二次函数常见题型(含答案)
初中数学二次函数综合题及答案(经典题型)
二次函数试题 选择题:1、y=(m-2)xm2- m是关于x 的二次函数,则m=( )A -1B 2C -1或2D m 不存在2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离,汽车行驶的速度与行驶的时间的关系B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系C 矩形周长一定时,矩形面积和矩形边长之间的关系D 圆的周长与半径之间的关系4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y=21x 2-6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c 〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则c b a + =c a b + =b a c + 的值是( )A -1 B 1 C 218、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系的大致图象是图中的( )二填空题:13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。
16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2+bx+c =-2的根为————————————。
17、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =————————— 解答题:(二次函数与三角形)1、已知:二次函数y=错误!未找到引用源。
二次函数的应用大题专练(七大类型)-2023年中考数学压轴题(解析版)
二次函数的应用大题专练(七大类型)题型一:考向分析1类型一、销售问题1(2023·浙江湖州·统考一模)为鼓励大学毕业生自主创业,某市政府出台相关政策,本市企业提供产品给大学毕业生自主销售,政府还给予大学毕业生一定补贴.已知某种品牌服装的成本价为每件100元,每件政府补贴20元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-3x+900.(1)若第一个月将销售单价定为160元,政府这个月补贴多少元?(2)设获得的销售利润(不含政府补贴)为w(元),当销售单价为多少元时,每月可获得最大销售利润?(3)若每月获得的总收益(每月总收益=每月销售利润+每月政府补贴)不低于28800元,求该月销售单价的最小值.【答案】(1)8400元(2)200元(3)140元【解析】(1)解:在y=-3x+900中,令x=160,则y=420,∴政府这个月补贴420×20=8400元;(2)由题意可得:w=-3x+9002+30000,x-100=-3x-200∵a=-3<0,∴当x=200时,w有最大值30000.即当销售单价定为200元时,每月可获得最大利润30000元.(3)设每月获得的总收益为w ,由题意可得:w =-3x+9002+36300,=-3x-190x-100+20-3x+900令w =28800,则-3x-1902+36300=28800,解得:x=140或x=240,∵a=-3<0,则抛物线开口向下,对称轴为直线x=190,∴当140≤x≤240时,w≥28800,∴该月销售单价的最小值为140元.2类型二、图形面积问题2(2023春·湖北武汉·九年级校联考期中)春回大地,万物复苏,又是一年花季到.某花圃基地计划将如图所示的一块长40m,宽20m的矩形空地划分成五块小矩形区域.其中一块正方形空地为育苗区,另一块空地为活动区,其余空地为种植区,分别种植A,B,C三种花卉.活动区一边与育苗区等宽,另一边长是10m.A,B,C三种花卉每平方米的产值分别是2百元、3百元、4百元.(1)设育苗区的边长为x m,用含x的代数式表示下列各量:花卉A的种植面积是_____m2,花卉B的种植面积是______m2,花卉C的种植面积是_______m2.(2)育苗区的边长为多少时,A,B两种花卉的总产值相等?(3)若花卉A与B的种植面积之和不超过560m2,求A,B,C三种花卉的总产值之和的最大值.【答案】(1)(x2-60x+800);(-x2+30x);(-x2+20x),(2)32m或10m,(3)168000元【解析】(1)解:∵育苗区的边长为x m,活动区的边长为10m,∴花卉A的面积为:40-x20-x=(x2-60x+800)m2,花卉B的面积为:x40-x-10=(-x2+30x)m2,花卉C的面积为:x20-x=(-x2+20x)m2,故答案为:(x2-60x+800);(-x2+30x);(-x2+20x);(2)解:∵A,B花卉每平方米的产值分别是2百元、3百元,∴A,B两种花卉的总产值分别为2×x2-60x+800百元和3×-x2+30x百元,∵A,B两种花卉的总产值相等,∴200×x2-60x+800=300×-x2+30x,∴x2-42x+320=0,解方程得x=32或x=10,∴当育苗区的边长为32m或10m时,A,B两种花卉的总产值相等;(3)解:∵花卉A与B的种植面积之和为:x2-60x+800+-x2+30x=(-30x+800)m2,∴-30x+800≤560,∴x≥8,∵设A,B,C三种花卉的总产值之和y百元,∴y=2x2-60x+800+3-x2+30x,+4-x2+20x∴y=-5x2+50x+1600,∴y=-5(x-5)2+1725,∴当x≥8时,y随x的增加而减小,∴当x=8时,y最大,且y=-5(8-5)2+1725=1680(百元),故A,B,C三种花卉的总产值之和的最大值168000元.3类型三、拱桥问题3(2023·安徽黄山·统考一模)如图,国家会展中心大门的截面图是由抛物线ADB 和矩形OABC 构成.矩形OABC 的边OA =34米,OC =9米,以OC 所在的直线为x 轴,以OA 所在的直线为y 轴建立平面直角坐标系,抛物线顶点D 的坐标为92,245.(1)求此抛物线对应的函数表达式;(2)近期需对大门进行粉刷,工人师傅搭建一木板OM ,点M 正好在抛物线上,支撑MN ⊥x 轴,ON =7.5米,点E 是OM 上方抛物线上一动点,且点E 的横坐标为m ,过点E 作x 轴的垂线,交OM 于点F .①求EF 的最大值.②某工人师傅站在木板OM 上,他能刷到的最大垂直高度是125米,求他不能刷到大门顶部的对应点的横坐标的范围.【答案】(1)y =-15x -92 2+245;(2)①当m =72时,EF 有最大值165;②32<m <112.【解析】(1)解:由题意知,抛物线顶点D 的坐标为92,245,设抛物线的表达式为y =a x -92 2+245,将点A 0,34 代入抛物线解析式得34=a 0-92 2+245,解得a =-15,∴抛物线对应的函数的表达式为y =-15x -92 2+245;(2)解:①将x =7.5代入y =-15x -92 2+245中,得y =3,∴点M 152,3 ,∴设直线OM 的解析式为y =kx k ≠0 ,将点M 152,3 代入得152k =3,∴k =25,∴直线OM 的解析式为y =25x ,∴EF =-15m -92 2+245-25m =-15m 2+75m +34=-15m -72 2+165,∵-15<0,∴当m =72时,EF 有最大值,为165;②∵师傅能刷到的最大垂直高度是125米,∴当EF >125时,他就不能刷到大门顶部,令EF =125,即-15m -72 2+165=125,解得m 1=32,m 2=112,又∵EF 是关于m 的二次函数,且图象开口向下,∴他不能刷到大门顶部的对应点的横坐标m 的范围是32<m <112.4类型四、投球问题4(2023·浙江丽水·统考一模)某天,小明在足球场上练习“落叶球”(如图1),足球运动轨迹是抛物线的一部分,如图2,足球起点在A 处,正对一门柱CD ,距离AC =12m ,足球运动到B 的正上方,到达最高点2.5m ,此时AB =10m .球门宽DE =5m ,高CD =2m .(1)以水平方向为x 轴,A 为原点建立坐标系,求足球运动轨迹抛物线的函数表达式.(2)请判断足球能否进球网?并说明理由.(3)小明改变踢球方向,踢球时,保持足球运动轨迹抛物线形状不变的前提下,足球恰好在点E 处进入球网.若离A 点8m 处有人墙GH ,且GH ∥CF ,人起跳后最大高度为2.2m ,请探求此时足球能否越过人墙,并说明理由.【答案】(1)足球运动轨迹抛物线的函数表达式为y =-140x +10 2+2.5(2)足球不能进球网,理由见解析(3)足球能越过人墙,理由见解析【解析】(1)解:由题意得抛物线的顶点坐标为-10,2.5 ,设抛物线的函数表达式为y =a x +10 2+2.5,将0,0 代入得,0=100a +2.5,解得a =-140,∴足球运动轨迹抛物线的函数表达式为y =-140x +10 2+2.5;(2)解:足球不能进球网,理由如下:当x =-12时,y =-140-12+10 2+2.5=2.4,∵2.4>2,∴足球不能进球网.(3)解:足球能越过人墙,理由如下:∵足球运动轨迹抛物线形状不变,并经过点0,0 ,∴设抛物线的函数表达式为y =-140x 2+bx .如图,由题意知,四边形CDEF 是矩形,则CF =DE =5,在Rt △ACF 中,由勾股定理得AF =AC 2+CF 2=13,∵足球恰好在点E 处进入球网,∴抛物线经过点-13,2 ,将-13,2 代入得,2=-140×-13 2-13b ,解得b =-249520,∴y =-140x 2-249520x ,∵GH ∥CF ,∴△AGH ∽△ACF ,∴AH AF =AG AC ,即AH 13=812,解得AH =263,把x =-263代入得,y =-140×-263 2-249520×-263 =409180,∵409180>2.2,∴足球能越过人墙.5类型五、喷水问题5(2023·山东潍坊·统考一模)如图①,灌溉车沿着平行于绿化带底部边线l 的方向行驶,为绿化带浇水.喷水口H 离地竖直高度OH =1.5米.如图②,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG ,其水平宽度DE =2米,竖直高度EF =1米.下边缘抛物线可以看作由上边缘抛物线向左平移得到,上边缘抛物线最高点A 离喷水口的水平距离为2米,高出喷水口0.5米,灌溉车到l 的距离OD 为d 米.(1)求上边缘抛物线的函数表达式,并求喷出水的最大射程OC ;(2)求下边缘抛物线与x 轴的正半轴交点B 的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带(即矩形DEFC 位于上边缘抛物线和下边缘抛物线所夹区域内),求d 的取值范围.【答案】(1)6米(2)y=-18x+22+2,2,0(3)2≤d≤22【解析】(1)解:如图,由题意得A2,2是上边缘抛物线的顶点,则设y=a x-22+2.又∵抛物线经过点0,1.5,∴4a+2=1.5,∴a=-18.∴上边缘抛物线的函数解析式为y=-18x-22+2.当y=0时,-18x-22+2=0,∴x1=6,x2=-2(舍去).∴喷出水的最大射程OC为6m.(2)法一:∵上边缘抛物线对称轴为直线x=2,∴点0,1.5的对称点为4,1.5,∴下边缘抛物线是由上边缘抛物线向左平移4m得到的,∴将点C向左平移4m得到点B的坐标为2,0法二:∵下边缘抛物线可以看做是上边缘抛物线向左平移t个单位长度得到的,∴可设y=-18x+t-22+2,将点0,1.5代入得t1=4,t2=0(舍去)∴下边缘抛物线的关系式为y=-18x+22+2,∴当y=0时,0=-18x+22+2,解得x1=2,x2=-6(舍去),∴点B的坐标为2,0;(3)解:如图,先看上边缘抛物线,∵EF=1,∴点F的纵坐标为1.当抛物线恰好经过点F时,-18x-22+2=1.解得x=2±22,∵x>0,∴x=2+22.当x>0时,y随着x的增大而减小,∴当2≤x≤6时,要使y≥1,则x≤2+22.∵当0≤x<2时,y随x的增大而增大,且x=0时,y=1.5>0.5,∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+22.∵DE=2,灌溉车喷出的水要浇灌到整个绿化带,∴d的最大值为2+22-2=22.再看下边缘抛物线,喷出的水能浇灌到绿化带底部的条件是OB ≤d ,∴d 的最小值为2.综上所述,d 的取值范围是2≤d ≤22.6类型六、几何动点问题1例6.(2023·山东青岛·统考一模)如图,在四边形ABCD 中,AB ∥CD ,∠ABC =90°,AB =8cm ,BC =6cm ,AD =10cm ,点P 、Q 分别是线段CD 和AD 上的动点.点P 以2cm/s 的速度从点D 向点C 运动,同时点Q 以1cm s 的速度从点A 向点D 运动,当其中一点到达终点时,两点停止运动,将PQ 沿AD 翻折得到QP ,连接PP 交直线AD 于点E ,连接AC 、BQ .设运动时间为t s ,回答下列问题:(1)当t 为何值时,PQ ∥AC ?(2)求四边形BCPQ 的面积S cm 2 关于时间t s 的函数关系式;(3)是否存在某时刻t ,使点Q 在∠PP D 平分线上?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)t =409(2)S =35t 2-425t +72(3)存在,t =5【解析】(1)解:过点A 作AK ⊥CD 于点K ,∵∠ABC =90°,AB =8,BC =6,∴由勾股定理得AC =AB 2+BC 2=10,∵AD =10cm ,∴AC =AD ,∴△ACD 是等腰三角形,∴CD =2CK ,又∵AB ∥CD ,∴∠ABC =∠BCD =∠AKC =90°,∴四边形ABCK 是矩形,∴CK =AB =8,∴CD =16,若PQ ∥AC ,∴DP DC =DQ DA,由题意得,DP =2t ,AQ =t 则DQ =10-t ,∴2t 16=10-t 10,解得t =409,所以,t =409时,PQ ∥AC ;(2)过点Q 作QT ⊥CD ,交CD 于点T ,交AB 于点H ,∴AK =HT =BC =6,由(1)知CK =DK =8,AD =10,∴cos ∠D =DK AD =45,∴sin ∠D =AK AD=35=QT DQ =QT 10-t ,∴QT =6-35t ,∴QH =6-6-35t =35t ,∵四边形BCPQ 的面积=S ΔABC +S ΔACD -S ΔPQD -S ΔABQ =12⋅AB ⋅BC +12⋅CD ⋅AK -12⋅DP ⋅QT -12⋅AB ⋅QH ∴S =12×8×6+12×16×6-12⋅2t ⋅6-35t -12×8⋅35t ,整理得S =35t 2-425t +72,即四边形BCPQ 的面积S cm 2 关于时间t s 的函数关系式为S =35t 2-425t +72;(3)如图,设PP 交AD 于点E ,过点Q 作QF ⊥DP 于点F ,由折叠的性质得∠ADP =∠ADP ,PP ⊥AD ,∵AD 平分∠PDP ,QT ⊥PD ,QF ⊥P D ,∴QT =QF =6-35t ,∵点Q 在∠PP D 平分线上,PP ⊥AD ,QF ⊥P D ,∴QF =QE =6-35t ,∴DE =DQ +EQ =10-t +6-35t =16-85t ,∵cos ∠EDP =DE DP=45,即16-85t 2t =45,解得t =5,经检验t =5是分式方程的解且符合题意,所以t =5时,点Q 在∠PP D 平分线上.7类型七、图形运动问题7(2023·天津·校联考一模)在平面直角坐标系中,O 为原点,四边形AOBC 是正方形,顶点A -4,0 ,点B 在y 轴正半轴上,点C 在第二象限,△MON 的顶点M 0,5 ,点N 5,0 .(1)如图①,求点B ,C 的坐标;(2)将正方形AOBC 沿x 轴向右平移,得到正方形A O B C ,点A ,O ,B ,C 的对应点分别为A ,O ,B ,C .设OO =t ,正方形A O B C 与△MON 重合部分的面积为S .①如图②,当1<t ≤4时,正方形A O B C 与△MON 重合部分为五边形,直线B C 分别与y 轴,MN 交于点E ,F ,O B 与MN 交于点H ,试用含t 的式子表示S ;②若平移后重合部分的面积为92,则t 的值是_______(请直接写出结果即可).【答案】【答案】(1)B 0,4 ,C -4,4(2)①S =-12t 2+5t -12;②5-15或6【解析】(1)解:由A -4,0 ,得AO =4,∵四边形AOBC 正方形,∴OB =BC =4.∴B 0,4 ,C -4,4 ;(2)解:①∵M 0,5 ,N 5,0 ,∠MON =90°,∴OM =ON =5,∠OMN =∠ONM =45°.由平移知,四边形A O B C 是正方形,得B C =4,∠B =∠B O O =90°.∴四边形OO B E 是矩形.∴B E =OO =t ,OE =B O =4,∠B EM =90°.∴∠EFM =45°,∴EF =ME =1,B F =t -1.∵∠B FH =∠EFM =45°,∴∠B HF =45°.∴B H =B F =t -1.当1<t ≤4时,S =OO ⋅OE -12B H ⋅B F =4t -12(t -1)2=-12t 2+5t -12.②当1<t ≤4时,由题意得S =-12t 2+5t -12=92,解得t=5-15或5+15(舍去);当t=5时,点O 与点N重合,此时S=12×4×4=8>92,∴5<t<9,∴A N=A F=9-t,由题意得129-t2=92,解得t=6或t=12(舍去);综上,t的值是5-15或6.故答案为:5-15或6.题型二:压轴题速练1一.解答题(共24小题)1(2023•宁波一模)抗击疫情期间,某商店购进了一种消毒用品,进价为每件8元,销售过程中发现,该商品每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数),部分对应值如下表:每件售价(元)91113每天的销售量(件)1059585(1)求y与x的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元.(3)设该商店销售这种消毒用品每天获利w(元),问:当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?【答案】(1)y=-5x+150(8≤x≤15);(2)13元;(3)当每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.【解析】解:(1)设y与x的函数关系式为y=kx+b,(8≤x≤15),将(9,105),(11,95)代入得105=9k+b95=11k+b,解得k=-5b=150,∴y=-5x+150,∴y与x的函数关系式为y=-5x+150(8≤x≤15);(2)由题意知,利润w=(x-8)(-5x+150)=-5(x-19)2+605,令w=425,则-5(x-19)2+605=425,解得x=13或x=25(不合题意,舍去),∴每件消毒用品的售价为13元;(3)由(2)知w=-5(x-19)2+605(8≤x≤15),∵-5<0,∴当8≤x≤15时,w随着x的增大而增大,∴当x=15时,w=525,此时利润最大,∴当每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.2(2023•莱西市一模)某公司电商平台经销一种益智玩具,先用3000元购进一批.售完后,第二次购进时,每件的进价提高了20%,同样用3000元购进益智玩具的数量比第一次少了25件.销售时经市场调查发现,该种益智玩具的周销售量y(件)是关于售价x(元/件)的一次函数,如表仅列出了该商品的售价x(元/件),周销售量y(件)的三组对应值数据.x407090y1809030(1)求第一次每件玩具的进价;(2)求y关于x的函数解析式;(3)售价x为多少时,第一周的销售利润W最大?并求出此时的最大利润.【答案】(1)第一次每件玩具的进价为20元(2)y=-3x+300(3)当x=60时,第一周的销售利润W最大,此时的最大利润为4800元【解析】解:(1)设第一次每件玩具的进价为m元,则第二次每件玩具的进价为(1+20%)m元,由题意得,3000 m -3000(1+20%)m=25,解得m=20,经检验m=20是原方程的解且符合题意,答:第一次每件玩具的进价为20元;(2)设y=kx+b,把x=40,y=180;x=70,y=9分别代入得,40k+b=180 70k+b=90,解得k=-3b=300,∴y=-3x+300,即y关于x的函数解析式是y=-3x+300;(3)W=y(x-20)=(-3x+300)(x-20)=-3x2+360x-6000=-3(x-60)2+4800,∵a=-3<0,抛物线开口向下,∴当x=60时,第一周的销售利润W最大,此时的最大利润为4800.3(2023•天山区一模)一名高校毕业生响应国家创业号召,回乡承包了一个果园,并引进先进技术种植一种优质水果,经核算这批水果的种植成本为16元/千克、设销售时间为x(天),通过一个月(30天)的试销,该种水果的售价P(元/千克)与销售时间x(天)满足如图所示的函数关系(其中0≤x≤30,且x为整数).已知该种水果第一天销量为60千克,以后每天比前一天多售出4千克.(1)直接写出售价P(元/千克)与销售时间x(天)的函数关系式;(2)求试销第几天时,当天所获利润最大,最大利润是多少?【答案】(1)P=-12x+3424(20<x≤30) ;(2)试销第30天时,当天所获利润最大,最大利润是1408元.【解析】解:(1)当0≤x≤20时,设售价P(元/千克)与销售时间x(天)的函数关系式为P=kx+b,把(0,34),(20,24)代入得20k+b=24b=34,j解得k=-12b=34,∴P=-12x+34;由函数图象可知当20<x≤30时,P=24;综上所述,P=-12x+3424(20<x≤30) ;(2)设第x天的利润为W,∵该种水果第一天销量为60千克,以后每天比前一天多售出4千克,∴第x天的销售量为60+4(x-1)=(4x+56)千克,当0≤x≤20时,∴W=-12x+34-16(4x+56)=-2x2+72x-28x+1008=-2x2+44x+1008=-2(x-11)2+1250∵-2<0,∴当x=11时,W最大,最大为1250;当20<x≤30时,W=(24-16)(4x+56)=32x+448,∵32>0,∴当x=30时,W最大,最大为32×30+448=1408;∵1408>1250,∴试销第30天时,当天所获利润最大,最大利润是1408元.4(2023•武汉模拟)某市新建了一座室内滑雪场,该滑雪场地面积雪厚达40cm,整个赛道长150m,全天共可容纳约3300人滑雪嬉戏.小明和小华相约去体验滑雪,小明从赛道顶端A处下滑,测得小明离A处的距离s(单位:m)随运动时间x(单位:s)变化的数据,整理得下表.滑行时间x/s01234滑行距离s/m06142436经验证小明离A 处的距离s 与运动时间x 之间是二次函数关系.小明出发的同时,小华在距赛道终点30m 的B 处操控一个无人机沿着赛道方向以2m/s 的速度飞向小明,无人机离A 处的距离y (单位:m )与运动时间x (单位:s )之间是一次函数关系.(1)直接写出s 关于x 的函数解析式和y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)小明滑完整个赛道需要耗时多久?(3)小明出发多久后与无人机相遇?【答案】(1)s 关于x 的函数解析式为s =x 2+5x ,y 关于x 的函数解析式为y =-2x +120;(2)小明滑完整个赛道需要耗时10s ;(3)小明出发8s 与无人机相遇.【解析】解:(1)设s 关于x 的函数解析式为s =ax 2+bx +c ,将(0,0),(1,6),(2,14)代入得:c =0a +b +c =64a +2b +c =14 ,解得a =1b =5c =0,∴s =x 2+5x ;根据题意得y =150-30-2x =-2x +120,∴s 关于x 的函数解析式为s =x 2+5x ,y 关于x 的函数解析式为y =-2x +120;(2)在s =x 2+5x 中,令s =150得:150=x 2+5x ,解得x =10或x =-15(舍去),∴小明滑完整个赛道需要耗时10s ;(3)由x 2+5x =-2x +120得:x =8或x =-15,∴小明出发8s 与无人机相遇.5(2023•邯郸模拟)将小球(看作一点)以速度v 1竖直上抛,上升速度随时间推移逐渐减少直至为0,此时小球达到最大高度,小球相对于抛出点的高度y (m )与时间t (s )的函数解析式为两部分之和,其中一部分为速度v 1(m/s )与时间t (s )的积,另一部分与时间t (s )的平方成正比.若上升的初始速度v 1=10m/s ,且当t =1s 时,小球达到最大高度.(1)求小球上升的高度y 与时间t 的函数关系式(不必写范围),并写出小球上升的最大高度;(2)如图,平面直角坐标系中,y 轴表示小球相对于抛出点的高度,x 轴表示小球距抛出点的水平距离,向上抛出小球时再给小球一个水平向前的均匀速度v 2(m/s ),发现小球运动的路线为一抛物线,其相对于抛出点的高度y (m )与时间t (s )的函数解析式与(1)中的解析式相同.①若v 2=5m/s ,当t =32s 时,小球的坐标为 152,154 ,小球上升的最高点坐标为(5,5);求小球上升的高度y 与小球距抛出点的水平距离x 之间的函数关系式;②在小球的正前方的墙上有一高3536m 的小窗户PQ ,其上沿P 的坐标为6,154,若小球恰好能从窗户中穿过(不包括恰好去中点P ,Q ,墙厚度不计),请直接写出小球的水平速度v 2的取值范围.【答案】(1)y =-5t 2+10t ,小球上升的最大高度是5m ;(2)①152,154 ;(5,5);y =-15x 2+2x ;②185<v 2<4.【解析】解:(1)根据题意可设y =at 2+10t ,∵当t =1s 时,小球达到最大高度,∴抛物线y =at 2+10t 的对称轴为直线t =1,即-102a=1,解得a =-5,∴上升的高度y 与时间t 的函数关系式为y =-5t 2+10t ,在y =-5t 2+10t 中,令t =1得y =5,∴小球上升的最大高度是5m ;(2)①当t =32s 时,y =-5×32 2+10×32=154,x =v 2t =5×32=152,∴小球的坐标为152,154;由(1)可知,t =1s 时,取得最大高度,x =v 2t =5×1=5,∴小球上升的最高点坐标为(5,5);由题意可知,x =v 2t ,∴t =x v 2=x 5,∴y =-5×x 5 2+10×x 5=-15x 2+2x ;∴小球上升的高度y 与小球距抛出点的水平距离x 之间的函数关系式是y =-15x 2+2x ;故答案为:152,154 ;(5,5);②∵PQ =3536m ,P 的坐标为6,154 ,∴Q 6,259;当小球刚好击中P 点时,-5t 2+10t =154,解得t =1.5或t =0.5,∵t >1,∴t =1.5,此时v 2=6t=4m/s ,当小球刚好击中Q 点时,-5t 2+10t =259,解得t =53或t =13,∵t >1,∴t =53,此时v 2=6t =185m/s ,∴v 2的取值范围为:185<v 2<4.6(2023•崂山区一模)跳台滑雪简称“跳雪”,选手不借助任何外力、从起滑台P 处起滑,在助滑道PE 上加速,从跳台E 处起跳,最后落在山坡MN 或者水平地面上.运动员从P 点起滑,沿滑道加速,到达高度OE =42m 的E 点后起跳,运动员在空中的运动轨迹是一条抛物线.建立如图所示平面直角坐标系,OM =38m ,ON =114m ,设MN 所在直线关系式为y =kx +b .甲运动员起跳后,与跳台OE 水平距离xm 、竖直高度ym 之间的几组对应数据如下:水平距离x /m 010203040竖直高度y /m4248504842(1)求甲运动员空中运动轨迹抛物线的关系式;(2)运动员得分由距离得分+动作分+风速得分组成距离得分:运动员着陆点到跳台OE 水平距离为50m ,即得到60分,每比50m 远1米多得2分;反之,当运动员着陆点每比50m 近1米扣2分.距离分计算采取“2舍3入法”,如60.2米计为60米,60.3米则计为60.5米.动作得分:由裁判根据运动员空中动作的优美程度打分.风速得分:由逆风或者顺风决定.甲运动员动作分、风速加分如下表:距离分动作分风速加分50-2.5请你计算甲运动员本次比赛得分.【答案】(1)y =-150x 2+45x +42;(2)甲运动员本次比赛得分为147.5分.【解析】解:(1)∵抛物线经过点(10,48),(30,48),∴对称轴是:直线x =10+302=20,∴顶点坐标为(20,50),设甲运动员空中运动轨迹抛物线的关系式为:y =a (x -20)2+50,将(0,42)代入得:a (0-20)2+50=42,∴a =-150,∴甲运动员空中运动轨迹抛物线的关系式为:y =-150(x -20)2+50=-150x 2+45x +42;(2)根据题意可得,当y =0时,即-150(x -20)2+50=0,解得:x 1=70,x 2=-30(舍),则60+2×(70-50)+50+(-2.5)=147.5,所以甲运动员本次比赛得分为147.5分.7(2023•镇平县模拟)为培养学生劳动实践能力,某学校在校西南角开辟出一块劳动实践基地.如图①是其中蔬菜大棚的横截面,它由抛物线AED 和矩形ABCD 构成.已知矩形的长BC =12米,宽AB =3米,抛物线最高点E 到地面BC 的距离为6米.(1)按图①所示建立平面直角坐标系,求抛物线AED 的解析式;(2)冬季到来,为防止大雪对大棚造成损坏,学校决定在大棚两侧安装两根垂直于地面且关于y 轴对称的支撑柱PQ 和NM ,如图②所示.①若两根支撑柱的高度均为5.25米,求两根支撑柱之间的水平距离;②为了进一步固定大棚,准备在两根支撑柱上架横梁PN ,搭建成一个矩形“脚手架”PQMN ,为了筹备材料,需求出“脚手架”三根支杆PQ ,PN ,MN 的长度之和w 的最大值,请你帮管理处计算一下.【答案】(1)抛物线AED 的解析式为:y =-112x 2+6;(2)①两根支撑柱之间的水平距离为6米;②“脚手架”三根支杆PQ ,PN ,MN 的长度之和w 的最大值为18米.【解析】解:(1)∵四边形ABCD 是矩形,∴AD =BC =12(米),∴点A (-6,3),点D (6,3),根据题意和图象可得,顶点E 的坐标为(0,6),∴可设抛物线AED 的解析式为:y =ax 2+6,把点A (-6,3)代入解析式可得:36a +6=3,解得:a =-112,∴抛物线AED 的解析式为:y =-112x 2+6;(2)①当y =5.25时,-112x 2+6=5.25,解得x =±3,3-(-3)=3+3=6(米),∴两根支撑柱之间的水平距离为6米;②设N点坐标为m,-112m2+6,则MQ=2m,MN=-112m2+6,∴w=2m+2-112m2+6=-16m2+2m+12=-16(m-6)2+18,∵-16<0,∴当m=6时,w有最大值,最大值为18,∴“脚手架”三根支杆PQ,PN,MN的长度之和w的最大值为18米.8(2023•宝应县一模)科学研究表明:一般情况下,在一节45分钟的课堂中,学生的注意力随教师讲课的时间变化而变化.经过实验分析,在0≤x≤8时,学生的注意力呈直线上升,学生的注意力指数y与时间x(分钟)满足关系y=2x+68,8分钟以后,学生的注意力指数y与时间x(分钟)的图象呈抛物线形,到第16分钟时学生的注意力指数y达到最大值92,而后学生的注意力开始分散,直至下课结束.(1)当x=8时,注意力指数y为84,8分钟以后,学生的注意力指数y与时间x(分钟)的函数关系式是y=-18x2+4x+60;(2)若学生的注意力指数不低于80,称为“理想听课状态”,则在一节45分钟的课中学生处于“理想听课状态”所持续的时间有多长?(精确到1分钟)(3)现有一道数学压轴题,教师必须持续讲解24分钟,为了使效果更好,要求学生的注意力指数在这24分钟内的最低值达到最大,则该教师上课后从第几分钟开始讲解这道题?(精确到1分钟)(参考数据:6≈2.449)【答案】(1)84,y=-18x2+4x+60;(2)在一节45分钟的课中学生处于“理想听课状态”所持续的时间约有20分钟;(3)教师上课后从第4分钟开始讲解这道题,能使学生的注意力指数在这24分钟内的最低值达到最大.【解析】解:(1)根据题意,把x=8代入y=2x+68可得:y=84,由题意可知,抛物线的顶点坐标为(16,92),∴可设抛物线的解析式为:y=a(x-16)2+92,把(8,84)代入可得:64a+92=84,解得:a=-1 8,∴y=-18(x-16)2+92=-18x2+4x+60,故答案为:84,y=-18x2+4x+60;(2)由学生的注意力指数不低于80,即y≥80,当0≤x≤8时,由2x+68≥80可得:6≤x≤8;当8<x≤45是,则-18x2+4x+60≥80,即-18(x-16)2+92≥80,整理得:(x-16)2≤96,解得:8<x≤16+46,∴16+46-6=10+46≈20(分钟),答:在一节45分钟的课中学生处于“理想听课状态”所持续的时间约有20分钟;(3)设教师上课后从第t分钟开始讲解这道题,∵10+46<24,∴0≤t<6,要使学生的注意力指数在这24分钟内的最低值达到最大,则当x=t和当x=t+24时对应的函数值相同,即2t+68=-18(t+24-16)2+92,整理得:(t+16)2=384,解得:t1=86-16,t2=-86-16(舍),∴t≈4,答:教师上课后从第4分钟开始讲解这道题,能使学生的注意力指数在这24分钟内的最低值达到最大.9(2023•昭阳区一模)新华书店销售一个系列的儿童书刊,每套进价100元,销售定价为140元,一天可以销售20套.为了扩大销售,增加盈利,减少库存,书店决定采取降价措施.若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求出y与x的函数关系式;(2)若要书店每天盈利1200元,则每套书销售定价应为多少元?(3)当每套书销售定价为多少元时,书店一天可获得最大利润?这个最大利润为多少元?【答案】(1)y=-2x2+20x+400;(2)若要书店每天盈利1200元,则每套书销售定价应为130元或120元;(3)当每套书销售定价为125元时,书店一天可获得最大利润,最大利润为1250元.【解析】解:(1)由题意可得:销售量=(20+2x)套,则y=(20+2x)(140-x-100)=(2x+20)(40-x)=-2x2+60x+800,∴y与x的函数关系式为:y=-2x2+60x+800;(2)由题意可得:当y=1200时,即-2x2+60x+800=1200,解得:x1=10,x2=20,∴140-10=130(元),140-20=120(元),答:若要书店每天盈利1200元,则每套书销售定价应为130元或120元;(3)由(1)可知:y=-2x2+60x+800=-2(x-15)2+1250,∵-2<0,∴当x=15时,y有最大值,最大值为1250,此时,售价=140-15=125(元),答:当每套书销售定价为125元时,书店一天可获得最大利润,最大利润为1250元.10(2023•大丰区一模)比萨斜塔是意大利的一座著名斜塔,据说物理学家伽利略曾在塔顶上做过著名的自由落体试验:在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.已知:某建筑OA的高度为44.1m,将一个小铁球P(看成一个点)从A处向右水平抛出,在水平方向小铁球移动的距离d(m)与运动时间t(s)之间的函数表达式是:d=7t,在竖直方向物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=4.9t2.以点O为坐标原点,水平向右为x轴,OA所在直线为y轴,取1m为单位长度,建立如图所示平面直角坐标系,已知小铁球运动形成的轨迹为抛物线.(1)求小铁球从抛出到落地所需的时间;(2)当t=1时,求小铁球P此时的坐标;(3)求抛物线的函数表达式,并写出自变量x的取值范围.【答案】(1)小铁球从抛出到落地所需的时间为3秒;(2)(7,39.2);(3)y=-110x2+44.1(0≤x≤21).【解析】解:(1)根据题意可得,OA的高度为44.1m,且竖直方向物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=4.9t2,∴当h=44.1时,小铁球落到地面,∴4.9t2=44.1,解得:t1=3,t2=-3(舍),答:小铁球从抛出到落地所需的时间为3秒;(2)当t=1时,则d=7×1=7,h=4.9×12=4.9,∴y p=44.1-4.9=39.2,∴小铁球P此时的坐标为(7,39.2);(3)由(1)可知小铁球从抛出到落地所需的时间为3秒,∴d=7×3=21,∴OB=21(m),即B(21,0),根据题意可得,顶点坐标为A(0,44.1),∴可设抛物线解析式为:y=ax2+44.1,将点B(21,0)代入得:441a+44.1=0,解得:a=-1 10,∴抛物线的函数表达式为:y=-110x2+44.1(0≤x≤21).11(2023•南昌模拟)一个运动员跳起投篮,球的运行路线可以看做是一条抛物线,如图1所示,图2是它的示意图,球的出手点D到地面EB的距离为2.25m(即DE=2.25m,当球运行至F处时,水平距离为2.5m(即F到DE的距离为2.5m),达到最大高度为3.5m,已知篮圈中心A到地面EB的距离为3.05m,篮球架AB可以在直线EB上水平移动.(1)请建立恰当的平面直角坐标系,求该抛物线的解析式;(2)若篮球架离人的水平距离EB为4.5m,问该运动员能否将篮球投入篮圈?若能,说明理由;若不能,算一算将篮球架往哪个方向移动,移动多少距离,该运动员此次所投的篮球才能投入篮圈.。
二次函数的图象与性质大题(五大题型)—2024年中考数学(全国通用)解析版
二次函数的图象与性质大题(五大题型)通用的解题思路:题型一.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c (a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.题型二.二次函数图象与系数的关系二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac <0时,抛物线与x轴没有交点.题型三.待定系数法求二次函数解析式(1)二次函数的解析式有三种常见形式:①一般式:y=ax2+bx+c(a,b,c是常数,a≠0);②顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标;③交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0);(2)用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.题型四.抛物线与x轴的交点求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x 的一元二次方程即可求得交点横坐标.(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.(2)二次函数的交点式:y=a(x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).题型五.二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.题型一.二次函数的性质(共3小题)1.(2024•石景山区校级模拟)在平面直角坐标系xOy 中,1(A x ,1)y ,2(B x ,2)y 是抛物线2(0)y x bx b =−+≠上任意两点,设抛物线的对称轴为直线x h =. (1)若抛物线经过点(2,0),求h 的值;(2)若对于11x h =−,22x h =,都有12y y >,求h 的取值范围;(3)若对于121h x h −+……,221x −−……,存在12y y <,直接写出h 的取值范围. 【分析】(1)根据对称轴2bx a=−进行计算,得2b h =,再把(2,0)代入2(0)y x bx b =−+≠,即可作答.(2)因为1(A x ,1)y ,2(B x ,2)y 是抛物线2(0)y x bx b =−+≠上的点,所以把11x h =−,22x h =分别代入,得出对应的1y ,2y ,再根据12y y >联立式子化简,计算即可作答;(3)根据121h x h −+……,221x −−……,存在12y y <,得出当221h −<−<−或者211h −<+<−,即可作答. 【解答】解:(1)抛物线的对称轴为直线x h =, 22b bh ∴=−=−, 即2b h =,∴抛物线22y x hx =−+,把(2,0)代入22y x hx =−+, 得0422h =−+⨯, 解得1h =;(2)由(1)知抛物线22y x hx =−+,1(A x ,1)y ,2(B x ,2)y 是抛物线22y x hx =−+上任意两点,221(1)2(1)1y h h h h ∴=−−+−=−,22(2)220y h h h =−+⨯=,对于11x h =−,22x h =,都有12y y >, 210h ∴−>,解得1h >或1h <−;(3)1(A x ,1)y ,2(B x ,2)y 是抛物线22y x hx =−+上任意两点,对于121h x h −+……,221x −−……,存在12y y <,且1(2,)h y −关于直线x h =的对称点为1(2,)h y +,1(1,)h y +关于直线x h =的对称点为1(1,)h y −,∴当221h −<−<−时,存在12y y <,解得01h <<,当221h −<+<−时,存在12y y <, 解得43h −<<−,当211h −<+<−时,存在12y y <, 解得32h −<<−,当211h −<−<−时,存在12y y <, 解得10h −<<,综上,满足h 的取值范围为41h −<<且0h ≠.【点评】本题考查了二次函数的图象性质、增减性,熟练掌握二次函数的图象和性质是解决本题的关键. 2.(2024•鹿城区校级一模)已知二次函数223y x tx =−++. (1)若它的图象经过点(1,3),求该函数的对称轴. (2)若04x ……时,y 的最小值为1,求出t 的值.(3)如果(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上,直线2y mx a =+与该二次函数交于1(M x ,1)y ,2(N x ,2)y 两点,则12x x +是否为定值?若是,请求出该定值;若不是,请说明理由.【分析】(1)把(1,3)代入解析式求出12t =,再根据对称轴公式求出对称轴; (2)根据抛物线开口向下,以及0x =时3y =,由函数的性质可知,当4x =时,y 的最小值为1,然后求t 即可;(3)(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上,有对称轴公式得出1m t −=,再令2232x tx mx a −++=+,并转化为一般式,然后由根与系数的关系求出122x x +=−.【解答】解:(1)将(1,3)代入二次函数223y x tx =−++,得3123t =−++, 解得12t =, ∴对称轴直线为21122t x t =−==−⨯; (2)当0x =时,3y =,抛物线开口向下,对称轴为直线x t =, ∴当x t =时,y 有最大值,04x ……时,y 的最小值为1,∴当4x =时,16831y t =−++=,解得74t =; (3)12x x +是定值,理由:(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上, 212m mx t m −+∴===−, 1m t ∴−=,令2232x tx mx a −++=+, 整理得:22()30x m t x a +−+−=,直线2y mx a =+与该二次函数交于1(M x ,1)y ,2(N x ,2)y 两点, 1x ∴,2x 是方程22()30x m t x a +−+−=的两个根,122()2()21m t x x m t −∴+=−=−−=−是定值. 【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,关键是掌握二次函数的性质. 3.(2024•拱墅区一模)在平面直角坐标系中,抛物线2(2)2y ax a x =−++经过点(2,)A t −,(,)B m p . (1)若0t =,①求此抛物线的对称轴;②当p t <时,直接写出m 的取值范围;(2)若0t <,点(,)C n q 在该抛物线上,m n <且5513m n +<−,请比较p ,q 的大小,并说明理由. 【分析】(1)①当0t =时,点A 的坐标为(2,0)−,将其代入函数解析式中解得1a =−,则函数解析式为抛物线的解析式为22y x x =−−+,再根据求对称轴的公式2bx a=−即可求解; ②令0y =,求出抛物线与x 轴交于(2,0)−和(1,0),由题意可得0p <,则点B 在x 轴的下方,以此即可解答; (2)将点A 坐标代入函数解析式,通过0t <可得a 的取值范围,从而可得抛物线开口方向及对称轴,根据点B ,C 到对称轴的距离大小关系求解.【解答】解:(1)①当0t =时,点A 的坐标为(2,0)−,抛物线2(2)2y ax a x =−++经过点(2,0)A −, 42(2)20a a ∴+++=,1a ∴=−,∴抛物线的解析式为22y x x =−−+, ∴抛物线的对称轴为直线112(1)2x −=−=−⨯−;②令0y =,则220x x −−+=, 解得:11x =,22x =−,∴抛物线与x 轴交于(2,0)−和(1,0),点(2,0)A −,(,)B m p ,且0p <, ∴点(,)B m p 在x 轴的下方,2m ∴<−或1m >.(2)p q <,理由如下:将(2,)t −代入2(2)2y ax a x =−++得42(2)266t a a a =+++=+,0t <, 660a ∴+<, 1a ∴<−,∴抛物线开口向下,抛物线对称轴为直线(2)1122a x a a −+=−=+, 1a <−,110a∴−<<, 1111222a ∴−<+<, m n <且5513m n +<−,∴1312102m n +<−<−, ∴点(,)B m p 到对称轴的距离大于点(,)C n q 到对称轴的距离,p q ∴<.【点评】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.题型二.二次函数图象与系数的关系(共8小题)4.(2023•南京)已知二次函数223(y ax ax a =−+为常数,0)a ≠. (1)若0a <,求证:该函数的图象与x 轴有两个公共点. (2)若1a =−,求证:当10x −<<时,0y >.(3)若该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x −<<<,则a 的取值范围是 .【分析】(1)证明240b ac −>即可解决问题. (2)将1a =−代入函数解析式,进行证明即可. (3)对0a >和0a <进行分类讨论即可.【解答】证明:(1)因为22(2)43412a a a a −−⨯⨯=−, 又因为0a <,所以40a <,30a −<, 所以24124(3)0a a a a −=−>,所以该函数的图象与x 轴有两个公共点. (2)将1a =−代入函数解析式得,2223(1)4y x x x =−++=−−+,所以抛物线的对称轴为直线1x =,开口向下. 则当10x −<<时,y 随x 的增大而增大, 又因为当1x =−时,0y =, 所以0y >.(3)因为抛物线的对称轴为直线212ax a−=−=,且过定点(0,3), 又因为该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x −<<<, 所以当0a >时,230a a −+<, 解得3a >, 故3a >.当0a <时,230a a ++<,解得1a <−, 故1a <−.综上所述,3a >或1a <−. 故答案为:3a >或1a <−.【点评】本题考查二次函数的图象和性质,熟知二次函数的图象和性质是解题的关键.5.(2024•南京模拟)在平面直角坐标系xOy 中,点1(1,)y ,2(3,)y 在抛物线222y x mx m =−+上. (1)求抛物线的顶点(,0)m ; (2)若12y y <,求m 的取值范围;(3)若点0(x ,0)y 在抛物线上,若存在010x −<<,使102y y y <<成立,求m 的取值范围. 【分析】(1)利用配方法将已知抛物线解析式转化为顶点式,可直接得到答案; (2)由12y y <,得到221296m m m m −+<−+,解不等式即可; (3)由题意可知012032m m +⎧<⎪⎪⎨+⎪>⎪⎩或112132m m −+⎧<⎪⎪⎨−+⎪>⎪⎩,解不等式组即可.【解答】解:(1)抛物线222()y x mx m x m =−+=−. ∴抛物线的顶点坐标为(,0)m .故答案为:(,0)m ;(2)点1(1,)y ,2(3,)y 在抛物线222y x mx m =−+上,且12y y <, 221296m m m m ∴−+<−+,2m ∴<;(3)点0(x ,0)y 在抛物线上,存在010x −<<,使102y y y <<成立, ∴012032m m +⎧<⎪⎪⎨+⎪>⎪⎩或112132m m −+⎧<⎪⎪⎨−+⎪>⎪⎩,解得302m <<. 【点评】本题考查了二次函数与系数的关系,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.6.(2024•北京一模)在平面直角坐标系中,已知抛物线23y ax bx =++经过点(2,3)a −. (1)求该抛物线的对称轴(用含有a 的代数式表示);(2)点(2,)M t m −,(2,)N t n +,(,)P t p −为该抛物线上的三个点,若存在实数t ,使得m n p >>,求a 的取值范围.【分析】(1)将点(2,3)a −代入抛物线23y ax bx =++中,然后根据二次函数的对称轴公式代入数值,即可得出答案;(2)分类讨论当0a >和0a <,利用数形结合以及二次函数的性质就可以得出a 的取值范围. 【解答】解(1)抛物线23y ax bx =++经过点(2,3)a −, ∴把(2,3)a −代入23y ax bx =++得2(2)233a a ab ⨯−−+=,22b a ∴=,2223y ax a x ∴=++,∴抛物线的对称轴222a x a a=−=−,答:抛物线的对称轴为:x a =−;(2)①当0a >时,抛物线开口方向向上,对称轴0x a =−<,在x 轴的负半轴上,所以越靠近对称轴函数值越小, ∴当0t <时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+,∴此时p m n >>与题干m n p >>相矛盾,故舍去, ∴当0t >时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+,∴此时m n <与题干m n p >>相矛盾,故舍去;②当0a <时,抛物线开口方向向下,对称轴0x a =−>,在x 轴的正半轴上,所以越靠近对称轴函数值越大, ∴当0t >时,点M 、N 分别在对称轴同侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+, .m n p >>,∴此时02a t <−<−,即20t a −<<,2t ∴>,∴当0t >时,点M 、N 分别在对称轴两侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,p m n ∴>>与题干m n p >>相矛盾,故舍去,∴当0t <时,且点M 、N 分别在对称轴两侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,n m ∴>与题干m n p >>相矛盾,故舍去,当0t <时,且点M 、N 分别在对称轴同侧时, (2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,n m ∴>与题干m n p >>相矛盾,故舍去,答:a 的取值范围为20(2)t a t −<<>.7.(2024•张家口一模)某课外小组利用几何画板来研究二次函数的图象,给出二次函数解析式2y x bx c =++,通过输入不同的b ,c 的值,在几何画板的展示区内得到对应的图象.(1)若输入2b =,3c =−,得到如图①所示的图象,求顶点C 的坐标及抛物线与x 轴的交点A ,B 的坐标; (2)已知点(1,10)P −,(4,0)Q .①若输入b ,c 的值后,得到如图②的图象恰好经过P ,Q 两点,求出b ,c 的值;②淇淇输入b ,嘉嘉输入1c =−,若得到二次函数的图象与线段PQ 有公共点,求淇淇输入b 的取值范围.【分析】(1)将2b =,3c =−,代入函数解析式,进行求解即可; (2)①待定系数法进行求解即可;②将1c =−代入解析式,得到抛物线必过点(0,1)−,求出1x =−和4x =的函数值,根据抛物线与线段PQ 有公共点,列出不等式进行求解即可. 【解答】解:(1)2y x bx c =++,解:当2b =,3c =−时,2223(1)4y x x x =+−=+−, ∴顶点C 的坐标为:(1,4)−−;当0y =时,2230x x +−=,即(3)(1)0x x +−=, 解得:13x =−,21x =, (3,0)A ∴−,(1,0)B ;(2)①抛物线恰好经过P ,Q则:1101640b c b c −+=⎧⎨++=⎩,解得:54b c =−⎧⎨=⎩;②当1c =−时,21y x bx =+−, 当0x =时,1y =−, ∴抛物线过(0,1)−,当1x =−时,11y b b =−−=−,当点(1,)b −−在点P 上方,或与点P 重合时,抛物线与线段PQ 有公共点,即:10b −…, 解得:10b −…;当4x =时,1641415y b b =+−=+,当点(4,154)b +在点Q 上方,或与点Q 重合时,抛物线与线段PQ 有公共点,即:1540b +…,154b ≥−; 综上:10b −…或154b ≥−. 【点评】本题考查二次函数的综合应用.正确的求出函数解析式,熟练掌握二次函数的图象和性质是解题的关键.8.(2024•浙江模拟)设二次函数24(y ax ax c a =−+,c 均为常数,0)a ≠,已知函数值y 和自变量x 的部分对应取值如下表所示:(1)判断m ,n 的大小关系,并说明理由; (2)若328m n −=,求p 的值;(3)若在m ,n ,p 这三个数中,只有一个数是负数,求a 的取值范围.【分析】(1)根据所给函数解析式,可得出抛物线的对称轴为直线2x =,据此可解决问题. (2)根据(1)中发现的关系,可求出m 的值,据此即可解决问题. (3)根据m 和n 相等,所以三个数中的负数只能为p ,据此可解决问题. 【解答】解:(1)m n =.因为二次函数的解析式为24y ax c =+, 所以抛物线的对称轴为直线422ax a−=−=, 又因为1522−+=, 所以点(1,)m −与(5,)n 关于抛物线的对称轴对称, 故m n =.(2)因为m n =,328m n −=, 所以8m =.将(0,3)和(1,8)−代入函数解析式得:348c a a c =⎧⎨++=⎩,解得13a c =⎧⎨=⎩所以二次函数的解析式为243y x x =−+.将2x =代入函数解析式得,224231p =−⨯+=−.(3)由(1)知,m n =, 所以m ,n ,p 中只能p 为负数. 将(0,3)代入函数解析式得,3c =, 所以二次函数解析式为243y ax ax =−+. 将1x =−代入函数解析式得,53m a =+. 将2x =代入函数解析式得,43p a =−+.则430530a a −+<⎧⎨+≥⎩,解得34a >,所以a 的取值范围是34a >. 【点评】本题考查二次函数图象与系数的关系及二次函数图象上点的坐标特征,熟知二次函数的图象和性质是解题的关键.9.(2024•北京模拟)在平面直角坐标系xOy 中,抛物线2(26)1y x m x =+−+经过点1(,)m y −,2(,)m y ,3(2,)m y +.(1)若13y y =,求抛物线的对称轴; (2)若231y y y <<,求m 的取值范围. 【分析】(1)利用对称轴意义即可求解;(2m 的不等式组,解不等式组即可.【解答】解:(1)抛物线2(26)1y x m x =+−+经过点1(,)m y −,2(,)m y ,3(2,)m y +,13y y =, ∴该抛物线的对称轴为:直线22m m x −++=,即直线1x =; (2)当0m >时,可知点1(,)m y −,2(,)m y ,3(2,)m y +从左至右分布, 231y y y <<,∴232232m m m m m m ++⎧−<⎪⎪⎨−++⎪−>⎪⎩,解得12m <<; 当0m <时,3m m m ∴<−<−+,21y y ∴>,不合题意,综上,m 的取值范围是12m <<.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.10.(2024•浙江模拟)在平面直角坐标系xOy 中,抛物线2(y ax bx c a =++,b ,c 为常数,且0)a ≠经过(2,4)A −−和(3,1)B 两点.(1)求b 和c 的值(用含a 的代数式表示);(2)若该抛物线开口向下,且经过(23,)C m n −,(72,)D m n −两点,当33k x k −<<+时,y 随x 的增大而减小,求k 的取值范围;(3)已知点(6,5)M −,(2,5)N ,若该抛物线与线段MN 恰有一个公共点时,结合函数图象,求a 的取值范围.【分析】(1)把(2,4)A −−和(3,1)B 代入2y ax bx c =++,即可求解;(2)先求出对称轴为:直线2x =,结合开口方向和增减性列出不等式即可求解; (3)分0a >时,0a <时,结合图象即可求解.【解答】解:(1)把(2,4)A −−和(3,1)B 代入2y ax bx c =++,得:424931a b c a b c −+=−⎧⎨++=⎩,解得:162b a c a =−⎧⎨=−−⎩;(2)抛物线经过(23,)C m n −,2,)m n −两点, ∴抛物线的对称轴为:直线237222m mx −+−==,抛物线开口向下,当33k x k −<<+时,y 随x 的增大而减小,32k ∴−…,即5k …; (3)①当0a >时,6x =−,5y …,即2(6)(1)(6)625a a a ⨯−+−⨯−−−…, 解得:1336a …,抛物线不经过点N ,如图①,抛物线与线段MN 只有一个交点,结合图象可知:1336a …;②当0a <时,若抛物线的顶点在线段MN 上时,则2244(62)(1)544ac b a a a a a−−−−−==,解得:11a =−,2125a =−, 当11a =−时,111112222(1)a −=−=⨯−, 此时,定点横坐标满足116222a−−……,符合题意; 当11a =−时,如图②,抛物线与线段MN 只有一个交点,如图③,当2125a =−时,11111312222()25a −=−=⨯−,此时顶点横坐标不满足116222a−−……,不符合题意,舍去; 若抛物线与线段MN 有两个交点,且其中一个交点恰好为点N 时,把(2,5)N 代入2(1)62y ax a x a =+−−−,得:252(1)262a a a =⨯+−⨯−−, 解得:54a =−,当54a =−时,如图④,抛物线和线段MN 有两个交点,且其中一个交点恰好为点N ,结合图象可知:54a <−时,抛物线与线段MN 有一个交点,综上所述:a 的取值范围为:1336a …或1a =−或54a <−.【点评】本题考查二次函数的性质和图象,根据题意画出图象,分类讨论是解题的关键.11.(2024•海淀区校级模拟)在平面直角坐标系xOy 中,点(0,3),1(6,)y 在抛物线2(0)y ax bx c a =++≠上. (1)当13y =时,求抛物线的对称轴;(2)若抛物线2(0)y ax bx c a =++≠经过点(1,1)−−,当自变量x 的值满足12x −……时,y 随x 的增大而增大,求a 的取值范围;(3)当0a >时,点2(4,)m y −,2(,)m y 在抛物线2y ax bx c =++上.若21y y c <<,请直接写出m 的取值范围.【分析】(1)当13y =时,(0,3),(6,3)为抛物线上的对称点,根据对称性求出对称轴;(2)把(0,3),(1,1)−−代入抛物线解析式得出a ,b 的关系,然后求出对称轴,再分0a >和0a <,由函数的增减性求出a 的取值范围;(3)先画出函数图象,再根据21y y c <<确定m 的取值范围. 【解答】解:(1)当13y =时,(0,3),(6,3)为抛物线上的对称点, 0632x +∴==, ∴抛物线的对称轴为直线3x =;(2)2(0)y ax bx c a =++≠过(0,3),(1,1)−−,3c ∴=,31a b −+=−, 4b a =+,∴对称轴为直线422b a x a a+=−=−,①当0a >时,12x −……时,y 随x 的增大而增大,∴412a a+−−…, 解得4a …,04a ∴<…;②当0a <时,12x −……时,y 随x 的增大而增大,∴422a a+−…, 解得45a −…, ∴405a −<…,综上:a 的取值范围是405a −<… 或04a <…;(3)点(0,3)在抛物线2y ax bx c =++上,3c ∴=,点2(4,)m y −,2(,)m y 在抛物线2y ax bx c =++上, ∴对称轴为直线422m mx m −+==−, ①如图所示:21y y c <<,6m ∴<且06232m +−>=, 56m ∴<<;②如图所示:21y y c <<,46m ∴−>, 10m ∴>,综上所述,m 的取值范围为56m <<或10m >.【点评】本题考查二次函数图象与系数的关系以及二次函数图象上点的坐标特征,关键是利用数形结合和分类讨论的思想进行解答.题型三.待定系数法求二次函数解析式(共3小题)12.(2024•保山一模)如图,抛物线2y ax bx c =++过(2,0)A −,(3,0)B ,(0,6)C 三点;点P 是第一象限内抛物线上的动点,点P 的横坐标是m ,且132m <<. (1)试求抛物线的表达式;(2)过点P 作PN x ⊥轴并交BC 于点N ,作PM y ⊥轴并交抛物线的对称轴于点M ,若12PM PN =,求m 的值.【分析】(1)将A ,B ,C 三点坐标代入函数解析式即可解决问题. (2)用m 表示出PM 和PN ,建立关于m 的方程即可解决问题. 【解答】解:(1)由题知,将A ,B ,C 三点坐标代入函数解析式得,4209306a b c a b c c −+=⎧⎪++=⎨⎪=⎩,解得116a b c =−⎧⎪=⎨⎪=⎩,所以抛物线的表达式为26y x x =−++.(2)将x m =代入抛物线得表达式得,26y m m =−++, 所以点P 的坐标为2(,6)m m m −++. 令直线BC 的函数解析式为y px q =+,则306p q q +=⎧⎨=⎩,解得26p q =−⎧⎨=⎩,所以直线BC 的函数解析式为26y x =−+. 因为132m <<,且抛物线的对称轴为直线12x =,所以12PM m =−. 又因为点N 坐标为(,26)m m −+,所以226(26)3PN m m m m m =−++−−+=−+. 因为12PM PN =, 所以211(3)22m m m −=−+,解得m =, 又因为132m <<,所以m =. 【点评】本题考查待定系数法求二次函数解析式及二次函数的图象和性质,熟知待定系数法及二次函数的图象和性质是解题的关键.13.(2024•东营区校级一模)如图,在平面直角坐标系xOy 中,直线28y x =−+与抛物线2y x bx c =−++交于A ,B 两点,点B 在x 轴上,点A 在y 轴上. (1)求抛物线的函数表达式;(2)点C 是直线AB 上方抛物线上一点,过点C 分别作x 轴,y 轴的平行线,交直线AB 于点D ,E .当38DE AB =时,求点C 的坐标.【分析】(1)根据一次函数解析式求出A ,B 两点坐标,再将A ,B 两点坐标代入二次函数解析式即可解决问题.(2)根据AOB ECD ∆∆∽得到CD 与OB 的关系,建立方程即可解决问题. 【解答】解:(1)令0x =得,8y =, 所以点A 的坐标为(0,8); 令0y =得,4x =, 所以点B 的坐标为(4,0);将A ,B 两点坐标代入二次函数解析式得,81640c b c =⎧⎨−++=⎩,解得28b c =⎧⎨=⎩,所以抛物线的函数表达式为228y x x =−++. (2)因为//CD x 轴,//CE y 轴, 所以AOB ECD ∆∆∽, 则CD DEOB AB=. 因为38DE AB =,4OB =, 所以32CD =. 令点C 坐标为2(,28)m m m −++, 则点D 坐标为21(2m m −,228)m m −++所以2211()222CD m m m m m =−−=−+,则213222m m −+=,解得1m =或3.当1m =时,2289m m −++=; 当3m =时,2285m m −++=; 所以点C 的坐标为(1,9)或(3,5).【点评】本题考查待定系数法求二次函数解析式及二次函数图象上点的坐标特征,熟知待定系数法及二次函数的图象和性质是解题的关键.14.(2024•南关区校级二模)已知二次函数2y x bx c =++的图象经过点(0,3)A −,(3,0)B .点P 在抛物线2y x bx c =++上,其横坐标为m .(1)求抛物线的解析式;(2)当23x −<<时,求y 的取值范围;(3)当抛物线2y x bx c =++上P 、A 两点之间部分的最大值与最小值的差为34时,求m 的值; (4)点M 在抛物线2y x bx c =++上,其横坐标为1m −.过点P 作PQ y ⊥轴于点Q ,过点M 作MN x ⊥轴于点N ,分别连结PM ,PN ,QM ,当PQM ∆与PNM ∆的面积相等时,直接写出m 的值. 【分析】(1)依据题意,将A 、B 两点代入解析式求出b ,c 即可得解;(2)依据题意,结合(1)所求解析式,再配方可得抛物线的最值,进而由23x −<<可以判断得解; (3)依据题意,分类讨论计算可以得解;(4)分别写出P 、Q 、M 、N 的坐标,PQM ∆与PNM ∆的面积相等,所以Q 到PM 的距离等于N 到PM 的距离,可得m 的值.【解答】解:(1)由题意,将(0,3)A −,(3,0)B 代入解析式2y x bx c =++得,3c =−,930b c ++=,2b ∴=−,3c =−,∴抛物线的解析式为223y x x =−−;(2)由题意,抛物线2223(1)4y x x x =−−=−−,∴抛物线223y x x =−−开口向上,当1x =时,y 有最小值为4−,当2x =−时,5y =;当3x =时,0y =, ∴当23x −<<时,45y −<…;(3)由题意得,2(,23)P m m m −−,(0,3)A −,①当0m <时,P 、A 两点之间部分的最大值为223m m −−,最小值为3−, 2323(3)4m m ∴−−−−=,解得:1m =−②当02m ……时,P 、A 两点之间部分的最大值为3−,最小值为223m m −−或4−, 显然最小值是4−时不合题意, ∴最小值为223m m −−, 233(23)4m m ∴−−−−=, 解得:32m =或12m =, 32m =时,P 、A 两点之间部分的最小值为4−,故舍去, ③当2m <时,P 、A 两点之间部分的最大值为223m m −−,最小值为4−, 2323(4)4m m ∴−−−−=,解得:1m =+,12+<,故舍去,综上,满足题意得m 的值为:1或12; (4)由题意得,2(1,4)M m m −−,(1,0)N m −,2(0,23)Q m m −−, 设PM y kx b =+,代入P 、M 两点, 2223(1)4mk b m m m k b m ⎧+=−−⎨−+=−⎩, 解得:1k =−,23b m m =−−,23PM y x m m =−+−−,PQM ∆与PNM ∆的面积相等,Q ∴到23PM y x m m =−+−−的距离与N 到23PM y x m m =−+−−的距离相等,Q 到23PM y x m m =−+−−的距离=,N 到23PMy x m m =−+−−的距离=, 2|||4|m m ∴−=−+,当2m <−时,24m m −=−,解得:m =,当20m −……时,24m m −=−,解得:m =,当02m <…时,24m m =−,解得:m =当2m <时,24m m =−,解得:m =综上,满足题意得m . 【点评】本题考查了二次函数,关键是注意分类讨论. 题型四.抛物线与x 轴的交点(共14小题)15.(2024•秦淮区校级模拟)已知函数2(2)2(y mx m x m =−−−为常数). (1)求证:不论m 为何值,该函数的图象与x 轴总有公共点.(2)不论m . (3)在22x −……的范围中,y 的最大值是2,直接写出m 的值. 【分析】(1)分两种情况讨论,利用判别式证明即可;(2)当1x =时,0y =,当0x =时,2y =−,即可得到定点坐标;(3)利用抛物线过两个定点,得到函数y 随x 增大而增大,代入解析式求出m 值即可. 【解答】解:(1)①当0m =时,函数解析式为22y x =−,此一次函数与x 轴有交点; ②当0m ≠时,函数解析式为2(2)2y mx m x =−−−,令0y =,则有2(2)20mx m x −−−=,△2222(2)4(2)44844(2)0m m m m m m m m =−−⨯−=−++=++=+…. ∴不论m 为何值,该函数的图象与x 轴总有公共点.(2)222(2)222()22y mx m x mx mx x m x x x =−−−=−+−=−+−, 当1x =时,0y =, 当0x =时,2y =−,∴不论m 为何值,该函数的图象经过的定点坐标是(1,0).(0,2)−故答案为:(1,0),(0,2)−,(3)若0m =,函数22y x =−,y 随x 增大而增大,当2x =时,2y =,与题干条件符; 当0m ≠时,函数2(2)2y mx m x =−−−是二次函数,①当0m >时,抛物线过(1,0),(0,2)−两点,当22x −……的范围中时,y 随x 的增大而增大, ∴当2x =时,2y =,即242(2)2m m =−−−,解得0m =(舍去).②当0m <时,抛物线过(1,0),(0,2)−两点,其增减性依旧是y 随x 的增大而增大和①相同.综上分析,0m =.【点评】本题考查了二次函数的图象与性质,熟练掌握二次函数的性质是解答本题的关键.16.(2024•柳州模拟)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,B 点的坐标为(3,0),与y 轴交于点(0,3)C −,点D 为抛物线的顶点. (1)求这个二次函数的解析式; (2)求ABD ∆的面积【分析】(1)利用待定系数法求解即可; (2)先求出点A 和点D 坐标,再根据||2D ABD AB y S ∆⋅=解析求解即可.【解答】解:(1)将(3,0)B ,(0,3)C −代入2y x bx c =++得0933b c c =++⎧⎨=−⎩,解得23b c =−⎧⎨=−⎩,∴二次函数的解析式为:223y x x =−−;(2)将223y x x =−−配方得顶点式2(1)4y x =−−, ∴顶点(1,4)D −,在223y x x =−−中,当2230y x x =−−=时, 解得1x =−或3x =, (1,0)A ∴−,4AB ∴=, ∴||44822D ABD AB y S ∆⋅⨯===. 【点评】本题主要考查了抛物线与x 轴的交点,二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数解析式,熟练掌握二次函数的性质是解答本题的关键.17.(2024•安阳模拟)如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与抛物线21y x x =−+−的形状相同,且与x 轴交于点(1,0)−和(4,0).直线2y kx =+分别与x 轴、y 轴交于点A ,B ,交抛物线2y ax bx c =++于点C ,D (点C 在点D 的左侧). (1)求抛物线的解析式;(2)点P 是直线2y kx =+上方抛物线上的任意一点,当2k =时,求PCD ∆面积的最大值; (3)若抛物线2y ax bx c =++与线段AB 有公共点,结合函数图象请直接写出k 的取值范围.【分析】(1)根据题意直接求出二次函数解析式即可;(2)求出直线与抛物线的交点C ,D 坐标,过点P 作y 轴的平行线交CD 于点H ,交x 轴于点G ,设点P坐标为(m ,234)(12)m m m −++−<<,则点(,22)H m m +,求出PH ,由三角形的面积公式求出关于m 的函数解析式,再根据函数的性质求最值; (3)分0k >和0k <两种情况讨论即可.【解答】解:(1)抛物线2y ax bx c =++与抛物线21y x x =−+−的形状相同,1a ∴=−,抛物线2y ax bx c =++与x 轴交于点(1,0)−和(4,0), ∴抛物线的解析式为2(1)(4)34y x x x x =−+−=−++;(2)当2k =时,联立方程组22234y x y x x =+⎧⎨=−++⎩,解得10x y =−⎧⎨=⎩或26x y =⎧⎨=⎩, (1,0)C ∴−,(2,6)D ,过点P 作y 轴的平行线交CD 于点H ,交x 轴于点G ,如图,设点P 坐标为(m ,234)(12)m m m −++−<<, ∴点(,22)H m m +,2234(22)2PH m m m m m ∴=−++−+=−++,221331273(2)()22228PCD S PH m m m ∆∴=⨯=−++=−−+, 302−<,12m −<<, ∴当12m =时,S 有最大值,最大值为278. PCD ∴∆面积的最大值为278; (3)令0x =,则2y =, ∴点B 坐标为(0,2),令0y =,则20kx +=, 解得2x k=−,∴点A 坐标为2(k−,0), 若抛物线2y ax bx c =++与线段AB 有公共点, 当0k >时,如图所示,则21k−<−, 解得02k <<; 当0k <时,如图所示:则24k−>, 解得102k −<<;综上所述,k 的取值范围为02k <<或102k −<<.【点评】本题考查抛物线与x 轴的交点,待定系数法求函数解析式,二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,二次函数的最值等知识,关键是对这些知识的掌握和运用.18.(2024•西湖区校级模拟)已知21()y ax a b x b =+++和22()(y bx a b x a a b =+++≠且0)ab ≠是同一直角坐标系中的两条抛物线.(1)当1a =,3b =−时,求抛物线21()y ax a b x b =+++的顶点坐标; (2)判断这两条抛物线与x 轴的交点的总个数,并说明理由;(3)如果对于抛物线21()y ax a b x b =+++上的任意一点(,)P m n 均有22n a b +….当20y …时,求自变量x 的取值范围.【分析】(1)把a ,b 的值代入配方找顶点即可解题;(2)分别令10y =,20y =,解方程求出方程的解,然后根据条件确定交点的个数即可解题;(3)现根据题意得到0a <,且24()224ab a b a b a−+=+,然后得到30b a =−>,借助图象求出不等式的解集即可.【解答】解:(1)当1a =,3b =−时,2221()23(1)4y ax a b x b x x x =+++=−−=−−, ∴顶点坐标为(1,4)−;(2)3个,理由为:令10y =,则2()0ax a b x b +++=, 即()(1)0ax b x ++=, 解得:1bx a=−,21x =−, 令20y =,则2()0bx a b x a +++=, 即()(1)0bx a x ++=, 解得:1ax b=−,21x =−, 又a b ≠且0ab ≠,∴两条抛物线与x 轴的交点总个数为3个;(3)抛物线21()y ax a b x b =+++上的任意一点(,)P m n 均有22n a b +…,0a ∴<,且24()224ab a b a b a−+=+,整理得:30b a =−>,∴22()y bx a b x a =+++的开口向上,且抛物线与x 轴交点的横坐标为113x =,21x =−, 如图所示,借助图象可知当13x …或1x −…时,20y ….【点评】本题考查二次函数的图象和性质,掌握配方法求顶点坐标,二次函数和一元二次方程的关系是解题的关键.19.(2024•三元区一模)抛物线23y ax bx =++与x 轴相交于点(1,0)A ,(3,0)B ,与y 轴正半轴相交于点C . (1)求抛物线的解析式;(2)点1(M x ,1)y ,2(N x ,2)y 是抛物线上不同的两点. ①当1x ,2x 满足什么数量关系时,12y y =; ②若12122()x x x x +=−,求12y y −的最小值. 【分析】(1)用待定系数法即可求解;(2)①若12y y =,则M 、N 关于抛物线对称轴对称,即可求解;②22121122121212(43)(43)()()4()y y x x x x x x x x x x −=−+−−+=+−+−,而12122()x x x x +=−,得到12y y −的函数表达式,进而求解.【解答】解:(1)设抛物线的表达式为:12()()y a x x x x =−−, 即2(1)(3)(43)y a x x a x x =−−=−+, 即33a =, 解得:1a =,故抛物线的表达式为:243y x x =−+;(2)如图,。
二次函数常考题型测试题及答案
二次函数一、选择题:1. 抛物线3)2(2+-=x y 的对称轴是( )A. 直线3-=xB. 直线3=xC. 直线=xD. 直线2. 二次函数c bx ax y ++=2的图象如右图,则点),(acb M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0<a ,0>+-c b a ,则一定有( ) A. 042>-ac bB. 042=-ac bC. 042<-ac bD. ac b 42-≤04. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( )A. 3=b ,7=cB. 9-=b ,15-=cC. 3=b ,3=cD. 9-=b ,21=c5. 已知反比例函数xky =的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( )x6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )B D7.抛物线322+-=xxy的对称轴是直线()A. 2-=x B. 2=x C. 1-=x D. 1=x8.二次函数2)1(2+-=xy的最小值是()A. 2-B. 2C. 1-D. 19.二次函数cbxaxy++=2的图象如图所示,若cbaM++=24cbaN+-=,baP-=4,则(A. 0>M,0>N,0>PB. 0<M,0>N,0>PC. 0>M,0<N,0>PD. 0<M,0>N,0<P二、填空题:10.将二次函数322+-=xxy配方成khxy+-=2)(的形式,则y=______________________.11.已知抛物线cbxaxy++=2与x轴有两个交点,那么一元二次方程02=++cbxax的根的情况是______________________.12.已知抛物线cxaxy++=2与x轴交点的横坐标为1-,则ca+=_________.13.请你写出函数2)1(+=xy与12+=xy具有的一个共同性质:_______________.14.有一个二次函数的图象,三位同学分别说出它的一些特点:甲:对称轴是直线4=x;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:15.已知二次函数的图象开口向上,且与y轴的正半轴相交,请你写出一个满足条件的二次函23 数的解析式:_____________________.16. 如图,抛物线的对称轴是1=x ,与x 轴交于A 、B 两点,若B 点坐标是)0,3(,则A 点的坐标是________________.三、解答题:1. 已知函数12-+=bx x y 的图象经过点(3,2).(1)求这个函数的解析式;(2)当0>x 时,求使y ≥2的x 的取值范围.2. 如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B .(1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△P AB 是以AB 为腰的等腰三角形,试求点P 的坐标.3. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t 之间的关系).(1)由已知图象上的三点坐标,求累积利润s(万元)与销Array售时间t(月)之间的函数关系式;(2)求截止到几月累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?45 提高题1. 如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m.(1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km (桥长忽略不计). 货车正以每小时40km 的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行). 试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?2. 某机械租赁公司有同一型号的机械设备40套. 经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出. 在此基础上,当每套设备的月租金提高10元时,这种设备就少租出一套,且未租出的一套设备每月需要支出费用(维护费、管理费等)20元,设每套设备的月租金为x (元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y (元).(1)用含x 的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用; (2)求y 与x 之间的二次函数关系式; (3)当月租金分别为4300元和350元时,租赁公司的月收益分别是多少元?此时应该租出多少套机械设备?请你简要说明理由;(4)请把(2)中所求的二次函数配方成ab ac a b x y 44)2(22-++=的形式,并据此说明:当x 为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?6 参考答案一、选择题:二、填空题: 1. 2)1(2+-=x y2. 有两个不相等的实数根3. 14. (1)图象都是抛物线;(2)开口向上;(3)都有最低点(或最小值)5. 358512+-=x x y 或358512-+-=x x y 或178712+-=x x y 或178712-+-=x x y 6. 122++-=x x y 等(只须0<a ,0>c ) 7. )0,32(-8. 3=x ,51<<x ,1,4 三、解答题:1. 解:(1)∵函数12-+=bx x y 的图象经过点(3,2),∴2139=-+b . 解得2-=b . ∴函数解析式为122--=x x y .(2)当3=x 时,2=y . 根据图象知当x ≥3时,y ≥2.∴当0>x 时,使y ≥2的x 的取值范围是x ≥3.2. 解:(1)由题意得051=++-n . ∴4-=n . ∴抛物线的解析式为452-+-=x x y .(2)∵点A 的坐标为(1,0),点B 的坐标为)4,0(-. ∴OA =1,OB =4. 在Rt △OAB 中,1722=+=OB OA AB ,且点P 在y 轴正半轴上.①当PB =P A 时,17=PB . ∴417-=-=OB PB OP .7 此时点P 的坐标为)417,0(-.②当P A =AB 时,OP =OB =4 此时点P 的坐标为(0,4).3. 解:(1)设s 与t 的函数关系式为c bt at s ++=2,由题意得⎪⎩⎪⎨⎧=++-=++-=++;5.2525,224,5.1c b a c b a c b a 或⎪⎩⎪⎨⎧=-=++-=++.0,224,5.1c c b a c b a 解得⎪⎪⎩⎪⎪⎨⎧=-==.0,2,21c b a ∴t t s 2212-=.(2)把s =30代入t t s 2212-=,得.221302t t -= 解得101=t ,62-=t (舍去) 答:截止到10月末公司累积利润可达到30万元. (3)把7=t 代入,得.5.10727212=⨯-⨯=s 把8=t 代入,得.16828212=⨯-⨯=s 5.55.1016=-. 答:第8个月获利润5.5万元.4. 解:(1)由于顶点在y 轴上,所以设这部分抛物线为图象的函数的解析式为1092+=ax y . 因为点)0,25(-A 或)0,25(B 在抛物线上,所以109)25(·02+-=a ,得12518-=a . 因此所求函数解析式为109125182+-=x y (25-≤x ≤25).(2)因为点D 、E 的纵坐标为209,所以10912518209+-=,得245±=x .所以点D 的坐标为)209,245(-,点E 的坐标为)209,245(.所以225)245(245=--=DE .因此卢浦大桥拱内实际桥长为385227501.01100225≈=⨯⨯(米).5. 解:(1)∵AB =3,21x x <,∴312=-x x . 由根与系数的关系有121=+x x .∴11-=x ,22=x .8 ∴OA =1,OB =2,2·21-==amx x . ∵1tan tan =∠=∠ABC BAC ,∴1==OBOCOA OC . ∴OC =2. ∴2-=m ,1=a .∴此二次函数的解析式为22--=x x y .(2)在第一象限,抛物线上存在一点P ,使S △P AC =6.解法一:过点P 作直线MN ∥AC ,交x 轴于点M ,交y 轴于N ,连结P A 、PC 、MC 、NA . ∵MN ∥AC ,∴S △MAC =S △NAC = S △P AC =6. 由(1)有OA =1,OC =2. ∴6121221=⨯⨯=⨯⨯CN AM . ∴AM =6,CN =12. ∴M (5,0),N (0,10).∴直线MN 的解析式为102+-=x y .由⎩⎨⎧--=+-=,2,1022x x y x y 得⎩⎨⎧==;4311y x ⎩⎨⎧=-=18,422y x (舍去) ∴在 第一象限,抛物线上存在点)4,3(P ,使S △P AC =6. 解法二:设AP 与y 轴交于点),0(m D (m >0) ∴直线AP 的解析式为m mx y +=.⎩⎨⎧+=--=.,22m mx y x x y ∴02)1(2=--+-m x m x . ∴1+=+m x x P A ,∴2+=m x P .9 又S △P AC = S △ADC + S △PDC =P x CD AO CD ·21·21+=)(21P x AO CD +. ∴6)21)(2(21=+++m m ,0652=-+m m ∴6=m (舍去)或1=m .∴在 第一象限,抛物线上存在点)4,3(P ,使S △P AC =6.提高题1. 解:(1)∵抛物线c bx x y ++=2与x 轴只有一个交点,∴方程02=++c bx x 有两个相等的实数根,即042=-c b . ① 又点A 的坐标为(2,0),∴024=++c b . ② 由①②得4-=b ,4=a .(2)由(1)得抛物线的解析式为442+-=x x y . 当0=x 时,4=y . ∴点B 的坐标为(0,4). 在Rt △OAB 中,OA =2,OB =4,得5222=+=OB OA AB .∴△OAB 的周长为5265241+=++.2. 解:(1)76)34()10710710(1022++-=--⨯++-⨯=x x x x x S .当3)1(26=-⨯-=x 时,16)1(467)1(42=-⨯-⨯-⨯=最大S . ∴当广告费是3万元时,公司获得的最大年利润是16万元.(2)用于投资的资金是13316=-万元.经分析,有两种投资方式符合要求,一种是取A 、B 、E 各一股,投入资金为13625=++(万元),收益为0.55+0.4+0.9=1.85(万元)>1.6(万元);另一种是取B 、D 、E 各一股,投入资金为2+4+6=12(万元)<13(万元),收益为0.4+0.5+0.9=1.8(万元)>1.6(万元).3. 解:(1)设抛物线的解析式为2ax y =,桥拱最高点到水面CD 的距离为h 米,则),5(h D -,)3,10(--h B .10 ∴⎩⎨⎧--=-=.3100,25h a h a 解得⎪⎩⎪⎨⎧=-=.1,251h a∴抛物线的解析式为2251x y -=.(2)水位由CD 处涨到点O 的时间为1÷0.25=4(小时), 货车按原来速度行驶的路程为40×1+40×4=200<280, ∴货车按原来速度行驶不能安全通过此桥. 设货车的速度提高到x 千米/时, 当2801404=⨯+x 时,60=x .∴要使货车安全通过此桥,货车的速度应超过60千米/时. 4. 解:(1)未出租的设备为10270-x 套,所有未出租设备的支出为)5402(-x 元. (2)54065101)5402()1027040(2++-=----=x x x x x y . ∴540651012++-=x x y .(说明:此处不要写出x 的取值范围) (3)当月租金为300元时,租赁公司的月收益为11040元,此时出租的设备为37套;当月租金为350元时,租赁公司的月收益为11040元,此时出租的设备为32套.因为出租37套和32套设备获得同样的收益,如果考虑减少设备的磨损,应选择出租32套;如果考虑市场占有率,应选择出租37套.(4)5.11102)325(1015406510122+--=++-=x x x y . ∴当325=x 时,y 有最大值11102.5. 但是,当月租金为325元时,租出设备套数为34.5,而34.5不是整数,故租出设备应为34套或35套. 即当月租金为为330元(租出34套)或月租金为320元(租出35套)时,租赁公司的月收益最大,最大月收益均为11100元.。
二次函数的实际应用六大压轴题型归纳总结(含答案)
二次函数的实际应用六大压轴题型归纳总结【题型1 利用二次函数解决几何图形问题】【例1】(2020春•萧山区月考)如图窗户边框的上部分是由4个全等扇形组成的半圆,下部分是矩形,现在制作一个窗户边框的材料总长度为6米.(π取3)(1)若设扇形半径为x,请用含x的代数式表示出AB.并求出x的取值范围.(2)当x为何值时,窗户透光面积最大,最大面积为多少?(窗框厚度不予考虑)【解题思路】(1)根据2AB+7半径+弧长=6列出代数式即可;(2)设面积为S,列出关于x的二次函数求得最大值即可.【解答过程】解:(1)根据题意得:2AB+7x+πx=2AB+10x=6,整理得:AB=3﹣5x;根据3﹣5x>0,所以x的取值范围是:0<x<3 5;(2)设面积为S,则S=2x(3﹣5x)+32x2=−172x2+6x=−172(x−617)2+1817,当x=617时,S最大=1817.【变式1-1】(2020•安徽模拟)如图,某住宅小区有一块矩形场地ABCD,AB=16m,BC=12m,开发商准备对这块地进行绿化,分别设计了①②③④⑤五块地,其中①③两块形状大小相同的正方形地用来种花,②④两块形状大小相同的矩形地用来种植草坪,⑤为矩形地用来养殖观赏鱼.(1)设矩形观赏鱼用地LJHF的面积为ym2,AG长为xm,求y与x之间的函数关系式;(2)求矩形观赏鱼用地LJHF面积的最大值.【解题思路】(1)根据矩形的性质得到CD=AB=16,AD=BC=12,根据正方形AEFG和正方形JKCI 形状大小相同,矩形GHID和矩形EBKL形状大小相同,得到DG=12﹣x,FL=x﹣(12﹣x)=2x﹣12,BE=16﹣x,LI=(16﹣x)﹣x=16﹣2x,根据矩形的面积公式即可得到结论;(2)根据二次函数的性质即可得到结论.【解答过程】解:(1)在矩形ABCD中,CD=AB=16,AD=BC=12,∵正方形AEFG和正方形JKCI形状大小相同,矩形GHID和矩形EBKL形状形状大小相同,AG=x,∴DG=12﹣x,FL=x﹣(12﹣x)=2x﹣12,BE=16﹣x,LI=(16﹣x)﹣x=16﹣2x,∵S矩形LJHF=FL•LJ,∴y=(2x﹣12)(16﹣2x)=﹣4x2+56x﹣192;(2)由(1)得,y=﹣4x2+56x﹣192=﹣4(x﹣7)2+4,∵FL=2x﹣12>0,LJ=16﹣2x>0,∴6<x<8,∵a=﹣4<0,∴当x=7时,y的最大值=4;故矩形观赏鱼用地LJHF面积的最大值为4m2.【变式1-2】(2020•富顺县三模)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为Sm2.(1)若花园的面积为192m2,求x的值;(2)写出花园面积S与x的函数关系式.x为何值时,花园面积S有最大值?最大值为多少?(3)若在P处有一棵树与墙CD,AD的距离分别是a(14≤a≤22)和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),设花园面积S的最大值为y,直接写出y与a的关系式.【解题思路】(1)根据题意得出长×宽=192,进而得出答案;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,再利用二次函数增减性求得最值;(3)根据题意确定x的取值范围,利用二次函数增减性计算即可.【解答过程】解:(1)依题意得S=x(28﹣x),当S=192时,有S=x(28﹣x)=192,即x2﹣28x+192=0,解得:x1=12,x2=16,答:花园的面积为192m2,x的值为12m或16m;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,答:x为14m时,花园面积S有最大值,最大值为196m2;(3)依题意得:{28−x≥ax≥6,解得:6≤x≤28﹣a,S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵a=﹣1<0,当x≤14,y随x的增大而增大,又6≤x≤28﹣a,∴当x=28﹣a时,函数有最大值,是y=﹣(28﹣a﹣14)2+196=﹣(14﹣a)2+196.【变式1-3】(2020•温州模拟)某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案: 方案甲中AD 的长不超过墙长;方案乙中AD 的长大于墙长. (1)若a =6.①按图甲的方案,要围成面积为25平方米的花圃,则AD 的长是多少米? ②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a <6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.【解题思路】(1)①设AB 的长是x 米,根据矩形的面积公式列出方程; ②列出面积关于x 的函数关系式,再根据函数的性质解答;(2)设AB =x ,能围成的矩形花圃的面积为S ,根据题意列出S 关于x 的函数关系,再通过求最值方法解答.【解答过程】解:(1)①设AB 的长是x 米,则AD =20﹣3x , 根据题意得,x (20﹣3x )=25, 解得:x 1=5,x 2=53, 当x =53时,AD =15>6, ∴x =5, ∴AD =5,答:AD 的长是5米;②设BC 的长是x 米,矩形花圃的最大面积是y 平方米,则AB =13[20﹣x ﹣(x ﹣6)]=263−23x , 根据题意得,y =x (263−23x )=−23x 2+263x =−23(x −132)2+1696(x >6), ∴当x =132时,y 有最大值为1696.答:按图乙的方案,能围成的矩形花圃的最大面积是1696平方米;(2)设BC =x ,能围成的矩形花圃的面积为S ,按图甲的方案,S =x ×20−x 3=−13x 2+203x =−13(x −10)2+1003, ∴在x =a <10时,S 的值随x 的增大而增大,∴当x =a 的最大值n 时,S 的值最大,为S =−13(n −10)2+1003;按图乙方案,S =13[20﹣x ﹣(x ﹣a )]x =−23(x −a+204)2+(a+20)224,∴当x =a+204时,S 的值最大为S =(a+20)224,此时a 取最大值n 时,S 的值最大为S =(n+20)224; ∵(n+20)224−[−13(n ﹣10)2+1003]=9n 2−120n+40024>0, ∴(n+20)224>−13(n −10)2+1003,故第二种方案能围成面积最大的矩形花圃.【题型2 利用二次函数解决销售利润问题】【例2】2020年1月,全国爆发新型冠状病毒肺炎,2月某工厂购进某防护材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价但不高于成本价2倍,经试销,销售量y (千克)与销售单价x (元)的关系如图所示.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少元时,当天该工厂日利润最大,最大日利润为多少元?【解题思路】(1)直接利用待定系数法求出一次函数关系式;(2)利用销量×每件利润=总利润,进而结合二次函数增减性得出答案. 【解答过程】解:(1)设y 与x 的函数关系式为:y =kx +b (k ≠0),根据图象可得方程组{30k +b =14050k +b =100,解得:{k =−2b =200,∴y 与x 的函数关系式为:y =﹣2x +200,x 的取值范围是:30≤x ≤60; (2)设日利润为w ,则可以列出函数关系式为: w =(﹣2x +200)(x ﹣30)﹣450 =﹣2x 2+260x ﹣6450, 当x =−b2a=65, 又∵30≤x ≤60,∴当x =60时,w 取得最大值,w =1950,答:当销售单价为60元时,当天该工厂日利润最大,最大日利润为1950元.【变式2-1】某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表: 销售单价x (元) 85 95 105 115 日销售量y (个) 175 125 75 m 日销售利润w (元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值; (2)根据以上信息,填空:该产品的成本单价是 元,当销售单价x = 元时,日销售利润w 最大,最大值是 元; (3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【解题思路】(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式; (2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值; (3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本. 【解答过程】解;(1)设y 关于x 的函数解析式为y =kx +b , {85k +b =17595k +b =125,得{k =−5b =600,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【变式2-2】(2020•安徽二模)某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?【解题思路】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(2)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x之间的函数关系式,再利用配方法求函数最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【解答过程】解:(1)图①可得函数经过点(100,1000),设抛物线的解析式为y=ax2(a≠0),将点(100,1000)代入得:1000=10000a,解得:a=1 10,故y与x之间的关系式为y=110x2.图②可得:函数经过点(0,30)、(100,20),设z=kx+b,则{100k+b=20 b=30,解得:{k=−110 b=30,故z与x之间的关系式为z=−110x+30;(2)W=zx﹣y=−110x2+30x−110x2=−15x2+30x=−15(x2﹣150x)=−15(x﹣75)2+1125,∵−15<0,∴当x=75时,W有最大值1125,∴年产量为75万件时毛利润最大,最大毛利润为1125万元;(3)令y=360,得110x2=360,解得:x=±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W=−15(x﹣75)2+1125的性质可知,当0<x≤60时,W随x的增大而增大,故当x=60时,W有最大值1080,答:今年最多可获得毛利润1080万元.【变式2-3】(2020•邢台二模)一家经营打印耗材的门店经销各种打印耗材,其中某一品牌硒鼓的进价为a 元/个,售价为x元/个(a≤x≤48).下面是门店在销售一段时间后销售情况的反馈:①若每个硒鼓按定价30元的8折出售,可获20%的利润;②如果硒鼓按30元/个的价格出售,每月可售出500个,在此基础上,售价每增加5元,月销售量就减少50个.(1)求a的值,并写出该品牌硒鼓每月的销售量y(个)与售价x(元/个)之间的函数关系式,并注明自变量x的取值范围;(2)求该耗材店销售这种硒鼓每月获得的利润W(元)与售价x(元/个)之间的函数关系式,并求每月获得的最大利润;(3)在新冠肺炎流行期间,这种硒鼓的进价降低为n元/个,售价为x元/个(n≤x≤48).耗材店在2月份仍然按照销售量与售价关系不变的方式销售,并决定将当月销售这种硒鼓获得的利润全部捐赠给火神山医院,支援武汉抗击新冠肺炎.若要使这个月销售这种硒鼓获得的利润G(元)随售价x(元/个)的增大而增大,请直接写出n的取值范围.【解题思路】(1)根据实际售价﹣进价=进价×利润率建立关于a的方程,解之可得a的值;用原销售量﹣因价格上涨而减少的销售量可得答案.(2)根据“总利润=每个硒鼓利润×销售量”列出关于x的函数,配方成顶点式,再利用二次函数的性质求解可得;(3)根据以上相等关系,并结合新进价列出关于x的二次函数,找到其对称轴,利用二次函数的增减性求解可得.【解答过程】解:(1)30×0.8﹣a=20%a,解得a=20.y=500﹣10(x﹣30),即y=﹣10x+800(20≤x≤48).(2)根据题意,得W=(x﹣20)(﹣10x+800)=﹣10(x﹣50)2+9000.∵﹣10<0,销售单价不能超过48元/个,即当20≤x≤48时,W随x的增大而增大,∴当x=48时,W有最大值,最大值为8960.答:当售价为48元/个时,每月获得的利润最大,最大利润为8960元.(3)根据题意,得G=(x﹣n)(﹣10x+800)=﹣10x2+(800+10n)x﹣800n,对称轴x=80+n 2.∵a=﹣10<0,∵当n ≤x ≤48时,该商品利润G 随x 的增大而增大, ∴80+n 2≥48,解得n ≥16. ∵进价是降低的,∴n 的取值范围是16≤n <20.【题型3 利用二次函数解决抛物线形轨迹问题】【例3】(2020秋•渑池县期末)如图,小明在一次高尔夫球争霸赛中,从山坡下O 点打出一球向球洞A 点飞去,球的路线为抛物线,如果不考虑空气阻力,当球移动的水平距离为9米时,球达到最大高度12米.已知山坡OA 与水平方向OC 的夹角为30o ,O 、A 两点相距8√3米. (1)求出球的飞行路线所在抛物线的解析式;(2)判断小明这一杆能否把高尔夫球从O 点直接打入球洞A 点,并说明理由.【解题思路】(1)分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式;(2)OA 与水平方向OC 的夹角为30°,OA =8√3米,解直角三角形可求点A 的坐标,把点A 的横坐标x =12代入抛物线解析式,看函数值与点A 的纵坐标是否相符. 【解答过程】解:(1)∵顶点B 的坐标是(9,12), ∴设抛物线的解析式为y =a (x ﹣9)2+12, ∵点O 的坐标是(0,0)∴把点O 的坐标代入得:0=a (0﹣9)2+12, 解得a =−427,∴抛物线的解析式为y =−427(x ﹣9)2+12 即y =−427x 2+83x ;(2)在Rt△AOC中,∵∠AOC=30°,OA=8√3,∴AC=OA•sin30°=8√3×12=4√3,OC=OA•cos30°=8√3×√32=12.∴点A的坐标为(12,4√3),∵当x=12时,y=323≠4√3,∴小明这一杆不能把高尔夫球从O点直接打入球洞A点.【变式3-1】如图,运动员甲在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m 时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的解析式.(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?(3)运动员乙跳离地面时,最高能摸到3.3m,问:在(2)的条件下,运动员乙在运动员甲与篮板之间的什么范围内能在空中截住球?【解题思路】(1)设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值.(2)设球出手时,他跳离地面的高度为hm,则可得h+2.05=﹣0.2×(﹣2.5)2+3.5.(3)当y=3.3m,进而代入函数解析式,求出x的值,即可得出答案.【解答过程】解:(1)∵当球运行的水平距离为2.5米时,达到最大高度3.5米,∴抛物线的顶点坐标为(0,3.5),∴设抛物线的表达式为y=ax2+3.5.由图知图象过以下点:(1.5,3.05).∴2.25a+3.5=3.05,解得:a=﹣0.2,∴抛物线的表达式为y=﹣0.2x2+3.5.(2)设球出手时,他跳离地面的高度为hm,因为(1)中求得y=﹣0.2x2+3.5,则球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2(m).答:球出手时,他跳离地面的高度为0.2m.(3)由题意可得出:y=3.3,则3.3=﹣0.2x2+3.5解得:x1=1,x2=﹣1,∴2.5﹣1=1.5(m),1.5﹣1=0.5(m)∴乙在距离甲1.5米以内或离篮板0.5米以内能在空中截住球.【变式3-2】(2021•嘉善县一模)已知,足球球门高2.44米,宽7.32米(如图1)在射门训练中,一球员接传球后射门,击球点A距离地面0.4米,即AB=0.4米,球的运动路线是抛物线的一部分,当球的水平移动距离BC为6米时,球恰好到达最高点D,即CD=4.4米.以直线BC为x轴,以直线AB为y轴建立平面直角坐标系(如图2).(1)求该抛物线的表达式;(2)若足球恰好击中球门横梁,求该足球运动的水平距离;(3)若要使球直接落在球门内,则该球员应后退m米后接球射门,击球点为A'(如图3),请直接写出m的取值范围.【解题思路】(1)根据条件可以得到抛物线的顶点坐标是(6,4.4),利用待定系数法即可求得函数的解析式;(2)求出当y=2.44时,x的值,取正;(3)先求出y=0时,x的值,取正,减去恰好击中球门横梁时,足球的水平距离.【解答过程】解:(1)抛物线的顶点坐标是(6,4.4),设抛物线的解析式是:y=a(x﹣6)2+4.4,把(0,0.4)代入得36a+4.4=0.4,解得a=−1 9,则抛物线是y=−19(x﹣6)2+4.4;(2)∵球门高为2.44米,即y=2.44,则有2.44=−19(x﹣6)2+4.4,解得:x1=10.2,x2=1.8,从题干图2中,发现球门在CD右边,∴x=10.2,即足球运动的水平距离是10.2米;(3)不后退时,刚好击中横梁,∴往后退,则球可以进入球门,而当球落地时,球刚好在门口,是一个临界值,当y=0时,有0=−19(x﹣6)2+4.4,解得:x1=6+35√110,x2=6−35√110,取正值,x=6+35√110,∴后退的距离需小于6+35√110−10.2=(35√110−4.2)米故0<m<35√110−4.2.【变式3-3】(2020•绍兴)如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:√2取1.4)【解题思路】(1)求出抛物线表达式;再确定x=9和x=18时,对应函数的值即可求解;(2)当y=0时,y=−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),求出PQ=6√2=8.4,即可求解.【解答过程】解:(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,将x=0,y=1.9代入上式并解得:a=−1 50,故抛物线的表达式为:y=−150(x﹣7)2+2.88;当x=9时,y=−150(x﹣7)2+2.88=2.8>2.24,当x=18时,y=−150(x﹣7)2+2.88=0.46>0,故这次发球过网,但是出界了;(2)如图,分别过点O,P作边线的平行线交于点Q,在Rt△OPQ中,OQ=18﹣1=17,当y=0时,−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),∴OP=19,而OQ=17,故PQ=6√2=8.4,∵9﹣8.4﹣0.5=0.1,∴发球点O在底线上且距右边线0.1米处.【题型4 利用二次函数解决车过隧道问题】【例4】(2020秋•海淀区校级月考)小宇遇到了这样一个问题:如图是一个单向隧道的断面,隧道顶MCN是一条抛物线的一部分,经测量,隧道顶的跨度MN为4m,最高处到地面的距离CO为4m,两侧墙高AM和BN均为3m,今有宽2.4m的卡车在隧道中间行驶,如果卡车载物后的最高点E到隧道顶面对应的点D的距离应不小于0.6m,那么卡车载物后的限高应是多少米?(精确到0.1m)为解决这个问题,小宇以AB中点O为原点,建立了如图所示的平面直角坐标系,根据上述信息,设抛物线的表达式为y=ax2+c.(1)写出M、C、N、F四个点的坐标;(2)求出抛物的表达式;(3)利用求出的表达式,帮助小宇解决这个问题.【解题思路】(1)根据题中信息直接写出M、C、N、F四个点的坐标即可;(2)将点M、C点的坐标代入抛物线的表达式为y=ax2+c,利用待定系数法求解即;(3)在y=−14x2+4中,令x=1.2,求得相应的y值,从而可得点D的坐标,结合卡车载物后的最高点E到隧道顶面对应的点D的距离应不小于0.6m,可得卡车载物最高点距地面的距离,然后精确到0.1m,即可得出答案.【解答过程】解:(1)由题意得:M(﹣2,3)、C(0,4)、N(2,3)、F(1.2,0);(2)将M(﹣2,3)、C(0,4)代入y=ax2+c,得:{4a+c=3c=4,解得:{a=−14 c=4,∴抛物的表达式为y =−14x 2+4;(3)在y =−14x 2+4中,令x =1.2,得:y =−14×1.22+4=3.64,∴点D 的坐标为(1.2,3.64),即点D 与地面的距离为3.64m ,∵卡车载物后的最高点E 到隧道顶面对应的点D 的距离应不小于0.6m ,∴点E 离地面的距离不超过3.04m ,∴卡车载物后的限高应是3.0m .【变式4-1】(2021•海城市模拟)如图,隧道的横截面由抛物线形和矩形OABC 构成.矩形一边OA 的长是12m ,另一边OC 的长是1m .抛物线上的最高点D 到地面OA 的距离为7m .以OA 所在直线为x 轴,以OC 所在直线为y 轴,建立平面直角坐标系.(1)求该抛物线所对应的函数表达式.(2)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度为5m ,求两排灯之间的水平距离.(3)隧道内车辆双向通行,规定车辆必须在中心线两侧行驶,并保持车辆顶部与隧道有不少于13m 的空隙.现有一辆货运汽车,在隧道内距离道路边缘2m 处行驶,求这辆货运汽车载物后的最大高度.【解题思路】(1)设抛物线所对应的函数表达式为y =a (x ﹣6)2+7,将点C (0,1)代入所设解析式求出a 的值即可得出函数解析式;(2)将y =5代入解析式求出x 的值,将所求x 的值相减可得答案;(3)求出x =2时y 的值,再减去13可得答案. 【解答过程】解:(1)由题意设抛物线所对应的函数表达式为y =a (x ﹣6)2+7,将点C (0,1)代入上式,36a +7=1,解得a =−16,∴该抛物线所对应的函数表达式为y =−16(x −6)2+7.(2)把y=5代入y=−16(x−6)2+7中,−16(x−6)2+7=5,解得x1=6+2√3,x2=6−2√3,6+2√3−(6−2√3)=4√3,所以两排灯之间的水平距离为4√3m;(3)把x=2代入y=−16(x−6)2+7中,y=−16(2−6)2+7=133,13 3−13=4,所以这辆货运汽车载物后的最大高度为4m.【变式4-2】(2020•武汉模拟)某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC=6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m.(1)以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;(2)若支柱每米造价为2万元,求5根支柱的总造价;(3)拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?【解题思路】(1)根据题目可知A,B,C的坐标,设出抛物线的解析式代入可求解.(2)把x=5代入可求出支柱的长度,然后算出总造价即可.(3)先求出坦克方队的长,然后算出速度,从而求得通过隧道的时间即可.【解答过程】【解】(1)设y=ax2+c,把C(0,6)、B(10,0)代入,得a=−350,c=6.∴y=−350x2+6.(2)当x=5时,y=−350×52+6=92,∴EF=10−92=112,CD=10﹣6=4,支柱的总造价为2(2×112+2×10+4)=70(万元). (3)∵坦克的高为3米,令y =3时,−350x 2+6=3,解得:x =±5√2,∵7<5√2<8,坦克宽为2米,∴可以并排3辆坦克行驶,此时坦克方阵的长为120÷3×4=160(米),坦克的行驶速度为24km /h =400米/分,∴通过隧道的最短时间为1000+160400=2.9(分).【变式4-3】(2020秋•海州区校级期末)施工队要修建一个横断面为抛物线的公路隧道,其高度为8米,宽度OM 为16米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x 的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A .D 点在抛物线上.B 、C 点在地面OM 线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和的最大值是多少,请你帮施工队计算一下.【解题思路】(1)抛物线的顶点坐标为(8,8),则其表达式为:y =a (x ﹣8)2+8,将点O (0,0)代入上式,即可求解;(2)双向行车道,正中间是一条宽1米的隔离带,则每个车道宽为7.5米,车沿着隔离带边沿行驶时,车最左侧边沿的x =7.5﹣3.5=4,即可求解;(3)点A 、D 关于函数对称轴对称,则设AD =2m ,则AB =y =−18(x ﹣8)2+8=8−18m 2,w =AB +AD +DC =2m +2AB =−14m 2+2m +16,即可求解.【解答过程】解:(1)抛物线的顶点坐标为(8,8),则其表达式为:y =a (x ﹣8)2+8,将点O (0,0)代入上式得:0=64a +8,解得:a =−18,故函数的表达式为:y =−18(x ﹣8)2+8,即y =−18x 2+2x (0≤x ≤16);(2)双向行车道,正中间是一条宽1米的隔离带,则每个车道宽为7.5米,车沿着隔离带边沿行驶时,车最左侧边沿的x =7.5﹣3.5=4,当x =4时,y =6,即允许的最大高度为6米,5.8<6,故该车辆能通行;(3)设点B (m ,0),则点A (m ,−18m 2+2m ),由抛物线的表达式知,其对称轴为x =8,则BC =2(8﹣m )=16﹣2m =AD ,则AB =−18m 2+2m ,则设:w =AB +AD +DC =2m +2AB =−14m 2+2m +16,∵−14<0,故w 有最大值,当m =4时,w 的最大值为20,故AB 、AD 、DC 的长度之和的最大值是20.【题型5 利用二次函数解决拱桥形问题】【例5】(2020秋•渝水区校级月考)某河上有抛物线形拱桥,当水面离拱顶5m 时,水面宽8m .一木船宽4m ,高2m ,载货后,木船露出水面的部分为34m .以拱顶O 为坐标原点建立如图所示的平面直角坐标系,A 、B 为抛物线与水面的交点.(1)B 点的坐标为 ;(2)求抛物线解析式;(3)当水面离拱顶1.8米时,木船能否通过拱桥?【解题思路】(1)当水面距拱顶5m 时,水面宽8m ,则B (4,﹣5);(2)设抛物线的解析式为y =ax 2,将点B 的坐标代入上式即可求解;(3)将x =2代入上式,得y =−516x 2=−54,则54+34=2,而1.8<2,即可求解.【解答过程】解:(1)当水面距拱顶5m 时,水面宽8m ,则点B (4,﹣5),故答案为(4,﹣5);(2)设抛物线的解析式为y =ax 2,将点B 的坐标代入上式得﹣5=a ×42,解得a =−516,∴该抛物线的解析式为y =−516x 2; (3)将x =2代入上式,得y =−516x 2=−54, ∵54+34=2,而1.8<2,当水面离拱顶1.8米时,木船不能通过拱桥.【变式5-1】(2020秋•泗阳县期末)河上有一座抛物线形的石拱桥,水面宽6m 时,水面离桥拱顶部3m .(1)如图建立平面直角坐标系,试求抛物线的解析式;(2)一艘装满货物的小船,露出水面部分的高为0.5m ,宽为4m .现因暴雨河水水位上升了1m ,这艘小船能从这座石拱桥下通过吗?请说明理由.【解题思路】(1)根据题意可以知道A 、B 的坐标,在利用点C 得坐标从而求出抛物线的解析式.(2)代入x =2求出y 的值,用其减去1求出可通过船的做最高高度,与0.5比较大小从而得出答案.【解答过程】解:(1)设抛物线的解析式为y =a (x ﹣x 1)(x ﹣x 2).A (﹣3,0),B (3,0),C (0,3).y =a (x +3)(x ﹣3).在将点C (0,3)带入y =a (x +3)(x ﹣3)中的得a =−13,所以抛物线的解析式为y =−13x 2+3,(2)小船可以通过,理由:当x =2时,y =−13×22+3=53,∵53−1=23>0.5,∴暴雨后这艘船能从这座拱桥下通过.【变式5-2】(2021•衢州)如图1是一座抛物线型拱桥侧面示意图.水面宽AB 与桥长CD 均为24m ,在距离D 点6米的E 处,测得桥面到桥拱的距离EF 为1.5m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱顶部O 离水面的距离.(2)如图2,桥面上方有3根高度均为4m 的支柱CG ,OH ,DI ,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m .①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.【解题思路】根据题意设出适当的二次函数表达式,利用待定系数法求出表达式,再结合图形进行求解即可;【解答过程】解:(1)根据题意可知点F 的坐标为(6,﹣1.5),可设拱桥侧面所在二次函数表达式为:y 1═a 1x 2.将F (6,﹣1.5)代入y 1═a 1x 2有:﹣1.5═36a 1,求得a 1═−124,∴y 1═−124x 2,当x ═12时,y 1═−124×122═﹣6,∴桥拱顶部离水面高度为6m .(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y 2═a 2(x ﹣6)2+1, 将H (0,4)代入其表达式有:4═a 2(0﹣6)2+1,求得a 2═112, ∴右边钢缆所在抛物线表达式为:y 2═112(x ﹣6)2+1,左边钢缆所在抛物线表达式为:y 3═112(x +6)2+1 ②设彩带的长度为Lm ,则L ═y 2﹣y 1═112(x ﹣6)2+1﹣(−124x 2)═18x 2−x +4═18(x −4)2+2, ∴当x ═4时,L 最小值═2,答:彩带长度的最小值是2m .【变式5-3】(2021•贵阳)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA =8m ,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处,有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).(3)如图③,桥拱所在的函数图象是抛物线y =ax 2+bx +c (a ≠0),该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m (m >0)个单位长度,平移后的函数图象在8≤x ≤9时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.【解题思路】(1)根据题意结合图象可以求出函数的顶点B (4,4),先设抛物线的顶点式y =a (x ﹣4)2+4,再根据图象过原点,求出a 的值即可;(2)先求出工人矩原点的距离,再把距离代入函数解析式求出y 的值,然后和1.68比较即可;(3)根据倒影与桥对称,先求出倒影的解析式,再平移m 各单位,根据二次函数的性质求出m 的取值范围.【解答过程】解:(1)如图②,由题意得:水面宽OA 是8m ,桥拱顶点B 到水面的距离是4m ,。
二次函数(含答案)
二次函数主要知识点:主要题型:1.已知()f x 是二次函数,当2x =时有最大值16,它的图象截x 轴所得的线段长为8,求()f x 的解析式.2.设a x x x f +-=2)(,若,0)1(<-t f 则)(t f 的值( )A.是正数B.是负数C.是非负数D.正负与t 有关3.已知a x a x x f ++-=)1()(2,若0)2(<f ,则不等式的解集为( )A.(1,a)B.(1,a)C.φD.不能确定4.已知a ax x y +-=22在区间]2,1[上恒负,则a 的取值范围是.____________5. 已知y =x 2–2x+3在区间[0,m]上有最大值3,最小值2,则m 的取值范围是( )(A) [)∞+,1 (B) [0,2] (C) (]2,∞- (D) [1,2]6. 已知两实数x ,y 满足3x 2+2y 2=9x ,求x 2+y 2的最大值与最小值。
7. 已知f (x )=–x 2+2ax +1–a 在区间[0,1]上有最大值2,求a 值。
8. 求f (x )=x 2–2x +2在区间[t ,t +1]上的最大值。
9. 已知二次函数f(x)=ax 2+bx+c ,且满足f (–1)=0,f (1)=1,对所有x ∈R 都有f(x)–x ≥0成立,(1)求f(x)的解析式,(2)当x ∈[–1,1]时,g(x)=f(x)–mx 是单调函数,求m 的取值范围;(3) g(x)=f(x)–mx 在[–1,1]上的最大值为1,求m 的值。
10.已知f (x )=x 2+2(a –1)x +2在区间(–∞,4]上是减函数,则实数a 的取值范围是 。
11. 已知f (x )=–x 2+ (m +n )x+2m –n 和32)(+=x nx x g ,且对任意23-≠x 的实数,x 总有g[g (x)]=x 恒成立,当x ∈[–1,2]时,429)(m ax =x f ,求m ,n 的值。
中考数学复习之二次函数常考66种题型专题7 与二次函数图象有关的八种考法(含答案及解析)
专题7 与二次函数图象有关的八种考法-重难点题型【题型1 根据条件确定二次函数的图象】【例1】(2020•镇平县一模)已知函数y=﹣x2+bx+c,其中b>0,c<0,此函数的图象可以是()A.B.C.D.【变式1-1】(2020秋•北仑区期中)若a>0,则二次函数y=ax2+2x﹣1的图象可能是()A.B.C.D.【变式1-2】(2020秋•大连期中)函数y=ax2+ax+a(a≠0)的图象可能是下列图象中的()A.B.C.D.【变式1-3】(2020•浙江校级模拟)已知函数y=ax2+bx+c,当y>0时,−12<x<13.则函数y=cx2﹣bx+a的图象可能是下图中的()A.B.C.D.【题型2 根据抛物线特征确定其他函数的图象】【例2】(2020•南宁一模)如图,关于x的二次函数y=x2﹣x+m的图象交x轴的正半轴于A,B两点,交y轴的正半轴于C点,如果x=a时,y<0,那么关于x的一次函数y=(a﹣1)x+m的图象可能是()A.B.C.D.【变式2-1】(2021秋•和平区校级月考)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.【变式2-2】(2021•江西)在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c 的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.【变式2-3】(2020秋•庐阳区期末)如图,一次函数y=﹣x与二次函数y=ax2+bx+c图象在同一坐标系下如图所示,则函数y=ax2+(b+1)x+c的图象可能是()A.B.C.D.【题型3 确定一次函数与二次函数在同一坐标系内的图象】【例3】已知一次函数y=ba x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A.B.C.D.【变式3-1】(2021•深圳)二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A.B.C.D.【变式3-2】(2021•越秀区模拟)已知a,b是非零实数,|b|>|a|,在同一平面直角坐标系xOy中,二次函数y1=ax2﹣bx与一次函数y2=ax﹣b的大致图象不大可能的是()A.B.C.D.【变式3-3】(2021•广西模拟)在同一平面直角坐标系中,函数y=ax2+bx+2b与y=﹣ax+b 的图象可能是()A.B.C.D.【题型4 利用二次函数的图象解决不等式问题】【例4】(2020春•番禺区校级月考)如图.抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集为()A.x>﹣1B.x<3C.x<﹣3或x>1D.x>﹣1或x<3【变式4-1】(2021•贺州)如图,已知抛物线y=ax2+c与直线y=kx+m交于A(﹣3,y1),B(1,y2)两点,则关于x的不等式ax2+c≥﹣kx+m的解集是()A.x≤﹣3或x≥1B.x≤﹣1或x≥3C.﹣3≤x≤1D.﹣1≤x≤3【变式4-2】(2021•南山区校级二模)如图,二次函数y=ax2+bx+c的图象与x轴的右交点A(5,0),对称轴是直线x=2,当ax2+bx+c>16a时,x的取值范围是()A.x<﹣1或x>5B.﹣1<x<5C.﹣3<x<7D.x<﹣3或x>7【变式4-3】(2020•梧州)如图,抛物线y=ax2+bx+c与直线y=kx+h交于A,B两点,下列是关于x的不等式或方程,结论正确的是()A.ax2+(b﹣k)x+c>h的解集是2<x<4B.ax2+(b﹣k)x+c>h的解集是x>4C.ax2+(b﹣k)x+c>h的解集是x<2D.ax2+(b﹣k)x+c=h的解是x1=2,x2=4【题型5 利用二次函数的图象解决一元二次方程问题】【例5】(2020秋•松山区期末)如图所示,二次函数y=﹣x2+2x+k的图象与x轴的一个交点坐标为(3,0),则关于x的一元二次方程﹣x2+2x+k=0的解为()A.x1=3,x2=﹣2B.x1=3,x2=﹣1C.x1=1,x2=﹣1D.x1=3,x2=﹣3【变式5-1】(2020•海珠区校级模拟)二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m﹣2=0有两个不相等的实数根,则整数m的最小值为()A.﹣1B.0C.1D.2【变式5-2】(2020•南宁二模)如图,二次函数:y=ax2+bx+c(a≠0)与一次函数:y=mx+n (m≠0)的图象交于A,B两点,则一元二次方程ax2+bx+c=mx+n的解为()A.x1=x2=﹣1B.x1=1,x2=2C.x1=﹣1,x2=2D.x1=x2=2【变式5-3】(2021•开福区模拟)如图,是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②抛物线与x轴的另一个交点是(﹣2,0);③方程ax2+bx+c=3有两个相等的实数根;④当1<x<4时,有y2<y1;⑤若ax12+bx1=ax22+bx2,且x1≠x2;则x1+x2=1.则命题正确的个数为()A.5个B.4个C.3个D.2个【题型6 利用二次函数的图象特征判断结论正误】(2021•福田区二模)二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线x=1.下【例6】列结论:①abc<0;②a+c>b;③4a+c>0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个【变式6-1】(2021•铁岭模拟)数学课上老师出了这样一道题:如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,请同学们据此写出正确结论,每写对一个结论得20分,写错一个结论倒扣10分;小涛得到了如下结论:①c>0;②4a﹣b=0;③﹣3a+c>0;④4a﹣2b≥at2+bt(t为实数);⑤点(﹣3,y1),(﹣5,y2),(0,y3)是该抛物线的点,则y1>y3>y2.则小涛此题得分为()A.100分B.70分C.40分D.10分【变式6-2】(2021•槐荫区一模)如图,抛物线y=ax2+bx+c(a≠0)的顶点为M(2,0).下列结论:①ac<0;②2a+b=0;③若关于x的方程ax2+bx+c﹣t=0有两个不相等的实数根,则t>0;④若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=4.其中正确的有()A.1个B.2个C.3个D.4个【变式6-3】(2021•肇源县模拟)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc>0;②4a+2b+c>0;③5a﹣b+c=0;④若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;⑤若方程|ax2+bx+c|=2有四个根,则这四个根的和为﹣4.其中正确的结论有()A.2个B.3个C.4个D.5个【题型7 由几何动点问题确定函数图象】【例7】(2021•聊城)如图,四边形ABCD中,已知AB∥CD,AB与CD之间的距离为4,AD=5,CD=3,∠ABC=45°,点P,Q同时由A点出发,分别沿边AB,折线ADCB 向终点B方向移动,在移动过程中始终保持PQ⊥AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.【变式7-1】(2021•杭州模拟)如图,正方形ABCD的边长为5,动点P的运动路线为A→B →C,动点Q的运动路线为B→D.点P与Q以相同的均匀速度分别从A,B两点同时出发,当一个点到达终点且停止运动时,另一个点也随之停止.设点P运动的路程为x,△BPQ的面积为y,则y随x变化的函数图象大致是()A.B.C.D.【变式7-2】(2021•包河区二模)已知Rt△ABC中,∠C=90°,AC=BC=2√2,正方形EFGH中,EF=2,AB和EF在同一直线上,将△ABC向右平移,则△ABC和正方形EFGH 重叠部分的面积y与点B移动的距离x之间的函数图象大致是()A.B.C.D.【变式7-3】(2021•瑶海区二模)如图,直线a、b都与直线l垂直,垂足分别为E、F,EF =1,正方形ABCD的边长为√2,对角线AC在直线l上,且点C位于点E处,将正方形ABCD沿l向右平移,直到点A与点F重合为止,记点C平移的距离为x,正方形ABCD 位于直线a、b之间部分(阴影部分)的面积为y,则y关于x的函数图象大致为()A.B.C.D.【题型8 由动点问题的函数图象获取信息】【例8】(2021春•西城区期末)如图1,四边形ABCD是平行四边形,连接BD,动点P从点A出发沿折线AB→BD→DA匀速运动,回到点A后停止.设点P运动的路程为x,线段AP的长为y,图2是y与x的函数关系的大致图象,则▱ABCD的面积为()A.24√5B.16√5C.12√5D.36【变式8-1】(2021•花都区三模)如图1,在菱形ABCD中,AB=6,∠BAD=120°,点E 是BC边上的一动点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H(a,b)是图象上的最低点,则a+b的值为()A.7√3B.6√3+3C.8√3D.3√3+6【变式8-2】(2021春•郑州期末)如图①,E为长方形ABCD的边AD上一点,点P从点B 出发沿折线B﹣E﹣D运动到点D停止,点Q从点B出发沿BC运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x的对应关系如图②所示,则a的值是()A.32cm2B.34cm2C.36cm2D.38cm2【变式8-3】(2021•河南)如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B 运动到点C,设B,P两点间的距离为x,P A﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为()A.4B.5C.6D.7专题7 与二次函数图象有关的八种考法-重难点题型【题型1 根据条件确定二次函数的图象】【例1】(2020•镇平县一模)已知函数y=﹣x2+bx+c,其中b>0,c<0,此函数的图象可以是()A.B.C.D.【解题思路】根据已知条件“a<0、b>0、c<0”判断出该函数图象的开口方向、与x 和y轴的交点、对称轴所在的位置,然后据此来判断它的图象.【解答过程】解:∵a=﹣1<0,b>0,c<0,∴该函数图象的开口向下,对称轴是直线x=−b2a>0,与y轴的交点在y轴的负半轴上;故选:D.【变式1-1】(2020秋•北仑区期中)若a>0,则二次函数y=ax2+2x﹣1的图象可能是()A.B.C.D.【解题思路】根据a>0,判断抛物线开口向上,对称轴为直线x=−22a=−1a<0,由抛物线解析式可知与y轴的交点为(0,﹣1),据此作出判断即可.【解答过程】解:∵a>0∴抛物线开口向上,∵对称轴直线x=−22a=−1a<0,∴对称轴在y轴的左侧,由y=ax2+2x﹣1可知,抛物线与y轴的交点为(0,﹣1),故选:D.【变式1-2】(2020秋•大连期中)函数y=ax2+ax+a(a≠0)的图象可能是下列图象中的()A.B.C.D.【解题思路】根据函数y=ax2+ax+a(a≠0),对a的正负进行分类讨论,排除有错误的选项,即可得出正确选项.【解答过程】解:在函数y=ax2+ax+a(a≠0)中,当a<0时,则该函数开口向下,顶点在y轴左侧,抛物线与y轴的负半轴相交,故选项D错误;当a>0时,则该函数开口向上,顶点在y轴左侧,抛物线与y轴的正半轴相交,故选项A、B错误;故选项C正确;故选:C.【变式1-3】(2020•浙江校级模拟)已知函数y=ax2+bx+c,当y>0时,−12<x<13.则函数y=cx2﹣bx+a的图象可能是下图中的()A.B.C.D.【解题思路】当y>0时,−12<x<13,所以可判断a<0,可知−ba=−12+13=−16,ca=−12×13=−16,所以可知a=6b,a=﹣6c,则b=﹣c,不妨设c=1进而得出解析式,找出符合要求的答案.【解答过程】解:因为函数y=ax2+bx+c,当y>0时,−12<x<13所以可判断a<0,可知−ba=−12+13=−16,ca=−12×13=−16所以可知a=6b,a=﹣6c,则b=﹣c,不妨设c=1则函数y=cx2﹣bx+a为函数y=x2+x﹣6即y=(x﹣2)(x+3)则可判断与x轴的交点坐标是(2,0),(﹣3,0),故选:A.【题型2 根据抛物线特征确定其他函数的图象】【例2】(2020•南宁一模)如图,关于x的二次函数y=x2﹣x+m的图象交x轴的正半轴于A,B两点,交y轴的正半轴于C点,如果x=a时,y<0,那么关于x的一次函数y=(a﹣1)x+m的图象可能是()A.B.C.D.【解题思路】根据函数图象与y轴的交点,可得m>0,根据二次函数图象当x=a时,y <0,可得a>0,a﹣1<0,根据一次函数的性质,可得答案.【解答过程】解:把x=a代入函数y=x2﹣x+m,得y=a2﹣a+m=a(a﹣1)+m,∵x=a时,y<0,即a(a﹣1)+m<0.由图象交y轴的正半轴于点C,得m>0,即a(a﹣1)<0.x=a时,y<0,∴a>0,a﹣1<0,∴一次函数y=(a﹣1)x+m的图象过一二四象限,故选:A.【变式2-1】(2021秋•和平区校级月考)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.【解题思路】根据二次函数y=ax2+bx+c(a≠0)的图象可以得到a、b、c的正负,从而可以得到一次函数y=ax与一次函数y=bx﹣c的图象,本题得以解决.【解答过程】解:由二次函数y=ax2+bx+c(a≠0)的图象可得,a>0,b<0,c>0,∴一次函数y=ax的图象经过第一、三象限,一次函数y=bx﹣c的图象经过第二、三、四象限,故选:A.【变式2-2】(2021•江西)在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c 的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.【解题思路】根据二次函数y=ax2与一次函数y=bx+c的图象,即可得出a>0、b>0、c<0,由此即可得出:二次函数y=ax﹣+bx+c的图象开口向上,对称轴x=−b2a<0,与y轴的交点在y轴负半轴,再对照四个选项中的图象即可得出结论.【解答过程】解:观察函数图象可知:a>0,b>0,c<0,∴二次函数y=ax2+bx+c的图象开口向上,对称轴x=−b2a<0,与y轴的交点在y轴负半轴.故选:D.【变式2-3】(2020秋•庐阳区期末)如图,一次函数y=﹣x与二次函数y=ax2+bx+c图象在同一坐标系下如图所示,则函数y=ax2+(b+1)x+c的图象可能是()A.B.C.D.【解题思路】根据一次函数y=﹣x与二次函数y=ax2+bx+c图象交点位置,即可判断函数y=ax2+(b+1)x+c的图像与x轴在交点的位置.【解答过程】解:∵一次函数y=﹣x与二次函数y=ax2+bx+c图象的交点在第二象限,∴两个交点的横坐标都是负数,∴函数y=ax2+(b+1)x+c的图像与x轴的交点的横坐标都为负数,∴函数y=ax2+(b+1)x+c的图像与x轴的负半轴有两个交点,故选:D.【题型3 确定一次函数与二次函数在同一坐标系内的图象】【例3】已知一次函数y=ba x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A.B.C.D.【解题思路】根据一次函数图象经过的象限,即可得出ba<0、c>0,由此即可得出:二次函数y=ax2+bx+c的图象对称轴x=−b2a>0,与y轴的交点在y轴负正半轴,再对照四个选项中的图象即可得出结论.【解答过程】解:观察函数图象可知:ba<0、c>0,∴二次函数y=ax2+bx+c的图象对称轴x=−b2a>0,与y轴的交点在y轴负正半轴.故选:A.【变式3-1】(2021•深圳)二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A.B.C.D.【解题思路】由二次函数y=ax2+bx+c的图象得到字母系数的正负以及对称轴,与一次函数y=2ax+b的图象得到的字母系数的正负以及与x轴的交点相比较看是否一致.【解答过程】解:A、由抛物线可知,a>0,b<0,c=1,对称轴为直线x=−b2a,由直线可知,a>0,b<0,直线经过点(−b2a,0),故本选项符合题意;B、由抛物线可知,对称轴为直线x=−b2a,直线经过点(−b2a,0),故本选项不符合题意;C、由抛物线可知,对称轴为直线x=−b2a,直线经过点(−b2a,0),故本选项不符合题意;D 、由抛物线可知,对称轴为直线x =−b 2a ,直线经过点(−b2a,0),故本选项不符合题意; 故选:A .【变式3-2】(2021•越秀区模拟)已知a ,b 是非零实数,|b |>|a |,在同一平面直角坐标系xOy 中,二次函数y 1=ax 2﹣bx 与一次函数y 2=ax ﹣b 的大致图象不大可能的是( )A .B .C .D .【解题思路】根据二次函数y =ax 2﹣bx 与一次函数y =ax ﹣b (a ≠0)可以求得它们的交点坐标,然后根据一次函数的性质和二次函数的性质,由函数图象可以判断a 、b 的正负情况,从而可以解答本题.【解答过程】解:{y =ax 2−bx y =ax −b 解得{x =b a y =0或{x =1y =a −b .故二次函数y =ax 2﹣bx 与一次函数y =ax ﹣b (a ≠0)在同一平面直角坐标系中的交点在x 轴上为(ba ,0)或点(1,a ﹣b ).在A 中,由一次函数图象可知a >0,b <0,二次函数图象可知,a >0,b <0,ba<0,a﹣b >0,故选项A 有可能;在B 中,由一次函数图象可知a >0,b >0,二次函数图象可知,a >0,b >0,ba >0,由|b |>|a |,a ﹣b <0,故选项B 不可能;在C 中,由一次函数图象可知a <0,b <0,二次函数图象可知,a <0,b <0,ba >0,由|b |>|a |,a ﹣b >0,故选项C 有可能;在D 中,由一次函数图象可知a <0,b >0,二次函数图象可知,a <0,b >0,ba <0,a﹣b <0,故选项D 有可能;故选:B.【变式3-3】(2021•广西模拟)在同一平面直角坐标系中,函数y=ax2+bx+2b与y=﹣ax+b 的图象可能是()A.B.C.D.【解题思路】根据y=﹣ax+b的图象判断a、b与0的大小关系,进一步确定函数y=ax2+bx+2b的图象即可作出判断.【解答过程】解:A、一次函数的图象经过一、二、四象限,则﹣a<0,即a>0,b>0,所以函数y=ax2+bx+2b的图象开口向上,对称轴x<0,与y轴的交点位于直线的上方,由ax2+bx+2b=﹣ax+b整理得ax2+(a+b)x+b=0,由于△=(a+b)2﹣4ab=(a﹣b)2≥0,则两图象有交点,故A错误;B、一次函数的图象经过一、二、四象限,则﹣a<0,即a>0,b<0,所以函数y=ax2+bx+2b开口向上,对称轴x>0,故B错误;C、一次函数的图象经过一、二、三象限,则﹣a>0,即a<0,b>0,所以函数y=ax2+bx+2b开口向下,对称轴x>0,故C错误;D、一次函数的图象经过二、三,四象限,则﹣a<0,即a>0,b<0,所以函数y=ax2+bx+2b开口向上,对称轴x>0,故D正确;故选:D.【题型4 利用二次函数的图象解决不等式问题】【例4】(2020春•番禺区校级月考)如图.抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集为()A.x>﹣1B.x<3C.x<﹣3或x>1D.x>﹣1或x<3【解题思路】观察两函数图象的上下位置关系,即可得出结论.【解答过程】解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,∴抛物线y=ax2+c与直线y=﹣mx+n交于(1,p),(﹣3,q)两点,观察函数图象可知:当x<﹣3或x>1时,抛物线y=ax2+c在直线y=﹣mx+n的上方,∴不等式ax2+c>﹣mx+n的解集为x<﹣3或x>1,即不等式ax2+mx+c>n的解集是x<﹣3或x>1.故选:C.【变式4-1】(2021•贺州)如图,已知抛物线y=ax2+c与直线y=kx+m交于A(﹣3,y1),B(1,y2)两点,则关于x的不等式ax2+c≥﹣kx+m的解集是()A.x≤﹣3或x≥1B.x≤﹣1或x≥3C.﹣3≤x≤1D.﹣1≤x≤3【解题思路】y=kx+m与y=﹣kx+m的图象关于y轴对称,利用数形结合思想,把不等式的解集转化为图象的交点问题求解.【解答过程】解:∵y=kx+m与y=﹣kx+m的图象关于y轴对称,∴直线y=﹣kx+m与抛物线y=ax2+c的交点A′、B′与点A、B也关于y轴对称,如图所示:∵A(﹣3,y1),B(1,y2),∴A′(3,y1),B′(﹣1,y2),根据函数图象得:不等式ax2+c≥﹣kx+m的解集是﹣1≤x≤3,故选:D.【变式4-2】(2021•南山区校级二模)如图,二次函数y=ax2+bx+c的图象与x轴的右交点A(5,0),对称轴是直线x=2,当ax2+bx+c>16a时,x的取值范围是()A.x<﹣1或x>5B.﹣1<x<5C.﹣3<x<7D.x<﹣3或x>7【解题思路】由对称轴公式得直线x=−b2a=2,可得b=﹣4a,与x轴右交点为(5,0),代入抛物线得c=﹣5a,把b=﹣4a,c=﹣5a,代入抛物线得ax2﹣4ax﹣5a>16a,运用不等式的性质可得结果.【解答过程】解:∵y=ax2+bx+c的对称轴是直线x=2,∴−b2a=2,b=﹣4a,∴y=ax2﹣4ax+c,∵与x轴右交点为(5,0),∴25a﹣20a+c=0,∴c=﹣5a,∴y=ax2﹣4ax﹣5a,∴ax2﹣4ax﹣5a>16a,ax2﹣4ax﹣21a>0,∵a<0,∴x2﹣4x﹣21<0(两边同除以a,不等号方向改变),∵y=x2﹣4x﹣21,a=1,开口向上,当x2﹣4x﹣21=0时,(x﹣7)(x+3)=0(结合图象,可得﹣3<x<7),∴x1=7,x2=﹣3,∴﹣3<x<7,故选:C.【变式4-3】(2020•梧州)如图,抛物线y=ax2+bx+c与直线y=kx+h交于A,B两点,下列是关于x的不等式或方程,结论正确的是()A.ax2+(b﹣k)x+c>h的解集是2<x<4B.ax2+(b﹣k)x+c>h的解集是x>4C.ax2+(b﹣k)x+c>h的解集是x<2D.ax2+(b﹣k)x+c=h的解是x1=2,x2=4【解题思路】联立y=ax2+bx+c与直线y=kx+h得:ax2+(b﹣k)x+c﹣h=0,由函数图象知,上述方程的解为x=2或4,进而求解.【解答过程】解:联立y=ax2+bx+c与直线y=kx+h得:ax2+(b﹣k)x+c﹣h=0,由函数图象知,上述方程的解为x=2或4,而ax2+(b﹣k)x+c>h,表示抛物线的值大于直线的值,此时,x<2或x>4,故选:D.【题型5 利用二次函数的图象解决一元二次方程问题】【例5】(2020秋•松山区期末)如图所示,二次函数y=﹣x2+2x+k的图象与x轴的一个交点坐标为(3,0),则关于x的一元二次方程﹣x2+2x+k=0的解为()A.x1=3,x2=﹣2B.x1=3,x2=﹣1C.x1=1,x2=﹣1D.x1=3,x2=﹣3【解题思路】由题意可知交点(3,0)中的横坐标3是方程﹣x2+2x+k=0的一个根,所以把x1=3代入关于x的一元二次方程﹣x2+2x+k=0,求出k的值,再根据根与系数的关系即可求出另一个解x2的值.【解答过程】解:∵二次函数y=﹣x2+2x+k的图象与x轴的一个交点坐标为(3,0),∴横坐标3是方程﹣x2+2x+k=0的一个根,∴把x1=3代入关于x的一元二次方程﹣x2+2x+k=0得,﹣9+6+k=0,解得k=3,∴原方程可化为:﹣x2+2x+3=0,∴x1+x2=3+x2=2,解得x2=﹣1.故选:B.【变式5-1】(2020•海珠区校级模拟)二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m﹣2=0有两个不相等的实数根,则整数m的最小值为()A.﹣1B.0C.1D.2【解题思路】根据抛物线的图象以及二次函数与一元二次方程的之间的关系即可求出答案.【解答过程】解:∵ax2+bx+m﹣2=0有两个不相等的实数根,∴ax2+bx=2﹣m有两个不相等的实数根,令y1=ax2+bx,y2=2﹣m(表示与x轴平行的直线),∴y1与y2有两个交点,∴2﹣m<2,∴m>0∵m是整数,∴m=1,故选:C.【变式5-2】(2020•南宁二模)如图,二次函数:y=ax2+bx+c(a≠0)与一次函数:y=mx+n (m≠0)的图象交于A,B两点,则一元二次方程ax2+bx+c=mx+n的解为()A.x1=x2=﹣1B.x1=1,x2=2C.x1=﹣1,x2=2D.x1=x2=2【解题思路】结合函数图象得到两函数图象的交点的横坐标,则当x=﹣1或x=2时,两函数的函数值相等,从而得到一元二次方程ax2+bx+c=mx+n的解.【解答过程】解:∵y=ax2+bx+c(a≠0)与一次函数:y=mx+n(m≠0)的图象的交点A、B的横坐标分别为﹣1,2,∴当x=﹣1或x=2时,ax2+bx+c=mx+n,∴一元二次方程ax2+bx+c=mx+n的解为x1=﹣1,x2=2.故选:C.【变式5-3】(2021•开福区模拟)如图,是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②抛物线与x轴的另一个交点是(﹣2,0);③方程ax 2+bx +c =3有两个相等的实数根;④当1<x <4时,有y 2<y 1;⑤若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2;则x 1+x 2=1.则命题正确的个数为( )A .5个B .4个C .3个D .2个【解题思路】①根据对称轴可以判断;②根据已知交点坐标和对称轴可以判断;③根据图象性质向下平移3个单位即可判断;④根据图象性质即可判断;⑤根据图象对称性即可判断.【解答过程】解:①∵对称轴为直线x =−b2a =1, 则:2a +b =0正确;②∵对称轴是直线x =1,与x 轴的一个交点是B (4,0),则与x 轴的另一个交点是(﹣2,0), 故②正确;③将抛物线y 1=ax 2+bx +c 向下平移3个单位,得到y =ax 2+bx +c ﹣3, ∴顶点坐标变为(1,0),∴此时抛物线与x 轴只有一个交点,∴方程ax 2+bx +c =3有两个相等的实数根正确; ④当1<x <4时,有图象可知y 2<y 1正确; ⑤若ax 12+bx 1=ax 22+bx 2, 则ax 12+bx 1+c =ax 22+bx 2+c , 即y 1=y 2,∴x 1、x 2关于函数的对称轴对称, 由①知函数对称轴为直线x =−b2a =1, 故12(x 1+x 2)=1,∴⑤不正确, 故选:B .【题型6 利用二次函数的图象特征判断结论正误】【例6】(2021•福田区二模)二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线x=1.下列结论:①abc<0;②a+c>b;③4a+c>0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个【解题思路】该函数开口方向向上,则a>0,由对称轴可知,b=﹣2a<0,与y轴交点在y轴负半轴,则c<0,再根据一些特殊点,比如x=1,x=﹣1,顶点等进行判断即可.【解答过程】解:∵函数开口方向向上,a>0,∵对称轴为x=1,则−b2a=1,∴b=﹣2a<0,∵与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①错;当x=﹣1时,y=a﹣b+c>0,即a+c>b,故②正确;对称轴为x=1,则−b2a=1,即b=﹣2a,由上知,a﹣b+c>0,则a+2a+c>0,即3a+c>0,∴4a+c>a>0,故③正确;由图象可得,当x=1时,函数取得最小值,∴对任意m为实数,有am2+bm+c≥a+b+c,∴am2+bm≥a+b,即a+b≤m(am+b),故④正确.综上,正确的个数有三个.故选:B.【变式6-1】(2021•铁岭模拟)数学课上老师出了这样一道题:如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,请同学们据此写出正确结论,每写对一个结论得20分,写错一个结论倒扣10分;小涛得到了如下结论:①c>0;②4a﹣b=0;③﹣3a+c>0;④4a﹣2b≥at2+bt(t为实数);⑤点(﹣3,y1),(﹣5,y2),(0,y3)是该抛物线的点,则y1>y3>y2.则小涛此题得分为()A.100分B.70分C.40分D.10分【解题思路】由抛物线与x轴的交点及抛物线的对称性可判断①;根据抛物线的对称轴可判断②;由x=﹣1时y>0可判断③,由x=﹣2时函数取得最大值可判断④;根据抛物线的开口向下且对称轴为直线x=﹣2知图象上离对称轴水平距离越小函数值越大,可判断⑤.【解答过程】解:∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴抛物线与y轴的交点在y轴的负半轴,即c<0,故①错误;∵抛物线的对称轴为直线x=−b2a=−2,∴4a﹣b=0,所以②正确;∵由②知,x=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,所以③正确;由函数图象知当x=﹣2时,函数取得最大值,∴4a﹣2b+c≥at2+bt+c,即4a﹣2b≥at2+bt(t为实数),故④正确;∵抛物线的开口向下,且对称轴为直线x=﹣2,∴抛物线上离对称轴水平距离越小,函数值越大,∴y1>y3>y2,故⑤正确;∵写对一个结论得20分,写错一个结论倒扣10分,∴小涛得到了70分,故选:B.【变式6-2】(2021•槐荫区一模)如图,抛物线y=ax2+bx+c(a≠0)的顶点为M(2,0).下列结论:①ac<0;②2a+b=0;③若关于x的方程ax2+bx+c﹣t=0有两个不相等的实数根,则t>0;④若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=4.其中正确的有()A.1个B.2个C.3个D.4个【解题思路】由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴上方得c>0,则可对①进行判断;根据抛物线的对称轴为直线x=−b2a=2可对②进行判断;由顶点M的坐标为(2,0)得到a+b+c=4,即4a+b+c=0,然后把4a=﹣b代入得到b=﹣c,再由判别式△>0,则可对③进行判断;由a x12+bx1=a x22+bx2得出x1,x2关于对称轴x =2对称,则可对④进行判断.【解答过程】解:①∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac>0,所以①不正确;②∵顶点M(2,0),∴抛物线的对称轴为直线x =−b 2a=2, ∴4a +b =0,所以②不正确; ③∵抛物线的顶点M 的坐标为(2,0),∴4a +2b +c =0,又∵4a +b =0,∴b +c =0,即b =﹣c ,4a =c ,∵关于x 的方程ax 2+bx +c ﹣t =0有两个不相等的实数根,∴b 2﹣4a (c ﹣t )>0,即c 2﹣c (c ﹣t )>0,得ct >0,∵c >0,∴t >0,所以③正确;④∵ax 12+bx 1=ax 22+bx 2,则a x 12+bx 1+c =a x 22+bx 2+c ,∵当x =x 1与x =x 2时,y 值相同,∴x 1,x 2关于对称轴x =2对称,则x 1+x 22=2,即x 1+x 2=4,所以④正确.故选:B .【变式6-3】(2021•肇源县模拟)二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a ),下列结论:①abc >0;②4a +2b +c >0;③5a ﹣b +c =0;④若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1; ⑤若方程|ax 2+bx +c |=2有四个根,则这四个根的和为﹣4.其中正确的结论有( )A .2个B .3个C .4个D .5个【解题思路】根据二次函数的性质一一判断即可.【解答过程】解:∵抛物线的开口向上,则a >0,对称轴在y 轴的左侧,则b >0,交y 轴的负半轴,则c <0,∴abc <0,所以①结论错误;∵抛物线的顶点坐标(﹣2,﹣9a ),∴−b 2a =−2,4ac−b 24a=−9a , ∴b =4a ,c =﹣5a ,∴抛物线的解析式为y =ax 2+4ax ﹣5a ,∴4a +2b +c =4a +8a ﹣5a =7a >0,所以②结论正确,5a ﹣b +c =5a ﹣4a ﹣5a =﹣4a <0,故③结论错误,∵抛物线y =ax 2+4ax ﹣5a 交x 轴于(﹣5,0),(1,0),∴若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1,正确,故结论④正确,若方程|ax 2+bx +c |=1有四个根,设方程ax 2+bx +c =1的两根分别为x 1,x 2,则x 1+x 22=−2,可得x 1+x 2=﹣4,设方程ax 2+bx +c =﹣1的两根分别为x 3,x 4,则x 3+x 42=−2,可得x 3+x 4=﹣4,所以这四个根的和为﹣8,故结论⑤错误,故选:A .【题型7 由几何动点问题确定函数图象】【例7】(2021•聊城)如图,四边形ABCD 中,已知AB ∥CD ,AB 与CD 之间的距离为4,AD =5,CD =3,∠ABC =45°,点P ,Q 同时由A 点出发,分别沿边AB ,折线ADCB 向终点B 方向移动,在移动过程中始终保持PQ ⊥AB ,已知点P 的移动速度为每秒1个单位长度,设点P 的移动时间为x 秒,△APQ 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A.B.C.D.【解题思路】分点Q在线段AD上,点Q在线段CD上,点Q在线段BC上,三种情况讨论,由三角形面积公式可求解析式,即可求解.【解答过程】解:如图,过点D作DE⊥AB于E,过点C作CF⊥AB于F,∴DE=CF=4,DE∥CF,∠CF A=90°,∴四边形DEFC是矩形,∴DC=EF=3,∵AD=5,DE=4,∴AE=√AD2−DE2=√25−16=3,∵∠ABC=45°,∴∠FCB=∠ABC=45°,∴CF=BF=4,∴AB=AE+EF+BF=10,AF=AE+EF=6,当点Q在线段AD上时,则0≤x≤3,y=12×x×43x=23x2,当点Q在线段CD上时,则3<x≤6,y=12×x×4=2x,当点Q在线段BC上,则6<x≤10,如图,∵AP=t,AB=10,∴BP=10﹣t,∵∠ABC=45°,QP⊥AB,∴∠PBQ=∠PQB=45°,∴PQ=PB=10﹣x,∴y=12×x×(10﹣x)=−12x2+5x,故选:B.【变式7-1】(2021•杭州模拟)如图,正方形ABCD的边长为5,动点P的运动路线为A→B →C,动点Q的运动路线为B→D.点P与Q以相同的均匀速度分别从A,B两点同时出发,当一个点到达终点且停止运动时,另一个点也随之停止.设点P运动的路程为x,△BPQ的面积为y,则y随x变化的函数图象大致是()A.B.C.D.【解题思路】分两种情况:P点在AB上运动和P点在BC上运动时;分别求出解析式即可.【解答过程】解:(1)点P在AB上运动时,0<x≤5,如右图,∵正方形ABCD的边长为5,点P与Q以相同的均匀速度分别从A,B两点同时出发,作QE⊥AB交AB于点E,则有AP=BQ=x,∠EBQ=∠EQB=45°,∴BP=5﹣x,QE=√22x,∴△BPQ的面积为:y=12BP•QE=12×(5−x)×√22x=−√24x2+5√24x(0<x≤5),∴此时图象为抛物线开口方向向下;(2)点P在BC上运动时,5<x≤5√2,如右图,∵正方形ABCD的边长为5,点P与Q以相同的均匀速度分别从A,B两点同时出发,作QE⊥BC交BC于点E,则有AP+BP=BQ=x,∠EQB=45°,∴BP=x﹣5,QE=√22x,∴△BPQ的面积为:y=12BP•QE=12×(x﹣5)×√22x=√24x2−5√24x(5<x≤5√2),∴此时图象是抛物线一部分,开口方向向上,且y随x的增大而增大;综上,只有选项B的图象符合,故选:B.【变式7-2】(2021•包河区二模)已知Rt△ABC中,∠C=90°,AC=BC=2√2,正方形EFGH中,EF=2,AB和EF在同一直线上,将△ABC向右平移,则△ABC和正方形EFGH 重叠部分的面积y与点B移动的距离x之间的函数图象大致是()A.B.C.D.【解题思路】首先确定每段与x的函数关系类型,根据函数的性质确定选项.【解答过程】解:∵∠C=90°,AC=BC=2√2,∴△ABC的底边AB边上的高为:AC•sin45°=2√2×√22=2.①当0<x≤2时,y=12x2,故第一段函数图象为开口方向向上的抛物线,可排除选项A、D;②当2<x≤4时,FB=x﹣2,AE=4﹣x,∴y=12×(2√2)2−12(x−2)2−12(4−x)2=−x2+6x﹣6,故第二段函数图象为开口方向向下的抛物线,可排除选项B;③当4<x<6时,y=12(6−x)2,故第二段函数图象为开口方向向上的抛物线,故选项C符合题意.故选:C.【变式7-3】(2021•瑶海区二模)如图,直线a、b都与直线l垂直,垂足分别为E、F,EF =1,正方形ABCD的边长为√2,对角线AC在直线l上,且点C位于点E处,将正方形ABCD沿l向右平移,直到点A与点F重合为止,记点C平移的距离为x,正方形ABCD 位于直线a、b之间部分(阴影部分)的面积为y,则y关于x的函数图象大致为()A.B.C.D.【解题思路】分0≤x<≤1、1<x≤2、2<x≤3三种情况,分别求出函数表达式,即可求解.【解答过程】解:①当0≤x≤1时,如图1,设平移后的正方形交直线a于点G、H,则EC=x,△GHC为等腰直角三角形,故GH=2x,则y=S△HGC=12×EC•GH=12•x•2x=x2,为开口向上的抛物线;②当1<x≤2时,如图2,。
二次函数经典测试题含答案解析
二次函数经典测试题含答案解析一、选择题1.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C【解析】【分析】【详解】 解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误; 根据函数对称轴可得:-2b a=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.2.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a =1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y >0,即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2b a=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ), ∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确;∵抛物线与直线y=n 有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确.故选C .【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.3.将抛物线243y x x =-+平移,使它平移后图象的顶点为()2,4-,则需将该抛物线( )A .先向右平移4个单位,再向上平移5个单位B .先向右平移4个单位,再向下平移5个单位C .先向左平移4个单位,再向上平移5个单位D .先向左平移4个单位,再向下平移5个单位【答案】C【解析】【分析】先把抛物线243y x x =-+化为顶点式,再根据函数图象平移的法则进行解答即可. 【详解】∵抛物线243y x x =-+可化为()221y x =--∴其顶点坐标为:(2,−1),∴若使其平移后的顶点为(−2,4)则先向左平移4个单位,再向上平移5个单位. 故选C.【点睛】本题考查二次函数图像,熟练掌握平移是性质是解题关键.4.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( )A .0ac <B .3是关于x 的方程()210ax b x c +-+=的一个根;C .当1x >时,y 的值随x 值的增大而减小;D .当13x -<<时,()210.ax b x c +-+>【答案】C【解析】【分析】根据函数中的x 与y 的部分对应值表,可以求得a 、b 、c 的值 然后在根据函数解析式及其图象即可对各个选项做出判断.【详解】解:根据二次函数的x 与y 的部分对应值可知:当1x =-时,1y =-,即1a b c -+=-,当0x =时,3y =,即3c =,当1x =时,5y =,即5a b c ++=,联立以上方程:135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得:133a b c =-⎧⎪=⎨⎪=⎩,∴233y x x =-++;A 、1330=-⨯=-<ac ,故本选项正确;B 、方程()210ax b x c +-+=可化为2230x x -++=, 将3x =代入得:232339630-+⨯+=-++=,∴3是关于x 的方程()210ax b x c +-+=的一个根,故本选项正确; C 、233y x x =-++化为顶点式得:2321()24=--+y x , ∵10a =-<,则抛物线的开口向下, ∴当32x >时,y 的值随x 值的增大而减小;当32x <时,y 的值随x 值的增大而增大;故本选项错误; D 、不等式()210ax b x c +-+>可化为2230x x -++>,令2y x 2x 3=-++, 由二次函数的图象可得:当0y >时,13x -<<,故本选项正确;故选:C .【点睛】本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键.5.函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,则8x =时,函数值等于( )A .5B .52-C .52D .-5【答案】A【解析】【分析】根据二次函数的对称性,求得函数25y ax bx =++(0)a ≠的对称轴,进而判断与8x =的函数值相等时x 的值,由此可得结果.【详解】∵函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,∴函数25y ax bx =++(0)a ≠的对称轴为:1742x +==, ∴8x =与0x =的函数值相等,∴当8x =时,250055y ax bx a b =++=⨯+⨯+=,即8x =时,函数值等于5,故选:A .【点睛】本题主要考查二次函数的图象和对称性.掌握二次函数的对称性和对称轴的求法,是解题的关键.6.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c <0;②a ﹣b +c >1;③abc >0;④9a ﹣3b +c <0;⑤c ﹣a >1.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D【解析】【分析】 根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可.【详解】由图象可知,a <0,c=1,对称轴:x=b12a-=-, ∴b=2a , ①由图可知:当x=1时,y <0,∴a+b+c <0,正确;②由图可知:当x=−1时,y >1,∴a −b+c >1,正确;③ab c=2a 2>0,正确;④由图可知:当x=−3时,y <0,∴9a −3b+c <0,正确;⑤c−a=1−a >1,正确;∴①②③④⑤正确.故选:D .【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.7.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )A .①④B .②④C .②③D .①②③④【答案】A【解析】【分析】 ①抛物线与x 轴由两个交点,则240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,所以0abc >,故②错误;③对称轴:直线12b x a=-=-,2b a =,所以24a b c a c +-=-,240a b c a c +-=-<,故③错误;④对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,则抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.【详解】解:①∵抛物线与x 轴由两个交点,∴240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,∴0abc >,故②错误;③∵对称轴:直线12b x a=-=-, ∴2b a =,∴24a b c a c +-=-,∵0a <,40a <, 0c >,0a <,∴240a b c a c +-=-<,故③错误;④∵对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,∴抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.故选:A .【点睛】本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.8.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论:(1)4a +2b +c <0;(2)方程ax 2+bx +c =0两根都大于零;(3)y 随x 的增大而增大;(4)一次函数y =x +bc 的图象一定不过第二象限.其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 由图可知,x=2时函数值小于0,故(1)正确,函数与x 轴的交点为x=1.x=3,都大于0,故(2)正确 ,由图像知(3)错误,由图象开口向上,a >0,与y 轴交于正半轴,c >0,对称轴x=﹣=1,故b <0,bc <0,即可判断一次函数y =x +bc 的图象. 【详解】①由x =2时,y =4a +2b +c ,由图象知:y =4a +2b +c <0,故正确;②方程ax 2+bx +c =0两根分别为1,3,都大于0,故正确;③当x <2时,由图象知:y 随x 的增大而减小,故错误;④由图象开口向上,a >0,与y 轴交于正半轴,c >0,x=﹣=1>0,∴b <0, ∴bc <0,∴一次函数y =x +bc 的图象一定过第一、三、四象限,故正确;故正确的共有3个,故选:C .【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.9.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( )A .4B .3C .2D .1【答案】B【解析】【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④.【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确;∵抛物线的对称轴为直线x=1,且抛物线开口向上,∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半,∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c ,∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+= 解得:72c =或4c = ∵4c <, ∴72c =,故④错误, ∴正确的有①②③,故选:B .【点睛】 本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.10.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,∴选项B 符合题意,选项A 不合题意.故选B .【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.11.已知二次函数223(0)y ax ax a a =--≠,关于此函数的图象及性质,下列结论中不一定成立的是( )A .该图象的顶点坐标为()1,4a -B .该图象与x 轴的交点为()()1,0,3,0-C .若该图象经过点()2,5-,则一定经过点()4,5D .当1x >时,y 随x 的增大而增大【答案】D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】解:y=a (x 2-2x-3)=a (x-3)(x+1)令y=0,∴x=3或x=-1,∴抛物线与x 轴的交点坐标为(3,0)与(-1,0),故B 成立;∴抛物线的对称轴为:x=1,令x=1代入y=ax 2-2ax-3a ,∴y=a-2a-3a=-4a ,∴顶点坐标为(1,-4a ),故A 成立;由于点(-2,5)与(4,5)关于直线x=1对称,∴若该图象经过点(-2,5),则一定经过点(4,5),故C 成立;当x >1,a >0时,y 随着x 的增大而增大,当x >1,a <0时,y 随着x 的增大而减少,故D 不一定成立;故选:D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.12.如图,四边形ABCD 是正方形,8AB =,AC 、BD 交于点O ,点P 、Q 分别是AB 、BD 上的动点,点P 的运动路径是AB BC →,点Q 的运动路径是BD ,两点的运动速度相同并且同时结束.若点P 的行程为x ,PBQ △的面积为y ,则y 关于x 的函数图象大致为( )A .B .C .D .【答案】A【解析】【分析】 分点P 在AB 边和BC 边上两种情况画出图形,分别求出y 关于x 的函数关系式,再结合其取值范围和图象的性质判断即可.【详解】解:当点P 在AB 边上,即08x ≤≤时,如图1,由题意得:AP=BQ=x ,∠ABD =45°,∴ BP =8-x ,过点Q 作QF ⊥AB 于点F ,则QF =2222BQ x =, 则2122(8)22224y x x x x =-⋅=-+,此段抛物线的开口向下;当点P 在BC 边上,即882x <≤时,如图2,由题意得:BQ=x ,BP=x -8,∠CBD =45°, 过点Q 作QE ⊥BC 于点E ,则QE =2222BQ x =, 则2122(8)22224y x x x x =-⋅=-,此段抛物线的开口向上. 故选A. 【点睛】本题以正方形为依托,考查了动点问题的函数图象、正方形的性质、等腰直角三角形的性质和二次函数的图象等知识,分情况讨论、正确列出二次函数的关系式是解题的关键.13.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是( )A .斜坡的坡度为1: 2B .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .当小球抛出高度达到7.5m 时,小球距O 点水平距离为3m 【答案】D 【解析】 【分析】求出抛物线与直线的交点,判断A 、C ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出当7.5y =时,x 的值,判定D . 【详解】解:214212y xxy x⎧=-+⎪⎪⎨⎪=⎪⎩,解得,11xy=⎧⎨=⎩,22772xy=⎧⎪⎨=⎪⎩,72∶7=1∶2,∴A正确;小球落地点距O点水平距离为7米,C正确;2142y x x=-21(4)82x=--+,则抛物线的对称轴为4x=,∴当4x>时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,当7.5y=时,217.542x x=-,整理得28150x x-+=,解得,13x=,25x=,∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5m,D错误,符合题意;故选:D【点睛】本题考查的是解直角三角形的-坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.14.如图,已知将抛物线21y x=-沿x轴向上翻折与所得抛物线围成一个封闭区域(包括边界),在这个区域内有5个整点(点M满足横、纵坐标都为整数,则把点M叫做“整点”).现将抛物线()()2120y a x a=++<沿x轴向下翻折,所得抛物线与原抛物线所围成的封闭区域内(包括边界)恰有11个整点,则a的取值范围是()A .1a ≤-B .12a ≤-C .112a -<≤D .112a -≤<-【答案】D 【解析】 【分析】画出图象,利用图象可得m 的取值范围 【详解】 解:∵ ()()2120y a x a =++<∴该抛物线开口向下,顶点(-1,2),对称轴是直线x=-1.∴点(-1,2)、点(-1,1)、点(-1, 0)、点(-1,-1)、点(-1,-2)符合题意,此时x 轴.上的点(-2, 0)、(0, 0)也符合题意,将(0,1)代入()()2120y a x a =++<得到1=a+2.解得a=-1. 将(1, 0)代入()()2120y a x a =++<得到0= 4a+2.解得a=1-2∵有11个整点,∴点(0,-1)、点(-2, -1)、点(-2,1)、点(0,1)也必须符合题意.综上可知:当1-1a<-2≤ 时,点(-1,2)、点(-1,1)、点(-1, 0)、点(-1,-1)、点(-1,-2)、点(-2, 0)、(0,0)、点(0,-1)、点(-2,-1)、点(-2,1)、点(0, 1),共有11个整点符合题意, 故选: D. 【点睛】本题考查了二次函数图象与系数的关系,抛物线与x 轴的交点的求法,利用图象解决问题是本题的关键.15.二次函数y =ax 2+bx +c (a ≠0)中的x 与y 的部分对应值如下表:给出以下结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当﹣12<x<2时,y<0;(3)已知点A(x1,y1)、B(x2,y2)在函数的图象上,则当﹣1<x1<0,3<x2<4时,y1>y2.上述结论中正确的结论个数为()A.0 B.1 C.2 D.3【答案】B【解析】【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(2)从表格可以看出,当﹣12<x<2时,y<0,符合题意;(3)﹣1<x1<0,3<x2<4时,x2离对称轴远,故错误,不符合题意;故选择:B.【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.16.已知抛物线y=x2+2x上三点A(﹣5,y1),B(2.5,y2),C(12,y3),则y1,y2,y3满足的关系式为()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y2【答案】C【解析】【分析】首先求出抛物线y=x2+2x的对称轴,对称轴为直线x=-1;然后根据A、B、C的横坐标与对称轴的位置,接着利用抛物线的增减性质即可求解;由B离对称轴最近,A次之,C最远,则对应y的值大小可确定.【详解】∵抛物线y=x2+2x,∴x=-1,而A(-5,y1),B(2.5,y2),C(12,y3),∴B离对称轴最近,A次之,C最远,∴y2<y1<y3.故选:C.【点睛】本题考查了二次函数的图象和性质,二次函数图象上点的坐标特征等知识点,能熟记二次函数的性质是解此题的关键.17.下列函数(1)y=x(2)y=2x﹣1 (3)y=1x(4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y=x是一次函数,符合题意;(2)y=2x﹣1是一次函数,符合题意;(3)y=1x是反比例函数,不符合题意;(4)y=2﹣3x是一次函数,符合题意;(5)y=x2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B.【点睛】此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.18.在函数2yx=,3y x=+,2y x=的图象中,是中心对称图形,且对称中心是原点的图象共有()A.0个B.1个C.2个D.3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】y=x+3的图象是中心对称图形,但对称中心不是原点;y=x2图象不是中心对称图形;只有函数2yx=符合条件.故选:B.【点睛】本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.19.已知二次函数y =ax 2+bx+c (a≠0)的图象如图,分析下列四个结论:①abc <0;②b 2﹣4ac >0;③3a+c >0;④(a+c )2<b 2,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B 【解析】试题解析:①由开口向下,可得0,a < 又由抛物线与y 轴交于正半轴,可得0c >,再根据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc , 故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确; ③当2x =-时,0,y < 即420a b c -+< ……(1) 当1x =时,0y <,即0a b c ++< ……(2) (1)+(2)×2得,630a c +<, 即20a c +<, 又因为0,a <所以()230a a c a c ,++=+< 故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+> 所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦所以22().a c b +< 故④正确,综上可知,正确的结论有2个. 故选B .20.在同一坐标系中,二次函数2y ax bx =+与一次函数y bx a =-的图像可能是( )A.B.C.D.【答案】C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为负,交y轴于负半轴.如此分析下来,二次函数与一次函数无矛盾者为正确答案.【详解】解:由方程组2y ax bxy bx a⎧=+⎨=-⎩得ax2=−a,∵a≠0∴x2=−1,该方程无实数根,故二次函数与一次函数图象无交点,排除B.A:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;但是一次函数b为一次项系数,图象显示从左向右上升,b>0,两者矛盾,故A错;C:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;b为一次函数的一次项系数,图象显示从左向右下降,b<0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错.故选C.【点睛】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上.。
题型九 二次函数综合题 类型一 二次函数公共点问题(专题训练)(解析版)
题型九 二次函数综合题类型一 二次函数公共点问题(专题训练)1.已知抛物线2y ax bx c =++(a ,b ,c 是常数),0a b c ++=,下列四个结论:①若抛物线经过点()3,0-,则2b a =;②若b c =,则方程20cx bx a ++=一定有根2x =-;③抛物线与x 轴一定有两个不同的公共点;④点()11,A x y ,()22,B x y 在抛物线上,若0a c <<,则当121x x <<时,12y y >.其中正确的是__________(填写序号).【答案】①②④【分析】①将()3,0-代入解析式即可判定;②由b=c ,可得a=-2c ,cx 2+bx+a=0可得cx 2+cx-2c=0,则原方程可化为x 2+x-2=0,则一定有根x=-2;③当b 2-4ac ≤0时,图像与x 轴少于两个公共点,只有一个关于a ,b ,c 的方程,故存在a 、b 、c 使b 2-4ac ≤0≤0,故③错误;④若0<a<c ,则有b<0且|b|>|c|>|a|,|b|>2|a|,所以对称轴12b a->,因为a>0在对称轴左侧,函数单调递减,所以当x 1<x 2<1时,y 1>y 2,故④正确.【详解】解:∵抛物线经过点()3,0-∴()2033a b c =--+,即9a-3b+c=0∵0a b c ++=∴b=2a故①正确;∵b=c ,0a b c ++=∴a=-2c ,∵cx 2+bx+a=0∴cx 2+cx-2c=0,即x 2+x-2=0∴一定有根x=-2故②正确;当b 2-4ac ≤0时,图像与x 轴少于两个公共点,只有一个关于a 、b 、c 的方程,故存在a 、b 、c 使b 2-4ac ≤0,故③错误;若0<a<c ,则有b<0且|b|>|c|>|a|,|b|>2|a|,所以对称轴12b a->,因为a>0在对称轴左侧,函数单调递减,所以当x 1<x 2<1时,y 1>y 2,故④正确.故填:①②④.【点睛】本题主要考查二次函数的图像与性质以及二元一次方程,灵活运用二次函数的图像与性质成为解答本题的关键.2.已知抛物线2y x bx c =++.(1)如图①,若抛物线图象与x 轴交于点()3,0A ,与y 轴交点()0,3B -.连接AB .①求该抛物线所表示的二次函数表达式;②若点P 是抛物线上一动点(与点A 不重合),过点P 作PH x ^轴于点H ,与线段AB 交于点M .是否存在点P 使得点M 是线段PH 的三等分点?若存在,请求出点P 的坐标;若不存在,请说明理由.(2)如图②,直线43y x n =+与y 轴交于点C ,同时与抛物线2y x bx c =++交于点()3,0D -,以线段CD 为边作菱形CDFE ,使点F 落在x 轴的正半轴上,若该抛物线与线段CE 没有交点,求b 的取值范围.【答案】(1)①223y x x =--,②存在,点P 坐标为(2,-3)或(12,-154),理由见解析(2)b<32-或b>133【分析】(1)①直接用待定系数法求解;②先求出直线AB 的解析式,设点M(m ,m-3)点P(m ,m 2-2m-3)若点M 是线段PH 的三等分点,则13HM HP =或23HM HP =,代入求解即可;(2)先用待定系数法求出n 的值,再利用勾股定理求出CD 的长为5,因为四边形CDFE 是菱形,由此得出点E 的坐标.再根据该抛物线与线段CE 没有交点,分两种情况(CE 在抛物线内和CE 在抛物线右侧)进行讨论,求出b 的取值范围.(1)①解:把()3,0A ,()0,3B -代入2y x bx c =++,得20333b c c ì=++í-=î,解得:23b c =-ìí=-î,∴223y x x =--②解:存在,理由如下,设直线AB 的解析式为y=kx+b ,把()3,0A , ()0,3B -代入,得303k b b +=ìí=-î,解得13k b =ìí=-î,∴直线AB 的解析式为y=x-3,设点M(m ,m-3)、点P (m ,m 2-2m-3)若点M 是线段PH 的三等分点,则13HM HP =或23HM HP =,即232331m m m -=--或232332m m m -=--,解得:m=2或m=12或m=3,经检验,m=3是原方程的增根,故舍去,∴m=2或m=12∴点P 坐标为(2,-3)或(12,-154)(2)解:把点D (-3,0)代入直线43y x n =+,解得n=4,∴直线443y x =+,当x=0时,y=4,即点C (0,4)∴,∵四边形CDFE 是菱形,∴CE=EF=DF=CD=5,∴点E (5,4)∵点()3,0D -在抛物线2y x bx c =++上,∴(-3)2-3b+c=0,∴c=3b-9,∴239y b x bx =++-,∵该抛物线与线段CE 没有交点,分情况讨论当CE 在抛物线内时52+5b+3b-9<4解得:b<32-当CE 在抛物线右侧时,3b-9>4解得:b>133综上所述,b<32-或b>133【点睛】此题考查了二次函数和一次函数以及图形的综合,解题的关键是数形结合和分情况讨论3.已知抛物线2y x c =--+经过点(0,2),且与x 轴交于A 、B 两点.设k 是抛物线2y x c =--+与x 轴交点的横坐标;M 是抛物线2y x c =--+的点,常数m>0,S 为△ABM 的面积.已知使S=m 成立的点M 恰好有三个,设T 为这三个点的纵坐标的和.(1)求c 的值;(2)直接写出T 的值;(3)求486422416k k k k k ++++的值.【答案】(1)2(2)114-(3)150【分析】(1)将点(0,2)带入直接求解;(2)找到三个点M 的纵坐标之间的而关系,即可求解;(3)将函数转化为方程,即可表示出22242(47k k k k+=-+=,42242164()841k k k k +=+-=,带入原式即可求解.(1)解:∵将点(0,2)带入2y x c =--+得:2c =.(2)由(1)可知,抛物线的解析式为22y x =--+,∵当S=m 时恰好有三个点M 满足,∴必有一个M 为抛物线的顶点,且M 纵坐标互为相反数.当x ==211((24y =-+=.即此时M(,114 ),则另外两个点的纵坐标为114-.∴11111111()(4444T =+-+-=-.(3)由题可知,220k -+=,则2k k -=∴2242224242164()47(841k k k k k k k k +=-+=+=+-=,则48642424224421141616424162()()2k k k k k k k k k k k k k==++++++++++++11417250==++.【点睛】本题考查二次函数的性质、二次函数与方程的关系、代数式求值等,属于综合题目,灵活运用代数计算是解题的关键.4.已知抛物线221(0)y ax x a =-+¹的对称轴为直线1x =.(1)求a 的值;(2)若点M (x 1,y 1),N (x 2,y 2)都在此抛物线上,且110x -<<,212x <<.比较y 1与y 2的大小,并说明理由;(3)设直线(0)y m m =>与抛物线221y ax x =-+交于点A 、B ,与抛物线23(1)y x =-交于点C ,D ,求线段AB 与线段CD 的长度之比.【答案】(1)1a =;(2)12y y >,见解析;(3【分析】(1)根据对称轴2b x a=-,代值计算即可(2)根据二次函数的增减性分析即可得出结果(3)先根据求根公式计算出1x =±|1(1)|AB =-,12CD x x =-==【详解】解:(1)由题意得:212x a-=-=1a \=(2)Q 抛物线对称轴为直线1x =,且10a =>\当1x <时,y 随x 的增大而减小,当1x >时,y 随x 的增大而增大.\当111x -<<时,y 1随x 1的增大而减小,Q 1x =-时,4y =,0x =时,1y =114y \<<同理:212x <<时,y 2随x 2的增大而增大1x =Q 时,0y =.2x =时,1y =201y \<<12y y \>(3)令221x x m-+=22(1)0x x m -+-=2(2)41(1)m D =--××-4m=1x \==±11x \=21x =+|1(1)|AB \=+-+=令23(1)x m -=2(1)3mx \-=11x \=+21x =+12CD x x \=-=AB CD \==\AB 与CD 【点睛】本题考查二次函数的图像性质、二次函数的解析式、对称轴、函数的交点、正确理解二次函数的性质是关键,利用交点的特点解题是重点5.抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,且()()1,0,0,3B C -.(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于直线AC 上方的一点,BP 与AC 相交于点E ,当:1:2PE BE =时,求点P 的坐标;(3)如图2,点D 是抛物线的顶点,将抛物线沿CD 方向平移,使点D 落在点D ¢处,且2DD CD ¢=,点M 是平移后所得抛物线上位于D ¢左侧的一点,//MN y 轴交直线OD ¢于点N ,连结CN D N CN ¢+的值最小时,求MN 的长.【答案】(1)2y x 2x 3=-++;(2)(1,4)P 或(2,3)P ;(3)34.【分析】(1)利用待定系数法即可得;(2)设点P 的坐标为2(,23)P a a a -++,先利用待定系数法求出直线AC 的解析式,再根据:1:2PE BE =可得点E 的坐标,代入直线AC 的解析式求解即可得;(3)先根据2DD CD ¢=求出点D ¢的坐标,再根据二次函数图象的平移规律得出平移后的函数解析式,设点M 的坐标,从而可得点N 的坐标,然后根据两点之间的距离公式可得N CN ¢+,最后根据两点之间线段最短、垂线段最短求解即可得.【详解】解:(1)由题意,将点()()1,0,0,3B C -代入2y x bx c =-++得:103b c c --+=ìí=î,解得23b c =ìí=î,则抛物线的解析式为2y x 2x 3=-++;(2)对于二次函数2y x 2x 3=-++,当0y =时,2230x x -++=,解得1x =-或3x =,(3,0)A \,设点P 的坐标为2(,23)(03)P a a a a -++<<,点E 的坐标为11(,)E x y ,:1:2,(1,0)PE BE B =-Q ,1121111223102a x x a a y y -ì=ï+ï\í-++-ï=ï-î,解得121213324233x a y a a ì=-ïïíï=-++ïî,22124(,2)3333E a a a \--++,设直线AC 的解析式为y kx t =+,将点(3,0),(0,3)A C 代入得:303k t t +=ìí=î,解得13k t =-ìí=î,则直线AC 的解析式为3y x =-+,将点22124(,2)3333E a a a --++代入得:22124323333a a a -++=-++,解得1a =或2a =,当1a =时,2231234a a -++=-++=,此时(1,4)P ,当2a =时,22342233a a -++=-+´+=,此时(2,3)P ,综上,点P 的坐标为(1,4)P 或(2,3)P ;(3)二次函数2223(1)4y x x x =-++=--+的顶点D 坐标为(1,4)D ,设点D ¢的坐标为22(,)D x y ¢,2,(0,3),(1,4)DD C D D C ¢=Q ,2212104243x y -ì=ïï-\í-ï=ï-î,解得2236x y =ìí=î,(3,6)D ¢\,则平移后的二次函数的解析式为22(3)663y x x x =--+=-+-,设直线OD ¢的解析式为0y k x =,将点(3,6)D ¢代入得:036k =,解得02k =,则直线OD ¢的解析式为2y x =,设点M 的坐标为2(,63)(3)M m m m m -+-<,则点N 的坐标为(,2)N m m ,如图,连接AD ¢,过点N 作NF AD ¢^于点F ,过点C 作CG AD ¢^于点G ,交OD ¢于点N ¢,连接CF ,(3,0),(3,6)D A ¢Q ,AD x ¢\^轴,3FN m \=-,3D N CN CN m CN FN CN ¢+==-+=+,由两点之间线段最短得:FN CN +的最小值为CF,由垂线段最短得:当点F 与点G 重合时,CF 取得最小值CG ,此时点N 与点N ¢重合,则点N ¢的纵坐标与点C 的纵坐标相等,即23m =,解得32m =,则2263243MN m m m m m =-+--=-+-,233(4322=-+´-,34=.【点睛】本题考查了利用待定系数法求二次函数的解析式、二次函数图象的平移规律、垂线段最短等知识点,较难的是题(3),正确求出平移后的抛物线的解析式是解题关键.6.已知二次函数2y ax bx c =++的图象开口向上,且经过点30,2A æöç÷èø,12,2B æö-ç÷èø.(1)求b 的值(用含a 的代数式表示);(2)若二次函数2y ax bx c =++在13x ££时,y 的最大值为1,求a 的值;(3)将线段AB 向右平移2个单位得到线段A B ¢¢.若线段A B ¢¢与抛物线241y ax bx c a =+++-仅有一个交点,求a 的取值范围.【答案】(1)21(0)b a a =-->;(2)56;(3)1344a ££【分析】(1)利用待定系数法将点A 、B 的坐标代入即可(2)根据抛物线图像分析得在13x ££范围内,y 的最大值只可能在1x =或3x =处取得,进行分类讨论①若12y y <时,②若12y y =,③12y y >,计算即可(3)先利用待定系数法写出直线AB 的解析式,再写出平移后的解析式,若线段A B ¢¢与抛物线241y ax bx c a =+++-仅有一个交点,即方程217(21)422ax a x a x -+++=-+在24x ££的范围内仅有一个根,只需当2x =对应的函数值小于或等于0,且4x =对应的函数值大于或等于即可.【详解】(1)∵抛物线2y ax bx c =++过点30,2A æöç÷èø,12,2B æö-ç÷èø,∴321422c a b c ì=ïïíï++=-ïî,∴314222a b ++=-,∴21(0)b a a =-->.(2)由(1)可得23(21)2y ax a x =-++,在13x ££范围内,y 的最大值只可能在1x =或3x =处取得.当1x =时,112y a =-+,当3x =时,2332y a =-.①若12y y <时,即13322a a -+<-时,得12a >,∴312a -=,得56a =.②若12y y =,即13322a a -+=-时,得12a =,此时1201y y ==¹,舍去.③12y y >,即13322a a -+>-时,得102a <<,∴112a -+=,12a =-,舍去.∴综上知,a 的值为56.(3)设直线AB 的解析式为y mx n =+,∵直线AB 过点30,2A æöç÷èø,12,2B æö-ç÷èø,∴32122n m n ì=ïïíï+=-ïî,∴1m =-,∴32y x =-+.将线段AB 向右平移2个单位得到线段A B ¢¢,∴A B ¢¢的解析式满足3(2)2y x =--+,即72y x =-+.又∵抛物线的解析式为241y ax bx c a =+++-,∴21(21)42y ax a x a =-+++.又∵线段A B ¢¢与抛物线241y ax bx c a =+++-在24x ££范围内仅有一个交点,即方程217(21)422ax a x a x -+++=-+在24x ££的范围内仅有一个根,整理得22430ax ax a -+-=在24x ££的范围内仅有一个根,即抛物线2243y ax ax a =-+-在24x ££的范围内与x 轴仅有一个交点.只需当2x =对应的函数值小于或等于0,且4x =对应的函数值大于或等于即可.即2x =时,44430a a a -+-£,得34a £,当4x =时,168430a a a -+-³,得14a ³, 综上a 的取值范围为1344a ££.【点睛】本题考查一次函数解析式、二次函数解析式、二次函数的最值、图像与x 轴的交点与方程的根的情况、熟练掌握二次函数的图像知识是解题的关键。
初中数学二次函数的应用题型分类——商品销售利润问题( 附答案)
初中数学二次函数的应用题型分类——商品销售利润问题(附答案)1. 某网店经营一种品牌水果, 其进价为10元/千克, 保鲜期为25天, 每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式;(2)当该品牌水果定价为多少元时, 每天销售所获得的利润最大?(3)若该网店一次性购进该品牌水果3000千克, 根据(2)中每天获得最大利润的方式进行销售, 发现在保鲜期内不能及时销售完毕, 于是决定在保鲜期的最后5天一次性降价销售, 求最后5天每千克至少降价多少元才能全部售完?2. 特产店销售一种水果, 其进价每千克40元, 按60元出售, 平均每天可售100千克, 后来经过市场调查发现, 单价每降低2元, 则平均每天可增加20千克销量.(1)若该专卖店销售这种核桃要想平均每天获利2240元, 每千克水果应降多少元?(2)若该专卖店销售这种核桃要想平均每天获利最大, 每千克水果应降多少元?3.某文具店购进A, B两种钢笔, 若购进A种钢笔2支, B种钢笔3支, 共需90元;购进A种钢笔3支, B种钢笔5支, 共需145元.(1)求该文具店购进A.B两种钢笔每支各多少元?(2)经统计, B种钢笔售价为30元时, 每月可卖64支;每涨价3元, 每月将少卖12支, 求该文具店B种钢笔销售单价定为多少元时, 每月获利最大?最大利润是多少元?4.某公司可投入研发费用80万元(80万元只计入第一年成本), 成功研发出一种产品, 公司按订单生产(产量=销售量), 第一年该产品正式投产后, 生产成本为8元/件, 此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+28.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元, 那么该产品第一年的售价是多少?(3)第二年, 该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发, 使产品的生产成本降为6元/件, 为保持市场占有率, 公司规定第二年产品售价不超过第一年的售价, 另外受产能限制, 销售量无法超过14万件, 请计算该公司第二年的利润W2至少为多少万元.5.某实验器材专营店为迎接我市理化生实验的到来, 购进一批电学实验盒子, 一台电学实验盒的成本是30元, 当售价定为每盒50元时, 每天可以卖出20盒.但由于电学实验盒是特殊时期的销售产品, 专营店准备对它进行降价销售.根据以往经验, 售价每降低3元, 销量增加6盒.设售价降低了x(元), 每天销量为y(盒).(1)求y与x之间的函数表达式;日销售利润w875 1875 1875 875(元)(注: 日销售利润=日销售量×(销售单价﹣成本单价))(1)求y与x的函数关系式;(2)当销售单价x为多少元时, 日销售利润w最大?最大利润是多少元?(3)当销售单价x为多少元时, 日销售利润w在1500元以上?(请直接写出x的范围)7. 某公司销售一批产品, 进价每件50元, 经市场调研, 发现售价为60元时, 可销售800件, 售价每提高1元, 销售量将减少25件.公司规定:售价不超过70元.(1)若公司在这次销售中要获得利润10800元, 问这批产品的售价每件应提高多少元?(2)若公司要在这次销售中获得利润最大, 问这批产品售价每件应定为多少元?8.某公司开发了一种新型的家电产品, 又适逢“家电下乡”的优惠政策.现投资万元用于该产品的广告促销, 已知该产品的本地销售量(万台)与本地的广告费用(万元)之间的函数关系满足.该产品的外地销售量(万台)与外地广告费用(万元)之间的函数关系可用如图所示的抛物线和线段来表示.其中点为抛物线的顶点.结合图象, 求出(万台)与外地广告费用(万元)之间的函数关系式;()2求该产品的销售总量y(万台)与本地广告费用x(万元)之间的函数关系式;如何安排广告费用才能使销售总量最大?9.某电子厂生产一种新型电子产品, 每件制造成本为20元, 试销过程中发现, 每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时, 厂商每月获得的利润为400万元?(3)根据相关部门规定, 这种电子产品的销售单价不能高于40元, 如果厂商每月的制造成本不超过520万元, 那么当销售单价为多少元时, 厂商每月获得的利润最大?最大利润为多少万元?10.某灯具厂生产并销售A, B两种型号的智能台灯共100盏, 生产并销售一盏A型智能台灯可以获利30元;如果生产并销售不超过20盏B型台灯, 则每盏B型台灯可以获利90元, 如果超出20盏B型台灯, 则每超出1盏, 每盏B型台灯获利将均减少2元.设生产并销售B型台灯x盏.(其中x>20)(2)当A型台灯所获得的利润比B型台灯所获得利润少200元时, 求生产并销售A, B 两种台灯各多少盏?(3)如何设计生产销售方案可以获得最大利润, 最大的利润为多少元?11.某商场销售一批名牌衬衫:平均每天可售出20件, 每件盈利40元, 为了扩大销售量, 增加盈利, 尽快减少库存, 商场决定采取适当的降价促销措施, 经市场调查发现:如果每件衬衫降价1元, 那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式;(1)请直接写出a的值为;(2)从第21天到第40天中, 求q与x满足的关系式;(3)若该网店第x天获得的利润y元, 并且已知这40天里前20天中y与x的函数关系式为y=﹣x2+15x+500i请直接写出这40天中p与x的关系式为: ;ii求这40天里该网店第几天获得的利润最大?13. 某工厂生产甲、乙两种产品, 已知生产1吨产品甲需要2吨原材料A;生产1吨产品乙需要3吨原材料A. 根据市场调研, 产品甲、乙所获利润y(万元)与其产量x(吨)之间分别满足函数关系:产品甲:y=ax2+bx且x=2时, y=2.6;x=3时, y=3.6产品乙: y=0.3x(1)求产品甲所获利润y(万元)与其产量x(吨)之间满足的函数关系;(2)若现原材料A共有20吨, 请设计方案, 应怎样分配给甲、乙两种产品组织生产, 才能使得最终两种产品的所获利润最大.14. 某商场销售一批衬衫, 平均每天可售出20件, 每件盈利40元. 为了扩大销售, 增加盈利, 商场采取了降价措施. 假设在一定范围内, 衬衫的单价每降1元, 商场平均每天可多售出2件, 设衬衫的单价降x元, 每天获利y元.(1)如果商场里这批衬衫的库存只有44件, 那么衬衫的单价应降多少元, 才能使得这批衬衫一天内售完, 且获利最大, 最大利润是多少?种成本为25元/件的新型商品.在40天内, 其销售单价n(元/件)与时间x(天)的关系式是:当1≤x≤20时, ;当21≤x≤40时, .这40天中的日销售量m(件)与时间x(天)符合函数关系, 具体情况记录如下表(天数为整数):时间x(天)日销售量m(件)45 40 35 30 25 …(1)请求出日销售量m(件)与时间x(天)之间的函数关系式;(2)若设该同学微店日销售利润为w元, 试写出日销售利润w(元)与时间x(天)的函数关系式;16.某体育用品商店试销一款成本为50元的排球, 规定试销期间单价不低于成本价, 且获利不得高于40%.经试销发现, 销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元, 试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时, 该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元, 请确定销售单价x的取值范围.销售单价q(元/件)与x满足: 当1≤x<25时q=x+60;当25≤x≤50时q=40+ . (1)请分析表格中销售量p与x的关系, 求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(1)请你根据表中的数据, 用所学知识确定与之间的函数表达式;(2)该商店应该如何确定这批文具盒的销售价格, 才能使日销售利润最大?(3)根据(2)中获得最大利润的方式进行销售, 判断一个月能否销售完这批文具盒, 并说明理由.20. 某工厂加工一种商品, 每天加工件数不超过100件时, 每件成本80元, 每天加工超过100件时, 每多加工5件, 成本下降2元, 但每件成本不得低于70元.设工厂每天加工商品x(件), 每件商品成本为y(元),(1)求出每件成本y(元)与每天加工数量x(件)之间的函数关系式, 并注明自变量的取值范围;(2)若每件商品的利润定为成本的20%, 求每天加工多少件商品时利润最大, 最大利润是多少?21.家用电器开发公司研制出一种新型电子产品, 每件的生产成本为18元, 按定价40元出售, 每月可销售20万件, 为了增加销量, 公司决定采取降价的办法, 经过市场调研, 每降价1元, 月销售量可增加2万件.(1)求出月销售利润W(万元)与销售单价x(元)之间的函数关系式.(2)为了获得最大销售利润, 每件产品的售价定为多少元?此时最大月销售利润是多少?(3)请你通过(1)中函数关系式及其大致图象帮助公司确定产品的销售单价范围, 使月销售利润不低于480万元.22.城隍庙是宁波市的老牌商业中心, 城隍庙商业步行街某商场购进一批品牌女装, 购进时的单价是600元, 根据市场调查, 在一段时间内, 销售单价是800元时, 销售量是200件, 销售单价每降低10元, 就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌女装获得的利润W(元)与销售单价x(元)之间的函数关系式;倍,且y是x的二次函数,它们的关系如下表:x(10万元)y 1 1.5 1.8 …(1)求y与x的函数关系式;(2)如果把利润看做是销售总额减去成本费和广告费, 试写出年利润S(10万元)与广告费x(10万元)的函数关系式;(3)如果投入的年广告费为10~30万元, 问广告费在什么范围内, 公司获得的年利润随广告费的增大而增大?24.绿色生态农场生产并销售某种有机产品, 每日最多生产130kg, 假设生产出的产品能全部售出, 每千克的销售价y1(元)与产量x(kg)之间满足一次函数关系y1=﹣x+168, 生产成本y2(元)与产量x(kg)之间的函数图象如图中折线ABC所示.(1)求生产成本y2(元)与产量x(kg)之间的函数关系式;(2)求日利润为W(元)与产量x(kg)之间的函数关系式;(3)当产量为多少kg时, 这种产品获得的日利润最大?最大日利润为多少元?25.新鑫公司投资3000万元购进一条生产线生产某产品, 该产品的成本为每件40元, 市场调查统计:年销售量y(万件)与销售价格x(元)(40≤x≤80, 且x为整数)之间的函数关系如图所示.(1)直接写出y与x之间的函数关系式;(2)如何确定售价才能使每年产品销售的利润W(万元)最大?(3)新鑫公司计划五年收回投资, 如何确定售价(假定每年收回投资一样多)?26. 某商品的进价是每件40元, 原售价每件60元. 进行不同程度的涨60 61 62 63 …价后, 统计了商品调价当天的售价和利润情况, 以下是部分数据:售价(元/件)利润(元)6000 6090 6160 6210 …(1)当售价为每件60元时, 当天售出件;(2)若对该商品原售价每件涨价x元(x为正整数)时当天售出该商品的利润为y元.①用所学过的函数知识直接写出y与x之间满足的函数表达式:.②如何定价才能使当天的销售利润不等于6200元?27.服装厂批发某种服装, 每件成本为65元, 规定不低于10件可以批发, 其批发价y (元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y与x之间所满足的函数关系式, 并写出x的取值范围;(1)由题意知商品的最低销售单价是元, 当销售单价不低于最低销售单价时, y是x的一次函数. 求出y与x的函数关系式及x的取值范围;(2)在(1)的条件下, 当销售单价为多少元时, 所获销售利润最大, 最大利润是多少元?29. 某店只销售某种进价为40元/kg的产品, 已知该店按60元kg出售时, 每天可售出100kg, 后来经过市场调查发现, 单价每降低1元, 则每天的销售量可增加10kg.(1)若单价降低2元, 则每天的销售量是_____千克, 每天的利润为_____元;若单价降低x元, 则每天的销售量是_____千克, 每天的利润为______元;(用含x的代数式表示)(2)若该店销售这种产品计划每天获利2240元, 单价应降价多少元?(3)当单价降低多少元时, 该店每天的利润最大, 最大利润是多少元?30. 某文具店出售一种文具, 每个进价为2元, 根据长期的销售情况发现:这种文具每个售价为3元时, 每天能卖出500个, 如果售价每上涨0.1元, 其销售量将减少10个. 物价局规定售价不能超过进价的240%.(1)如果这种文具要实现每天800元的销售利润, 每个文具的售价应是多少?(2)该如何定价, 才能使这种文具每天的利润最大?最大利润是多少?31.某制衣企业直销部直销某类服装,价格(元)与服装数量(件)之间的关系如图所示,现有甲乙两个服装店,计划在"五一”前到该直销部购买此类服装, 两服装店所需服装总数为件,乙服装店所需数量不超过件,设甲服装店购买件,如果甲、乙两服装店分别到该直销部购买服装,两服装店需付款总和为元.(1)求y关于x的函数关系式,并写出x的取值范围.(2)若甲服装店购买不超过100件,请说明甲、乙两服装店联合购买比分别购买最多可节约多少钱32. 某企业接到生产一批手工艺品订单, 须连续工作15天完成. 产品不能叠压, 需专门存放, 第x天每件产品成本p(元)与时间x(天)之间的关系为p=0.5x+7(1≤x≤5, x 为整数). 约定交付产品时每件20元. 李师傅作了记录, 发现每天生产的件数y(件)与时间X(天)满足关系:(1)写出李师傅第x天创造的利润W(不累计)与x之间的函数关系式.(只要结果, 并注明自变量的取值范围.)(2)李师傅第几天创造的利润最大?是多少元?(3)这次订单每名员工平均每天创造利润299元. 企业奖励办法是: 员工某天创造利润超过平均值, 当天计算奖金30元. 李师傅这次获得奖金共多少元?33. 某手机专营店, 第一期进了品牌手机与老年机各50部, 售后统计, 品牌手机的平均利润是160元/部, 老年机的平均利润是20元/部, 调研发现:①品牌手机每增加1部, 品牌手机的平均利润减少2元/部;②老年机的平均利润始终不变.该店计划第二期进货品牌手机与老年机共100部, 设品牌手机比第一期增加x部. (1)第二期品牌手机售完后的利润为8400元, 那么品牌手机比第一期要增加多少部?(2)当x取何值时, 第二期进的品牌手机与老年机售完后获得的总利润W最大, 最大总利润是多少?34.某公司经销一种水产品, 在一段时间内, 该水产品的销售量W(千克)随销售单价x(元/千克)的变化情况如图所示.(1)求W与x的关系式;(2)若该水产品每千克的成本为50元, 则当销售单价定为多少元时, 可获得最大利润?(3)若物价部门规定这种水产品的销售单价不得高于90元/千克, 且公司想要在这段时间内获得2250元的销售利润, 则销售单价应定为多少元?35. 某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示, 成本y2与销售月份x之间的关系如图2所示(图1的图象是线段, 图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低, 此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜, 每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元, 且5月份的销售量比4月份的销售量多2万千克, 求4、5两个月的销售量分别是多少万千克?36. 某商品的进价为每件20元, 市场调查反映, 若按每件30元销售, 每天可销售100件;若销售单价每上涨1元, 每天的销售就减少5件.(1)设每天该商品的销售利润为y元, 销售单价为x元(x≥30), 求y与x的函数解析式;(2)求销售单价为多少元时, 该商品每天的销售利润最大, 最大利润是多少?37. 数学兴趣小组几名同学到商场调查发现, 一种纯牛奶进价为每箱40元, 厂家要求售价在40~70元之间, 若以每箱70元销售平均每天销售30箱, 价格每降低1元平均每天可多销售3箱.(1)求出y 与x 之间的函数表达式(2)该新型“吸水拖把”每月的总利润为w (元), 求w 关于x 的函数表达式, 并指出销售单价为多少元时利润最大, 最大利润是多少元?(3)由于该新型“吸水拖把”市场需求量较大, 厂家又进行了改装, 此时超市老板发现进价提高了m 元, 当每月销售量与销售单价仍满足上述一次函数关系, 随着销量的增大, 最大利润能减少1750元, 求m 的值.39.某花店用3600元按批发价购买了一批花卉.若将批发价降低10%, 则可以多购买该花卉20盆.市场调查反映, 该花卉每盆售价25元时, 每天可卖出25盆.若调整价格, 每盆花卉每涨价1元, 每天要少卖出1盆. (1)该花卉每盆批发价是多少元?(2)若每天所得的销售利润为200元时, 且销量尽可能大, 该花卉每盆售价是多少元? (3)为了让利给顾客, 该花店决定每盆花卉涨价不超过5元, 问该花卉一天最大的销售利润是多少元?40. 某商店经营一种小商品, 进价为3元, 据市场调查, 销售单价是13元时平均每天销售量是400件, 而销售价每降低一元, 平均每天就可以多售出100件.(Ⅰ)假定每件商品降低x 元, 商店每天销售这种小商品的利润y 元, 请写出y 与x 之间的函数关系. (注:销售利润=销售收入-购进成本)(Ⅱ)当每件小商品降低多少元时, 该商店每天能获利4800元?40元, 根据市场调查:在一段时间内, 销售单价是50元时, 销售量是600件,而销售单价每涨2元, 就会少售出20件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>50), 请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润ω元, 并把结果填写在表格中:销售单价(元)销售量y(件)①销售玩具获得利润ω(元)②(2)在(1)问条件下, 若玩具厂规定该品牌玩具销售单价不低于54元, 且商场要完成不少于400件的销售任务, 求商场销售该品牌玩具获得的最大利润是多少元?42.如图,某工厂与两地有铁路相连,该工厂从地购买原材料,制成产品销往地.已知每吨进价为600元(含加工费),加工过程中1吨原料可生产产品吨,当预计销售产品不超过120吨时,每吨售价1600元,超过120吨,每增加1吨,销售所有产品的价格降低2元.设该工厂有吨产品销往地.(利润=售价—进价—运费)(1)用的代数式表示购买的原材料有吨.(2)从地购买原材料并加工制成产品销往地后,若总运费为9600元,求的值,并直接写出这批产品全部销售后的总利润.(3)现工厂销往地的产品至少120吨, 且每吨售价不得低于1440元, 记销完产品的总利润为元, 求关于的函数表达式, 及最大总利润.43. 水产经销商以10元/千克的价格收购了1000千克的鳊鱼围养在湖塘中(假设围养期每条鳊鱼的重量保持不变), 据市场推测, 经过湖塘围养后的鳊鱼的市场价格每围养一天能上涨1元/千克, 在围养过程中(最多围养20天), 平均每围养一天有10千克的鳊鱼会缺氧浮水。
二次函数经典题型(含答案)
二次函数经典题型(启东教育)1.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.2.已知函数y =x 2+bx -1的图象经过点(3,2) (1) 求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x >0时,求使y ≥2的x 的取值范围.3.已知抛物线y =-x 2+mx -m +2.(1)若抛物线与x 轴的两个交点A 、B 分别在原点的两侧,并且AB =5,试求m 的值;(2)设C 为抛物线与y 轴的交点,若抛物线上存在关于原点对称的两点M 、N ,并且 △MNC 的面积等于27,试求m 的值.4.如图,已知点A (tan α,0),B (tan β,0)在x 轴正半轴上,点A 在点B 的左边,α、β 是以线段AB 为 斜边、顶点C 在x 轴上方的Rt △ABC 的两个锐角.(1)若二次函数y =-x 2-25kx +(2+2k -k 2)的图象经过A 、B 两点,求它的解析式;(2)点C 在(1)中求出的二次函数的图象上吗请说明理由.5.已知抛物线2y x kx b =++经过点(23)(10)P Q --,,,. (1)求抛物线的解析式.(2)设抛物线顶点为N ,与y 轴交点为A .求sin AON ∠的值.(3)设抛物线与x 轴的另一个交点为M ,求四边形OANM 的面积.6.已知抛物线y=ax 2+bx+c 经过A ,B ,C 三点,当x≥0时,其图象如图所示.(1)求抛物线的解析式,写出抛物线的顶点坐标;(2)画出抛物线y=ax 2+bx+c 当x<0时的图象;(3)利用抛物线y=ax 2+bx+c,写出x 为何值时,y>0.7.已知抛物线c bx ax y ++=2与y轴的交点为C ,顶点为M ,直线CM 的解析式 y=-x+2 并且线段CM 的长为22(1) 求抛物线的解析式。
初中数学《二次函数》十大题型汇编含解析
二次函数【十大题型】【题型1 辨别二次函数】 (1)【题型2 由二次函数的定义求字母的值】 (3)【题型3 由二次函数的定义求字母的取值范围】 (4)【题型4 二次函数的一般形式】 (6)【题型5 求二次函数的值】 (7)【题型6 判断函数关系】 (9)【题型7 列二次函数关系式(几何图形)】 (11)【题型8 列二次函数关系式(增长率)】 (14)【题型9 列二次函数关系式(循环)】 (15)【题型10 列二次函数关系式(销售)】 (16)知识点1:二次函数的定义一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.【题型1 辨别二次函数】【例1】(23-24九年级上·江西南昌·阶段练习)下列函数解析式中,yy一定是xx的二次函数的是()A.yy=2aaxx2B.yy=2xx+aa2C.yy=2xx2−1D.yy=xx2+1xx【答案】C【分析】本题考查二次函数的识别,形如yy=aaxx2+bbxx+cc(aa≠0)的函数是二次函数,根据定义逐一判断即可得到答案.【详解】解:A,当aa=0时,yy=2aaxx2=0,不是二次函数,不合题意;B,yy=2xx+aa2,yy是xx的一次函数,不合题意;C,yy=2xx2−1,yy一定是xx的二次函数,符合题意;D,yy=xx2+1xx中含有分式,不是二次函数,不合题意;故选C.【变式1-1】(23-24九年级上·安徽安庆·阶段练习)下列函数是二次函数的是()A.yy=2xx−1B.yy=√xx2−1C.yy=xx2−1D.yy=12xx【答案】C【分析】本题考查了二次函数的定义,能熟记二次函数的定义是解此题的关键,注意:形如yy=aaxx2+bbxx+cc (aa、b、c为常数,aa≠0)的函数叫二次函数.根据二次函数的定义逐个判断即可.【详解】解:A、函数yy=2xx−1是一次函数,不是二次函数,故本选项不符合题意;B、函数yy=√xx2−1根号内含有x,不是二次函数,故本选项不符合题意;C、函数yy=xx2−1是二次函数,故本选项符合题意;D、函数yy=12xx分母中含有x,不是二次函数,故本选项不符合题意.故选:C.【变式1-2】(23-24九年级下·江苏·专题练习)下列函数关系式中,二次函数的个数有()(1)yy=3(xx−1)2+1;(2)yy=1xx2−xx;(3)SS=3−2tt2;(4)yy=xx4+2xx2−1;(5)yy=3xx(2−xx)+3xx2;(6)yy=mmxx2+8.A.1个B.2个C.3个D.4个【答案】B【分析】本题考查了二次函数的定义,一般地,形如yy=aaxx2+bbxx+cc(aa,bb,cc为常数,aa≠0)的函数叫做二次函数.判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成yy=aaxx2+bbxx+cc(aa,bb,cc为常数,aa≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】解:(1)yy=3(xx−1)2+1是二次函数,故符合题意;(2)yy=1xx2−xx,不是二次函数,故不符合题意;(3)SS=3−2tt2是二次函数,故符合题意;(4)yy=xx4+2xx2−1不是二次函数,故不符合题意;(5)yy=3xx(2−xx)+3xx2=6xx不是二次函数,故不符合题意;(6)yy=mmxx2+8,不确定m是否为0,不一定是二次函数,故不符合题意;综上所述,二次函数有2个.故选:B.【变式1-3】(23-24九年级上·湖南长沙·期末)下列函数①yy=5xx−5;②yy=3xx2−1;③yy=4xx3−3xx2;④yy=2xx2−2xx+1;⑤yy=1xx2.其中是二次函数的是.【答案】②④/④②【分析】根据二次函数的定义,函数式为整式且自变量的最高次数为2,二次项系数不为0,逐一判断.【详解】解:①yy=5xx−5为一次函数;②yy=3xx2−1为二次函数;③yy=4xx3−3xx3自变量次数为3,不是二次函数;④yy=2xx2−2xx+1为二次函数;⑤yy=1xx2函数式为分式,不是二次函数.故答案为②④.【点睛】本题考查二次函数的定义,能够根据二次函数的定义判断函数是否属于二次函数是解决本题的关键.【题型2 由二次函数的定义求字母的值】【例2】(23-24九年级下·广东东莞·期中)已知函数yy=(mm−1)xx mm2+1是二次函数,则mm=.【答案】−1【分析】根据定义得:形如yy=aaxx2+bbxx+cc(aa、bb、cc是常数,且aa≠0)的函数是二次函数,列方程可求得答案.【详解】解:依题意得:mm2+1=2且mm−1≠0,解得mm=−1.故答案为:−1.【点睛】本题考查了二次函数的定义.注意:二次函数yy=aaxx2+bbxx+cc中,aa是常数,本题关键点为aa≠0.【变式2-1】(23-24九年级上·江苏扬州·阶段练习)如果yy=2xx|mm|+3xx−1是关于xx的二次函数,则mm=.【答案】±2【分析】本题主要考查了二次函数的定义,直接利用二次函数的定义得出答案.【详解】解:∵yy=2xx|mm|+3xx−1是关于x的二次函数,∴|mm|=2,解得:mm=±2.故答案为:±2.【变式2-2】(23-24九年级上·湖北·周测)如果函数yy=(kk−1)xx kk2−kk+2+kkxx−1是关于x的二次函数,则kk=.【答案】0【分析】本题考查了二次函数的定义.根据二次函数的定义得到kk−1≠0且kk2−kk+2=2,然后解不等式和方程即可得到k的值.【详解】解:根据题意,得kk−1≠0且kk2−kk+2=2,解得kk=0.故答案为:0.【变式2-3】(23-24九年级下·广东广州·期末)如果yy=(kk−3)xx�kk-1�+xx−3是二次函数,佳佳求出k的值为3,敏敏求出k的值为-1,她们俩中求得结果正确的是.【答案】敏敏【分析】本题考查了二次函数的定义,由定义得|kk−1|=2,kk−3≠0,即可求解;理解定义:“一般地,形如yy=aaxx2+bbxx+cc(a、b、c是常数,aa≠0)的函数叫做二次函数.” 是解题的关键.【详解】解:∵yy=(kk−3)xx�kk-1�+xx−3是二次函数,∴|kk−1|=2,解得kk1=3,kk2=−1,又∵kk−3≠0,即kk≠3,∴kk=−1,故敏敏正确.【题型3 由二次函数的定义求字母的取值范围】【例3】(23-24九年级上·上海嘉定·期末)如果函数yy=(kk−1)xx2+kkxx−1(kk是常数)是二次函数,那么kk的取值范围是.【答案】kk≠1【分析】根据:“形如yy=aaxx2+bbxx+cc(aa≠0),这样的函数叫做二次函数”,得到kk−1≠0,即可.【详解】解:由题意,得:kk−1≠0,∴kk≠1;故答案为:kk≠1.【变式3-1】(23-24九年级上·浙江嘉兴·开学考试)已知函数yy=(mm2−mm)xx2+(mm−1)xx−2(m为常数).(1)若这个函数是关于x的一次函数,求m的值.(2)若这个函数是关于x的二次函数,求m的取值范围.【答案】(1)mm=0;(2)mm≠1且mm≠0.【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题.【详解】(1)解:依题意mm2−mm=0且mm−1≠0,所以mm=0;(2)解:依题意mm2−mm≠0,所以mm≠1且mm≠0.【点睛】本题考查一次函数的定义、二次函数的定义,解题的关键是熟练掌握基本概念,属于中考常考题型.【变式3-2】(23-24九年级上·广东江门·阶段练习)已知关于xx的二次函数yy=(aa2−1)xx2+xx−2,则aa的取值范围是()A.aa≠1B.aa≠−1C.aa≠±1D.为任意实数【答案】C【分析】根据二次函数定义可得aa2−1≠0,解出答案即可.【详解】因为关于xx的二次函数yy=(aa2−1)xx2+xx−2,∴aa2−1≠0,解得:aa≠±1.故选:C.【点睛】本题考查的是二次函数yy=aaxx2+bbxx+cc(aa≠0)概念,熟练掌握二次函数定义是解题关键.【变式3-3】(23-24九年级下·四川遂宁·期中)已知函数yy=(mm2-2)xx2+(mm+√2)xx+8.若这个函数是二次函数,求mm的取值范围【答案】mm≠√2且mm≠-√2【分析】根据二次函数的定义,即可得不等式mm2-2≠0,解不等式即可求得.【详解】解:∵函数yy=(mm2-2)xx2+(mm+√2)xx+8是二次函数,∴mm2-2≠0,解得mm≠±√2,故答案为:mm≠√2且mm≠-√2.【点睛】本题考查了二次函数的定义,熟练掌握和运用二次函数的定义是解决本题的关键.【题型4 二次函数的一般形式】【例4】(23-24九年级上·四川南充·阶段练习)二次函数yy=xx2−3xx+5的二次项是,一次项系数是,常数项是.【答案】xx2−3 5【分析】根据二次函数的定义判断即可。
初中数学二次函数题型精讲(含答案和解析)
初中数学二次函数题型精讲一,填空题1, (2018•乌鲁木齐•4分)把拋物线y=2x2﹣4x+3向左平移1个单位长度,得到的抛物线的解析式为.【分析】将原抛物线配方成顶点式,再根据“左加右减、上加下减”的规律求解可得.【解答】解:∵y=2x2﹣4x+3=2(x﹣1)2+1.∴向左平移1个单位长度得到的抛物线的解析式为y=2(x+1﹣1)2+1=2x2+1.故答案为:y=2x2+1.【点评】本题主要考查二次函数图象与几何变换,解题的关键是掌握函数图象的平移规律“左加右减、上加下减”.2,(2018•江苏淮安•3分)将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是y=x2+2 .【分析】先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为:y=x2+2.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.3,(2018•江苏苏州•3分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E 在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P 在线段AB上移动时,点M,N之间的距离最短为2(结果留根号).【分析】连接PM、PN.首先证明∠MPN=90°设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),构建二次函数,利用二次函数的性质即可解决问题;【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°.∴∠APC=120°,∠EPB=60°.∵M,N分别是对角线AC,BE的中点.∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°.设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a).∴MN===.∴a=3时,MN有最小值,最小值为2.故答案为2.【点评】本题考查菱形的性质、勾股定理二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.4, (2018•乌鲁木齐•4分)把拋物线y=2x2﹣4x+3向左平移1个单位长度,得到的抛物线的解析式为.【分析】将原抛物线配方成顶点式,再根据“左加右减、上加下减”的规律求解可得.【解答】解:∵y=2x2﹣4x+3=2(x﹣1)2+1.∴向左平移1个单位长度得到的抛物线的解析式为y=2(x+1﹣1)2+1=2x2+1.故答案为:y=2x2+1.【点评】本题主要考查二次函数图象与几何变换,解题的关键是掌握函数图象的平移规律“左加右减、上加下减”.5, (2018•湖州•4分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是﹣2 .【分析】根据正方形的性质结合题意,可得出点B的坐标为(﹣,﹣),再利用二次函数图象上点的坐标特征即可得出关于b的方程,解之即可得出结论.【解答】解:∵四边形ABOC是正方形.∴点B的坐标为(﹣,﹣).∵抛物线y=ax2过点B.∴﹣=a(﹣)2.解得:b1=0(舍去),b2=﹣2.故答案为:﹣2.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,利用正方形的性质结合二次函数图象上点的坐标特征,找出关于b的方程是解题的关键.6, (2018·黑龙江哈尔滨·3分)抛物线y=2(x+2)2+4的顶点坐标为(﹣2,4).【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【解答】解:∵y=2(x+2)2+4.∴该抛物线的顶点坐标是(﹣2,4).故答案为:(﹣2,4).【点评】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.7,(2018•福建A卷•4分)如图,直线y=x+m与双曲线y=相交于A,B 两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C (a,).将y=x+m代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以A,b是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S△ABC=AC•BC=m2+6,利用二次函数的性质即可求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=.整理,得x2+mx﹣3=0.则a+b=﹣m,ab=﹣3.∴(a﹣b)2=(a+b)2﹣4ab=m2+12.∵S△ABC=AC•BC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6.∴当m=0时,△ABC的面积有最小值6.故答案为6.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了函数图象上点的坐标特征,根与系数的关系,三角形的面积,二次函数的性质.8.(2018•贵州黔西南州•3分)已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是(3,0).x …﹣1 0 1 2 …y …0 3 4 3 …【分析】根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.【解答】解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点.∴对称轴x==1;点(﹣1,0)关于对称轴对称点为(3,0).因此它的图象与x轴的另一个交点坐标是(3,0).故答案为:(3,0).【点评】本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.9,(2018•贵州遵义•4分)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D,E,F分别是BC,BP、PC的中点,连接DE,DF,则DE+DF的最小值为.【分析】直接利用轴对称求最短路线的方法得出P点位置,再求出AO,CO的长,进而利用勾股定理得出答案.【解答】解:连接AC,交对称轴于点P.则此时PC+PB最小.∵点D,E,F分别是BC,BP、PC的中点.∴DE=PC,DF=PB.∵抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C.∴0=x2+2x﹣3解得:x1=﹣3,x2=1.x=0时,y=3.故CO=3.则AO=3,可得:AC=PB+PC=3.故DE+DF的最小值为:.故答案为:.10, (2018•乌鲁木齐•4分)把拋物线y=2x2﹣4x+3向左平移1个单位长度,得到的抛物线的解析式为.【分析】将原抛物线配方成顶点式,再根据“左加右减、上加下减”的规律求解可得.【解答】解:∵y=2x2﹣4x+3=2(x﹣1)2+1.∴向左平移1个单位长度得到的抛物线的解析式为y=2(x+1﹣1)2+1=2x2+1.故答案为:y=2x2+1.【点评】本题主要考查二次函数图象与几何变换,解题的关键是掌握函数图象的平移规律“左加右减、上加下减”.二,解答题1, (2018·湖北江汉油田、潜江市、天门市、仙桃市·10分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b.∵经过点(0,168)与(180,60).∴,解得:.∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n.∵直线y2=mx+n经过点(50,70)与(130,54).∴,解得.∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元.①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+. ∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840.∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415. ∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,解题的关键是从实际问题中抽象出二次函数模型.2, (2018·湖北江汉油田、潜江市、天门市、仙桃市·12分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0), (3,0), (,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A,B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B,C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m <或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0.解得:x1=,x2=3.∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+.∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E,点D关于直线y=t对称.∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1.∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b.将B(3,0)、C(0,﹣1)代入y=kx+b.,解得:.∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界).∴.解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1). ∵以CQ为直径的圆与x轴相切于点P.∴CP⊥PQ.∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2. 整理,得:m1=,m2=.∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2).∵以CQ为直径的圆与x轴相切于点P.∴CP⊥PQ.∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2. 整理,得:11m2﹣28m+12=0.解得:m3=,m4=2.∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).【点评】本题考查了一次(二次)函数图象上点的坐标特征、待定系数法求一次函数解析式、勾股定理以及解一元二次方程,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A,B的坐标;(2)利用一次函数图象上点的坐标特征结合点E在△ABC内,找出关于t 的一元一次不等式组;(3)分m<或m>3及≤m≤3两种情况,找出关于m的一元二次方程.3, (2018·湖北随州·11分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x) 1 3 6 10每件成本p(元)7,5 8,5 10 12任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x (天)满足如下关系:y=设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?【分析】(1)根据题意和表格中的数据可以求得p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.【解答】解:(1)设p与x之间的函数关系式为p=kx+b.,解得,.即p与x的函数关系式为p=0,5x+7(1≤x≤15,x为整数).当1≤x<10时.W=[20﹣(0,5x+7)](2x+20)=﹣x2+16x+260.当10≤x≤15时.W=[20﹣(0,5x+7)]×40=﹣20x+520.即W=;(2)当1≤x<10时.W=﹣x2+16x+260=﹣(x﹣8)2+324.∴当x=8时,W取得最大值,此时W=324.当10≤x≤15时.W=﹣20x+520.∴当x=10时,W取得最大值,此时W=320.∵324>320.∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x<10时.令﹣x2+16x+260=299,得x1=3,x2=13.当W>299时,3<x<13.∵1≤x<10.∴3<x<10.当10≤x≤15时.令W=﹣20x+520>299,得x<11,05.∴10≤x≤11.由上可得,李师傅获得奖金的月份是4月到11月,李师傅共获得奖金为:20×(11﹣3)=160(元).即李师傅共可获得160元奖金.【点评】本题考查二次函数的应用、一元二次方程的应用,解不等式,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.4, (2018·湖北随州·12分)如图1,抛物线C1:y=ax2﹣2ax+c(a <0)与x轴交于A,B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M 作x轴的垂线分别交抛物线C1,C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.【分析】(1)由点A的坐标及OC=3OA得点C坐标,将A,C坐标代入解析式求解可得;(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x轴于点D,设BD′=m,由等边三角形性质知点B′的坐标为(m+1,0),点G′的坐标为(1,m),代入所设解析式求解可得;(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN均为钝角知△AOQ≌△PQN,延长PQ交直线y=﹣1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x 的值从而进一步求解.【解答】解:(1)∵点A的坐标为(﹣1,0).∴OA=1.∴OC=3OA.∴点C的坐标为(0,3).将A,C坐标代入y=ax2﹣2ax+c,得:.解得:.∴抛物线C1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4.所以点G的坐标为(1,4).(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k.过点G′作G′D⊥x轴于点D,设BD′=m.∵△A′B′G′为等边三角形.∴G′D=B′D=m.则点B′的坐标为(m+1,0),点G′的坐标为(1,m).将点B′、G′的坐标代入y=﹣(x﹣1)2+4﹣k,得:.解得:(舍),.∴k=1;(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2). ∴PQ=OA=1.∵∠AOQ、∠PQN均为钝角.∴△AOQ≌△PQN.如图2,延长PQ交直线y=﹣1于点H.则∠QHN=∠OMQ=90°.又∵△AOQ≌△PQN.∴OQ=QN,∠AOQ=∠PQN.∴∠MOQ=∠HQN.∴△OQM≌△QNH(AAS).∴OM=QH,即x=﹣x2+2x+2+1.解得:x=(负值舍去).当x=时,HN=QM=﹣x2+2x+2=,点M(,0). ∴点N坐标为(+,﹣1),即(,﹣1);或(﹣,﹣1),即(1,﹣1);如图3.同理可得△OQM≌△PNH.∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1.解得:x=﹣1(舍)或x=4.当x=4时,点M的坐标为(4,0),HN=QM=﹣(﹣x2+2x+2)=6.∴点N的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);综上点M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质等知识点.5, (2018·湖北襄阳·10分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).(1)m= ﹣,n= 25 ;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当大利润不低于870元的共有多少天?【分析】(1)根据题意将相关数值代入即可;(2)在(1)的基础上分段表示利润,讨论最值;(3)分别在(2)中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数.【解答】解:(1)当第12天的售价为32元/件,代入y=mx﹣76m得32=12m﹣76m解得m=﹣当第26天的售价为25元/千克时,代入y=n则n=25故答案为:m=﹣,n=25(2)由(1)第x天的销售量为20+4(x﹣1)=4x+16当1≤x<20时W=(4x+16)(﹣x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968 ∴当x=18时,W最大=968当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112∵28>0∴W随x的增大而增大∴当x=30时,W最大=952∵968>952∴当x=18时,W最大=968(3)当1≤x<20时,令﹣2x2+72x+320=870解得x1=25,x2=11∵抛物线W=﹣2x2+72x+320的开口向下∴11≤x≤25时,W≥870∴11≤x<20∵x为正整数∴有9天利润不低于870元当20≤x≤30时,令28x+112≥870解得x≥27∴27≤x≤30∵x为正整数∴有3天利润不低于870元∴综上所述,当天利润不低于870元的天数共有12天.【点评】本题考查了一次函数和二次函数的实际应用,应用了分类讨论的数学思想.6, (2018·湖南郴州·10分)如图1,已知抛物线y=﹣x2+bx+c与x 轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.【分析】(1)由点A,B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A,B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(3)①过点P作PF∥y轴,交BC于点F,由点B,C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC 的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c.,解得:.∴抛物线的表达式为y=﹣x2+2x+3.(2)在图1中,连接PC,交抛物线对称轴l于点E.∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.∴抛物线的对称轴为直线x=1.当t=2时,点C,P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形.∵抛物线的表达式为y=﹣x2+2x+3.∴点C的坐标为(0,3),点P的坐标为(2,3).∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE.∵点C的横坐标为0,点E的横坐标为0.∴点P的横坐标t=1×2﹣0=2.又∵t≠2.∴不存在.(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0).将B(3,0)、C(0,3)代入y=mx+n.,解得:.∴直线BC的解析式为y=﹣x+3.∵点P的坐标为(t,﹣t2+2t+3).∴点F的坐标为(t,﹣t+3).∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t.∴S=PF•OB=﹣t2+t=﹣(t﹣)2+.②∵﹣<0.∴当t=时,S取最大值,最大值为.∵点B的坐标为(3,0),点C的坐标为(0,3).∴线段BC==3.∴P点到直线BC的距离的最大值为=,此时点P的坐标为(,).【点评】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(3)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.7, (2018·湖南怀化·14分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)设交点式y=a(x+1)(x﹣3),展开得到﹣2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=﹣x+b,把C点坐标代入求出b得到直线PC的解析式为y=﹣x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3).即y=ax2﹣2ax﹣3a.∴﹣2a=2,解得a=﹣1.∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3).设直线AC的解析式为y=px+q.把A(﹣1,0),C(0,3)代入得,解得.∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4.∴顶点D的坐标为(1,4).作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0).∵MB=MB′.∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小.而BD的值不变.∴此时△BDM的周长最小.易得直线DB′的解析式为y=x+3.当x=0时,y=x+3=3.∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2.∵直线AC的解析式为y=3x+3.∴直线PC的解析式可设为y=﹣x+b.把C(0,3)代入得b=3.∴直线PC的解析式为y=﹣x+3.解方程组,解得或,则此时P点坐标为(,);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b.把A(﹣1,0)代入得+b=0,解得b=﹣.∴直线PC的解析式为y=﹣x﹣.解方程组,解得或,则此时P点坐标为(,﹣).综上所述,符合条件的点P的坐标为(,)或(,﹣).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.。
初中数学二次函数常考题型
初中数学二次函数常考题型一、二次函数y = ax2 + bx + c的图像经过点(1,0)和(0,3),且开口向下,则a的取值范围是?A. a > 1B. a < 0C. 0 < a < 1D. a = 0(答案:B)二、二次函数y = x2 - 4x + m的顶点在x轴上,则m的值为?A. 2B. 4C. -4D. 6(答案:B)三、抛物线y = -2x2 + 4x - 5的对称轴是?A. x = -1B. x = 0C. x = 1D. x = 2(答案:C)四、二次函数y = ax2 + bx + c,当x = -2时,y有最大值3,且图像经过点(1,-1),则a的值为?A. -1B. -2C. 1D. 2(答案:B)五、抛物线y = x2 - 2x + 1与y轴的交点坐标是?A. (0,1)B. (1,0)C. (0,-1)D. (-1,0)(答案:A)六、二次函数y = ax2 + bx + c的图像与x轴有两个交点,且这两个交点间的距离为4,若其中一个交点的横坐标为1,则另一个交点的横坐标为?A. -5B. -3C. 3D. 5(答案:D)七、二次函数y = (x - 1)2 - 4的最小值是?A. -4B. 0C. -3D. 1(答案:A)八、抛物线y = 2x2 - 4x + 5向上平移2个单位后,得到的新抛物线的解析式是?A. y = 2x2 - 4x + 3B. y = 2x2 - 4x + 7C. y = 2x2 - 4x + 10D. y = 2x2 + 7(答案:B)。
二次函数专题-含答案
二次函数专题——线段最值问题方法总结:1、利用参数表示出两动点的坐标;2、再利用参数表示出线段的长度;3、最后利用二次函数的性质求出线段的最大值.4、特殊线段长度表示①平行(在坐标轴上)线段表示:竖直线段:12AB y y y y =-=-下上 水平线段:21AB x x x x =-=-右左 ②两点间距离公式:AB =抛物线与线段最值一,问题引入:问题1: “牵牛从点A 出发,到河边l 喝水,再到点B 处吃草,走哪条路径最短?” 即在l 上找一点P ,使得PA+PB 和最小。
(1)A ,B 两点在直线异侧时,连接AB 交l 于P ,则PA+PB 和最小。
(2)A ,B 两点在直线同侧时,作B 点关于l 的对称点B ′,连接AB′交l 于点P,即为所要找的P点,使PA+PB 和最小。
(3)变式讨论:在l 上找一P 点,使得△PAB 周长最小问题2:在l 上找一点P ,使得∣PA -P B ∣最大(1)A ,B 两点在直线同侧时,连接AB 并延长交l 于P ,则∣PA -P B ∣最大(2)A ,B 两点在直线异侧时,作B 点关于l 的对称点B ′,连接AB′并延长交l 于点P,即为所要找的P点,使∣PA -P B ∣最大。
问题3:(1)在直线1l 、2l 上分别求点M 、N 使PMN 周长最小.l A · B · l A · B ·l A · B · l B · A ·A · lB ·做法:分别作点P 关于直线1l ,2l 的对称点1P ,2P 连接1P ,2P 与1l ,2l 交点即为M ,N(2)变式:在直线1l 、2l 上分别求点M 、N 使四边形PMQN 周长最小.做法: 分别作点P ,Q 关于直线1l ,2l 的对称点//,Q P ,连接//,Q P ,与1l ,2l 交点即为M ,N问题4:点P 在锐角AOB ∠内部,在OB 边上求作一点D ,在OA 边上求作一点C ,使最小CD PD +做法:作点P 关于直线OB 的对称点/P ,过/P 向直线OA 作垂线与OB 的交点为所求点D ,垂足即为点C问题5:(1)直线21//l l ,并且1l 与2l 之间的距离为d ,点A 和点B 分别在直线1l 、2l 的两PQl 2l 1l 2侧,在直线1l 、2l 上分别求一点M 、N ,使AM 、MN 、NB 的和最小.作法: 将点A 向下平移d 个单位到1A ,连结B A 1交2l 于点N ,过N 作NM ⊥1l ,垂足为M ,连结AM ,则线段AM 、MN 、NB 的和最小,点M 、N 即为所求.(2)直线l 的同侧有两点A 、B ,在直线l 上求两点C 、D ,使得AC 、CD 、DB 的和最小,且CD 的长为定值a ,点D 在点C 的右侧.作法:将点A 向右平移a 个单位到1A ,作点B 关于直线l 的对称点1B ,连结1A ,1B 交直线l 于点D ,过点A 作AC ∥1A D 交直线l 于点C ,连结BD ,则线段AC 、CD 、DB 的和最小。
二次函数几种题基本题型及答案
二次函数二次函数求解析式【类型一:万能型】【1】已知二次函数的图像如图所示,求其函数解析式. 解:利用两点式,设y=a (x+1)(x-3) 再把(0,3)带入,解得a=-1 所以y=-x 2+2x+3【2】(2011武汉)抛物线23y ax bx =++经过点(3,0)A -,(1,0)B -两点.求抛物线的解析式; 解:把A,B 两点带入,解二元一次方程组得,a=1,b=4, 所以y=x 2+4x+3【3】(2008年 黄石)如图,已知抛物线与x 轴交于点(20)A -,,(40)B ,,与y 轴交于点(08)C ,.求抛物线的解析式及其顶点D 的坐标;解:利用两点式,设y=a (x+2)(x-4) 再把(0,8)带入,解得a=-1所以y=-x 2+2x+8【类型二:顶点式】【4】已知二次函数在3-=x 处有最大值1,且其图像经过)8,2(-,求此二次函数的解析式. 解:利用顶点式,设y=a (x+3)2+1, 在把(2,-8)代入,解得a=-925,所以y=-925(x+3)2+1(一般式:y=-925x 2-5425x-56255】已知二次函数的图像交x 轴于点(2,0),(3,0)A B -,且函数有最大值2,求此函数的解析式.解:利用顶点式,先通过A,B 两点求出对称轴x=1/2,设y=a (x-1/2)2+2,在把(3,0)代入,解得a=-825,所以y=-825(x-1/2)2+2(一般式:y=-825x 2+825x+4825,本题也可以用两点式) 【6】已知抛物线的对称轴为1=x ,经过点)0,2(A 、)11,5(B ,求函数解析式. 解:利用顶点式,设y=a (x-1)2+k ,代入A,B 两点,解二元一次方程组得,a=1115,k=-1115, 所以y=1115(x-1)2-1115【7】已知二次函数的顶点坐标为(1,4),二次函数与x 轴的两交点为,A B ,且4AB =,求二次函数的解析式.解:利用顶点式,设y=a (x-1)2+4,然后利用对称轴x=1及4AB =求出两交点为(-1,0),(3,0),选择一点代入解得a=-1, 所以y=-(x-1)2+4.(本题也可以用两点式)【8】已知二次函数2(0)y ax bx c a =++≠图像的顶点P 的横坐标是4,图像交x 轴于点(,0)A m 和点B ,且4m >,那么AB 的长是( C )(另一点横坐标为8-m ,AB=m-(8-m )=2m-8.) A. 4m + B. m C. 28m - D.82m - 【9】(2011广东中山)已知抛物线212y x x c =++与x 轴有两个不同的交点. 抛物线212y x x c =++与x 轴两交点的距离为2,求c 的值. 解:本题运用韦达定理,设两根为x 1,x 2,x 1+x 2=-2, x 1x 2=2c,|x 1-x 2|=2, 列方程整理后得4-8c=4,c=0.(本题也可以直接用交点距离公式|x 1-x 2【类型三:综合求解析式】【10】( 2011重庆江津)已知双曲线xk y =与抛物线2y ax bx c =++交于 (2,3)A ,(,2)B m ,(3,)C n -三点,求双曲线与抛物线的解析式;解:先利用双曲线解析式求出k=6,m=3,n=-2,在把三点分别代入抛物线解析式,成立一个三元一次方程组,解方程得 a=13-,b=23,c=3,所以y=13-x 2+23x+3 【11】(2011湖南湘潭市)直线33+=x y 交x 轴于A 点,交y 轴于B 点, 过,A B 两点的抛物线交x 轴于另一点(3,0)C ,求抛物线的解析式;解:先利用直线解析式求出A (-1,0),B (0,3),设抛物线为y=a (x+1)(x-3),代入C 点,解得a=-1, 所以y=-x 2+2x+3【12】(2011四川凉山州)抛物线与x 轴交于A (1x ,0)、B (2x ,0)两点,且12x x <,与y 轴交于点()0,4C -,其中12x x ,是方程24120x x --=的两个根,求抛物线的解析式; 解:解方程得x 1=-2,x 2=6,设抛物线为y=a (x+2)(x-6) 代入C 点,解得a=1/3,所以y=13x 2-43x-4 【13】(2009年 天水)如下图,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于,A B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,3OC OA =,求这个二次函数的表达式.解:由B 点坐标和OB,OC,OA 三条线段的关系得出A (-1,0),C (0,-3)设抛物线为y=a (x+1)(x-3),在代入C 点, 解得a=1,所以y=x 2-2x-3【14】(2007武汉)如图①,在平面直角坐标系中,Rt △AOB ≅Rt △CDA ,且(1,0)A -、(0,2)B ,抛物线22y ax ax =+-经过点C ,求抛物线的解析式; 解:由两三角形全等得出C (-3,1), 再把C 点代入,解得a=1/2, 所以y=12 x 2+12x-2【15】(2008年 大连)如图,直线y x m =+和抛物线2y x bx c =++都经过(1,0),(3,2)A B . (1)求m 的值和抛物线的解析式; (2)求不等式2x bx c x m ++>+的解集.解:(1)在A,B 中选择一点代入直线解析式,解得m=-1 把A,B 两点代入抛物线,解二元一次方程组得 b=-3,c=2,所以y=x 2-3x+2(2)利用图像的性质可以解得x<1或x>3.【16】(2011广东肇庆)已知抛物线2243m mx x y -+=(m >0)与x 轴交于A 、B 两点. (1)求证:抛物线的对称轴在y 轴的左侧; (2)若3211=-OA OB (O 是坐标原点),求抛物线的解析式; 解:(1)对称轴x=-1/2m<0,所以…(2)设x 1,x 2为两点的横坐标,一直x 1x 2=234m -<0, 令x 1<0,x 2>0,由3211=-OA OB >0,得OA>OB,又有(1)中的结论,可知OA=- x 1,OB= x 2,代入3211=-OA OB通分,化简,然后利用韦达定理代入解得m=2 所以y=x 2+2x-3【17】已知一次函数2y x =的图象与反比例函数ky x =的图象交于M 、N 两点,且MN =(1)求反比例函数的解析式;(2)若抛物线2y ax bx c =++经过M 、N 两点,证明此抛物线与x 轴必有两个交点;(3)设⑵中的抛物线与x 轴的两个交点分别为A 、B (点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,若tan tan 3CAB CBA ∠+∠=,求此抛物线的解析式.(定义:在直角三角形中,θ的对边为a ,邻边为b ,则tan abθ=) 解:(1)先由两图像关于原点对称易知,设M 为(x ,2x ),那么k=2x 2,又由两点距离公式得x 2+4x 2=5,所以k=2.即2y x=(2)由(1)可求得两点为(1,2)(-1,-2),代入抛物线解析式得:22a b ca b c=++⎧⎨-=-+⎩ 两式相减得b=2,代入上式,得c=-a 所以y=ax 2+2x-a ,∆=4+4a 2>0,所以必有两交点. (3)由(2)知y=ax 2+2x-a ,且C (0,-a )设A (x 1,0),B (x 2,0),又x 1x 2=-1,则x 1<0,x 2>0211212tan tan 3a a x x CAB CBA a a x x x x -∠+∠=+=⋅==--即4+4a 2=9,所以a =±,所以22y x x =+-或者22y x x =++【目标二:二次函数的平移】【18】将抛物线221x y =向上平移4个单位会得到哪条抛物线?向下平移2.5个单位呢? 解:1、2142y x =+ 2、21 2.52y x =-【19】(2008年 烟台)如图,抛物线1L :223y x x =--+交x 轴于A ,B 两点,交y 轴于M 点.将抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C ,D 两点,求抛物线2L 对应的函数表达式。
初中数学二次函数综合题及答案(经典题型)印.pdf
选择题: 1、y=(m-2)xm2- m 是关于 x 的二次函数,则 m=( )
A -1 B 2 C -1 或 2 D m 不存在
2、下列函数关系中,可以看作二次函数 y=ax2+bx+c(a≠0)模型的是( )
A 在一定距离内,汽车行驶的速度与行驶的时间的关系
B 我国人中自然增长率为 1%,这样我国总人口数随年份变化的关系
a
b
=
b+c a+c
A -1 B 1
ቤተ መጻሕፍቲ ባይዱ
c
=
a+b 1
C
2
的值是( )
1
D-
2
-1 0
x
8、已知一次函数 y= ax+c 与二次函数 y=ax2+bx+c(a≠0),它们在同一坐标系内的大致图象是图中的(
x )
y
y
y
y
x
A
B
x
x
x
C
D
二填空题: 13、无论 m 为任何实数,总在抛物线 y=x2+2mx+m 上的点的坐标是————————————。 16、若抛物线 y=ax2+bx+c(a≠0)的对称轴为直线 x=2,最小值为-2,则关于方程 ax2+bx+c=-2的根为—
且交点 M 始终位于抛物线上 A、C 两点之间时,试探究:当 n 为何值时,四边形 AMCN 的面积取得最大值,并求出这个最大
值.
y
y
l:x=n
M
A
A
O
B
D
C x
O
B
C
N
x
D
6、如图所示,在平面直角坐标系中,四边形 ABCD 是直角梯形,BC∥AD,∠BAD=90°,BC 与 y 轴相交于点 M,且 M 是 BC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考二次函数常见题型考点1:二次函数的数学应用题1. (2011湖北黄石,16,3分)初三年级某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m-i,n-j],并称a+b为该生的位置数。
若某生的位置数为10,则当m+n取最小值时,m·n的最大值为。
【答案】362.(2011浙江金华,23,10分)在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.(1)当n=1时,如果a=-1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O,①试求出当n=3时a的值;②直接写出a关于n的关系式.∴1421112 1.42a b a b =++⎧⎪⎨=++⎪⎩, 解得4,38.3a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线解析式为248133y x x =-++;……4分 (3)①当n =3时,OC=1,BC =3, 设所求抛物线解析式为2y ax bx =+,过C 作CD ⊥OB 于点D ,则Rt △OCD ∽Rt △CBD , ∴13OD OC CD BC ==,设OD =t ,则CD =3t , ∵222OD CD OC +=,∴222(3)1t t +=, ∴1101010t ==, ∴C (1010,31010), 又 B (10,0), ∴把B 、C 坐标代入抛物线解析式,得010********.101010a b a b ⎧=+⎪⎨=+⎪⎩,解得:a =103-; ……2分 ②21n a n+=-. ……2分3. (2011山东日照,24,10分)如图,抛物线y=ax 2+bx (a 0)与双曲线y =xk相交于点A ,B . 已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan ∠AOx =4. 过点A 作直线AC ∥x 轴,交抛物线于另一点C .(1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积;xyO ABCDxyOC E A BM N F(3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.【答案】(1)把点B (-2,-2)的坐标,代入y =xk, 得:-2=2-k,∴k =4. 即双曲线的解析式为:y =x4. 设A 点的坐标为(m ,n )。
∵A 点在双曲线上,∴mn =4.…① 又∵tan ∠AOx =4,∴nm=4, 即m =4n .…② 又①,②,得:n 2=1,∴n =±1.∵A 点在第一象限,∴n =1,m =4 , ∴A 点的坐标为(1,4)把A 、B 点的坐标代入y=ax 2+b x ,得:⎩⎨⎧-=-+=b a b a 242,4解得a =1,b =3;∴抛物线的解析式为:y=x 2+3x ;(2)∵AC ∥x 轴,∴点C 的纵坐标y =4, 代入y=x 2+3x ,得方程x 2+3x -4=0,解得x 1=-4,x 2=1(舍去). ∴C 点的坐标为(-4,4),且AC =5, 又△ABC 的高为6,∴△ABC 的面积=21×5×6=15 ; (3)存在D 点使△ABD 的面积等于△ABC 的面积. 过点C 作CD ∥AB 交抛物线于另一点D .因为直线AB 相应的一次函数是:y =2x +2,且C 点的坐标为(-4,4),CD ∥AB , 所以直线CD 相应的一次函数是:y =2x +12.解方程组⎩⎨⎧+=+=,122,32x y x x y 得⎩⎨⎧==,18,3y x 所以点D 的坐标是(3,18)4. (2011浙江温州,22,10分)如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标是(-2,4),过点A 作AB ⊥y 轴,垂足为B ,连结OA .(1)求△OAB 的面积;(2)若抛物线22y x x c =--+经过点A . ①求c 的值;②将抛物线向下平移m 个单位,使平移后得到的抛物线顶点落在△OAB 的内部(不包括△OA B 的边界),求m 的取值范围(直接写出答案即可).【答案】 解:(1) ∵点A 的坐标是(-2,4),AB ⊥y 轴, ∴AB =2,OB =4, ∴1124422OAB S AB OB ∆=⨯⨯=⨯⨯= (2)①把点A 的坐标(-2,4)代入22y x x c =--+, 得2(2)2(2)4c ---⨯-+=,∴c =4 ②∵2224(1)4y x x x =--+=-++,∴抛物线顶点D 的坐标是(-1,5),AB 的中点E 的坐标是(-1,4),OA 的中点F 的坐标是(-1,2), ∴m 的取值范围为l<m <3.5.(2011湖南益阳,20,10分)如图9,已知抛物线经过定点..A (1,0),它的顶点P 是y 轴正半轴上的一个动点..,P 点关于x 轴的对称点为P′,过P′ 作x 轴的平行线交抛物线于B 、D 两点(B 点在y 轴右侧),直线BA 交y 轴于C 点.按从特殊到一般的规律探究线段CA 与CB 的比值:(1)当P 点坐标为(0,1)时,写出抛物线的解析式并求线段CA 与CB 的比值;(2)若P 点坐标为(0,m )时(m 为任意正实数),线段CA 与CB 的比值是否与⑴所求的比值相同?请说明理由.【答案】解:⑴ 设抛物线的解析式为21(0)y ax a =+≠ ,抛物线经过()1,0A ,01,1a a ∴=+=- ,21y x ∴=-+.(),0,1P P x P '、关于轴对称且,()01P '∴点的坐标为,-P B '∥x 轴,1B ∴-点的纵坐标为,图9xyBA 'P P 1OCD... . . .由212x x -=-=±+1 解得, ()2,1B∴-,2P B '∴=.OA P B '//,CP B '∴∆∽COA ∆,1222CA OA CB P B ∴==='. ⑵ 设抛物线的解析式为2(0)y ax m a =+≠ ()01A 抛物线经过,,0,a m a m ∴+=-=2y mx m ∴=-+.P B '∥x 轴B m ∴-点的纵坐标为, 2y m mx m m =--+=-当时,()220m x ∴-=,0m >,220x ∴-=,2x ∴=±,()2,Bm ∴-,2P B '∴=, 同⑴得12.22CA OA CB P B ===' 22CA m CB ∴=为任意正实数时,. 6. (2011江苏连云港,25,10分)如图,抛物线212y x x a =-+与x 轴交于A ,B 两点,与y 轴交于点C ,其顶点在直线y =-2x 上.(1)求a 的值; (2)求A ,B 两点的坐标;(3)以AC ,CB 为一组邻边作□ABCD ,则点D 关于x 轴的对称点D´是否在该抛物线上?请说明理由.【答案】解:(1)∵二抛物线212y x x a =-+的顶点坐标为24(,)24b ac b a a --,∴x=1,∵顶点在直线y=-2x 上,所以y=-2,即顶点坐标为(1,-2),∴-2=12-1+a,即a =-324;(2)二次函数的关系式为21322y x x =--,当y=0时, 213022x x --=,解之得:121,3x x =-=,即A (-1,0),B (3,0);(3)如图所示:直线BD//AC,AD//BC,因为A(-1.0),C(0,32-),所以直线AB 的解析式为3322y x =--,所以设BD 的解析式为32y x b =-+,因为B(3,0),所以b=92,直线BD 的解析式为:3922y x =-+,同理可得:直线AD 的解析式为:1122y x =+,因此直线BD 与CD 的交点坐标为:(2,32),则点D 关于x 轴的对称点D´是(2,-32),当x=2时代入21322y x x =--得,y=32-,所以D´在二次函数21322y x x =--的图象上.7.(2011湖南永州,24,10分)如图,已知二次函数c bx x y ++-=2的图象经过A (2-,1-),B (0,7)两点.⑴求该抛物线的解析式及对称轴; ⑵当x 为何值时,0>y ?⑶在x 轴上方作平行于x 轴的直线l ,与抛物线交于C ,D 两点(点C 在对称轴的左侧),过点C ,D 作x 轴的垂线,垂足分别为F ,E .当矩形CDEF 为正方形时,求C 点的坐标.【答案】解:⑴把A (2-,1-),B (0,7)两点的坐标代入c bx x y ++-=2,得 ⎩⎨⎧=-=+--7124c c b 解得⎩⎨⎧==72c b 所以,该抛物线的解析式为722++-=x x y ,又因为8)1(7222+--=++-=x x x y ,所以对称轴为直线1=x . ⑵当函数值0=y 时,0722=++-x x 的解为221±=x , 结合图象,容易知道221221+<<-x 时,0>y . ⑶当矩形CDEF 为正方形时,设C 点的坐标为(m ,n ), 则722++-=m m n ,即722++-=m m CF(第24题)因为C ,D 两点的纵坐标相等,所以C ,D 两点关于对称轴1=x 对称,设点D 的横坐标为p ,则11-=-p m ,所以m p -=2,所以CD=m m m 22)2(-=--因为CD=CF ,所以72222++-=-m m m ,整理,得0542=--m m ,解得1-=m 或5. 因为点C 在对称轴的左侧,所以m 只能取1-. 当1-=m 时,722++-=m m n =7)1(2)1(2+-⨯+--=4 于是,得点C 的坐标为(1-,4).8. (2011山东东营,23,10分)(本题满分10分)在平面直角坐标系中,现将一块等腰直角三角形ABC 放在第一象限,斜靠在两坐标轴上,且点A (0,2),点C (1,0),如图所示;抛物线22y ax ax =--经过点B 。
(1) 求点B 的坐标; (2) 求抛物线的解析式;(3)在抛物线上是否还存在点P (点B 除外),使ΔACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所以点P 的坐标;若不存在,请说明理由。