组成
737-800AMM(目录)
仪表着陆系统的组成
1、108.1MHz是指定频率,还是 根据每个机场的ILS进行相应的射 定?
2、ILS系统有3个子系统,为什么 只设置了一个频率?
仪表着陆系统的测试
1、答:108.1MHz是ILS系统测试指定的频率,不会因 为机场的变化而变化。
2、答:ILS系统虽然有3个子系统,但是G/S系统和 LOC系统的频率是配对使用的,MB系统的频率是固定 的75MHz,因此,在调节频率时,只需要调节LOC系统 的通信频率即可。
仪表着陆系统(ILS)被国际民航 组织(ICAO)确定为“飞机标准进 近和着陆设备”。
它能在气象条件恶劣或能见度 差的条件下,为驾驶员提供着陆的引 导信息,以保证飞机安全进近和着陆。
目视进场的条件
《目视着陆飞行条例VFR中》规定:目视进场条件为
云层
目视距离必须大于4.8km
云层高度不小于300m
地
90Hz 产生器
90Hz 调制器
航向信标辐射范围
航向信标台
150Hz调幅
跑道
90Hz调幅
90Hz和150Hz信号 强度相等
载波频率为108.1~111.95MHz
下滑信标的发射信号
下滑信标天线安装在跑道入口处的一侧。天线安 装在一个垂直地面的杆上。由几个处于不同高度的水 平振子天线组成。 90Hz 产生器
VHF 震荡器 调制频率 识别码 机上指示灯 连续拍发,每秒2划 400Hz 蓝(或紫) 1300Hz 连续交替拍发点一划 琥珀(黄) 3000Hz 连续拍发,每秒6点 白色 3000Hz 连续拍发,每秒6个对点 白色
指点信标系统工作图
75MHz载波 400Hz调制
75MHz载波 1300Hz调制
仪表着陆系统的测试
COURSE调节旋钮
仪表着陆系统的测试 测试开始:
启动按钮
仪表着陆系统的测试
观察测试结果:第 一 步 第 二 三
仪表着陆系统的测试
参考737-800AMM34-31-42, 401更换B-XXXX飞机MMR,测试正 常。
仪表着陆系统的测试
AMM34-31-42,MMR401拆装测试