十进制数和单精度浮点数的相互转换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将十进制数转换成浮点格式(real*4)
[例1]:
十进制26.0转换成二进制
11010.0
规格化二进制数
1.10100*2^4
计算指数
4+127=131
符号位指数部分尾数部分
0 10000011 10100000000000000000000
以单精度(real*4)浮点格式存储该数0100 0001 1101 0000 0000 0000 0000 0000 0x41D0 0000
[例2]:
0.75
十进制0.75转换成二进制
0.11
规格化二进制数
1.1*2^-1
计算指数
-1+127=126
符号位指数部分尾数部分
0 01111110 10000000000000000000000
以单精度(real*4)浮点格式存储该数0011 1111 0100 0000 0000 0000 0000 0000 0x3F40 0000
[例3]:
-2.5
十进制-2.5转换成二进制
-10.1
规格化二进制数
-1.01*2^1
计算指数
1+127=128
符号位指数部分尾数部分
1 10000000 01000000000000000000000
以单精度(real*4)浮点格式存储该数1100 0000 0010 0000 0000 0000 0000 0000 0xC020 0000
将浮点格式转换成十进制数
[例1]:
0x00280000(real*4)
转换成二进制
00000000001010000000000000000000
符号位指数部分(8位)尾数部分
0 00000000 01010000000000000000000
符号位=0;因指数部分=0,则:尾数部分M为m:
0.01010000000000000000000=0.3125
该浮点数的十进制为:
(-1)^0*2^(-126)*0.3125
=3.6734198463196484624023016788195e-39
[例2]:
0xC04E000000000000(real*8)
转换成二进制1100000001001110000000000000000000000000000000000000000000000000
符号位指数部分(11位)尾数部分
1 10000000100 1110000000000000000000000000000000000000000000000000
符号位=1;指数=1028,因指数部分不为全'0'且不为全'1',则:尾数部分M为1+m:1.1110000000000000000000000000000000000000000000000000=1.875
该浮点数的十进制为:
(-1)^1*2^(1028-1023)*1.875
=-60