高一数学集合复习课

合集下载

高一数学集合教案 高一数学教案优秀13篇

高一数学集合教案 高一数学教案优秀13篇

高一数学集合教案高一数学教案优秀13篇高一数学集合教案篇一教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。

人教A版数学必修一四川省成都七中高一数学复习:§1.1.1(2)集合的含义.docx

人教A版数学必修一四川省成都七中高一数学复习:§1.1.1(2)集合的含义.docx

高中数学学习材料唐玲出品1.1.2集合的表示一、课标要求(1)理解并会用列举法、描述法表示集合;(2)掌握集合的表示方法、常用数集及其记法,能选择自然语言、图形语言、集合语言描述不同的具体问题,感受集合语言的意义和作用. 二、知识要点(1)表示集合共有哪些方法:______________________________________。

(2)怎样用列举法表示集合:________________________________________。

(3)怎样用描述法表示集合:________________________________________。

【答案】(1)列举法、描述法、自然语言和图示(Venn)法. (2)把集合元素一一列举出来,并用花括号“{ }”括起来. (3)在花括号“{ }”内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中的元素所具有的共同特征.三、典型例题例1、用列举法表示下列集合:(1)已知集合M =⎩⎨⎧⎭⎬⎫x ∈N |61+x ∈Z ,求M ; (2)方程组⎩⎪⎨⎪⎧x +y =2x -y =0的解集;(3)由|a|a +b|b|(a ,b ∈R )所确定的实数集合.解 (1)∵x ∈N ,且61+x∈Z ,∴1+x =1,2,3,6,∴x =0,1,2,5,∴M ={0,1,2,5}.(2)由⎩⎪⎨⎪⎧x +y =2x -y =0得⎩⎪⎨⎪⎧x =1y =1,故方程组的解集为{(1,1)}.(3)要分a>0且b>0,a>0且b<0,a<0且b>0,a<0且b<0四种情况考虑,故用列举法表示为{-2,0,2}. 规律方法:(1)列举法表示集合,元素不重复、不遗漏、不计次序,且元素与元素之间用“,”隔开.(2)列举法适合表示有限集,当集合中元素的个数较少时,用列举法表示集合较为方便,而且一目了然.变式1、用列举法表示下列集合:(1)A ={x||x|≤2,x ∈Z };(2)B ={x|(x -1)2(x -2)=0};(3)M ={(x ,y)|x +y =4,x ∈N *,y ∈N *};(4)已知集合C =⎩⎨⎧⎭⎬⎫61+x ∈Z |x ∈N ,求C. 解 (1)∵|x|≤2,x ∈Z ,∴-2≤x≤2,x ∈Z ,∴x =-2,-1,0,1,2.∴A ={-2,-1,0,1,2}.(2)∵1和2是方程(x -1)2(x -2)=0的根,∴B ={1,2}.(3)∵x +y =4,x ∈N *,y ∈N *,∴⎩⎪⎨⎪⎧x =1,y =3,或⎩⎪⎨⎪⎧x =2,y =2,或⎩⎪⎨⎪⎧x =3,y =1.∴M ={(1,3),(2,2),(3,1)}. (4)结合例1(1)知,61+x=6,3,2,1,∴C ={6,3,2,1}. 例2、用描述法表示下列集合: (1)所有正偶数组成的集合;(2)方程x 2+2=0的解的集合; (3)不等式4x -6<5的解集;(4)函数y =2x +3的图象上的所有点的集合.解 (1)文字描述法:{x|x 是正偶数}.符号描述法:{x|x =2n ,n ∈N *}.(2){x ∈R |x 2+2=0}. (3){x ∈R |4x -6<5}.(4){(x ,y)|y =2x +3,x ∈R ,y ∈R }. 规律方法:用描述法表示集合时,要注意代表元素是什么?同时要注意代表元素所具有的共同属性.变式2、用描述法表示下列集合:(1)二次函数y =ax 2+bx +c 的图象上所有点的集合;(2)一次函数y =x +3与y =-2x +6的图象的交点组成的集合; (3)不等式x -3>2的解集.解 (1){(x ,y)|y =ax 2+bx +c ,x ∈R ,a≠0}.(2)⎩⎨⎧===⎩⎨⎧+-=+=41),{(}623),{(y x y x x y x y y x }.(3){x ∈R |x -3>2}.例3、用适当的方法表示下列集合:(1)比5大3的数;(2)方程x 2+y 2-4x +6y +13=0的解集;(3)二次函数y =x 2-10图象上的所有点组成的集合. 解 (1)比5大3的数显然是8,故可表示为{8}.(2)方程x 2+y 2-4x +6y +13=0可化为(x -2)2+(y +3)2=0,∴⎩⎪⎨⎪⎧x =2y =-3,∴方程的解集为{(2,-3)}.(3)“二次函数y =x 2-10的图象上的点”用描述法表示为{(x ,y)|y =x 2-10}.规律方法:用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合. 变式3、用适当的方法表示下列集合:(1)由所有小于10的既是奇数又是质数(素数)的自然数组成的集合; (2)由所有周长等于10 cm 的三角形组成的集合;(3)从0,1,2中抽出部分或全部数字(没有重复数字)所组成的自然数的集合;(4)二元二次方程组⎩⎨⎧==2x y xy 的解集. 解 (1)列举法:{3,5,7}.(2)描述法:{ x|x 是周长为10 cm 的三角形}.(3)列举法:{0,1,2,10,12,20,21,102,120,201,210}. (4)列举法:{(0,0),(1,1)}. 四、备选例题1、用集合表示图中阴影部分(含边界).【解析】图中阴影部分是由直线2,4x x =-=及1,3y y =-=围成的矩形,设其中任意一点(,)P x y ,则-2≤x ≤4,-1≤y ≤3,故图中阴影部分可用集合表示为{(x ,y)| -2≤x ≤4,-1≤y ≤3}. 2、定义集合运算:A ⊙B={z ︳z= xy(x+y),x ∈A ,y ∈B },设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为( )A 、0B 、6C 、12D 、18 【解析】A ⊙B={z ︳z= xy(x+y),x ∈A ,y ∈B }中,“x ∈A ,y ∈B ”是指x 和y 分别各自独立地遍取集合集合A 与B 中所有元素,再代入z= xy(x+y)就得到集合A ⊙B 的所有元素,共有4种情况:02x y =⎧⎨=⎩,03x y =⎧⎨=⎩,12x y =⎧⎨=⎩,13x y =⎧⎨=⎩, 代入z= xy(x+y)得:A ⊙B={0,6,12},故选D.五、小结与反思1、在用列举法表示集合时应注意以下四点:(1)元素间用“,”分隔;(2)元素不重复;(3)不考虑元素顺序;(4)对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律显示清楚后方能用省略号.2.使用描述法时应注意以下四点:(1)写清楚该集合中元素的代号(字母或用字母表示的元素符号);(2)说明该集合中元素的特征;(3)不能出现未被说明的字母;(4)用于描述的语句力求简明、确切. 六、练习1、下列说法正确的是( )A 、0与{0}表示同一个集合B 、由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C 、方程(x -1)(x -2)2=0的所有解的集合可表示为{1,2,2} D 、集合{x ∈R|4<x<5}可以用列举法表示 【答案】 B2、下列各组集合中表示同一集合的是( )A 、M ={(3,2)},N ={(2,3)}B 、M ={3,2},N ={2,3}x=4x=-2y=3y=-1yOxC 、M ={1,2},N ={(1,2)}D 、M ={(x ,y)|x +y =1},N ={y|x +y =1} 【答案】 B3、下列集合:①{x =1,y =2};②{1,2};③{(1,2)};④{(x ,y)|x =1或y =2};⑤{(x ,y)|x =1且y =2};⑥{(x ,y)|(x -1)2+(y -2)2=0},其中可以作为方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解集的有( )A 、1个B 、2个C 、3个D 、4个 【答案】C ③⑤⑥4、已知a ∈Z ,A ={(x ,y)|ax -y≤3},且(2,1)∈A ,(1,-4)∉A ,则不.满足条件的a 的值是 ( )A 、0B 、1C 、2D 、3 【答案】D5、已知集合M ={x ∈N|8-x ∈N},则M 中的元素最多有( )A 、7B 、8C 、9D 、10个 【答案】C6、定义集合运算:A*B ={z|z =xy ,x∈A,y∈B}.设A ={1,2},B ={0,2},则集合A*B 的所有元素之和为( )A 、0B 、2C 、3D 、6 【答案】D7、集合{1,3,5,7,9}用描述法表示为_____________________。

高一数学总复习--《集合》

高一数学总复习--《集合》

高一数学总复习--《集合》数学的内参高中数学总复习--《集合》一、内容提要1、集合的概念:由一些事物组成的整体。

可用大写字母A、B、C表示。

1)元素:集合中的每一个事物。

可记作a、b、c。

2)集合与元素的关系。

aA或bA。

3)常用集合N、N、Z、Q、R、R、R、、U4)表示方法:列举法、描述法。

2、集合与集合的关系1)子集:如果集合B的每一个元素都是A的元素,那么B叫做A的一个子集,记作BA(或AB),(A的子集包括、A本身)。

2)真子集:B是A的子集且A中至少有一个元素不属于B,则称B是A的一个真子集记作BA。

3)相等:A、B的元素完全一样,称A=B。

若AB 且BAAB。

3、集合的运算1)交集:AB{某|某A且某B}2)并集:AB{某|某A或某B}3)补集;CUA{某|某U且某A}4、充要条件:pq称p是q的充分条件,q是p的必要条件.pq称p、q 的互为充要条件。

二、例题讲解:某例1、写出集合{a,b,c}的所有子集和真子集。

例2、已知A{某|1某5},B{某|3某8},求CUA、CUB、AB、AB。

例3、用符号填空{a}{b}NCRQ{a,b}{}三、练习:(一)、选择题1、已知集合A={1,3,7},B={3,7,8}则AB=()A)、{1,3,7,8}B)、{3,7}C)、{1,3,3,7,7,8}D)、21数学的内参2、设A={1,2,3,4,5},B={1,3,4},C={2,4,5},则CABCAC=A)、{1,2,3,5}B)、{U}C)、AD)、3、已知M={某|1某3},N={某|1某2},则MN=()A)、{某|1某3}B)、{某|1某2}C)、{某|1某2}D)、(二)、填空题1、用符号表示:3{1,2,3,4}{4}{1,2,3,4}1{1}2、写出“大于-3且小于等于3的正整数集”的列举法描述法3、{1,3,7}{2,3,}={1,2,3,8,}4、{1,4,5}{1,3,}={5,}5、A={某|3某0},B={某|某10},则AB=,AB=,CRA=7、写出{2,6,9}的所有子集和真子集8.集合A{n|nm1Z},B{m|Z},则AB__________2259.集合A{某|4某2},B{某|1某3},C{某|某0,或某2那么ABC_______________,ABC_____________;10.已知某={某|某2+p某+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且某A,某B某,试求p、q;11.集合A={某|某2+p某-2=0},B={某|某2-某+q=0},若AB={-2,0,1},求p、q;12.A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB={3,7},求B数学的内参集合练习题一.单项选择(1)设集合M=某|某2,又a=.那幺()(A)aM(B)aM(C)aM(D)aM(2)设全集Ua,b,c,d,Ma,c,d,Nb,d,Pb,则()(A)PMN(B)PMN(C)PM(CuN)(D)P(CUM)N所组成的集合所含元素的个数为()(3)对于任意某,y∈R,且某y≠0,则某y某y某y某y(A)1个(B)2个(C)3个(D)4个(4)全集U=R,A={某||某|1},B={某|某-2某-3>0},则(CUA)U(CUB)=()2(A){某|某<1或某3}(B){某|-1某3}(C){某|-1<某<1}(D){某|-1<某1}(5)集合a,b,c的子集总共有()(A)7个(B)8个(C)6个(D)5个(6)设a为给定的实数,则集合某|某3某a20,某R的子集的个数是()(A)1(B)2(C)4(D)不确定(7)集合P,Q满足PQa,b.试求集合P,Q.问此题的解答共有()(A)9种;(B)4种;(C)7种;(D)16种(8)若A={1,3,某},B={某2,1},且A∪B={1,3,某}.则这样的某的不同值有()(A)1个(B)2个(C)3个(D)4个22,则p应满足的条件是()(9)已知M={某|某≤1},N={某|某>p},要使M∩N≠(A)p>1(B)p≥1(C)p<1(D)p≤1(10)已知集合A是全集S的任一子集,下列关系中正确的是()(A)φCSA(B)CSA(C)(A∩CSA)=φ(D)(A∪CSA)(11)若有非空集合A、B且B,全集U=R,下列集合中为空集的是()(A)CUA∩B(B)A∩CUB(C)CU(AB)(D)CU(AB)y3M某,y|1某2,(12)设全集U某,y|某,yR,集合T某,y|y3某2,那么(CUM)T等于()数学的内参(A)Φ(B)2,3(C)2,3(D)某,y|y3某2二.填空题(13)已知集合A={y|y=2某+1,某>0},B={y|y=-某2+9,某∈R},则A∩B=________.(14)设集合A={某|某=6k,k∈Z},B={某|某=3k,k∈Z},两个集合的关系可表示为AB.(15)设集合P某|某2,某R,集合Q某|某某20,某N,则集合PQ等于2(16)设U=R,集合A={某|某+p某+12=0,某∈N},集合B={某|某-5某+q=0,某∈N},且22CUAB={2},CUBA={4},则p+q的值等于.(17)设A={(某,y)|y=1-3某},B={(某,y)|y=(1-2k2)某+5},若A∩B=φ,则k的取值是____________.(18)用集合表示图中阴影部分____________.三.解答题(19)写出所有适合{a,b}A的集合A.(20)某班有学生55人,其中有音乐爱好者34人,有体育爱好者43人,还有4人既不爱好音乐又不爱好体育,该班既爱好音乐又爱好体育的有多少人?(21)若a<0<b<|a|,A={某|a≤某≤b},B={某|-b≤某≤-a},试求A∪B,A∩B.(22)P={a,a+2,-3},Q={a-2,2a+1,a+1},P∩Q={-3},求a.22(23)已知A={某|某-a某+a-19=0},B={某|某-5某+8=2},C={某|某+2某-8=0},若2222∩B,且A∩C,求a的值.=(24)设集合A={某|某+(p+2)某+1=0},且A{某|某>0}=ф,求实数p的取值范围.2数学的内参函数的解析式的求法求函数的解析式是函数的常见问题,也是高考的常规题型之一,方法众多,下面对一些常用的方法一一辨析.一.换元法题1.已知f(3某+1)=4某+3,求f(某)的解析式.1某练习1.若f(),求f(某).某1某二.配变量法11题2.已知f(某)某22,求f(某)的解析式.某某练习2.若f(某1)某2某,求f(某).三.待定系数法题3.设f(某)是一元二次函数,g(某)2某f(某),且g(某1)g(某)2某1某2,求f(某)与g(某).练习3.设二次函数f(某)满足f(某2)f(某2),且图象在y轴上截距为1,在某轴上截得的线段长为22,求f(某)的表达式.数学的内参四.解方程组法题4.设函数f(某)是定义(-∞,0)∪(0,+∞)在上的函数,且满足关系式3f(某)2f()4某,某求f(某)的解析式.练习4.若f(某)f(五.特殊值代入法题5.若f(某y)f(某)f(y),且f(1)2,求值练习5.设f(某)是定义在N上的函数,且f(1)2,f(某1)六.利用给定的特性求解析式.题6.设f(某)是偶函数,当某>0时,f(某)e某2e某,求当某<0时,f(某)的表达式.练习6.对某∈R,f(某)满足f(某)f(某1),且当某∈[-1,0]时,f(某)某22某求当某∈[9,10]时f(某)的表达式.某1)1某,求f(某).某f(2)f(3)f(4)f(2005).f(1)f(2)f(3)f(2004)f(某)1,求f(某)的解析式.2数学的内参七.归纳递推法某1题7.设f(某),记fn(某)ff[f(某)],求f2004(某).某1八.相关点法题8.已知函数f(某)2某1,当点P(某,y)在y=f(某)的图象上运动时,点Q(图象上,求函数g(某).九.构造函数法题9.若f(某)表示某的n次多项式,且当k=0,1,2,,n时,f(k)k,求f(某).k1y某,)在y=g(某)的23课堂小结:求函数的解析式的方法较多,应根椐题意灵活选择,但不论是哪种方法都应注意自变量的取值范围,对于实际问题材,同样需注意这一点,应保证各种有关量均有意义。

高一数学必修1教案:第1章集合本章复习 含解析 精品

高一数学必修1教案:第1章集合本章复习 含解析 精品

本章复习整体设计教材分析这是本章的复习课,在我们学习了集合的表示、集合间的关系、集合的运算等知识的基础上,能够利用集合的语言描述数学对象或生活实例,使得学生能更清晰地表达自己的思想.本课既是对前面三课内容的一个复习、巩固,同时又是一个综合的过程,把各种形式的集合语言、运算做一个检阅.教学中要求主要以读懂集合所表示的语言为主,不必过分加深.三维目标1.加深对集合关系运算的认识.2.学会借助数轴和韦恩图来分析问题.3.对含字母的集合问题有一个初步的了解.4.掌握集合语言与自然语言、图形语言的互译.重点难点教学重点:集合语言的理解.教学难点:带字母的集合问题的研究.课时安排1课时教学过程导入新课设计思路一(复习导入)设计思路二(情境导入)同学们,前几节课我们重点学习了集合的表示、集合间的关系和集合的运算,他们有一个共同特点就是符号化,比如“∈”、“⊆”,大家回忆一下,前面学过哪些符号?写得越多越好.一般写出的是:∈,∉,{,…,},{x|p(x),x∈A},∅,N,N*/N+,Z,Q,R,,,⊆,⊇,∪,∩,[,],(,),[,),(,].还要引导学生注意的有:(-∞,+∞),(a,+∞),(-∞,a).推进新课知识回顾1.∈,∉,{,…,},{x|p(x),x∈A},∅,N,N*/N+,Z,Q,R, A2.交集、并集的定义与符号:A∩B={x∣x∈A,且x∈B} A∪B={x|x∈A,或x∈B}记忆技巧:使用联系、类比的方法记忆.应用示例思路1例1 考虑下面每组对象能否构成一个集合:(1)所有的好人;(2)不超过10的非负数;(3)我班的16岁以下的学生;(4)充分接近大的有理数.分析:使用集合的定义和集合的性质进行判断.解:(1)所有的好人,无明确的标准,对于其中的一个人来说是否是好人无法客观判断,因此(1)不能构成集合.(2)任何一个给定数x ,可以明确地判断是不是“不超过10”的非负数,即“0≤x≤10”与“x >10或x <0”,两者必具其一,且仅具其一,故(2)能构成集合.类似(3)能构成集合,(4)不能构成集合.变式训练1.已知集合A ={1,2,a},则a 应满足什么条件?解:a≠1且a≠22.下列各种说法中,各自所表述的对象是否确定,能否构成集合?(1)我们班的全体学生;(2)我们班的高个子学生;(3)地球上的四大洋;(4)方程x 2-1=0的解;(5)不等式2x -3>0的解;(6)直角三角形.解:(1)、(3)、(4)、(5)、(6)对象是能确定的,能构成集合.(2)是不能确定的,不能构成集合.点评:与集合相关的问题的解决,一般情况下依赖的是集合的三个性质,所以在本章中注意对这三个性质的把握.例2 设A={(x ,y)|y=-4x+6},B={(x ,y)|y=5x-3},求A∩B.解:A∩B ={(x ,y)|y=-4x+6}∩{(x ,y)|y=5x-3}={(x,y)}|⎭⎬⎫⎩⎨⎧-=+-=3564x y x y ={(1,2)}.点评:本题中,(x ,y)可以看作直线上的点的坐标,也可以看作二元一次方程的一个解. 例3 开运动会时,高一(8)共有28名同学参加比赛,有15人参加游泳,有8人参加田径,有14人参加球类,同时参加游泳和田径的有3人,同时参加游泳和球类的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项的有多少人?分析:用图示法来表示.解:设参加田径和球类比赛的有x 人,则9+3+8-3-x +3+x +14-3-x=28,解得:x=3. 答:参加田径和球类比赛的有3人,只参加游泳一项的有9人.点评:Venn 图在解决多种关系问题的时候就显示了其简洁性,便于处理各种繁杂的关系,所以要引起注意.例4 已知A={x|2x 2=sx-r},B={x|6x 2+(s+2)x+r=0},且A∩B={21},求A ∪B. 解:因为21∈A 且21∈B ,所以⎪⎪⎩⎪⎪⎨⎧=+++-=,0)2(2123,2121r s r s 即⎩⎨⎧-=+-=-,52,12s r s r 解之得⎪⎩⎪⎨⎧-=-=,23,2r s 所以A={21,23-},B={21,21-},所以A ∪B={21,21-,23-}. 点评:参数问题的解决是本节的难点,也是学生思维的难点,所以充分挖掘题中的隐含条件是解决问题的关键.例5 已知A={x|x 2≤4},B={x|x >a},若A∩B=∅,求实数a 的取值范围.解:A={x|x 2≤4}={x|-2≤x≤2},B={x|x >a},然后从数轴上分析得到a≥2.点评:通过数轴寻找解题途径是解决含参数不等式的一个重要的方法,也是数与形结合的一个重要的部分.思路2例1 用列举法表示下列集合:(1){x|x=|x|,x ∈Z ,x <5};(2){(x,y)|x+y=6,x ∈N +,y ∈N +}.分析:使用列举法的时候,要注意元素的特征,这两道题一个是数,一个是有序的实数对.解:(1)由x=|x|得x≥0,因为x ∈Z 且x <5,所以x=0,1,2,3,4.用列举法表示为{0,1,2,3,4}.(2)由两个变量的取值得符合条件的元素为⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧-=⎩⎨⎧==,1,5,2,4,3,3,4,2,5,1y x y x y x y x y x 用列举法表示为{(1,5),(2,4),(3,3),(4,2),(5,1)}.变式训练1.用列举法表示集合C={x|x=b b a a ||||+,a 、b ∈R }. 解:C={2,-2,0}.2.用列举法表示集合D={x|x-36∈Z ,x ∈N +}. 解:3-x 是6的倍数,所以3-x=±1,±2,±3,±6,所以x=0,-1,1,2,4,5,6,9,因为x ∈N +,所以D={1,2,4,5,6,9}.例2 (1)0与{0};(2)0与∅;(3) ∅与{0};(4){0,1}与{(0,1)};(5){(a,b)}与{(b,a)}各是什么关系?用适当的符号表示出来.分析:首先要分清是“元素与集合”的关系,还是“集合与元素”的关系.解:(1)0与{0}是元素与集合的关系,应为0∈{0};(2)空集不含任何元素,所以0∉∅;(3)∅与{0}都是集合,两者的关系是“包含与否”的关系,空集是任何非空集合的真子集,∅{0};(4){0,1}是含两个元素0与1的集合,而{(0,1)}是以“有序数组”(0,1)为元素的单元素的集合,所以{0,1}与{(0,1)}不相等,即{0,1}≠{(0,1)};(5)当a=b时,{(a,b)}={(b,a)};当a≠b时,{(a,b)}≠{(b,a)}.点评:空集∅是许多特殊性质的重要集合,值得重视.(5)中的a=b是可能的特殊关系,不可不考虑到.例3已知A={x|x<3},B={x|x<a}.(1)若B⊆A,求a的取值范围;(2)若A⊆B,求a的取值范围;(3)若A B,求a的取值范围.分析:紧扣子集、全集、补集的定义,利用数轴,数形结合解出a的范围.解:(1)因为B⊆A,B是A的子集,如图,a≤3.(2)因为A⊆B,A是B的子集,如图,a≥3.(3)因为A={x|x≥3},B={x|x≥a},A B,所以A是B的真子集,如上图a<3.点评:(1)这类问题,注意数形结合,以形定数,才能相得益彰.(2)要注意验证端点值,做到准确无误,要不然会功亏一篑.例4某车间有120人,其中乘电车上班的有84人,乘汽车上班的有32人,两车都乘的有18人,求:(1)只乘电车的人数;(2)不乘电车的人数;(3)乘车的人数;(4)不乘车的人数;(5)只乘一种车的人数.分析:本题是已知全集中元素的个数,求各部分元素的个数,可用图解法.用整个圆表示车间的120人.解:设只乘电车的人数为x,不乘电车的人数为y,乘车的人数为z,不乘车的人数为u,只乘一种车的人数为v.如上图所示,(1)x=66人;(2)y=36人,(3)z=98人;(4)u=22人;(5)v=80人.点评:(1)此种求集合中元素个数的问题,一般用画图解较为方便.(2)此题是一道利用集合知识解决实际问题的应用题,其解题的一般思路是设出各个集合,再分析各集合之间的交集、并集、补集的关系及其含义,以求解问题.知能训练课本第17页复习题3—10题.课堂小结本节课是对集合一章的总结,本章的特点是符号比较多,它比整个初中三年总的符号还多得多,而且又是在很短的时间内教学完毕,所以肯定存在对符号的理解的问题,这个又是学生解决集合问题的最大的障碍.针对这个问题的解决,主要在以后的学习中注意有意识地去不停地渗透.本节课在内容上介绍了集合的基本知识,在教学时不要过分地挖掘,避免造成对数学失去信心,所以多从生活中的实际的例子中去探索用集合语言来描述数学对象的方法.应用集合语言,可以更为清晰地表达我们的思想.集合是整个数学的基础,它在以后的学习中有着极为广泛的应用.作业课本第17页复习题11、12.设计感想通过本章的教学,作为新课程的实施者,在教学方式上和对学生的学习方式应该有所转变,高度概括地说就是自主、合作、创新.所谓自主就是尊重学生学习过程中的自主性,独立性,在学习的内容上、时间上、进度上,更多地给予学生自主支配的机会,给学生自主判断、自主选择和自主承担的机会.过去的课堂是老师控制学生学什么,什么时间学,学生始终处于被动状态,这种过度控制压抑了学习的兴趣和学习过程中的美好体验.习题详解课本第17页复习题1.{0,1,2,3,4}.2.(1)是有限集,(2)、(3)是无限集.3.A={x|x是三边不全相等的三角形}.4.A∩B={1,2},A∪B={0,1,2,3,4}.5.A∩B={x|1<x<2},A∪B=R.6.由数轴可以知道a的取值范围为[4,+∞).7.(1)A=(-∞,-1)∪[2,+∞);(2)A=(-∞,-1)∪[2,3];(3)A=[-2,-1)∪{2};(4)A= .8.满足条件的A有:{5},{1,5},{3,5},{1,3,5}共有4个.9.符合题意的情况有以下几种:(1)A={1,2,3},B={1,2,3,4,5};(2)B={1,2,3},A={1,2,3,4,5};(3)A={1,2,3,4},B={1,2,3,5};(4)B={1,2,3,4},A={1,2,3,5}.10.两门都优秀的百分率至少为45%.由题意可以知道,数学不优秀的为30%,语文不优秀的为25%,为使上述两门学科都优秀的百分率最少,则两门学科不优秀的学生要尽量不重复,故两门学科都优秀的百分率至少为1-(30%+25%)=45%.11.图略,(A∩B)=A∪ B.12.(1)能成立,(2)能成立,(3)不能成立.13.(1)C×D={(a,1),(a,2),(a,3)};(2)A={1,2},B={2};(3)A×B有12个元素.14.略。

+第一章集合复习课件-2023-2024学年高一上学期高教版(2021)中职数学基础模块上册

+第一章集合复习课件-2023-2024学年高一上学期高教版(2021)中职数学基础模块上册

课堂检测
5.
6.设集合A={0,1,2,3},请写出集合A的所有子集,并指出其中的真 子集。
课堂检测
7.已知集合A={-1,0,1,6},B={x|x>0,x∈R},求A∩B.
8.设集合A={x|-3<x≤5},B={x|2<x≤6},求A∩B,A∪B.
9.设U=R,A={x|x>0},B={x|x>1},求A∩(∁UB),B∩(∁UA).
/作业布置/
再见
精讲精练
用Venn图表示数集 (4)集合的表示法:列举法、描述法、Venn图法. (5)集合的分类:集合按元素个数的多少 分为有限集、无限集,有限集常用列举法表示, 无限集常用描述法表示. 含有有限个元素的集合称为有限集.
不含任何元素的集合称为空集,记作∅,空集∅也是有限集.
含有无限个元素的集合称为无限集.
3.“交集取公共”“并集取所有”“补集取剩余”
课堂检测
1.判断下列各题中每组对象是否构成集合。 (1)方程(2x-3)(x+1)=0的所有实数解; (2)大于-5且小于5的所有整数; (3)大于2的整数; (4)本班成绩较好的同学全体。
课堂检测
2.判断下列集合是有限集还是无限集? (1)你所在班级的所有同学组成的集合; (2)方程 x+2=0的所有正整数解组成的集合; (3)小于3的所有整数组成的集合; (4)数轴上表示大于0且小于1的所有点组成的集合。
数集 自然数集 正整数集 整数集 有理数集 实数集

符号 N
N*
Z
Q
R
拓展知识
精讲精练
精讲精练
把集合的所有元素一一列举出来,中间用逗号隔开,再用 花括号“{ }”把它们括起来,这种表示集合的方法称为列举 法.

人教版必修一:1.1.3 集合的基本运算

人教版必修一:1.1.3 集合的基本运算

一、复习回顾
1、下列四个命题 : ①0 ; ②空集没有子集; ③空集是任何集合的真子集; ④任何一个集合必有两个以上的子集.
A 其中正确的个数是
A、0 B、1 C、2 D、3
2、下列命题正确的有 _(_1_)_(_2__)(3)
(1){a} {a}; (2){1, 2, 3} {3, 2,1}; (3) {0};
C、{2,3,4}
D、{x | 1≤x≤5,且x∈R},
二、新课讲解
② 数轴
A∩B={ x | x ∈A,且 x∈B}
例6、设集合A={x︱-1< x < 2 },集合B={x︱1< x < 3 }, 求A∩B.
解:A、B用数轴表示
。 。。。
-2 -1 0 1 2 3 4 5
x
A ∩ B = {x︱-1<x<2 } ∩{x︱1<x<3 }
用韦恩图表示为
A
二、新课讲解
补集运算性质
(1) 若A U , ðU A_____U (3) A ðU A _____
U (2) A ðU A =_____
A (4)
痧 U

U A _____
三、练习巩固
1、设集合M {1, 0,1},N { x | x2 x},
非空真子集为: {a}, {b}
一、复习回顾
例1、写出集合{a,b}的所有子集,并指出哪些是它的 真子集.
解:集合{a,b}的所有子集为: ,{a}, {b}, {a,b} 真子集为: ,{a}, {b}
非空真子集为: {a}, {b}
练习、写出集合{a,b,c}的所有子集.
解:集合{a,b,c}的所有子集: ,{a}, {b}, {c},

高一数学集合复习课1 试题

高一数学集合复习课1 试题

中学高一数学?集合?复习课〔1〕目的:1、复习稳固集合概念与性质,集合补、交、并的运算2、正确运用符号语言表示元素与集合之间以及集合与集合之间的关系3、灵敏运用交、并、补的运算解决有关集合问题教学重点:集合概念与性质的运用教学过程:一、知识回忆:1、集合概念集合的性质(1)(2)(3)元素与集合之间的关系集合的分类(按集合中元素的个数分为:有限集、无限集、空集集合的表示法(列举、描述、图示)2、集合运算交集运算并集运算补集运算二、学生活动:三、例题讲解例1、集合 A ={- 2,- 1,- 12,13,12,1,2,3},B ={b| b = |a |,a∈ A},那么 B 中元素的个数是。

例2、设集合 A = {x |〔 x2-1〕〔 x2- 3x + 2〕= 0,x ∈R },那么 A 的子集个数是例3、实数集合 M 可表示为{m,nm,1},也可以表示为{m2,m + n,0},求 m、n 的值例4、设集合 A = {x |x2+ 4x = 0,x∈ R },B ={x |x2+ 2〔m + 1〕x + m2- 1 = 0,m∈ R ,x ∈R },假设 B A,务实数 m 的取值范围例5、: U={x |〔m + 1〕x2+ 2mx + m- 1 = 0,x∈R }且U∩R -=Φ,务实数m的取值范围〔注:R -为负实数集〕。

例6、集合 A ={x |x2- ax+ a2- 19 = 0},B ={x |x2- 5x+ 6 = 0},C ={x |x2+ 2x- 8 = 0},且满足 A∩B ≠Φ,A∩C = Φ,务实数 a例7、全集 I ={1,2,3,4,5,6,7,8,9}且〔U A∩ B ={1,9},A∩B = {2},〔U A∩〔U B〕= {4,6,8},求集合 A、B.例8、 A {x |x2- px + 15 = 0},B{x |x2-ax- b = 0},且 A∪ B ={2,3,5},A∩ B ={3},求 p、a、b的值 .六、教后记:七、作业:1、集合 A = {x |x2+〔2+ p〕x + 1 = 0,x- ∈ R },且 A ∩R+ = Φ,务实数 p的取值范围2、 A = {x |x2- 2x - 3 = 0},B = {x |ax - 1 = 0},假设B A.求 a 的值3★、设集合 A = {x |- 3≤ x≤a},B = {y |y = 3x + 10,x- ∈ A},C = {z|z = 5 - x,x- ∈ A},且B ∩ C = C,务实数 a 的取值范围。

高一数学必修一 第一章综合 教学课件PPT

高一数学必修一 第一章综合 教学课件PPT
(3)无序性是指任意改变集合中元素的排列次序,它们仍
然表示同一个集合.
工具
必修1 第一章 集合与函数概念
栏目导引
2.解读集合表示的三种方法 集合常用的表示方法有三种,即列举法、描述法和 图示法,其中图示法包括 Venn 图法和数轴法两种. (1)列举法是把集合的元素Байду номын сангаас一列举出来,并用花括 号“{ }”括起来表示集合的方法. 使用列举法要注意:元素间用分隔号“,”且元素 不能重复. (2)描述法是用集合所含元素的共同特征表示集合 的方法. 使用描述法要注意:写清楚该集合中元素的代号(字 母或用字母表示的元素符号),准确说明该集合中元 素的特征.
工具
必修1 第一章 集合与函数概念
栏目导引
6.求函数定义域的注意点 (1)不对解析式化简变形,以免定义域变化. (2)求定义域的相关准则:①分式中分母不为零; ②偶次根式中被开方式非负;③x0 中 x≠0;④解 析式由几个式子构成时,定义域是使各式子有意 义的自变量的取值集合的交集.
(3)由实际问题建立的函数解析式,定义域要符合 实际.
课题导入
回顾所学知识
工具
必修1 第一章 集合与函数概念
栏目导引
第一章 综合复习课
工具
必修1 第一章 集合与函数概念
栏目导引
独立自学
1.第一章中我们主要学习了哪两块知识? 2.集合的性质有哪些?我们研究了函数
的哪些性质?
工具
必修1 第一章 集合与函数概念
栏目导引
引导探究一 知识点梳理
1.集合中元素特征的认识 确定性、互异性、无序性是集合中元素的三个特征. (1)确定性是指一个对象 a 和一个集合 A,a∈A 和 a∉A 必 居其一.它是确定一组对象能否构成集合的依据. (2)互异性是指同一个集合中的元素是互不相同的.相同 的对象归入同一集合时只能算作集合的一个元素.在解答 含参集合问题时,互异性是一个不可或缺的检验工具.

高一数学期末复习教学案《必修第一册》 期末复习(一)集合与逻辑

高一数学期末复习教学案《必修第一册》  期末复习(一)集合与逻辑

高一数学期末复习教学案《必修第一册》 期末复习(一) 集合与逻辑 班 级 姓 名【课前预习】1. 已知集合2|340=A x R ax x .若A 中只有一个元素,则实数a 的取值范围为 .2.已知全集为=U R , [1,3),[2,4]A B =-=,如图阴影部分所表示的集合为 .3.集合A ={x |1£x <5},B =[-a ,a +3],若A ÍB ,则实数a 的取值范围是 .4.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为 .5.已知集合U =(1,7),A =[2,5),B =[3,7),则(C U A )È(C U B )= .6.集合{}2|9100A x x x =--=,{}|10B x mx =+=,且A ÇB =B ,则m 的取值集合 是 .7.(多选题)下列说法正确的是( )A .“1a >”是“21a >”的充分不必要条件;B .“a b >”是“22ac >bc ”的充要条件C .命题“x R ∀∈,210x +<”的否定是“x R ∃∈,使得210x +≥”D .已知函数()y f x =的定义域为R ,则“()00=f ”是“函数()y f x =为奇函数”的必要不充分条件.8. 已知条件p :x >a ,条件q :11x -<.若p 是q 的必要不充分条件,则实数a 的取值范围是 .9. 已知()24f x x x m =-+,()2log g x x =,若“[]11,4x ∀∈,[]22,4x ∃∈,使得()()12f x g x >成立”为真命题,则实数m 的取值范围是 .10.已知全集U R =,集合A ={x |log 2(x -1)£3},,{|}B x x a =≥.如果A B,则实数a 的取值范围为 .【典型例题】例1.已知函数()4log f x x =,1,416x ⎡⎤∈⎢⎥⎣⎦的值域是集合A ,关于x 的不等式3122x a x +⎛⎫> ⎪⎝⎭()a R ∈的解集为B ,集合51x C x x ⎧-⎫=⎨⎬+⎩⎭≥0,集合{}()1210D x m x m m =+≤<->. (1)若A B B =,求实数a 的取值范围; (2)若D C ⊆求实数m 的取值范围.例2.已知命题:“{}|11x x x ∃∈-<<,使等式20x x m --=成立”是真命题.(1)求实数m 的取值集合M ;(2)设不等式()(2)0x a x a -+-<的解集为N ,若x ∈N 是x ∈M 的必要条件,求a 的取值范围.期末复习(一)【课外作业】 班级 姓名1.集合{}{}b a B a A ,,log ,32==,若{}2=B A ,则B A = .2.设集合A ={x |x 2+x -2<0},B =(-1,0),则C A B = .3.某次月考数学优秀率为70%,语文优秀率为75%,则这两门学科都优秀的百分率至少为 .4.已知[,3)A a a =+,(,1][5,)B =-∞-+∞,若A ÇB ¹f ,则实数a 的取值范围是 .5.已知集合2{|log 1}A x x =<-,{|B k =函数14()k f x x-=在(0,)+∞上是增函数}.则 ()R C A B = .6.已知P ={x|x 2-8x -20≤0},非空集合S ={x|1-m≤x≤1+m}.若x ∈P 是x ∈S 的必要条件,则实数m 的取值范围是 .7. 若命题“∃x 0∈R ,使得3x 20+2ax 0+1<0”是假命题,则实数a 的取值范围是____________.8.(多选题)下列命题正确的是( )A .“1a >”是“11a <”的必要不充分条件;B .若,a b ∈R ,则2b a b a a b a b+≥⋅= C . 命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-” D .设a R ∈,“1a =”,是“函数()1xx a e f x ae-=+在定义域上是奇函数”的充分不必要条件9.集合1{|0}1x A x x -=<+,{|||}B x x b a =-<,若“1a =”是“A B ≠∅”的充分条件,则实数b 的取值范围是 .10.若命题p:“2log 11m -≤”, 与命题q: “函数2()2+f x x mx m =-图像与x 轴至多一个交点”至少有一个是真命题,则实数m 的取值范围是 .11.在①A B ⊆;②R R C B C A ⊆;③A B A =;这三个条件中任选一个,补充在下面问题中.若问题中的实数a 存在,求a 的取值范围;若不存在,说明理由. 问题:已知集合{}2log (1)1,A x x x R =->∈,{}()(4)0,B x x a x a x R =--+>∈,是否存在实数a ,使得 ?注:如果选择多个条件分别解答,按第一个解答计分.12.已知集合{}2|514A x y x x ==--, 集合()212|log 61B y y x x ⎧⎫⎪⎪==---⎨⎬⎪⎪⎩⎭, 集合{}|121C x m x m =+≤≤-. (1)求A ÇB ; (2)若A C A =,求实数m 的取值范围.13.已知p :24120x x ,q :22210(0)x x m m . (1)若p 是q 充分不必要条件,求实数m 的取值范围; (2)若“”是“”的充分条件,求实数m 的取值范围.。

苏教版数学高一必修一数学作业第一章《集合》复习课

苏教版数学高一必修一数学作业第一章《集合》复习课
3、集合P={1,2,3}的子集共有_____个
4、50名学生参加体能和智能测验,已知体能优秀的有40人,智能优秀
的有31人,两项都不优秀的有4人,则这种测验都优秀的有_____人
5、定义A-B={x|x∈A且x B},若A={1,2,4,6,8,10},B={1,4,8},则A-B=_____
6、已知全集U={ x|0<x<9},A={x|1<x<a},若非空集合A U,则实数 a取
7、解得A={1,2}
∵A∪B=A
∴B A
∴B=Φ或{1}或{2}或{1,2}
当B=Φ时,△=4-4m<0,m>1
当B={1}时, ,m=1
当B={2}时, ,无解
当B={1,2}时,1+2=2不成立
∴m≥1
8、解:(1)由 ,则 ,又由 ,得 ,再由 ,得 ,而 ,得 ,故 中元素为 .
(2) 不是 的元素.若 ,则 ,而当 时, 不存在,故0不是 的元素.取 ,可得 .
(3)猜想:① 中没有元素 ;② 中有4个,且每两个互为负倒数.①由上题知: .若 ,则 无解.故 ②设 ,则 ,又由集合元素的互异性知, 中最多只有4个元素 ,且 .显然 .若 ,则 ,得: 无实数解.同理, .故 中有4个元素.
集合复习课(2)
1、{1,2} 2、(CUA)∩(CUB) 3、{{3},{1,3},{2,3},{1,2,3}}
集合复习课(1)
姓名________ 班级__________ 学号__________ 日期__________ 成绩_______
1、已知集合A={-2,3,4},B={x|x=t2,t∈A},用列举法表示集合B=_____
2、有下列关系式:①{0}∈{0,1,2};② {0};③{0,1,2} {1,2,0};④0∈ ;⑤ ∈Q,其中错误写法的序号是_____

高中必修一高一数学集合复习课随堂练习及答案

高中必修一高一数学集合复习课随堂练习及答案

高中必修一高一数学集合复习课随堂练习及答案1.已知A={x|x<3},B={x|x<a}(1)若B ⊆A ,求a 的取值范围(2)若A ⊆B ,求a 的取值范围(3)若C R A C R B ,求a 的取值范围2.若P={y|y=x 2,x ∈R},Q={y| y=x 2+1,x ∈R },则P ∩Q =3.若P={y|y=x 2,x ∈R},Q={(x ,y )| y=x 2,x ∈R },则P ∩Q =4.满足{a ,b} A ⊆{a ,b ,c ,d ,e}的集合A 的个数是[巩固提高]1.已知集合M={x|x 3—2x 2—x+2=0},则下列各数中不属于M 的一个是 ( )A .—1B .1C .2D .—22.设集合A= {x|—1≤x <2},B={ x|x<a },若A ∩B ≠φ,则a 的取值范围是( )A .a <2B .a >—2C .a >—1D .—1≤a ≤23.集合A 、B 各有12个元素,A ∩B 中有4个元素,则A ∪B 中元素个数为4.数集M={x|N k k x ∈+=,41},N={ x|N k k x ∈-=,412},则它们之间的关系是 5.已知集合M={(x,y )|x+y=2 },N={(x,y )|x —y=4},那么集合M ∩N=6.设集合A={x|x 2—px+15=0},B={x|x 2—5x+q=0},若A ∪B={2,3,5},则A= B=7.已知全集U=R ,A={x|x ≤3},B={ x|0≤x ≤5},求(C U A )∩B8.已知集合A={x|x 2—3x+2=0},B={x|x 2—mx+(m —1)=0},且B A ,求实数m 的值⊂ ≠ ⊂ ≠ ⊂ ≠9.已知A={x|x 2+x —6=0},B={x|mx+1=0},且A ∪B=A ,求实数m 的取值范围10.已知集合A={x|—2<x <—1或x >0},集合B={ x|a ≤x ≤b},满足A ∩B={x|0<x ≤2},A ∪B={x|x >—2},求a 、b 的值答案:1、(1)a ≤3 ,(2)a ≥3,(3)a <32、{y|y ≥1}3、φ4、7个[巩固提高]1、 D2、C3、20个4、M N5、{(3,—1)}6、{3,5},{2,3} 7、]5,3( 8、2 9、0,31或21- 10、—1,0⊂ ≠。

高一数学《集合复习课》.ppt

高一数学《集合复习课》.ppt

a 2 . 则实数a的取值范围是 ________
B {x | x a}且A B,
6.已知集合M {0, 1, 2}, N {x | x 2a, a M }, 则集合M N _______ . A. {0} B. {0, 1} C. {1, 2} D. {0, 2}
n n n
二、基本思想:
1. 数形结合
2. 分类讨论 3. 转化化归
三、典型习题:
1. 下列命题:
(1) 方程 x 2 y 2 0的解集为{2, 2} ( 2) 集合{ y | y x 1, x R }与 { y | y x 1, x R }的公共元素所组成 的集合是{0, 1} ( 3) 集合{ x | x 1 0}与集合{ x | x a , a R } 没有公共元素
D 若Q P , 则a的值为______ .
A. 1 C. 1或 1
B. 1 D. 0, 1或 1
4. 集合S {a, b, c, d , e}, 则S包含 {a, b}的子集个数共有 _____ 个. A. 2 C. 5 B. 3 D. 8
4. 集合S {a, b, c, d , e}, 则S包含
其中正确的个数有 _____个.
2. 下列六个关系式: 1) {a , b} {b, a } 3) Φ {Φ} 5) Φ {0} A. 6 B. 5 2 ) {a , b} {b , a } 4) {0} Φ 6) 0 {0} C. 4 D. 3
C 个. 其中正确的个数有 _____
D 个. {a, b}的子集个数共有 _____
A. 2 C. 5
B. 3 D. 8
5.已知集合A {x | 2 x 2, x R}, B {x | x a}且A B, 则实数a的取值范围是 ________ .

第一章集合与逻辑章末复习课教学设计-2024-2025学年高一上学期数学(2019)

第一章集合与逻辑章末复习课教学设计-2024-2025学年高一上学期数学(2019)

一、集合的基本概念教 学 内 容二、集合间的基本关系1.集合间的基本关系包括包含、真包含、相等.能从实例中抽象并识别出子集、真子集、空集的概念,能根据集合间的关系,利用数形结合和分类讨论的思想求参数的值或范围.2.掌握集合间的基本关系,提升数学抽象、逻辑推理和直观想象素养.例2 已知集合A ={x |x <1或x ≥1},B ={x |2a <x ≤a +1,a <1},若B ⊆A ,则实数a 的取值范围为 . 答案 {a |a <−2或12≤a <1}跟踪训练2 已知A ={x |2a ≤x ≤a +3},B ={x |x <1或x >4},若A ⊆B ,则实数a 的取值范围是 . 答案 a <4或a >2三、集合的基本运算 1.集合的运算主要包括交集、并集和补集运算.这也是高考对集合部分的主要考查点.对于较抽象的集合问题,解题时需借助Venn 图或数轴等进行数形分析,使问题直观化、形象化,进而能使问题简捷、准确地获解. 2.掌握集合的概念与运算,重点提升逻辑推理和数学运算素养. 例3 (多选)已知集合A =(∞,2),B ={x |32x >0},则( AB )A.A ∩B =(−∞,32)B.A ∩(∁R B )=[32,2)C.A ∪B =(−∞,32) D.(∁R A )∪B =R跟踪训练3 已知集合M ={(x ,y )|y =3x 2},N ={(x ,y )|y =5x },则M ∩N 中的元素个数为( C ) A.0 B.1 C.2 D.3 四、充分条件与必要条件 1.若p ⇒q ,且q p ,则p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件; 若p ⇔q ,则p 是q 的充要条件,同时q 是p 的充要条件. 2.掌握充要条件的判断和证明,提升逻辑推理和数学运算素养. 例4 设集合A ={x |1<x <3},集合B ={x |2a <x <2+a }.。

人教A版高一数学必修一第一章综合复习 PPT课件 图文

人教A版高一数学必修一第一章综合复习 PPT课件 图文

必修1 第一章 集合与函数的概念
栏目导引
2.函数及其表示
(1)本节是函数部分的起始部分,以考查函数的概念 、三要素及表示法为主,同时考查实际问题中的建 模能力.
(2)以多种题型出现在高考试题中,要求相对较低, 但很重要.特别是函数的表达式,对以后函数应用 起非常重要的作用.
必修1 第一章 集合与函数的概念
必修1 第一章 集合与函数的概念
栏目导引
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的 子集.
②在具体情境中,了解全集与空集的含义.
(3)集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单集 合的并集与交集.
②理解在给定集合中一个子集的补集的含义,会求给定 子集的补集.
B.{x|x≥0}
C.{x|x≥1 或 x≤0} D.{x|0≤x≤1}
解析:
1-x≥0, x≥0
⇔0≤x≤1.故选 D.
答案: D
必修1 第一章 集合与函数的概念
栏目导引
3.若定义在R上的函数f(x)满足:对任意x1,x2∈R 有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确 的是( )
当 x<0 时,函数 f(x)=(x+1)2-2 的最小值为-2,
最大值为 f(-3)=2.故函数 f(x)的值域为[-2,2].
必修1 第一章 集合与函数的概念
栏目导引
1.已知集合A={x|x<a},B={x|1<x<2},且
A∪(∁RB)=R,则实数a的取值范围是( )

A.a≥2
B.a<1
C.a≤2
解析: 假设存在x,使得B∪(∁AB)=A, 即B A.
①若x+2=3,则x=1,此时A={1,3,-1},B= {1,3},符合题意.

高一数学复习知识点专题讲解与训练3---集合间的基本关系

高一数学复习知识点专题讲解与训练3---集合间的基本关系

高一数学复习知识点专题讲解与训练集合间的基本关系课标要点课标要点学考要求高考要求1.子集、真子集的概念b b2.空集的概念b b3.Venn图a a知识导图,学法指导,1.注意辨析两大关系:(1)元素与集合的关系;(2)集合与集合的关系.2.本节的学习重点是子集、真子集、空集的概念;难点是集合之间关系的应用.3.学习中要注意集合之间的关系的几种表述方法:自然语言、符号语言、图形语言.知识点一子集文字语言符号语言图形语言对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A 为集合B的子集对任意元素x∈A,必有x∈B,则A⊆B(或B⊇A),读作A包含于B或B包含A“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即任意x∈A 都能推出x∈B.知识点二集合相等1.自然语言:如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等.2.符号语言:若A⊆B,又B⊆A,则A=B.(1)若A⊆B,又B⊆A,则A=B;反之,如果A=B,则A⊆B,且B⊆A.(2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.知识点三空集不含任何元素的集合叫做空集,记为∅.规定:空集是任何集合的子集.知识点四真子集文字语言符号语言图形语言对于两个集合A,B,如果集合A是集合B的子集,且在集合B中存在一个元素不是集合A的元素,我们称集合A是集合B的真子集若集合A⊆B,但x∈B,且x∉A,则A B(或B A)(读作“A 真包含于B”或“B真包含A”)在真子集的定义中,A B首先要满足A⊆B,其次至少有一个x∈B,但x∉A.知识点五子集的性质1.任何一个集合都是它本身的子集,即A⊆A.2.对于集合A,B,C,(1)若A⊆B,B⊆C,则A⊆C;(2)若A B,B C,则A C.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)空集中只有元素0,而无其余元素.()(2)任何一个集合都有子集.()(3)若A=B,则A⊆B.()(4)空集是任何集合的真子集.()答案:(1)×(2)√(3)√(4)×2.集合{0,1}的子集有()A.1个B.2个C.3个D.4个解析:集合{0,1}的子集为∅,{0},{1},{0,1}.答案:D3.已知集合A={x|-1-x<0},则下列各式正确的是()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A解析:集合A={x|-1-x<0}={x|x>-1},所以0∈A,{0}⊆A,D正确.答案:D4.能正确表示集合M={x|x∈R且0≤x≤1}和集合N={x∈R|x2=x}关系的Venn图是()解析:N={x∈R|x2=x}={0,1},M={x|x∈R且0≤x≤1},∴N M.答案:B类型一集合间关系的判断例1(1)下列各式中,正确的个数是()①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.A.1B.2C.3D.4(2)指出下列各组集合之间的关系:①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};②A={x|x是等边三角形},B={x|x是等腰三角形};③M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.【解析】(1)对于①,是集合与集合的关系,应为{0}{0,1,2};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,1}是含有两个元素0与1的集合,而{(0,1)}是以有序数组(0,1)为元素的单元素集合,所以{0,1}与{(0,1)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③是正确的,应选B.(2)①集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.②等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.③方法一两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.方法二由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.【答案】(1)B(2)见解析根据元素与集合、集合与集合之间的关系直接判断①②③④⑥,对于⑤应先明确两个集合中的元素是点还是实数.方法归纳判断集合间关系的方法(1)用定义判断首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A不是B的子集;其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B 不是A的子集;若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍.跟踪训练1(1)若集合M={x|x2-1=0},T={-1,0,1},则M与T的关系是() A.M T B.M T C.M=T D.M⃘T(2)用Venn图表示下列集合之间的关系:A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},D={x|x是正方形}.解析:(1)因为M={x|x2-1=0}={-1,1},又T={-1,0,1},所以M T.(2)根据几何图形的相关知识明确各元素所在集合之间的关系,再画Venn图.如图答案:(1)A(2)见解析学习完知识点后,我们可以得到B⊆A,C⊆A,D⊆A,D⊆B,D⊆C.类型二子集、真子集的个数问题例2(1)已知集合A={x∈R|x2-3x+2=0},B={x∈N|0<x<5},则满足条件A C B 的集合C的个数为()A.1B.2C.3D.4(2)已知集合A={x∈R|x2=a},使集合A的子集个数为2个的a的值为()A.-2 B.4 C.0 D.以上答案都不是【解析】(1)由x2-3x+2=0,得x=1或x=2,所以A={1,2}.由题意知B={1,2,3,4},所以满足条件的C可为{1,2,3},{1,2,4}.(2)由题意知,集合A中只有1个元素,必有x2=a只有一个解;若方程x2=a只有一个解,必有a=0.【答案】(1)B (2)C(1)先用列举法表示集合A,B,然后根据A C B确定集合C.(2)先确定关于x的方程x2=a解的个数,然后求a的值.方法归纳求集合子集、真子集个数的三个步骤跟踪训练2(1)已知集合M={x∈Z|1≤x≤m},若集合M有4个子集,则实数m=() A.1 B.2 C.3 D.4(2)若集合A{1,2,3},且A中至少含有一个奇数,则这样的集合有________个.解析:(1)根据题意,集合M有4个子集,则M中有2个元素,又由M={x∈Z|1≤x≤m},其元素为大于等于1而小于等于m的全部整数,则m=2.(2)若A中含有一个奇数,则A可能为{1},{3},{1,2},{3,2};若A中含有两个奇数,则A={1,3}.答案:(1)B(2)5由A中含有奇数的个数分类:A中含1个奇数,2个奇数.类型三根据集合的包含关系求参数例3已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.【解析】(1)当a=0时,①A =∅,满足A ⊆B .(2)当a >0时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a <x <2a. 又∵B ={x |-1<x <1},且A ⊆B ,∴⎩⎪⎨⎪⎧1a ≥-1,2a ≤1.②∴a ≥2. (3) 当a <0时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a <x <1a .③ ∵A ⊆B ,∴⎩⎪⎨⎪⎧2a ≥-1,1a ≤1.∴a ≤-2.综上所述,a 的取值范围是{a |a =0,或a ≥2,或a ≤-2}.①欲解不等式1<ax<2,需不等号两边同除以a ,而a 的正负不同时,不等号的方向不同,因此需对a 分a =0,a>0,a<0进行讨论.②A ⊆B 用数轴表示如图所示:由图易知,1a 和2a 需在-1与1之间.当1a =-1,或2a =1时,说明A 与B 的某一端点重合,并不是说其中的元素能够取到端点,如2a =1时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x<1,x 取不到1.③a<0时,不等式两端除以a ,不等号的方向改变.方法归纳(1)分析集合关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.(3)此类问题还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时,初学者会想当然认为非空集合而丢解,因此分类讨论思想是必需的.跟踪训练3 设集合A ={x |x 2-8x +15=0},B ={x |ax -1=0}. (1)若a =15,试判定集合A 与B 的关系; (2)若B ⊆A ,求实数a 的取值集合.解析:(1)由x 2-8x +15=0得x =3或x =5,故A ={3,5},当a =15时,由ax -1=0得x =5.所以B ={5},所以BA .(2)当B =∅时,满足B ⊆A ,此时a =0;当B ≠∅,a ≠0时,集合B =⎩⎨⎧⎭⎬⎫1a ,由B ⊆A 得1a =3或1a =5,所以a =13或a =15.综上所述,实数a 的取值集合为⎩⎨⎧⎭⎬⎫0,13,15,(1)解方程x 2-8x +15=0,求出A ,当a =15时,求出B ,由此能判定集合A 与B 的关系.(2)分以下两种情况讨论,求实数a 的取值集合.①B =∅,此时a =0;②B ≠∅,此时a ≠0.[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知集合P ={x |x 2=1},Q ={x |ax =1},若Q ⊆P ,则a 的值是( )A .1B .-1C .1或-1D .0,1或-1解析:由题意,当Q 为空集时,a =0;当Q 不是空集时,由Q ⊆P ,a =1或a =-1. 答案:D2.已知集合M ={y |y =x 2-2x -1,x ∈R },集合N ={x |-2≤x ≤4},则集合M 与N 之间的关系是( )A .M >NB .MN C .N M D .M ⊆N解析:因为y =(x -1)2-2≥-2,所以M={y|y≥-2},所以N M.答案:C3.已知集合A={1,2,3},B={3,x2,2},若A=B,则x的值是()A.1 B.-1C.±1 D.0解析:由A=B得x2=1,所以x=±1,故选C.答案:C4.已知集合A={-1,0,1},则含有元素0的A的子集的个数为()A.2 B.4C.6 D.8解析:根据题意,含有元素0的A的子集为{0},{0,1},{0,-1},{-1,0,1},共4个.答案:B5.设A={x|2<x<3},B={x|x<m},若A⊆B,则m的取值范围是()A.m>3 B.m≥3C.m<3 D.m≤3解析:因为A={x|2<x<3},B={x|x<m},A⊆B,将集合A,B表示在数轴上,如图所示,所以m≥3.答案:B二、填空题(每小题5分,共15分)6.已知集合A ={x |x -3>0},B ={x |2x -5≥0},则这两个集合的关系是________.解析:A ={x |x -3>0}={x |x >3},B ={x |2x -5≥0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≥52. 结合数轴知A B .答案:A B7.设集合A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,则a 的值为________.解析:∵A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,∴a 2-a +1∈A ,∴a 2-a +1=3或a 2-a +1=a .由a 2-a +1=3,得a =2或a =-1;由a 2-a +1=a ,得a =1.经检验,a =1时集合A ,B 不满足集合中元素的互异性,舍去.故a =-1或a =2.答案:-1或28.已知A ={x |-3<x <5},B ={x |x >a },A ⊆B ,则实数a 的取值范围是________. 解析:在数轴上画出集合A .又因为A ⊆B ,所以a <-3,当a =-3时也满足题意,所以a ≤-3.A.A⊆B B.B⊆CC.C⃘A D.B A解析:易知集合B,C是集合A的子集,且是真子集,而B,C之间没有关系,因此只有D选项正确,答案:D12.已知集合A={1,3,5},则集合A的所有子集的元素之和为________.解析:集合A的子集分别是:∅,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5}.注意到A中的每个元素出现在A的4个子集,即在其和中出现4次.故所求之和为(1+3+5)×4=36.答案:3613.已知集合A={1,3,x2},B={x+2,1}.是否存在实数x,使得B⊆A?若存在,求出集合A,B;若不存在,说明理由.解析:假设存在实数x,使B⊆A,则x+2=3或x+2=x2.(1)当x+2=3时,x=1,此时A={1,3,1},不满足集合元素的互异性.故x≠1.(2)当x+2=x2时,即x2-x-2=0,故x=-1或x=2.①当x=-1时,A={1,3,1},与集合元素的互异性矛盾,故x≠-1.②当x=2时,A={1,3,4},B={4,1},显然有B⊆A.综上所述,存在x=2,使A={1,3,4},B={4,1}满足B⊆A.14.已知集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且B⊆A.求实数m的取值范围.解析:∵B ⊆A ,(1)当B =∅时,m +1≤2m -1, 解得m ≥2.(2)当B ≠∅时,有⎩⎪⎨⎪⎧ -3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上得m ≥-1.即实数m 的取值范围为{m |m ≥-1}.。

高一数学必修一复习资料

高一数学必修一复习资料

第一章§ 集合1.关于集合的元素的特征(1)确定性(组成元素不确定的如:我国的小河流)(2)互异性(3)无序性集合相等:构成两个集合的元素完全一样(1)若集合A中的元素与集合B中的元素完全相同则称集合A等于集合B,记(2)例:已知A={1,1+d,1+2d},B={1,q,q2},若A=B,求的,d,q的值。

解:d=-,q=-2.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈Aa不是集合A的元素,就说a不属于(not belong to)A,记作子集与真子集:B中的元素,那么集合A叫做集合B若集合P P不包含于Q,或Q不包含P.A B中至少有一个元素不属于A,那么集合A叫做集合B或.子集与真子集的性质:3.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R4.集合的表示方法(1)列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;(2)描述法:把集合中的元素的公共属性描述出来,写在大括号 {}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;(3)自然语言描述法:小于10的所有正偶数组成的集合。

({2,4,6,8})2、用例举法表示练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是( )A 直角三角形B 锐角三角形C 钝角三角形D 等腰三角形5.集合间的基本运算并集(∪):一般的由所有属于集合A 或属于集合B 的元素组成的集合,成A∪B,即:,韦恩图如下:交集(∩):一般地,由属于集合A 且属于集合B 的所有元素组成的集韦恩图如下:全集(U):一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就成这个集合为全集,记为U。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选,A2型题,A1/A2型题]发表群体力学理论的年份是()A.1911年B.1925年C.1933年D.1944年E.1957年 [单选,B型题]结间束损伤可引起()。A.Bachmann束B.James束C.传导速度比心房肌慢D.P波增宽切迹E.具有潜在自律性 [单选]下述哪项不符合Meyer-Overton法则()A.脂溶性相似的化合物具有相同的麻醉效能B.化合物的脂溶性越高,麻醉效能越强C.烃链长的化合物出现麻醉作用减弱甚至截止现象D.全麻作用直接与进入脂质膜的药物分子数无关E.受体激动剂通过作用在受体周围脂质产生麻醉协同作用 [单选]关于日本血吸虫的描述下列不正确的是()A.是一种人畜共患病B.雌雄异体,合抱寄生C.分布于长江沿岸及以南地区D.钉螺为中间宿主E.成虫及分泌物致病,虫卵不致病 [单选]GIS、SF6断路器设备内部的绝缘操作杆、盆式绝缘子、支撑绝缘子等部件必须经过局部放电试验方可装配,要求在试验电压下单个绝缘件的局部放电量不大于()。A.3pC;B.5pC;C.10pC;D.15pC。 [单选]底面为平行四边形的四棱柱与平行六面体这两个概念的外延之间具有()关系。A.交叉B.从属C.矛盾D.同一 [填空题]与磨矿作业配合使用的分级机有()、耙式分级机、螺旋分级机、水力旋流器等。其中当前应用最广泛的是螺旋分级机和水力旋流器。 [多选]室内外给水管道界限划分,应以()。A.引入管阀门为界B.水表井为界C.建筑物外墙皮为界D.建筑物外墙皮5m为界 [单选]以下不是普通感冒主要特点的是()A.起病较急,病程短B.常有高热,全身症状明显C.常见病原体为鼻病毒、冠状病毒D.可出现流泪,呼吸不畅,声嘶E.血白细胞正常或偏低 [单选,A2型题,A1/A2型题]领导生命周期理论认为,最有效的领导风格应随着()的变化而变化A.领导者的成熟度B.领导者的领导能力C.员工的成熟度D.员工的工作成熟度E.员工的心理成熟度 [单选,A1型题]3岁女孩,1周前曾患感冒,1天前发现全身散发淤点和淤斑,以双下肢多见。病后不发热。查体:肝脾不大。门诊查PLT40×109/L,诊断为原发性血小板减少性紫癜,急性型。其发生出血的机制不包括()A.VonWillbrand因子缺乏B.抗体损伤血管壁C.血小板数量减少D.血小板聚集力、 弱E.血小板第3因子活性减低 [单选]下列关于膀胱损伤的说法哪项不正确()A.膀胱损伤的病因可分为开放性损伤、闭合性损伤和医源性损伤B.膀胱损伤的病理可分为挫伤和破裂,后者又分为腹膜内型和腹膜外型C.膀胱损伤的临床表现可有休克、腹痛、血尿和排尿困难及尿瘘等D.膀胱损伤为防止感染一般不进行膀胱造影E.膀胱 孔较小可采用留置导尿管等保守治疗 [单选,A2型题,A1/A2型题]结核菌素试验的描述正确的是()A.结果阴性可排除结核病BCG接种后结核菌素试验反应为强阳性C.部分高危结核患儿可呈阴性反应D.阳性结果代表患有结核病E.婴幼儿、尤其是未接种BCG者结核菌素试验阳性不提示体内有活动性结核病 [单选]低碳钢的屈服极限发生在拉伸过程中的()阶段。A、弹性B、屈服C、强化D、颈缩 [单选]属于减毒配伍关系的是()。A.相须,相使B.相恶,相反C.相畏,相杀D.相须,相畏E.相恶,相杀 [单选,A2型题,A1/A2型题]环卵沉淀试验(COPT)用于诊断哪种寄生虫病()A.肝吸虫病B.肺吸虫病C.姜片虫病D.日本血吸虫病E.以上均可以 [单选]信息分类中,()指分类体系的建立应满足事物的不断发展和变化的需要,在分类体系中应留有适当的空位,以便新的事物或概念增加时,在体系中有一定的位置安排,而不至于由于新的事物或概念头的增加而导致分类体系又推倒重来A、科学性B、系统性C、可扩充性D、兼容性E、综合实 息分类原则) [名词解释]入射角 [单选]关于病毒学检验中标本采集、处理与运送的原则是()A.标本必须新鲜,采集后立即送检B.用于分离和鉴定的标本应在急性期采集C.在检验容器上要贴好标签D.用于分离和鉴定的标本应在病程初期采集E.以上都是 [填空题]用臭阈值法进行水中臭的检验,应在检臭实验室中进行,检臭人员在检验过程中不能分散注意力并不受()及()的干扰。 [单选]关于急性血源性骨髓炎的特点,不正确的是()A.常见于10岁以下儿童B.多发生在长骨的干骺端C.最常见的致病菌为链球菌D.早期确诊主要依靠局部分层穿刺E.X线检查一般在发病2周左右才显示骨质破坏和骨膜反应 [单选]属于行为科学理论在护理管理中的应用的是()A.管理者要合理任用人员B.管理者要建立良好的人际关系C.管理者要有科学的管理经验D.管理者要建立奖罚程序E.管理者要明确组织分工 [单选]下列关于高中数学基础性的说法不正确的是()。A.高中数学课程为学生进一步学习提供了必要的数学准备B.高中数学课程为不同学生提供相同的基础C.高中数学课程体现时代性、基础性和选择性D.高中数学课程要以学生的发展为本,尊重他们的个性发展 [单选]()受到《中华人民共和国著作权法》的永久保护。A.复制权B.发表权C.出租权D.署名权 [单选,A2型题,A1/A2型题]属于自限性的输血不良反应是()。A.血小板输注无效B.输血相关性免疫抑制C.输血相关性急性肺损伤D.输血后紫癜E.输血相关性移植物抗宿主病 [单选,共用题干题]36岁妇女,月经周期规律,近2个月有接触性出血。妇科检查:宫颈重度糜烂,阴道脱落细胞涂片发现核大深染,核形不规则或双核确诊后最恰当的治疗应是()。A.全子宫切除术B.扩大性全子宫切除术C.广泛全子宫切除及盆腔淋巴结清扫术D.放射治疗E.放疗后行全子宫切除术 [单选]飞机驾驶员申请商用驾驶执照要求的飞行经历中的机长时间为()A、10小时B、50小时C、100小时 [单选]国际工程施工承包合同争议解决的方式中,最常用、最有效、也是应该首选的方式是()。A.协商B.仲裁C.调解D.诉讼 [多选]公共财政的职能包括()。A.资源配置职能B.收入分配职能C.调控经济职能D.监督管理职能E.调控社会职能 [单选]男,45岁,右侧腹股沟斜疝入院。护士在病史采集中必须询问以下有关内容,但除外的是()A.慢性腹痛病史B.慢性便秘史C.尿频尿急史D.慢性咳嗽史E.工作种类 [单选]假定KM不变,当少量装货的重心高于船舶的重心时,则装货后船舶的初稳性高度值将()。A.减小B.不变C.增大D.变化趋势不定 [单选]下列关于型深D的定义,说法错误的是()。A.在船长中点处,沿船舷由平板龙骨上缘量至上层连续甲板下缘的垂直距离B.在型长中点处,沿船舷由平板龙骨上缘量至干舷甲板上缘的垂直距离C.在船长中点处,沿船舷由平板龙骨上缘量至甲板线上缘的垂直距离D.在两柱间长中点处,沿 板龙骨上缘量至上层连续甲板下缘的垂直距离 [单选,A2型题,A1/A2型题]《素问·灵兰秘典论》言膻中的主要功能有()A.产生七情B.聚藏精气C.代君行令D.辅助血行E.以上都是 [单选]产褥期抑郁症发生在产后()A.1周B.2周C.4周D.5周E.6周 [单选]薄拱坝是指拱坝最大坝高处的坝底厚度T与坝高H之比不大于()的拱坝。A.0.10B.0.2C.0.25D.0.35 微信二维
相关文档
最新文档