“函数与导数”大题常考的3类题型
高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。
方法:f'(x)为在x=x处的切线的斜率。
题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。
方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。
例题:已知函数f(x)=x-3x。
1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。
提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。
将问题转化为关于x,m的方程有三个不同实数根问题。
答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。
1)求过点(1,-3)与曲线y=x-3x相切的直线方程。
(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。
题型3:求两个曲线y=f(x)、y=g(x)的公切线。
方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例题:求曲线y=x与曲线y=2elnx的公切线方程。
(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。
(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。
导数大题题型归纳解题方法

导数大题题型归纳解题方法
导数大题题型主要包括求函数的导数、求函数的极值、求曲线的切线方程和法线方程等。
下面给出这些题型的解题方法:
1. 求函数的导数:
- 根据导数的定义,逐项求导;
- 利用乘法法则、复合函数法则、除法法则等求导法则简化计算;
- 对于含有多项式函数、指数函数、对数函数、三角函数等函数的复合函数,可以根据相应的求导法则和运算规律进行求导。
2. 求函数的极值:
- 首先求函数的导数,得到导函数;
- 解导函数的方程,求得导函数的零点,即函数的驻点;
- 利用二阶导数判别法来判断驻点的类型(极大值点、极小值点或拐点);
- 如果导函数的零点为函数的一个极值点,则该极值点对应的函数值为极值。
3. 求曲线的切线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 然后利用一般点斜式的切线方程公式,以该点和斜率为参数,得到切线方程。
4. 求曲线的法线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 利用切线斜率与法线斜率的关系(切线斜率与法线斜率的乘积等于-1),由此得到法线的斜率;
- 然后以该点和法线斜率为参数,利用一般点斜式的法线方程公式得到法线方程。
以上是导数大题题型的一般解题方法,根据具体题目特点和要求,可能需要结合其他数学知识和技巧进行推导和计算。
专题17 函数与导数压轴解答题常考套路归类(精讲精练)(原卷版)

专题17 函数与导数压轴解答题常考套路归类【命题规律】函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值; (2)函数的零点问题;(3)不等式恒成立与存在性问题; (4)函数不等式的证明. (5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.【核心考点目录】核心考点一:含参数函数单调性讨论 核心考点二:导数与数列不等式的综合问题 核心考点三:双变量问题 核心考点四:证明不等式 核心考点五:极最值问题 核心考点六:零点问题核心考点七:不等式恒成立问题核心考点八:极值点偏移问题与拐点偏移问题 核心考点九:利用导数解决一类整数问题 核心考点十:导数中的同构问题 核心考点十一:洛必达法则核心考点十二:导数与三角函数结合问题【真题回归】1.(2022·天津·统考高考真题)已知a b ∈R ,,函数()()sin ,x f x e a x g x =-=(1)求函数()y f x =在()()0,0f 处的切线方程; (2)若()y f x =和()y g x =有公共点, (i )当0a =时,求b 的取值范围; (ii )求证:22e a b +>.2.(2022·北京·统考高考真题)已知函数()e ln(1)x f x x =+. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性; (3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.3.(2022·浙江·统考高考真题)设函数e()ln (0)2f x x x x=+>. (1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭; (ⅰ)若1230e,a x x x <<<<,则22132e 112e e6e 6e a ax x a --+<+<-. (注:e 2.71828=是自然对数的底数)4.(2022·全国·统考高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N21ln(1)n n +>++.5.(2022·全国·统考高考真题)已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.6.(2022·全国·统考高考真题)已知函数()ln xf x x a xx e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <.7.(2022·全国·统考高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法技巧与总结】1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x xx x -+<-证明极值点偏移:①由题中等式中产生对数; ②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、 比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.【核心考点】核心考点一:含参数函数单调性讨论 【规律方法】1、导函数为含参一次型的函数单调性导函数的形式为含参一次函数时,首先讨论一次项系数为0,导函数的符号易于判断,当一次项系数不为雩,讨论导函数的零点与区间端点的大小关系,结合导函数图像判定导函数的符号,写出函数的单调区间.2、导函数为含参二次型函数的单调性当主导函数(决定导函数符号的函数)为二次函数时,确定原函数单调区间的问题转化为探究该二次函数在给定区间上根的判定问题.对于此二次函数根的判定有两种情况:(1)若该二次函数不容易因式分解,就要通过判别式来判断根的情况,然后再划分定义域; (2)若该二次函数容易因式分解,令该二次函数等于零,求根并比较大小,然后再划分定义域,判定导函数的符号,从而判断原函数的单调性.3、导函数为含参二阶求导型的函数单调性当无法直接通过解不等式得到一阶导函数的符号时,可对“主导”函数再次求导,使解题思路清晰.“再构造、再求导”是破解函数综合问题的强大武器.在此我们首先要清楚()()()f x f x f x '''、、之间的联系是如何判断原函数单调性的.(1)二次求导目的:通过()f x ''的符号,来判断()f x '的单调性;(2)通过赋特殊值找到()f x '的零点,来判断()f x '正负区间,进而得出()f x 单调性. 【典型例题】例1.(2023春·山东济南·高三统考期中)已知三次函数()()32111212322f x ax a x x =+---.(1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程, (2)讨论()y f x =的单调性.例2.(2023·全国·高三专题练习)已知函数()()2122ex f x x a x a -⎡⎤=+-+-⎣⎦,R a ∈,讨论函数()f x 单调性;例3.(2023·全国·高三专题练习)已知函数()()212ln 212f x a x x a x =+-+,a ∈R ,求()f x 的单调区间.例4.(2023·全国·高三专题练习)已知函数()()()22ln 211f x x ax a x a =---+∈R .求函数()f x 的单调区间;核心考点二:导数与数列不等式的综合问题 【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例5.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()1ln f x x a x x=--.(1)若不等式()0f x ≥在()1,+∞上恒成立,求实数a 的取值范围; (2)证明:()()()22211ln 21ni n n i i n n =+-⎛⎫>⎪+⎝⎭∑.例6.(2023春·重庆·高三统考阶段练习)已知函数()e (2)2,x f x x a ax a =-++∈R . (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若不等式()0f x ≥对0x ∀≥恒成立,求实数a 的范围; (3)证明:当111,1ln(21)23n n n*∈++++<+N .例7.(2023春·福建宁德·高三校考阶段练习)已知函数()e ax f x x =-(12a ≥). (1)(0,1)x ∈,求证:1sin ln 1x x x<<-;(2)证明:111sin sin sin()23f n n+++<.(ln20.693,ln3 1.099≈≈)核心考点三:双变量问题 【规律方法】破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. 【典型例题】例8.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()()ln 1R f x x ax a =-+∈. (1)若过原点的一条直线l 与曲线()y f x =相切,求切点的横坐标;(2)若()f x 有两个零点12x x ,,且212x x >,证明:①1228>e x x ; ②2212220+>e x x .例9.(2023春·湖南长沙·高三长郡中学校考阶段练习)已知函数2()e ,2xmx f x m =-∈R . (1)讨论()f x 极值点的个数;(2)若()f x 有两个极值点12,x x ,且12x x <,证明:()()122e f x f x m +<-.例10.(2023·全国·高三专题练习)巳知函数()ln(3)f x x x =+-. (1)求函数f (x )的最大值; (2)若关于x 的方程e ln3,(0)3x a a a x +=>+有两个不等实数根x x ₁,₂,证明: 122e e x xa+>.核心考点四:证明不等式 【规律方法】利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. (4)对数单身狗,指数找基友 (5)凹凸反转,转化为最值问题 (6)同构变形 【典型例题】例11.(2023·全国·高三校联考阶段练习)已知函数()()22ln ,f x x ax bx a b =-+∈R .(1)当0b =时,讨论()f x 的单调性;(2)设12,x x 为()f x 的两个不同零点,证明:当()0,x ∈+∞时,()()12212124sin 2e x x f x x x x +-+<++.例12.(2023·全国·高三校联考阶段练习)已知2()(ln 1)f x x x =+. (1)求()f x 的单调递增区间; (2)若124()()ef x f x +=,且12x x <,证明12ln()ln 21x x +>-.例13.(2023·江苏·高三专题练习)已知函数()ln m x nf x x+=在()()1,1f 处的切线方程为1y =. (1)求实数m 和n 的值;(2)已知()(),A a f a ,()(),B b f b 是函数()f x 的图象上两点,且()()f a f b =,求证:()()ln ln 1a b ab +<+.核心考点五:极最值问题 【规律方法】利用导数求函数的极最值问题.解题方法是利用导函数与单调性关系确定单调区间,从而求得极最值.只是对含有参数的极最值问题,需要对导函数进行二次讨论,对导函数或其中部分函数再一次求导,确定单调性,零点的存在性及唯一性等,由于零点的存在性与参数有关,因此对函数的极最值又需引入新函数,对新函数再用导数进行求值、证明等操作.【典型例题】例14.(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知函数()31,R 3f x x ax a a =-+∈.(1)当1a =-时,求()f x 在[]22-,上的最值; (2)讨论()f x 的极值点的个数.例15.(2023·江西景德镇·高三统考阶段练习)已知函数21()(2)e e,()2x f x x g x a x x ⎛⎫=-+=- ⎪⎝⎭,其中a 为大于0的常数,若()()()F x f x g x =-. (1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,求()g t 的最小值.例16.(2023·浙江温州·统考模拟预测)已知0a >,函数()()()F x f x g x =-的最小值为2,其中1()e x f x -=,()ln()g x ax =.(1)求实数a 的值;(2)(0,)∀∈+∞x ,有(1)1(e )f x m kx k g x +-≥+-≥,求2mk k -的最大值.核心考点六:零点问题 【规律方法】函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像; 第三步:结合图像判断零点或根据零点分析参数. 【典型例题】例17.(2023·全国·高三专题练习)已知函数()()2e 2x m f x x m =+∈R . (1)若存在0x >,使得()0f x <成立,求m 的取值范围;(2)若函数()()2e e x F x x f x =+-有三个不同的零点,求m 的取值范围.例18.(2023·全国·高三专题练习)设0a >,已知函数()e 2xf x a x =--,和()()ln 22g x x a x =-++⎡⎤⎣⎦.(1)若()f x 与()g x 有相同的最小值,求a 的值;(2)设()()()2ln 2F x f x g x a =++-有两个零点,求a 的取值范围.例19.(2023春·广西·高三期末)已知函数()()ln e axxf xg x x ax ==-,. (1)当1a =时,求函数()f x 的最大值;(2)若关于x 的方()()f x g x +=1有两个不同的实根,求实数a 的取值范围.核心考点七:不等式恒成立问题 【规律方法】1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; (2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()y f x =,[],x a b ∈,()y g x =,[],x c d ∈. (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f xg x <成立,则()()maxmin f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()maxmax f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()minmax f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x =成立,则()f x 的值域是()g x 的值域的子集.【典型例题】例20.(2023·广西南宁·南宁二中校考一模)已知函数()ln 1f x x =+.(1)若函数()()1g x mf x x =+-的图象在1x =处的切线与直线2y x =平行,求函数()g x 在1x =处的切线方程;(2)求证:当12a ≤时,不等式()1af x a +≤在[1,e]上恒成立.例21.(2023·上海·高三专题练习)已知函数()(1)e (R x f x x ax a =--∈且a 为常数). (1)当0a =,求函数()f x 的最小值;(2)若函数()f x 有2个极值点,求a 的取值范围;(3)若()ln e 1x f x x ≥-+对任意的,()0x ∈+∞恒成立,求实数a 的取值范围.例22.(2023·全国·高三专题练习)已知函数()()()e 1ln ln 0x f x a x a x a =+--⋅>.(1)若e a =,求函数()f x 的单调区间; (2)若不等式()1f x <在区间()1,+∞上有解,求实数a 的取值范围.核心考点八:极值点偏移问题与拐点偏移问题 【规律方法】1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性.若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210x x x +≠.如下图所示.图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏.【典型例题】例23.(2022•浙江期中)已知函数()f x x lnx a =--有两个不同的零点1x ,2x . (1)求实数a 的取值范围; (2)证明:121x x a +>+.例24.(2021春•汕头校级月考)已知,函数()f x lnx ax =-,其中a R ∈. (1)讨论函数()f x 的单调性; (2)若函数()f x 有两个零点, ()i 求a 的取值范围;()ii 设()f x 的两个零点分别为1x ,2x ,证明:212x x e >.例25.(2022•浙江开学)已知a R ∈,()ax f x x e -=⋅(其中e 为自然对数的底数). (ⅰ)求函数()y f x =的单调区间;(ⅰ)若0a >,函数()y f x a =-有两个零点x ,2x ,求证:22122x x e +>.核心考点九:利用导数解决一类整数问题 【规律方法】分离参数、分离函数、半分离 【典型例题】例26.已知函数()ln 2f x x x =--. (1)求函数在()()1,1f 处的切线方程(2)证明:()f x 在区间()3,4内存在唯一的零点;(3)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.例27.已知函数211()ln 2f x x x x a a ⎛⎫=+-+ ⎪⎝⎭,(0)a ≠. (1)当12a =时,求函数()fx 在点()()1,1f 处的切线方程;(2)令2()()F x af x x =-,若()12F x ax <-在()1,x ∈+∞恒成立,求整数a 的最大值.(参考数据:4ln 33<,5ln 44<).例28.已知函数()ln 2f x x x =--.(1)证明:()f x 在区间()3,4内存在唯一的零点;(2)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.核心考点十:导数中的同构问题【规律方法】1、同构式:是指除了变量不同,其余地方均相同的表达式2、同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系.可比较大小或解不等式.<同构小套路>①指对各一边,参数是关键;②常用“母函数”:()xf x x e =⋅,()xf x e x =±;寻找“亲戚函数”是关键;③信手拈来凑同构,凑常数、x 、参数;④复合函数(亲戚函数)比大小,利用单调性求参数范围. (3)在解析几何中的应用:如果()()1122,,,Ax y B x y 满足的方程为同构式,则,A B 为方程所表示曲线上的两点.特别的,若满足的方程是直线方程,则该方程即为直线AB 的方程(4)在数列中的应用:可将递推公式变形为“依序同构”的特征,即关于(),n a n 与()1,1n a n --的同构式,从而将同构式设为辅助数列便于求解【典型例题】例29.(2022·河北·高三阶段练习)已知函数()ln f x x x =. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且b a a b =,证明:2111e a b<+<.例30.(2022·河南郑州·二模(文))已知函数()e 21e xf x x =⋅-+,()ln 2xg x x=+. (1)求函数()g x 的极值;(2)当x >0时,证明:()()f x g x ≥例31.(2022·河南省浚县第一中学模拟预测(理))已知函数()()e x f x ax a =-∈R .(1)讨论f (x )的单调性.(2)若a =0,证明:对任意的x >1,都有()4333ln f x x x x x ≥-+.核心考点十一:洛必达法则 【规律方法】法则1、若函数()f x 和()g x 满足下列条件: (1)()lim 0x af x →=及()lim 0x ag x →=;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=',那么()()lim x a f x g x →=()()lim x a f x l g x →'='.法则2、若函数()f x 和()g x 满足下列条件:(1)()lim 0x f x →∞=及()lim 0x g x →∞=; (2)0A ∃>,()f x 和()g x 在(),A -∞与(),A +∞上可导,且()0g x '≠; (3)()()limx f x l g x →∞'=',那么()()limx f x g x →∞=()()limx f x l g x →∞'='.法则3、若函数()f x 和()g x 满足下列条件: (1)()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=', 那么()()limx af xg x →=()()limx af x lg x →'='. 注意:利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: (1)将上面公式中的x a →,,x x →+∞→-∞,x a +→,x a -→洛必达法则也成立. (2)洛必达法则可处理00,∞∞,0⋅∞,1∞,∞,,∞-∞型.(3)在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,∞,,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.(4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止.()()()()()()limlimlimx ax ax a f x f x f x g x g x g x →→→'''==''',如满足条件,可继续使用洛必达法则. 【典型例题】例32.已知函数()=ln (,)f x a x bx a b R +∈在12x =处取得极值,且曲线()y f x =在点(1,(1))f 处的切线与直线10x y -+=垂直.(1)求实数,a b 的值;(2)若[1,)x ∀∈+∞,不等式()(2)mf x m x x≤--恒成立,求实数m 的取值范围.例33.设函数()1x f x e -=-.(1)证明:当1x >-时,()1xf x x ≥+; (2)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.例34.设函数sin ()2cos xf x x=+.如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.22sin 2sin 2sin (sin )x x x x x x =-=-核心考点十二:导数与三角函数结合问题 【规律方法】 分段分析法【典型例题】例35.(2023·河南郑州·高三阶段练习)已知函数()1sin e xx f x x -=+,ππ,2x ⎡⎤∈-⎢⎥⎣⎦. (1)求证:()f x 在ππ,2⎡⎤-⎢⎥⎣⎦上单调递增;(2)当[]π,0x ∈-时,()sin e cos sin xf x x x k x --⎡⎤⎣⎦恒成立,求k 的取值范围.例36.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()sin ()cos f x x x a x =-+(a 为常数),函数3211()32g x x ax =+.(1)证明:(i )当0x >时,sin x x >; (ii )当0x <时,sin x x <;(2)证明:当0a ≥时,曲线()y f x =与曲线()y g x =有且只有一个公共点.例37.(2023·全国·高三专题练习)已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.【新题速递】1.(2023·北京·高三专题练习)已知1x =是函数()()ln ln ln 21xf x x ax x=-+++的一个极值点. (1)求a 值;(2)判断()f x 的单调性;(3)是否存在实数m ,使得关于x 的不等式()f x m ≥的解集为()0,∞+?直接写出m 的取值范围.2.(2023春·广东广州·高三统考阶段练习)已知()214ln 2f x x x a x =-+. (1)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围; (2)若函数()f x 有两个极值点12,x x ,证明:()()1210ln f x f x a +>-+.3.(2023春·广东广州·高三统考阶段练习)已知函数()()2e 21xf x x ax =+-,其中R a ∈,若()f x 的图象在点()()0,0f 处的切线方程为210x by ++=. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[]3,1-上的最值.4.(2023·全国·高三专题练习)已知函数2()1f x x =-,()ln(1)g x m x =-,R m ∈. (1)若直线:20l x y -=与()y g x =在(0,(0))g 处的切线垂直,求m 的值;(2)若函数()()()h x g x f x =-存在两个极值点1x ,2x ,且12x x <,求证:()()1122x h x x h x >.5.(2023·北京·高三专题练习)已知函数()2e x f x =,直线:2l y x b =+与曲线()y f x =相切.(1)求实数b 的值;(2)若曲线()y af x =与直线l 有两个公共点,其横坐标分别为(,)m n m n <. ①求实数a 的取值范围; ②证明:()()1f m f n ⋅>.6.(2023春·陕西西安·高三统考期末)已知函数()()33ln af x x a x x=--+. (1)当0a =时,求函数()f x 的单调区间;(2)若[]1,e x ∀∈,()0f x <,求实数a 的取值范围.7.(2023·四川资阳·统考模拟预测)已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程; (2)当0a ≤时,对于任意0x >,证明:()cos f x x >.8.(2023·四川资阳·统考模拟预测)已知函数()22e xx f x ax +=++. (1)若()f x 单调递增,求a 的取值范围;(2)若()f x 有两个极值点12,x x ,其中12x x <,求证:2133x x a ->-.9.(2023·全国·高三专题练习)已知函数()()43,R,04a f x x ax bx ab a =--∈≠ (1)若0b =,求函数()f x 的单调区间;(2)若存在0R x ∈,使得()()00f x x f x x =+-,设函数()y f x =的图像与x 轴的交点从左到右分别为A ,B ,C ,D ,证明:点B ,C 分别是线段AC 和线段BD 的黄金分割点.(注:若线段上的点将线段分割成两部分,且其中较长部分与全长之比等于较短部分与较长部分之比,则称此点为该线段的黄金分割点)10.(2023·江西景德镇·统考模拟预测)已知函数()()2e e xf x x =-+,()()2112g x a x x ⎛⎫=-- ⎪⎝⎭,()()ln 1ln h x x x a =-+,其中a 为常数,若()()()()F x f x g x h x =-+.(1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,且()()f t mh t ≥恒成立,求实数m 的取值范围.11.(2023·全国·高三专题练习)已知抛物线C :24y x =的焦点为F ,过点P (2,0)作直线l 交抛物线于A ,B 两点.(1)若l 的倾斜角为π4,求△F AB 的面积;(2)过点A ,B 分别作抛物线C 的两条切线1l ,2l 且直线1l 与直线2l 相交于点M ,问:点M 是否在某定直线上?若在,求该定直线的方程,若不在,请说明理由.12.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知函数()21ln 2f x x ax =-,()()21e 112x g x x ax a x =--+-,(1)求函数()y f x =的单调区间;(2)若对于定义域内任意x ,()()f x g x ≤恒成立,求实数a 的取值范围.。
2023年高考数学客观题专题六 函数与导数

2.函数的奇偶性:
(1)奇函数、偶函数的定义:
如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),则称
函数y=f(x)是偶函数;
如果对于函数则
称函数y=f(x)是奇函数.
(2)奇、偶函数的性质:
①偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
A∩B= (
)
A.(1,2)
B.[1,2]
C.[1,2)
D.(1,2]
【答案】D
【解析】由题意得x-1>0,解得x>1,则集合B={x|x>1}.
而集合A={x|-1≤x≤2},
于是A∩B={x|1<x≤2}.故选D.
6.若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是( )
1
D.-4
)
3.若奇函数y=f(x)的图象关于直线x=2对称,且f(3)=3,则f(-1)=
【答案】-3
【解析】y=f(x)的图象关于直线x=2对称,则f(3)=f(1)=3.
y=f(x)为奇函数,则f(-1)=-f(1)=-3.
.
1
4.函数f(x)=ln(+1)+
4 − 2 的定义域为
(
方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数
y=f(x)有零点.
2.定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一
条曲线,并且有:f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即
存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
指数、对数的运算性质:
(1)幂的运算性质:aman=am+n;
高中数学导数大题八类题型总结

导数-大题导数在大题中一般作为压轴题出现,其复杂的原因就在于对函数的综合运用:1.求导,特别是复杂函数的求导2.二次函数(求根公式的运用)3.不等式:基本不等式、均值不等式等4.基本初等函数的性质:周期函数、对数函数、三角函数、指数函数5.常用不等式的巧妙技巧:1/2<ln2<1,5/2<e<3导数大题最基本的注意点:自变量的定义域1.存在性问题2.韦达定理的运用3.隐藏零点4.已有结论的运用5.分段讨论6.分类讨论7.常见不等式的应用8.导数与三次函数的利用1. 存在性问题第(1)问有两个未知数,一般来说,双未知数问题要想办法合并成一个未知数来处理合并成一个未知数后利用不等式1.存在性问题(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:证明必然存在交点是单纯的找“特殊点”问题高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题要点由于只关注零点的存在性,因此就没有必要对t(x)求导讨论其单调性,直接使用零点定即可。
(2)问先对要证明的结论进行简单变形:证毕韦达定理的使用(1)问是常规的分类讨论问题隐零点设而不求,代换整体证明对称轴已经在-1右侧,保证有零点且-1处二次函数值大于0两道例题都是比较简单的含参“隐零点”问题,总之就是用零点(极值点)反过来表示参数再进行计算一些比较难的题目,一般问题就会进行一定提示,如利用(2)问提示(3)问,其难点就在于知道要利用已有结论,但无从下手第(1)问分类讨论问题,分离变量做容易导致解题过于复杂(2)问将不等式两边取对数之后思路就很清晰了(1)(2)分别证明两个不等号即可化到已知的结论上()()()()()()()()()()()()''''1101,0,1,0;1,,00,11,110f x x xx f x x f x x f x f x x x x f x f =->=∈>∈+∞<∈∈+∞==为的零点于是在上单调递增,在上单调递减是的极大值点,(3)问需要利用(2)问结论才能比较顺利的证明利用(2)中结论第(1)问是一个比较简单的存在型问题分段)高考导数大题除求导外,隐藏零点、韦达定理、极值点偏移、二,三阶导等技巧,都是附加的技巧,导数的核心,是分类讨论的考察,高考题多数绕不开分类讨论。
“函数与导数”大题常考的3类题型含解析

题型研究——“函数与导数”大题常考的3类题型1.设函数f (x )=(1-x 2)e x. (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求实数a 的取值范围. 解:(1)f ′(x )=(1-2x -x 2)e x, 令f ′(x )=0,得x =-1±2, 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.(2)令g (x )=f (x )-ax -1=(1-x 2)e x-(ax +1), 令x =0,可得g (0)=0.g ′(x )=(1-x 2-2x )e x-a , 令h (x )=(1-x 2-2x )e x -a ,则h ′(x )=-(x 2+4x +1)e x, 当x ≥0时,h ′(x )<0,h (x )在[0,+∞)上单调递减, 故h (x )≤h (0)=1-a ,即g ′(x )≤1-a ,要使f (x )-ax -1≤0在x ≥0时恒成立,需要1-a ≤0, 即a ≥1,此时g (x )≤g (0)=0,故a ≥1. 综上所述,实数a 的取值范围是[1,+∞).2.(2019·重庆调研)设函数f (x )=-x 2+ax +ln x (a ∈R). (1)当a =-1时,求函数f (x )的单调区间;(2)若函数f (x )在⎣⎢⎡⎦⎥⎤13,3上有两个零点,求实数a 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞),当a =-1时,f ′(x )=-2x -1+1x =-2x 2-x +1x,令f ′(x )=0,得x =12(负值舍去),当0<x <12时,f ′(x )>0;当x >12时,f ′(x )<0.∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12,单调递减区间为( 12,+∞ ).(2)令f (x )=-x 2+ax +ln x =0,得a =x -ln x x.令g (x )=x -ln x x ,其中x ∈⎣⎢⎡⎦⎥⎤13,3, 则g ′(x )=1-1-ln x x 2=x 2+ln x -1x 2,令g ′(x )=0,得x =1,当13≤x <1时,g ′(x )<0;当1<x ≤3时,g ′(x )>0,∴g (x )的单调递减区间为⎣⎢⎡⎭⎪⎫13,1,单调递增区间为(1,3],∴g (x )min =g (1)=1,∵函数f (x )在⎣⎢⎡⎦⎥⎤13,3上有两个零点,g ⎝ ⎛⎭⎪⎫13=3ln 3+13,g (3)=3-ln 33,3ln 3+13>3-ln 33,∴实数a 的取值范围是⎝⎛⎦⎥⎤1,3-ln 33.3.已知函数f (x )=2a -x2e x (a ∈R).(1)求函数f (x )的单调区间;(2)若∀x ∈[1,+∞),不等式f (x )>-1恒成立,求实数a 的取值范围. 解:(1)f ′(x )=x 2-2x -2aex,当a ≤-12时,x 2-2x -2a ≥0,f ′(x )≥0,∴函数f (x )在(-∞,+∞)上单调递增. 当a >-12时,令x 2-2x -2a =0,解得x 1=1-2a +1,x 2=1+2a +1.∴函数f (x )的单调递增区间为(-∞,1-2a +1)和(1+2a +1,+∞),单调递减区间为(1-2a +1,1+2a +1).(2)f (x )>-1⇔2a -x 2e x >-1⇔2a >x 2-e x,由条件知,2a >x 2-e x对∀x ≥1恒成立.令g (x )=x 2-e x ,h (x )=g ′(x )=2x -e x ,∴h ′(x )=2-e x. 当x ∈[1,+∞)时,h ′(x )=2-e x≤2-e<0, ∴h (x )=g ′(x )=2x -e x在[1,+∞)上单调递减, ∴h (x )=2x -e x≤2-e<0,即g ′(x )<0, ∴g (x )=x 2-e x在[1,+∞)上单调递减, ∴g (x )=x 2-e x≤g (1)=1-e , 故若f (x )>-1在[1,+∞)上恒成立, 则需2a >g (x )max =1-e ,∴a >1-e 2,即实数a 的取值范围是⎝ ⎛⎭⎪⎫1-e 2,+∞. 4.(2019·广西柳州模拟)已知a 为实数,函数f (x )=a ln x +x 2-4x . (1)若x =3是函数f (x )的一个极值点,求实数a 的取值;(2)设g (x )=(a -2)x ,若∃x 0∈⎣⎢⎡⎦⎥⎤1e ,e ,使得f (x 0)≤g (x 0)成立,求实数a 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=a x +2x -4=2x 2-4x +ax.∵x =3是函数f (x )的一个极值点, ∴f ′(3)=0,解得a =-6.经检验a =-6时,x =3是函数f (x )的一个极小值点,符合题意,∴a =-6. (2)由f (x 0)≤g (x 0),得(x 0-ln x 0)a ≥x 20-2x 0, 记F (x )=x -ln x (x >0),∴F ′(x )=x -1x(x >0), ∴当0<x <1时,F ′(x )<0,F (x )单调递减; 当x >1时,F ′(x )>0,F (x )单调递增.∴F (x )≥F (1)=1>0,∴a ≥x 20-2x 0x 0-ln x 0.记G (x )=x 2-2x x -ln x ,x ∈⎣⎢⎡⎦⎥⎤1e ,e , ∴G ′(x )=x -x -ln x -x -x -x -ln x 2=x -x -2ln x +x -ln x 2.∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,∴2-2ln x =2(1-ln x )≥0, ∴x -2ln x +2>0,∴x ∈⎝ ⎛⎭⎪⎫1e ,1时,G ′(x )<0,G (x )单调递减; x ∈(1,e)时,G ′(x )>0,G (x )单调递增.∴G (x )min =G (1)=-1,∴a ≥G (x )min =-1. 故实数a 的取值范围为[-1,+∞).5.(2019·武汉调研)已知函数f (x )=ln x +a x,a ∈R. (1)讨论函数f (x )的单调性; (2)当a >0时,证明f (x )≥2a -1a.解:(1)f ′(x )=1x -a x 2=x -ax2(x >0).当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当a >0时,若x >a ,则f ′(x )>0,函数f (x )在(a ,+∞)上单调递增; 若0<x <a ,则f ′(x )<0,函数f (x )在(0,a )上单调递减. (2)证明:由(1)知,当a >0时,f (x )min =f (a )=ln a +1. 要证f (x )≥2a -1a ,只需证ln a +1≥2a -1a,即证ln a +1a-1≥0.令函数g (a )=ln a +1a -1,则g ′(a )=1a -1a 2=a -1a2(a >0),当0<a <1时,g ′(a )<0,当a >1时,g ′(a )>0,所以g (a )在(0,1)上单调递减,在(1,+∞)上单调递增, 所以g (a )min =g (1)=0. 所以ln a +1a-1≥0恒成立,所以f (x )≥2a -1a.6.(2019·唐山模拟)已知f (x )=12x 2-a 2ln x ,a >0.(1)若f (x )≥0,求a 的取值范围;(2)若f (x 1)=f (x 2),且x 1≠x 2,证明:x 1+x 2>2a .解:(1)f ′(x )=x -a 2x =x +a x -ax(x >0).当x ∈(0,a )时,f ′(x )<0,f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,f (x )单调递增. 当x =a 时,f (x )取最小值f (a )=12a 2-a 2ln a .令12a 2-a 2ln a ≥0,解得0<a < e. 故a 的取值范围是(0,e].(2)证明:由(1)知,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增, 不失一般性,设0<x 1<a <x 2<2a ,则2a -x 2<a .要证x 1+x 2>2a ,即x 1>2a -x 2,则只需证f (x 1)<f (2a -x 2). 因为f (x 1)=f (x 2),则只需证f (x 2)<f (2a -x 2). 设g (x )=f (x )-f (2a -x ),a ≤x ≤2a .则g ′(x )=x -a 2x +2a -x -a 22a -x =-2a a -x2x a -x≤0,所以g (x )在[a,2a )上单调递减,从而g (x )≤g (a )=0.又a <x 2<2a ,于是g (x 2)=f (x 2)-f (2a -x 2)<0, 即f (x 2)<f (2a -x 2). 因此x 1+x 2>2a .。
导数大题求参归类(学生版)

导数大题求参归类目录题型01 恒成立求参:常规型题型02 恒成立求参:三角函数型题型03恒成立求参:双变量型题型04 恒成立求参:整数型题型05恒成立求参:三角函数型整数题型06“能”成立求参:常规型题型07“能”成立求参:双变量型题型08“能”成立求参:正余弦型题型09 零点型求参:常规型题型10 零点型求参:双零点型题型11 零点型求参:多零点综合型题型12 同构型求参:x1,x2双变量同构题型13 虚设零点型求参高考练场热点题型归纳题型01恒成立求参:常规型【解题攻略】利用导数求解参数范围的两种常用方法:(1)分离参数法:将参数和自变量分离开来,构造关于自变量的新函数,研究新函数最值与参数之间的关系,求解出参数范围;(2)分类讨论法:根据题意分析参数的临界值,根据临界值作分类讨论,分别求解出满足题意的参数范围最后取并集.1(2024上·北京·高三阶段练习)设a>0,函数f(x)=x a ln x.(1)讨论f(x)的单调性;(2)若f(x)≤x,求a的取值范围;(3)若f (x)≤1,求a.2(2024上·甘肃武威·高三统考期末)已知函数f x =2xe x+a ln x+1.(1)当a=0时,求f x 的最大值;(2)若f x ≤0在x∈0,+∞上恒成立,求实数a的取值范围.【变式训练】1(2023上·江苏镇江·高三校考阶段练习)已知函数f x =x2-ax e x.(1)若f x 在-2,-1上单调递增,求实数a的取值范围;(2)若f x ≥sin x对x∈-∞,0恒成立,求实数a的取值范围.2(2024上·山西·高三期末)已知函数f x =m x-12-2x+2ln x,m≥2.(1)求证:函数f x 存在单调递减区间,并求出该函数单调递减区间a,b的长度b-a的取值范围;(2)当x≥1时,f x ≤2xe x-1-4x恒成立,求实数m的取值范围.3(2024·全国·模拟预测)已知函数f(x)=2x2-a ln x-1,a∈R.(1)求函数f(x)的单调区间;(2)若对任意的x∈(0,+∞),不等式f(x+1)>(x+1)2+1x+1-1e x恒成立,求实数a的取值范围.题型02恒成立求参:三角函数型【解题攻略】三角函数与导数应用求参:1.正余弦的有界性2.三角函数与函数的重要放缩公式:x≥sin x x≥0.1(2023·全国·高三专题练习)已知函数f x =sin xx,g x =a cos x.(1)求证:x∈0,π2时,f x <1;(2)当x∈-π2,0∪0,π2时,f x >g x 恒成立,求实数a的取值范围;(3)当x∈-π2,0∪0,π2时,f x2>g x 恒成立,求实数a的取值范围.2(2023上·全国·高三期末)已知函数f (x )=e x sin x -2x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求f (x )在区间0,π2上的最大值;(3)设实数a 使得f (x )+x >ae x 对x ∈R 恒成立,求a 的最大整数值.【变式训练】1(2023上·湖北省直辖县级单位·高三校考阶段练习)已知函数f x =e ax -2ax a ∈R ,a ≠0 .(1)讨论f x 的单调性;(2)若不等式f x ≥sin x -cos x +2-2ax 对任意x ≥0恒成立,求实数a 的取值范围.2(2023上·甘肃定西·高三甘肃省临洮中学校考阶段练习)已知函数f x =e x-sin x-cos x,f x 为其导函数.(1)求f x 在-π,+∞上极值点的个数;(2)若f (x)≥ax+2-2cos x a∈R对∀x∈-π,+∞恒成立,求a的值.题型03恒成立求参:双变量型【解题攻略】一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,总有f x 1 <g x 2 成立,故f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x max <g x max ;(3)若∃x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x min ;(4)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x max .1(2023·四川攀枝花·统考模拟预测)已知函数f x =ae x -x a ∈R .(1)当a =1时,求f x 的单调区间;(2)设函数g x =x 2-1 e x -x -f x ,当g x 有两个极值点x 1,x 2x 1<x 2 时,总有tg x 2 ≥2+x 1 ex 2+x 22-3 成立,求实数t 的值.2(2024上·四川成都·高三成都七中校考阶段练习)设函数f x =e x -ax ,其中a ∈R .(1)讨论函数f (x )在[1,+∞)上的极值;(2)若函数f (x )有两零点x 1,x 2x 1<x 2 ,且满足x 1+λx 21+λ>1,求正实数λ的取值范围.【变式训练】1(2023·上海松江·校考模拟预测)已知函数f (x )=ax -a ln x -e xx.(1)若a =0,求函数y =f (x )的极值点;(2)若不等式f (x )<0恒成立,求实数a 的取值范围;(3)若函数y =f (x )有三个不同的极值点x 1、x 2、x 3,且f (x 1)+f (x 2)+f (x 3)≤3e 2-e ,求实数a 的取值范围.2(2023下·山东德州·高三校考阶段练习)已知函数f x =2ln x +12(a -x )2,其中a ∈R .(1)讨论函数f x 的单调性;(2)若f x 存在两个极值点x 1,x 2x 1<x 2 ,f x 2 -f x 1 的取值范围为34-ln2,158-2ln2 ,求a 的取值范围.题型04恒成立求参:整数型【解题攻略】恒成立求参的一般规律①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;如果参数涉及到整数,要注意对应解中相邻两个整数点函数的符号1(2023上·湖北·高三校联考阶段练习)已知f x =e x -2x +a .(1)若f x ≥0恒成立,求实数a 的取值范同:(2)设x 表示不超过x 的最大整数,已知e x +2ln x -e +2 x +2≥0的解集为x x ≥t ,求et .(参考数据:e ≈2.72,ln2≈0.69,ln3≈1.10)2(2023上·浙江·高三校联考阶段练习)已知函数f x =ae x-2,g x =x+1x+2ln x,e=2.71828⋯为自然对数底数.(1)证明:当x>1时,ln x<x2-12x;(2)若不等式f x >g x 对任意的x∈0,+∞恒成立,求整数a的最小值.【变式训练】1(2023·江西景德镇·统考一模)已知函数f x =sin x+sin ax,x∈0,π2.(1)若a=2,求函数g x =f x +sin x值域;(2)是否存在正整数a使得f xx>3cos x恒成立?若存在,求出正整数a的取值集合;若不存在,请说明理由.2(2023·全国·高三专题练习)已知函数f x =5+ln x,g x =kxx+1k∈R.(1)若函数f x 的图象在点1,f1处的切线与函数y=g x 的图象相切,求k的值;(2)若k∈N∗,且x∈1,+∞时,恒有f x >g x ,求k的最大值.(参考数据:ln5≈1.61,ln6≈1.7918,ln2+1≈0.8814)题型05恒成立求参:三角函数型整数1(2020·云南昆明·统考三模)已知f(x)=e x-2x-1 2.(1)证明:f(x)>0;(2)对任意x≥1,e sin x+x2-ax-1-ln x>0,求整数a的最大值.(参考数据:sin1≈0.8,ln2≈0.7)2(2020上·浙江·高三校联考阶段练习)已知函数f x =a sin x +sin2x ,a ∈R .(1)若a =2,求函数f x 在0,π 上的单调区间;(2)若a =1,不等式f x ≥bx cos x 对任意x ∈0,2π3恒成立,求满足条件的最大整数b .【变式训练】1(2022·全国·高三专题练习)已知函数f (x )=e x +a cos x -2x -2,f ′(x )为f (x )的导函数.(1)讨论f ′(x )在区间0,π2 内极值点的个数;(2)若x ∈-π2,0时,f (x )≥0恒成立,求整数a 的最小值.2(2023·云南保山·统考二模)设函数f x =x sin x ,x ∈R (1)求f x 在区间0,π 上的极值点个数;(2)若x 0为f x 的极值点,则f x 0 ≥λln 1+x 20 ,求整数λ的最大值.题型06“能”成立求参:常规型【解题攻略】形如f x ≥g x 的有解的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x max≥0恒成立即可;2、参数分离法:转化为a≥φx 或a≤φx 恒成立,即a≥φx min或a≤φx max恒成立,只需利用导数求得函数φx 的单调性与最值即可.1(2023上·浙江·高三浙江省长兴中学校联考期中)已知函数f x =a ln x+x,a∈R.(1)讨论函数f x 的单调性;(2)若存在x∈e,e2,使f x ≤ax+1 2ln x成立,求实数a的取值范围.注:e为自然对数的底数.2(2023上·湖南长沙·高三统考阶段练习)已知函数f x =a2e2x+a-2e x-12x2,y=g x 是y=f x 的导函数.(1)若a=3,求y=g x 的单调区间;(2)若存在实数x∈0,1使f x >32a-2成立,求a的取值范围.【变式训练】1(2023·全国·模拟预测)已知函数f x =x2+a ln ex.(1)讨论f x 的单调性;(2)若存在x∈1,e,使得f x -ax-a≤2,求实数a的最小值.2(2023上·黑龙江齐齐哈尔·高三统考阶段练习)已知函数f x =a ln x+1-a2x2-x a∈R.(1)若a=2,求函数f x 的单调区间;(2)若存在x0≥1,使得f x0<aa-1,求a的取值范围.题型07“能”成立求参:双变量型【解题攻略】一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d(1)相等关系记y =f x ,x ∈a ,b 的值域为A , y =g x ,x ∈c ,d 的值域为B ,①若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则有A ⊆B ;②若∃x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 =g x 2 成立,则有A ⊇B ;③若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,故A ∩B ≠∅;(2)不等关系(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,总有f x 1 <g x 2 成立,故f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x max <g x max ;(3)若∃x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x min ;(4)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x max .1(2022·江西上饶·高三校联考阶段练习)已知函数f (x )=2ax -e x +2,其中a ≠0.(1)若a =12,讨论函数f (x )的单调性;(2)是否存在实数a ,对任意x 1∈[0,1],总存在x 2∈[0,1],使得f x 1 +f x 2 =4成立?若存在,求出实数a 的值;若不存在,请说明理由.2(2023上·辽宁沈阳·高三沈阳二十中校考阶段练习)已知函数f x =a ln x +1xx >0 .(1)讨论函数f x 的单调性;(2)若存在x 1,x 2满足0<x 1<x 2,且x 1+x 2=1,f x 1 =f x 2 ,求实数a 的取值范围.【变式训练】1(2023·全国·高三专题练习)已知函数f x =ax 2-2+5a x +5ln x a ∈R ,g x =x 2-52x .(1)若曲线y =f x 在x =3和x =5处的切线互相平行,求a 的值;(2)求f x 的单调区间;(3)若对任意x 1∈0,52 ,均存在x 2∈0,52,使得f x 1 <g x 2 ,求a 的取值范围.2(2023上·重庆·高三校联考阶段练习)已知函数f (x )=ax +ln x (a ∈R ),g (x )=x 2-2x +2.(1)当a =-12时,求函数f (x )在区间[1,e ]上的最大值和最小值;(2)若对任意的x 1∈[-1,2],均存在x 2∈(0,+∞),使得g x 1 <f x 2 ,求a 的取值范围.题型08“能”成立求参:正余弦型1(2017·江苏淮安·高三江苏省淮安中学阶段练习)函数f (x )=a cos x -x +b (a >0,b >0).(1)求证:函数f (x )在区间0,a +b 内至少有一个零点;(2)若函数f (x )在x =-π6处取极值,且∃x ∈0,π2 ,使得f (x )<3cos x -sin x 成立,求实数b 的取值范围.2(2023·全国·高三专题练习)已知函数f (x )=x +2-2cos x(1)求函数f (x )在-π2,π2 上的最值:(2)若存在x ∈0,π2使不等式f (x )≤ax 成立,求实数a 的取值范围【变式训练】1(2020·四川泸州·统考二模)已知函数f (x )=sin x x,g (x )=(x -1)m -2ln x .(1)求证:当x ∈(0,π]时,f (x )<1;(2)求证:当m >2时,对任意x 0∈(0,π],存在x 1∈(0,π]和x 2∈(0,π](x 1≠x 2)使g (x 1)=g (x 2)=f (x 0)成立.2(2023·全国·高三专题练习)已知函数f x =ln1+x-a sin x,a∈R.(1)若y=f x 在0,0处的切线为x-3y=0,求a的值;(2)若存在x∈1,2,使得f x ≥2a,求实数a的取值范围.题型09零点型求参:常规型【解题攻略】零点常规型求参基础:1.分类讨论思想与转化化归思想2.数形结合与单调性的综合应用:一个零点,则多为所求范围内的单调函数,或者“类二次函数”切线处(极值点处)3.注意“找点”难度,对于普通学生,可以用极限思维代替“找点思维”。
导数大题10种主要题型导学案含详解

导数大题10种主要题型(一)预习案题型一:构造函数1.1 “比较法”构造函数例1.已知函数f(x)=e x﹣ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)求证:当x>0时,x2<e x.1.2 “拆分法”构造函数例2.设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处的切线为y=e(x﹣1)+2.(Ⅰ)求a,b;(Ⅱ)证明:f(x)>1.1.3 “换元法”构造函数例3.已知函数f(x)=ax2+xlnx(a∈R)的图象在点(1,f(1))处的切线与直线x+3y=0垂直.(Ⅰ)求实数a的值;(Ⅱ)求证:当n>m>0时,lnn﹣lnm>﹣;(Ⅲ)若存在k∈Z,使得f(x)>k恒成立,求实数k的最大值.1.4 “二次(甚至多次)”构造函数例4.已知函数f(x)=e x+m﹣x3,g(x)=ln(x+1)+2.(1)若曲线y=f(x)在点(0,f(0))处的切线斜率为1,求实数m的值;(2)当m≥1时,证明:f(x)>g(x)﹣x3.题型二:隐零点问题例1.已知函数f(x)=e x﹣ln(x+m).(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.例2.(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x﹣2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.导数大题10种主要题型(一)预习案答案例1. 解:(1)f ′(x )=e x ﹣a ,∵f ′(0)=﹣1=1﹣a ,∴a =2.∴f (x )=e x ﹣2x ,f ′(x )=e x ﹣2.令f ′(x )=0,解得x =ln 2.当x <ln 2时,f ′(x )<0,函数f (x )单调递减;当x >ln 2时,f ′(x )>0,函数f (x )单调递增.∴当x =ln 2时,函数f (x )取得极小值,为f (ln 2)=2﹣2ln 2,无极大值.(2)证明:方法一(作差法)令g (x )=e x ﹣x 2,则g ′(x )=e x ﹣2x ,由(1)可得:g ′(x )=f (x )≥f (ln 2)>0,∴g (x )在R 上单调递增,因此:x >0时,g (x )>g (0)=1>0,∴x 2<e x .方法二(作商法):即可只需证1)(,2)(<=x h e x x h x例2. 解:(Ⅰ) 函数f (x )的定义域为(0,+∞),, 由题意可得f (1)=2,f '(1)=e ,故a =1,b =2.(Ⅱ)证明:方法一(凹凸反转法)由(Ⅰ)知,,从而f (x )>1等价于,设函数g (x )=xlnx ,则g '(x )=1+lnx ,所以当时,g '(x )<0, 当时,g '(x )>0,故g (x )在单调递减,在单调递增,从而g (x )在(0,+∞)的最小值为.设函数,则h '(x )=e ﹣x (1﹣x ),所以当x ∈(0,1)时,h '(x )>0,当x ∈(1,+∞)时,h '(x )<0,故h (x )在(0,1)单调递增,在(1,+∞)单调递减,从而h (x )在(0,+∞)的最大值为.综上:当x >0时,g (x )>h (x ),即f (x )>1.方法二(放缩法)例3. 解:(Ⅰ)∵f (x )=ax 2+xlnx ,∴f ′(x )=2ax +lnx +1,∵切线与直线x +3y =0垂直,∴切线的斜率为3,∴f ′(1)=3,即2a +1=3,故a =1; (Ⅱ)由(Ⅰ)知f (x )=x 2+xlnx ,x ∈(0,+∞),f ′(x )=2x +lnx +1,x ∈(0,+∞), ∵f ′(x )在(0,+∞)上单调递增,∴当x >1时,有f ′(x )>f ′(1)=3>0,∴函数f (x )在区间(1,+∞)上单调递增,∵n >m >0,∴,∴f ()>f (1)=1即,∴lnn ﹣lnm >; (Ⅲ)由(Ⅰ)知f (x )=x 2+xlnx ,x ∈(0,+∞),f ′(x )=2x +lnx +1,x ∈(0,+∞), 令g (x )=2x +lnx +1,x ∈(0,+∞),则,x ∈(0,+∞),由g ′(x )>0对x ∈(0,+∞),恒成立,故g (x )在(0,+∞)上单调递增, 又∵011121)1(222<-=+-=e e e g ,而>0, ∴存在x 0∈,使g (x 0)=0 ∵g (x )在(0,+∞)上单调递增,∴当x ∈(0,x 0)时,g (x )=f ′(x )<0,f (x )在(0,x 0)上单调递减;当x ∈(x 0,+∞)时,g (x )=f ′(x )>0,f (x )在(x 0,+∞)上单调递增;∴f (x )在x =x 0处取得最小值f (x 0)∵f (x )>k 恒成立,所以k <f (x 0)由g (x 0)=0得,2x 0+lnx 0+1=0,所以lnx 0=﹣1﹣2x 0,∴f (x 0)===﹣=﹣,又,∴f (x 0)∈, ∵k ∈Z ,∴k 的最大值为﹣1.例4. 解:(1)函数f (x )=e x +m ﹣x 3的导数为f ′(x )=e x +m ﹣3x 2,在点(0,f (0))处的切线斜率为k =e m =1,解得m =0;(2)证明:f (x )>g (x )﹣x 3即为e x +m >ln (x +1)+2.由y =e x ﹣x ﹣1的导数为y ′=e x ﹣1,当x >0时,y ′>0,函数递增;当x <0时,y ′<0,函数递减.即有x =0处取得极小值,也为最小值0.即有e x ≥x +1,则e x +m ≥x +m +1,由h(x)=x+m+1﹣ln(x+1)﹣2=x+m﹣ln(x+1)﹣1,h′(x)=1﹣,当x>0时,h′(x)>0,h(x)递增;﹣1<x<0时,h′(x)<0,h(x)递减.即有x=0处取得最小值,且为m﹣1,当m≥1时,即有h(x)≥m﹣1≥0,即x+m+1≥ln(x+1)+2,则有f(x)>g(x)﹣x3成立.例5.(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得,ln(x0+2)=﹣x0.故f(x)≥=>0.综上,当m≤2时,f(x)>0.例6.解:(1)证明:f(x)=f'(x)=e x()=∵当x∈(﹣∞,﹣2)∪(﹣2,+∞)时,f'(x)≥0∴f(x)在(﹣∞,﹣2)和(﹣2,+∞)上单调递增∴x>0时,>f(0)=﹣1即(x﹣2)e x+x+2>0(2)g'(x)====,a∈[0,1),由(1)知,f(x)+a单调递增,对任意的a∈[0,1),f(0)+a=a﹣1<0,f(2)+a=a≥0,因此存在唯一的t∈(0,2],使得f(t)+a=0,当x∈(0,t)时,g'(x)<0,g(x)单调减;当x∈(t,+∞),g'(x)>0,g(x)单调增;h(t)===记k(t)=,在t∈(0,2]时,k'(t)=>0,故k(t)单调递增,所以h(a)=k(t)∈(,].导数大题10种主要题型(二)预习案题型三:恒成立、存在性问题3.1 单变量恒成立、存在性问题例1.已知函数f (x )=xlnx ,g (x )=﹣x 2+ax ﹣3.(1)求函数f (x )在[t ,t +2](t >0)上的最小值;(2)若存在x 0∈[,e ](e 是自然对数的底数,e =2.71828…),使不等式2f (x 0)≥g (x 0)成立,求实数a 的取值范围.3.2 双变量恒成立、存在性问题极值点偏移问题:由于函数左右增减速率不同导致函数图像失去对称性。
导数大题方法总结

一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若 f(x)在 x =k 时取得极值,试求所给函数中参数的值;或者是 f(x)在(a , f(a)) 处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。
虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。
这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令 x = k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。
注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。
保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。
②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。
所以做两个字来概括这一类型题的方法就是:淡定。
别人送分,就不要客气。
③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。
切线要写成一般式。
一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。
这一类题问法都比较的简单,一般是求 f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。
一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。
这类问题的方法是:首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。
往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。
这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。
函数与导数重点题型01:含参函数单调性、极值、零点问题研究

重点题型一:含参函数的单调性、极值、最值及零点问题【问题分析】含参函数的单调性、极值点及零点问题,在高考中考查频次非常高,主要考查利用分类讨论来研究函数单调性和由函数极值、最值及零点求解参数范围。
此类问题难度较大,经常出现在试卷T20或T21,属于高考压轴题型。
该题型主要考查考生的分类讨论思想、等价转化思想。
解决此类问题的本质就是确定函数定义域上的单调性,基本思想就是“分类讨论”,解题的关键就是参数“分界点”的确定。
所以,要解决好此类问题,首先要明确参数“分界点”,其次确定在参数不同的分段区间上函数的单调性,进而可以确定函数的极值点、最值及零点,达到解题目的。
图1-1 含参函数问题解题思路【知识回顾】图1-2 函数f (x )单调性、极值、最值及零点关系图特别提醒:1.函数f (x )单调性、极值、最值及零点必须在函数定义域内研究,所以解决问题之前,必须先确定函数的定义域。
2.函数f (x )的极值点为其导函数变号的点,亦即导函数f ′(x )的变号零点。
3.函数f (x )的极值点为函数单调区间的“分界点”,经过极大值点函数由增变减,经过极小值点函数由减变增。
函数f(x)的单调性函数f(x)的极值点导函数f ′(x)的变号零点函数f(x)的最值确定分界点有影响分类讨论函数单调性参数导函数f ′(x)值/f ′(x )=0的根函数f(x)4. 函数f (x )单调区间不能写成并集,也不能用“或”连接,只能用逗号“,”或“和”连接。
【“分界点”确认】参数对导函数f ′(x )的值符号有影响,就必须根据参数对导函数的影响确定参数“分界点”,然后在进行分类讨论函数的单调性。
常见的“分界点”确认方法如下: 1.观察法:解决问题的过程中,我们会发现导函数形式比较简单的情况下,我们可以通过观察直接确定参数的“分界点”,例如:当导函数f ′(x )的值与y =x 2+a 函数有关,可以直接观察得到:当a ≥0时,y ≥0;当a <0时,y =0有两个根x 1=−√−a,x 2=√−a,当x ∈(−∞,−√−a)∪(√−a,+∞)时,y >0,当x ∈(−√−a,√−a)时,y <0.所以我们可以根据常见函数的性质及其之间的不等关系,通过直接观察确定“分界点”,常见函数性质及其之间的关系如下: ①x 2≥0 (x ∈R ), 完全平方式不小于0 ②tanx >x >sinx (0<x <π2)③e x ≥x +1 (x ∈R ),仅当x =0时,等号成立e x =x +1 ④lnx ≤x −1 (x >0),仅当x =1时,等号成立lnx =x −1 ⑤lnx <x <e x (x >0) ⑥a x >0 (x ∈R )2.由二次函数引发的“分界点”当函数f (x )求导后,导函数f ′(x )值符号由一个含参的二次函数(二次三项式)决定,一般可以从两个方面进行“分界点”的确定:(1)通过二次函数(一元二次方程)的∆判别式进行“分界点”的确定. 对于一个二次函数y =ax 2+bx +c (a ≠0): ① {a >0∆≤0⟹y ≥0或{a <0∆≤0⟹y ≤0.② {a >0∆>0⟹二次函数有两个零点(或二次方程y =0有两个不同实根)x 1,x 2(x 1<x 2),x 在两根之外函数大于0,两根之内函数小于0.③ {a <0∆>0⟹二次函数有两个零点(或二次方程y =0有两个不同实根)x 1,x 2(x 1<x 2),x 在两根之外函数小于0,两根之内函数大于0. 特别提醒:当二次函数有两个零点时,需要确定两个零点是否在函数定义域之内,若不在需要舍弃. (2)由二次函数零点分布(一元二次方程实根分布)进行“分界点”确定设x 1,x 2(x 1<x 2)是二次函数y =ax 2+bx +c (a >0)的两个零点(一元二次方程ax 2+bx +c =0(a >0)的两个根),则x 1,x 2的分布情况与二次函数系数之间的关系如下(k,k 1,k 2∈R,k 1<k 2):零点分布函数图像等价条件x 1<x 2<k{∆>0f (k )>0−b 2a<kk <x 1<x 2{∆>0f (k )>0−b 2a>kx 1<k <x 2f (k )<0k 1<x 1<x 2<k 2{∆>0f (k 1)>0f (k 2)>0k 1<−b 2a<k2 x 1,x 2中仅有一个在(k 1,k 2)内\f (k 1)∙f (k 2)<0或f (k 1)=0,k 1<−b2a <k 1+k 22或f (k 2)=0,k 1+k 22<−b2a <k 2或{∆=0k 1<−b 2a<k 2当二次函数定义域受限,可以根据上表情况进行“分界点”确认,进而进行分类讨论。
高考数学导数压轴大题7大题型梳理归纳

导数压轴大题7个题型梳理归纳题型一:含参分类讨论 类型一:主导函数为一次型例1:已知函数()ln f x ax a x =--,且()0f x ≥.求a 的值 解:()1ax f x x-'=.当0a ≤时,()0f x '<,即()f x 在()0,+∞上单调递减,所以当01x ∀>时,()()010f x f <=,与()0f x ≥恒成立矛盾.当0a >时,因为10x a <<时()0f x '<,当1x a>时()0f x '>,所以()min 1f x f a ⎛⎫= ⎪⎝⎭,又因为()1ln10f a a =--=,所以11a =,解得1a =类型二:主导函数为二次型例2: 已知函数()()320f x x kx x k =-+<.讨论()f x 在[],k k -上的单调性. 解:()f x 的定义域为R ,()()23210f x x kx k '=-+<,其开口向上,对称轴3k x =,且过()0,1,故03kk k <<<-,明显不能分解因式,得2412k ∆=-.(1)当24120k ∆=-≤时,即0k ≤<时,()0f x '≥,所以()f x 在[],k k -上单调递增;(2)当24120k ∆=->时,即k <令()23210f x x kx '=-+=,解得:12x x ==,因为()()210,010f k k f ''=+>=>,所以两根均在[],0k 上.因此,结合()f x '图像可得:()f x 在,,33k k k k ⎡⎡⎤+-⎢⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦上单调递增,在⎢⎥⎣⎦上单调递减.类型三:主导函数为超越型例3:已知函数()cos xf x e x x =-.求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值. 解:定义域0,2π⎡⎤⎢⎥⎣⎦,()()cos sin 1x f x e x x '=--,令()()cos sin 1xh x e x x =--,则()()cos sin sin cos 2sin .xx h x e x x x x e x '=---=-当0,2x π⎡⎤∈⎢⎥⎣⎦,可得()0h x '≤,即()h x 在0,2π⎡⎤⎢⎥⎣⎦递减,可得()()()000h x h f '≤==,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦递减,所以()()()max01,.22f x f f x f ππ⎛⎫====- ⎪⎝⎭类型四:复杂含参分类讨论例4:已知函数()()33f x x x a a R =+-∈.若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.解:()33333,333,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,()2233,33,x x af x x x a⎧+≥⎪'=⎨-<⎪⎩ ①当1a ≤-时,有x a ≥,故()333f x x x a =+-,所以()f x 在()1,1-上是增函数,()()()()143,143M a f a m a f a ==-=-=--,故()()8M a m a -=.②当11a -<<时,若()()3,1,33x a f x x x a ∈=+-,在(),1a 上是增函数;若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a =-==,由于()()1162f f a --=-+因此当113a -<≤时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.③当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数,因此()()()()123,123M a f a m a f a =-=+==-+,故()()4M a m a -=.题型二:利用参变分离法解决的恒成立问题类型一:参变分离后分母跨0例5:已知函数()()()242,22xf x x xg x e x =++=+,若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:由题意()24221xx x ke x ++≤+,对于任意的2x ≥-恒成立.当1x =-,上式恒成立,故k R ∈;当1x >-,上式化为()24221x x x k e x ++≥+,令()()()2421,21x x x h x x e x ++=>-+ ()()()22+221x xxe x h x e x -'=+,所以()h x 在0x =处取得最大值,()01k h ≥= 当21x -≤<-时,上式化为()24221x x x k e x ++≤+,()h x 单调递增,故()h x 在2x =-处取得最小值,()22k h e ≤-=.综上,k 的取值范围为21,e ⎡⎤⎣⎦.类型二:参变分离后需多次求导例6:已知函数()()()()212ln ,f x a x x a R =---∈对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立,求a 的最小值.解:即对12ln 0,,221xx a x ⎛⎫∈>-⎪-⎝⎭恒成立. 令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()()()222212ln 2ln 211x x x x x l x x x --+-'=-=-- 再令()()()222121122ln 2,0,,02x m x x x m x x x x x --⎛⎫'=+-∈=-+=< ⎪⎝⎭()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而,()0l x '>,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,()124ln 22l x l ⎛⎫<=- ⎪⎝⎭,故要2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞,即a 的最小值24ln 2-. 变式1:已知函数()()1ln ,0x f x x a R a ax -=+∈≠,()()()11x g x b x xe b R x=---∈(1)讨论()f x 的单调性;(2)当1a =时,若关于x 的不等式()()2f x g x +≤-恒成立,求b 取值范围.类型三:参变分离后零点设而不求例7:已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对于任意1x >恒成立,求k 的最大值.解:恒成立不等式()minln ln ,111f x x x x x x x k k x x x ++⎛⎫<=< ⎪---⎝⎭,令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,考虑分子()ln 2,h x x x =-- ()110h x x'=->,()h x 在()1,+∞单调递增.()()31ln 30,42ln 20h h =-<=->由零点存在定理,()3,4b ∃∈,使得()0h b =.所以()1,x b ∈,()()00h x g x '<⇒<,同理()(),,0x b g x '∈+∞>,所以()g x 在 ()1,b 单调递减,在(),b +∞单调递增.()()min ln 1b b bg x g b b +==-,因为()0h b =即ln 20ln 2b b b b --=⇒=-,()()()23,4,1b b b g b b b +-==∈-所以,k b <得max 3k =变式1:(理)已知函数().x ln x eaxx f x +-=(2)当0>x 时,()e x f -≤,求a 的取值范围.题型三:无法参变分离的恒成立问题类型一:切线法例8:若[)20,,10x x e ax x ∈+∞---≥,求a 的取值范围.类型二:赋值法例9:已知实数0a ≠,设函数()ln 1,0f x a x x x =++>.(1)当34a =-时,求函数()f x 的单调区间; (2)对于任意21,e ⎡⎫+∞⎪⎢⎣⎭均有()2x f x a ≤,求a 的取值范围. 解析:(1)当34a =-时,3()ln 1,04f x x x x =-++>. 3(12)(21()42141x x f 'x x x x x++=-=++ 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=.故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a.综上所述,所求a 的取值范围是⎛ ⎝⎦题型四:零点问题类型一:利用单调性与零点存在定理讨论零点个数 例10:已知函数()()31+ln .4f x x axg x x =+=-,(2)用{}min ,m n 表示,m n 中最小值,设函数()()(){}()min ,0h x f x g x x =>讨论()h x 零点个数.解:(2)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤,∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.类型二:±∞方向上的函数值分析例11:已知函数()()22.x xf x ae a e x =+--若()f x 有两个零点,求a 取值范围.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>+⎪⎝⎭,则()()000032ln 10n nf n e ae n f a ⎛⎫⎛⎫>-->+> ⎪ ⎪⎝⎭⎝⎭, 因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).总结:若()01,ln 0a f a <<-<,要证明()f x 有两个零点,结合零点存在定理,分别在a 的左右两侧,这两个点的函数值()f x 都大于0,这时候需要我们对函数进行适当地放缩,化简,以便取值.先分析当x →-∞,2,x x ae ae 虽然为正,但是对式子影响不大,因此可以大胆的舍掉,得出()2xf x x e >--,显然我们对于右侧这个式子观察,就容易得出一个足够小的x (如1x =-),使得式子大于0了.再分析当x →+∞,我们可以把x ae 这个虽然是正数,但贡献比较小的项舍掉来简化运算,得到()()2xxf x eaex >--,显然当x 足够大,就可以使()2x ae -大于任何正数.那么把它放缩成多少才可以使得x e 的倍数大于x 呢?由常用的不等式1x e x x ≥+>,因此只需要使得21x ae ->即3ln x a >(如3ln 1x a=+)就可以了.题型五:极值点偏移类型一:标准极值点偏移例13:已知函数()()()221x f x x e a x =-+-有两个零点1,2x x ,证明12 2.x x +<解: 不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,又()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-, 而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.类型二:推广极值点偏移例14:已知()()()12ln ,f x x x f x f x ==,求证121x x +<. 解:我们可以发现12,x x 不一定恒在12x =两侧,因此需要分类讨论: (1)若12102x x <<<,则1211122x x +<+=,该不等式显然成立; (2)若121012x x <<<<,令()()()()()1ln 1ln 1g x f x f x x x x x =--=---102x <<,故()()()()12ln ln 12,01x g x x x g x x x -'''=+-+=>-,()g x '在10,2⎛⎫ ⎪⎝⎭上单调递增,当0x →时,()1;22ln 202g x g ⎛⎫''→-∞=-> ⎪⎝⎭.010,2x ⎛⎫∃∈ ⎪⎝⎭使()00g x '=即()g x 在()00,x 上单调递减,在01,2x ⎛⎫ ⎪⎝⎭上单调递增,又0x →时,()0g x →,且102g ⎛⎫=⎪⎝⎭,故()0g x <,即()()1f x f x <-对10,2x ⎛⎫∈ ⎪⎝⎭成立,得证.题型六:双变量问题类型一:齐次划转单变量例15:已知函数()()1ln 1a x f x x x -=-+()2a ≤.设,m n R +∈,且m n ≠,求证ln ln 2m n m nm n -+<-. 解:设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,即证明21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立.令m t n =,1t >,即证()()21ln 01t g t t t -=->+.由(1)得,()g t 在()0,+∞上单调递增,故()()10g t g >=,得证.变式1:对数函数()x f 过定点⎪⎭⎫ ⎝⎛21,e P ,函数()()()为常数m ,n x f m n x g '-=,()()的导函数为其中x f x f '.(1)讨论()x g 的单调性;(2)若对于()+∞∈∀,x 0有()m n x g -≤恒成立,且()()n x x g x h -+=2在()2121x x x ,x x ≠=处的导数相等,求证:()()22721ln x h x h ->+.解:(2)因为()1g n m =-,而()0,x ∀∈+∞有()()1g x n m g ≤-=恒成立,知()g x 当1x =时有最大值()1g ,有(1)知必有1m =.∴()()()11ln ,22ln ,g x n x h x g x x n x x x x=--=+-=-- 依题意设()()211122221120,1120k x x h x h x k k x x ⎧-+-=⎪⎪''==⎨⎪-+-=⎪⎩∴12111x x +=121212+=4x x x x x x ⇒≥>∴()()()()121212*********+ln ln 21ln h x h x x x x x x x x x x x ⎛⎫+=-+-+=-- ⎪⎝⎭令()124,21ln t x x t t t ϕ=>=--,()()1204t t tϕ'=->> ∴()t ϕ在4t >单调递增,∴()()472ln 2t ϕϕ>=-类型二:构造相同表达式转变单变量例16:已知,m n 是正整数,且1m n <<,证明()()11.nmm n +>+解:两边同时取对数,证明不等式成立等价于证明()()ln 1ln 1n m m n +>+,即证明()()ln 1ln 1m n m n ++>,构造函数()()ln 1x f x x+=,()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x =-++,()()()22110111x g x x x x -'=-=<+++,故()()00g x g <=,故()0f x '<,结合1,m n <<知()()f m f n >类型三:方程消元转单变量例17:已知()ln xf x x=与()g x ax b =+,两交点的横坐标分别为1,2x x ,12x x ≠,求证:()()12122x x g x x ++>解:依题意11211112222222ln ln ln ln x ax b x x ax bx x x ax bx ax b x ⎧=+⎪⎧=+⎪⎪⇒⎨⎨=+⎪⎪⎩=+⎪⎩,相减得: ()()()12121212ln ln x x a x x x x b x x -=+-+-,化简得()()121212lnx x a x x b x x ++=-,()()()()()()112121121212121122221ln ln 1x x x x x x x x g x x x x a x x b x x x x x x ++++=+++==⎡⎤⎣⎦-- 设12x x >,令121x t x =>,()()()12122112ln 2ln 011t t x x g x x t t t t -+++>⇔>⇔->-+ 再求导分析单调性即可.变式1:已知函数()1++=ax x ln x f 有两个零点21x ,x .()10a -<<(2)记()x f 的极值点为0x ,求证:()0212x ef x x >+.变式2:设函数()()3211232xf x ex kx kx =--+. 若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 范围,证明1322x x x +>.变式3:已知函数()122ln 21x ef x a x x x-⎛⎫=++-- ⎪⎝⎭在定义域()0,2内有两个极值点.(1)求实数a 的取值范围;(2)设12,x x 是()f x 两个极值点,求证12ln ln ln 0x x a ++>.类型四:利用韦达定理转单变量例18:已知()()21ln 02f x x x a x a =-+>,若()f x 存在两极值点1,2x x , 求证:()()1232ln 24f x f x --+>.解:()21,a x x af x x x x-+'=-+=由韦达定理12121,x x x x a +==1140,4a a ∆=->< ()()()()()212121212121+2ln 2f x f x x x x x x x a x x ⎡⎤=+--++⎣⎦ ()11121ln ln 22a a a a a a =--+=--令()()11ln ,0,ln 024g a a a a a g a a '=--<<=<,()g a 在10,4⎛⎫⎪⎝⎭上单调递减,故()132ln 244g a g --⎛⎫>=⎪⎝⎭. 变式1:已知函数().R a ,x ax x ln x f ∈-+=22(2)若n ,m 是函数()x f 的两个极值点,且n m <,求证:.mn 1>方法二:变式2:已知函数()213ln 222f x x ax x =+-+()0a ≥. (1)讨论函数()f x 的极值点个数;(2)若()f x 有两个极值点12,x x ,证明()()110f x f x +<.题型六:不等式问题类型一:直接构造函数解决不等式问题例19:当()0,1x ∈时,证明:()()221ln 1x x x ++<.解:令()()()221ln 1f x x x x =++-,则()00f =,而()()()()2ln 1ln 12,00f x x x x f ''=+++-=,当()0,1x ∈时,有()ln 1x x +<,故()()()ln 12222ln 10111x f x x x x x x+''=+-=+-<⎡⎤⎣⎦+++, ()f x '在()0,1上递减,即()()00f x f ''<=,从而()f x 在()0,1递减,()()00f x f ≤=,原不等式得证.变式1:已知函数()()()R a ex x ln x a x f ∈+-=1.(1)求函数()x f 在点1=x 处的切线方程;(2)若不等式()0≤-x e x f 对任意的[)+∞∈,x 1恒成立,求实数a 的取值范围解:(2)令()()()()1ln 1,x xg x f x e a x x ex e x =-=-+->()1ln 1xg x a x e e x ⎛⎫'=+-+- ⎪⎝⎭, ①若0a ≤,则()g x '在[)1,+∞上单调递减,又()10g '=.即()0g x '≤恒成立,所以()g x 在[)1,+∞上单调递减,又()10g =,所以()0g x ≤恒成立.②0a >,令()()1ln 1,x h x g x a x e e x ⎛⎫'==+-+- ⎪⎝⎭所以()211xh x a e x x ⎛⎫'=+-⎪⎝⎭,易知211x x +与x -e 在[)1,+∞上单调递减,所以()h x '在[)1,+∞上单调递减,()12h a e '=-. 当20a e -≤,即02ea <≤时,()0h x '≤在[)1,+∞上恒成立,则()h x 在[)1,+∞上单调递减,即()g x '在[)1,+∞上单调递减,又()10g '=,()0g x '≤恒成立,()g x 在[)1,+∞上单调递减,又()10g =,()0g x ≤恒成立.当20a e ->时,即2ea >时,()01,x ∃∈+∞使()00h x '=,所以()h x 在()01,x 上单调递增,此时()()10h x h >=,所以()0g x '>所以()g x 在()01,x 递增,得()()10g x g >=,不符合题意. 综上,实数a 的取值范围是2e a ≤. 变式2:(文)已知函数()()()().R a ,x a x g ,x ln x x f ∈-=+=11(1)求直线()x g y =与曲线()x f y =相切时,切点T 的坐标. (2)当()10,x ∈时,()()x f x g >恒成立,求a 的取值范围.解:(1)设切点坐标为()00x y ,,()1ln 1f x x x'=++,则()()000001ln 11ln 1x a x x x a x ⎧++=⎪⎨⎪+=-⎩,∴00012ln 0x x x -+=.令()12ln h x x x x=-+,∴()22210x x h x x -+'=-≤,∴()h x 在()0+∞,上单调递减, ∴()0h x =最多有一根.又∵()10h =,∴01x =,此时00y =,T 的坐标为(1,0).(2)当()0 1x ∈,时,()()g x f x >恒成立,等价于()1ln 01a x x x --<+对()0 1x ∈,恒成立. 令()()1ln 1a x h x x x -=-+,则()()()()2222111211x a x ah x x x x x +-+'=-=++,()10h =. ①当2a ≤,()1x ∈0,时,()22211210x a x x x +-+≥-+>, ∴()0h x '>,()h x 在()0 1x ∈,上单调递增,因此()0h x <. ②当2a >时,令()0h x '=得1211x a x a =-=-由21x >与121x x =得,101x <<.∴当()1 1x x ∈,时,()0h x '<,()h x 单调递减, ∴当()1 1x x ∈,时,()()10h x h >=,不符合题意; 综上所述得,a 的取值范围是(] 2-∞,.变式3:(文)已知函数().x x x ln x f 12---=(2)若存在实数m ,对于任意()∞+∈0x ,不等式()()()0212≤+-+x x m x f 恒成立,求实数m 的最小整数值.解:(2)法一:参变分离+二次局部求导+虚设零点变式4:(理)已知函数()()()R a x a eae x f xx∈-++=-22.(1)讨论()x f 的单调性;(2)当0≥x 时,()(),x cos a x f 2+≥求实数a 的取值范围.变式5:已知()1ln ,mf x x m x m R x-=+-∈. (1)当202e m <≤时,证明()21x e x xf x m >-+-.类型二:利用min max f g >证明不等式问题例20:设函数()1ln x xbe f x ae x x-=+曲线()y f x =在点()()1,1f 的切线方程为()12y e x =-+.(1)求,a b 值; (2)证明:()1f x >【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+. 由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故(2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11()g e e=-. 设函数2()xh x xee-=-,则'()(1)x h x e x -=-. 所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.变式1. 已知函数()x ln a bx x f +=2的图像在点()()11f ,处的切线斜率为2+a .(1)讨论()x f 的单调性; (2)当20e a ≤<时,证明:()222-+<x e xx x f 解:(2)要证()222x f x x e x -<+,需证明22ln 2x a x e x x-<.令()ln 02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则()()21ln a x g x x -'=, 当()0g x '>时,得0x e <<;当()0,g x '<得x e >. 所以()()max ag x g e e==. 令()()2220x e h x x x -=>,则()()2322x e x h x x--'=. 当()0h x '>时,得2x >;当()0h x '<时,得02x <<. 所以()()min 122h x h ==.因为02e a <≤,所以()max 12a g x e ==. 又2e ≠,所以22ln 2x a x e x x-<,即()222x f x x e x -<+得证.变式2:(理)已知函数()().ax ln axx f -=(1)求()x f 的极值;(2)若()012≤+-++m x e mx x ln e x x ,求正实数m 的取值范围.变式3:已知()1ln ,mf x x m x m R x-=+-∈. (2)当202e m <≤时,证明()21x e x xf x m >-+-.类型三:利用赋值法不等式问题例21:已知函数()2x xf x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >,()0g x >,求b 的最大值. (3)估计ln 2(精确小数点后三位).解:因为()()()()()2224484xx x x g x f x bf x e e b e e b x --=-=---+-所以()()()()()2222422222xx x x x x x xg x ee b e e b e e e e b ----⎡⎤'=+-++-=+-+-+⎣⎦①当2b ≤时,()0,g x '≥等号仅当0x =时成立,所以()g x 在R 上单调递增,而()00g =,所以对于任意()0,0x g x >>.②当2b >,若x 满足222x x e e b -<+<-,即(20ln 12x b b b <<-+-时,()0g x '<,而()00g =,因此当(20ln 12x b b b <≤--时,()0g x <,综上最大为2.(3)由(2)知,(()3221ln 22g b =-+-,当2b =时,(36ln 20,ln 20.69282g =->>>;当14b =+时,(ln 1b -+=(()32ln 202g =--<,18ln 20.69328+<<,所以近似值为0.693类型四:利用放缩法构造中间不等式例22:若0x >,证明:()ln 1.1x x xx e +>- 解:转化成整式()()2ln 11xx e x +->.令()()()2ln 11xf x x e x =+--,则()()1ln 121x xe f x e x x x -'=++-+()()()21ln 1211x x x e x e f x e x x x +''=+++-++.由()+1ln 11x x e x x x ≥+≥+,, 得()()()()3222112120,11x x x x f x x x x +++''≥++-=>++()()00,f x f ''≥=故()()00f x f ≥=,得证.变式1:(2020河南鹤壁市高三期末)已知函数()21xf x e kx =--,()()()2ln 1g x k x x k R =+-∈.(2)若不等式()()0f x g x +≥对任意0x ≥恒成立,求实数k 范围.变式2:(2020年河南六市联考)已知函数()()2ln 1sin 1f x x x =+++,()1ln g x ax b x =-- 证明:当1,x >-()()2sin 22xf x x x e<++类型五:与数列相关的不等式例23:设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.解:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.变式1:(理)已知函数()()()021>+-+=a ax xx ln x f .(1)若不等式()0≥x f 对于任意的0≥x 恒成立,求实数a 的取值范围;(2)证明:().N n ln ln ln ln n n n *-∈⎪⎭⎫⎝⎛->⎪⎪⎭⎫ ⎝⎛-++⋅⋅⋅+++1212121279353变式1:(2020河南开封二模)已知函数()1xf x e x =--.(1)证明()0f x >;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 求m 的最小值.类型六:与切、割线相关的不等式例24:已知函数()()2901xf x a ax =>+ (1)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值;(2)若直线2y x a =-+为曲线()y f x =的切线,求实数的值;(3)当2a =时,设12141,,22x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,且121414x x x +⋅⋅⋅+=,若不等式()()()1214f x f x f x λ+⋅⋅⋅+≤恒成立,求实数λ的最小值.解:证明()29412xf x x x=≤-++,即32281040x x x -+-+≥, 令()3228104F x x x x =-+-+,()261610F x x x '=-+-,所以()F x在1,12⎛⎫⎪⎝⎭,5,23⎛⎫ ⎪⎝⎭递减,在51,3⎛⎫ ⎪⎝⎭递增.而()50,203F F ⎛⎫>> ⎪⎝⎭,表明不等式()29412xf x x x =≤-++成立.所以()()()12141244+442n f x f x f x x x x ++⋅⋅⋅+≤-+-+⋅⋅⋅-+=, 等号在全部为1时成立,所以λ最小值为42。
高中导数大题经典题型

目录第一部分构造辅助函数求解导数问题 (2)技法一:“比较法”构造函数 (2)技法二:“拆分法”构造函数 (3)技法三:“换元法”构造函数 (5)技法四:二次(甚至多次)构造函数 (8)强化训练 (10)第二部分利用导数探究含参数函数的性质 (15)技法一:利用导数研究函数的单调性 (15)技法二:利用导数研究函数的极值 (17)技法三:利用导数研究函数的最值 (20)强化训练 (23)第三部分导数的综合应用 (29)技法一:利用导数研究函数的零点或方程的根 (29)技法二:利用导数证明不等式 (32)技法三:利用导数研究不等式恒成立问题 (35)技法四:利用导数研究存在性与任意性问题 (45)技法五:利用导数研究探究性问题 (48)强化训练 (50)第一部分构造辅助函数求解导数问题对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧.技法一:“比较法”构造函数[典例](2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.[解](1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2,令f′(x)=0,得x=ln2,当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增.所以当x=ln2时,f(x)取得极小值,且极小值为f(ln2)=e ln2-2ln2=2-ln4,f(x)无极大值.QQ群339444963(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.[方法点拨]在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的结论求解.[对点演练]已知函数f(x)=xe x,直线y=g(x)为函数f(x)的图象在x=x0(x0<1)处的切线,求证:f (x )≤g (x ).证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0).令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0),则h ′(x )=f ′(x )-f ′(x 0)=1-x e x -1-x 0ex =1-x e 0-1-x 0e xe+x x .设φ(x )=(1-x )e 0x -(1-x 0)e x ,则φ′(x )=-e 0x -(1-x 0)e x ,∵x 0<1,∴φ′(x )<0,∴φ(x )在R 上单调递减,又φ(x 0)=0,∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0,∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0,∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数,∴h (x )≤h (x 0)=0,QQ 群339444963∴f (x )≤g (x ).技法二:“拆分法”构造函数[典例]设函数f (x )=ae x ln x +bex -1x,曲线y =f (x )在点(1,f (1))处的切线为y=e (x -1)+2.(1)求a ,b ;(2)证明:f (x )>1.[解](1)f ′(x )=ae x +be x -1x -1x 2(x >0),由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2),1=2,1=e ,=2,=e ,=1,=2.(2)证明:由(1)知f (x )=e x ln x +2ex -1x(x >0),从而f (x )>1等价于x ln x >xe -x -2e .构造函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x g′(x)<0,当x g′(x)>0,故g(x)QQ群339444963从而g(x)在(0,+∞)上的最小值为=-1 e.构造函数h(x)=xe-x-2 e,则h′(x)=e-x(1-x).所以当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0;故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=-1 e.综上,当x>0时,g(x)>h(x),即f(x)>1.[方法点拨]对于第(2)问“ae x ln x+be x-1x>1”的证明,若直接构造函数h(x)=aex ln x+be x-1x-1,求导以后不易分析,因此并不宜对其整体进行构造函数,而应先将不等式“ae x ln x+be x-1x>1”合理拆分为“x ln x>xe -x-2e”,再分别对左右两边构造函数,进而达到证明原不等式的目的.[对点演练]已知函数f(x)=a ln xx+1+bx,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1)求a,b的值;(2)证明:当x>0,且x≠1时,f(x)>ln xx-1.解:(1)f′(x)-bx2(x>0).由于直线x+2y-3=0的斜率为-12,且过点(1,1),1=1,1=-12,1,b=-12.=1,=1.(2)证明:由(1)知f(x)=ln xx+1+1x(x>0),所以f(x)-ln xx-1=x考虑函数h(x)=2ln x-x2-1x(x>0),则h′(x)=2x-2x2-x2-1x2=-x-12x2.所以当x≠1时,h′(x)<0.而h(1)=0,故当x∈(0,1)时,h(x)>0,可得11-x2h(x)>0;当x∈(1,+∞)时,h(x)<0,可得11-x2h(x)>0.从而当x>0,且x≠1时,f(x)-ln xx-1>0,即f(x)>ln xx-1.QQ群339444963技法三:“换元法”构造函数[典例]已知函数f(x)=ax2+x ln x(a∈R)的图象在点(1,f(1))处的切线与直线x+3y=0垂直.(1)求实数a的值;(2)求证:当n>m>0时,ln n-ln m>mn-n m.[解](1)因为f(x)=ax2+x ln x,所以f′(x)=2ax+ln x+1,因为切线与直线x+3y=0垂直,所以切线的斜率为3,所以f′(1)=3,即2a+1=3,故a=1.(2)证明:要证ln n-ln m>mn-n m,即证ln nm>mn-nm,只需证lnnm-mn+nm>0.令nm=x,构造函数g(x)=ln x-1x+x(x≥1),则g′(x)=1x+1x2+1.因为x∈[1,+∞),所以g′(x)=1x+1x2+1>0,故g(x)在(1,+∞)上单调递增.由已知n>m>0,得nm>1,所以g(1)=0,QQ群339444963即证得ln nm-mn+nm>0成立,所以命题得证.[方法点拨]对“待证不等式”等价变形为“ln nm-mn+nm>0”后,观察可知,对“nm”进行换元,变为“ln x-1x+x>0”,构造函数“g(x)=ln x-1x+x(x≥1)”来证明不等式,可简化证明过程中的运算.[对点演练]已知函数f(x)=x2ln x.(1)求函数f(x)的单调区间;(2)证明:对任意的t>0,存在唯一的s,使t=f(s);(3)设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有25<ln g t ln t<12.解:(1)由已知,得f′(x)=2x ln x+x=x(2ln x+1)(x>0),令f′(x)=0,得x=1e.当x变化时,f′(x),f(x)的变化情况如下表:所以函数f(x)(2)证明:当0<x≤1时,f(x)≤0,∵t>0,∴当0<x≤1时不存在t=f(s).令h(x)=f(x)-t,x∈[1,+∞).由(1)知,h(x)在区间(1,+∞)上单调递增.h(1)=-t<0,h(e t)=e2t ln e t-t=t(e2t-1)>0.故存在唯一的s∈(1,+∞),使得t=f(s)成立.(3)证明:因为s=g(t),由(2)知,t=f(s),且s>1,从而ln g tln t=ln sln f s=ln sln s2ln s=ln s2ln s+ln ln s=u2u+ln u,QQ群339444963其中u=ln s.要使25<ln g tln t<12成立,只需0<ln u<u2.当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾.所以s>e,即u>1,从而ln u>0成立.另一方面,令F (u )=ln u -u 2,u >1,F ′(u )=1u -12,令F ′(u )=0,得u =2.当1<u <2时,F ′(u )>0;当u >2时,F ′(u )<0.故对u >1,F (u )≤F (2)<0,因此ln u <u2成立.综上,当t >e 2时,有25<ln g tln t<12.技法四:二次(甚至多次)构造函数[典例](2017·广州综合测试)已知函数f (x )=e x +m -x 3,g (x )=ln(x +1)+2.(1)若曲线y =f (x )在点(0,f (0))处的切线斜率为1,求实数m 的值;(2)当m ≥1时,证明:f (x )>g (x )-x 3.[解](1)因为f (x )=e x +m -x 3,所以f ′(x )=e x +m -3x 2.因为曲线y =f (x )在点(0,f (0))处的切线斜率为1,所以f ′(0)=e m =1,解得m =0.(2)证明:因为f (x )=e x +m -x 3,g (x )=ln(x +1)+2,所以f (x )>g (x )-x 3等价于e x +m -ln(x +1)-2>0.当m ≥1时,e x +m -ln(x +1)-2≥e x +1-ln(x +1)-2.要证e x +m -ln(x +1)-2>0,只需证明e x +1-ln(x +1)-2>0.设h (x )=e x +1-ln(x +1)-2,则h ′(x )=e x +1-1x +1.设p (x )=e x +1-1x +1,则p ′(x )=e x +1+1x +12>0,所以函数p (x )=h ′(x )=e x +1-1x +1在(-1,+∞)上单调递增.因为h e 12-2<0,h ′(0)=e -1>0,所以函数h ′(x )=ex +1-1x +1在(-1,+∞)上有唯一零点x 0,且x 0-12,QQ 群339444963因为h ′(x 0)=0,所以ex 0+1=1x 0+1,即ln(x 0+1)=-(x 0+1).当x ∈(-1,x 0)时,h ′(x )<0,当x ∈(x 0,+∞)时,h ′(x )>0,所以当x =x 0时,h (x )取得最小值h (x 0),所以h (x )≥h (x 0)=ex 0+1-ln(x 0+1)-2=1x 0+1+(x 0+1)-2>0.综上可知,当m ≥1时,f (x )>g (x )-x 3.[方法点拨]本题可先进行适当放缩,m ≥1时,e x +m ≥e x +1,再两次构造函数h (x ),p (x ).[对点演练](2016·合肥一模)已知函数f (x )=ex -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,其中e 为自然对数的底数.(1)求函数f (x )的图象在点(1,f (1))处的切线方程;(2)若g (x )≥f (x )对任意的x ∈(0,+∞)恒成立,求t 的取值范围.解:(1)由f (x )=ex -x ln x ,知f ′(x )=e -ln x -1,则f ′(1)=e -1,而f (1)=e ,则所求切线方程为y -e =(e -1)(x -1),即y =(e -1)x +1.(2)∵f (x )=ex -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,∴g (x )≥f (x )对任意的x ∈(0,+∞)恒成立等价于e x -tx 2+x -ex +x ln x ≥0对任意的x ∈(0,+∞)恒成立,即t ≤e x +x -ex +x ln x x 2对任意的x ∈(0,+∞)恒成立.令F (x )=e x +x -ex +x ln xx2,则F ′(x )=xe x+ex -2e x-x ln x x3=x+e -2e xx -ln 令G (x )=e x+e -2e xx-ln x ,则G ′(x )=e x-2xe x -e x x2-1x =e xx -12+e x -xx 2>0对任意的x ∈(0,+∞)恒成立.∴G (x )=e x+e -2e xx-ln x 在(0,+∞)上单调递增,且G (1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0,即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0,∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴F (x )≥F (1)=1,∴t ≤1,即t 的取值范围是(-∞,1].强化训练1.设函数f (x )=x 2e x -1+ax 3+bx 2,已知x =-2和x =1为f (x )的极值点.(1)求a ,b 的值;(2)讨论f (x )的单调性;(3)设g (x )=23x 3-x 2,比较f (x )与g (x )的大小.解:(1)因为f ′(x )=e x -1(2x +x 2)+3ax 2+2bx=xe x -1(x +2)+x (3ax +2b ),又x =-2和x =1为f (x )的极值点,所以f ′(-2)=f ′(1)=0,6a +2b =0,+3a +2b =0,=-13,=-1.(2)因为a =-13,b =-1,所以f′(x)=x(x+2)(e x-1-1),令f′(x)=0,解得x1=-2,x2=0,x3=1.因为当x∈(-∞,-2)∪(0,1)时,f′(x)<0;当x∈(-2,0)∪(1,+∞)时,f′(x)>0.所以f(x)在(-2,0)和(1,+∞)上是单调递增的;在(-∞,-2)和(0,1)上是单调递减的.(3)由(1)可知f(x)=x2e x-1-13x3-x2.故f(x)-g(x)=x2e x-1-x3=x2(e x-1-x),令h(x)=e x-1-x,则h′(x)=e x-1-1.令h′(x)=0,得x=1,因为当x∈(-∞,1]时,h′(x)≤0,所以h(x)在(-∞,1]上单调递减;故当x∈(-∞,1]时,h(x)≥h(1)=0;因为当x∈[1,+∞)时,h′(x)≥0,所以h(x)在[1,+∞)上单调递增;故x∈[1,+∞)时,h(x)≥h(1)=0.所以对任意x∈(-∞,+∞),恒有h(x)≥0;又x2≥0,因此f(x)-g(x)≥0.故对任意x∈(-∞,+∞),恒有f(x)≥g(x).2.(2015·北京高考)已知函数f(x)=ln1+x1-x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求证:当x∈(0,1)时,f(x)>(3)设实数k使得f(x)>k x∈(0,1)恒成立,求k的最大值.解:(1)因为f(x)=ln(1+x)-ln(1-x)(-1<x<1),所以f′(x)=11+x+11-x,f′(0)=2.又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.(2)证明:令g(x)=f(x)-则g′(x)=f′(x)-2(1+x2)=2x41-x2.因为g′(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时,f(x)>(3)由(2)知,当k≤2时,f(x)>k x∈(0,1)恒成立.当k>2时,令h(x)=f(x)-则h′(x)=f′(x)-k(1+x2)=kx4-k+2 1-x2.所以当0<x<4k-2k时,h′(x)<0,因此h(x),故当0<x<4k-2k时,h(x)<h(0)=0,即f(x)<所以当k>2时,f(x)>k x∈(0,1)恒成立.综上可知,k的最大值为2.3.(2016·广州综合测试)已知函数f(x)=me x-ln x-1.(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当m≥1时,证明:f(x)>1.解:(1)当m=1时,f(x)=e x-ln x-1,所以f′(x)=e x-1 x.所以f(1)=e-1,f′(1)=e-1.所以曲线y=f(x)在点(1,f(1))处的切线方程为y-(e-1)=(e-1)(x-1),即y =(e-1)x.(2)证明:当m≥1时,f(x)=me x-ln x-1≥e x-ln x-1(x>0).要证明f(x)>1,只需证明e x-ln x-2>0.设g(x)=e x-ln x-2,则g′(x)=e x-1 x.设h(x)=e x-1x,则h′(x)=ex+1x2>0,所以函数h(x)=g′(x)=e x-1x在(0,+∞)上单调递增.因为g e 12-2<0,g′(1)=e-1>0,所以函数g′(x)=e x-1x在(0,+∞)上有唯一零点x0,且x0因为g′(x0)=0,所以ex0=1x0,即ln x0=-x0.当x∈(0,x0)时,g′(x)<0;当x∈(x0,+∞)时,g′(x)>0.所以当x=x0时,g(x)取得最小值g(x0).故g(x)≥g(x0)=ex0-ln x0-2=1x0+x0-2>0.综上可知,当m≥1时,f(x)>1.4.(2017·石家庄质检)已知函数f(x)=a x-x2e x(x>0),其中e为自然对数的底数.(1)当a=0时,判断函数y=f(x)极值点的个数;(2)若函数有两个零点x1,x2(x1<x2),设t=x2x1,证明:x1+x2随着t的增大而增大.解:(1)当a=0时,f(x)=-x2e x(x>0),f ′(x )=-2x ·e x --x 2·e xe x 2=x x -2e x,令f ′(x )=0,得x =2,当x ∈(0,2)时,f ′(x )<0,y =f (x )单调递减,当x ∈(2,+∞)时,f ′(x )>0,y =f (x )单调递增,所以x =2是函数的一个极小值点,无极大值点,即函数y =f (x )有一个极值点.(2)证明:令f (x )=a x -x 2e x =0,得x 32=ae x ,因为函数有两个零点x 1,x 2(x 1<x 2),所以x 1321=aex 1,x 322=aex 2,可得32ln x 1=ln a +x 1,32ln x 2=ln a +x 2.故x 2-x 1=32ln x 2-32ln x 1=32ln x 2x 1.又x 2x 1=t ,则t >12=tx 1,2-x 1=32ln t ,解得x 1=32ln t t -1,x 2=32t ln t t -1.所以x 1+x 2=32·t +1ln tt -1.①令h (x )=x +1ln xx -1,x ∈(1,+∞),则h ′(x )=-2ln x +x -1x x -12.令u (x )=-2ln x +x -1x ,得u ′(x ).当x ∈(1,+∞)时,u ′(x )>0.因此,u (x )在(1,+∞)上单调递增,故对于任意的x∈(1,+∞),u(x)>u(1)=0,由此可得h′(x)>0,故h(x)在(1,+∞)上单调递增.因此,由①可得x1+x2随着t的增大而增大.第二部分利用导数探究含参数函数的性质技法一:利用导数研究函数的单调性[典例]已知函数g(x)=ln x+ax2+bx,函数g(x)的图象在点(1,g(1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性.[解](1)依题意得g′(x)=1x+2ax+b(x>0).由函数g(x)的图象在点(1,g(1))处的切线平行于x轴得:g′(1)=1+2a+b=0,∴b=-2a-1.(2)由(1)得g′(x)=2ax2-2a+1x+1x=2ax-1x-1x.∵函数g(x)的定义域为(0,+∞),∴当a=0时,g′(x)=-x-1 x.由g′(x)>0,得0<x<1,由g′(x)<0,得x>1,当a>0时,令g′(x)=0,得x=1或x=1 2a,若12a<1,即a>12,由g′(x)>0,得x>1或0<x<1 2a,由g′(x)<0,得12a<x<1;若12a>1,即0<a<12,由g′(x)>0,得x>12a或0<x<1,由g′(x)<0,得1<x<1 2a,若12a=1,即a=12在(0,+∞)上恒有g′(x)≥0.综上可得:当a=0时,函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a<12时,函数g(x)在(0,1)上单调递增,当a=12时,函数g(x)在(0,+∞)上单调递增,当a>12时,函数g(x)(1,+∞)上单调递增.[方法点拨](1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.(3)本题(2)求解应先分a=0或a>0两种情况,再比较12a和1的大小.[对点演练](2016·太原一模)已知函数f(x)=x-a ln x(a∈R).(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;(2)设函数h(x)=f(x)+1+ax,求函数h(x)的单调区间.解:(1)当a=2时,f(x)=x-2ln x,f(1)=1,即切点为(1,1),∵f′(x)=1-2x,∴f′(1)=1-2=-1,∴曲线y=f(x)在点(1,1)处的切线方程为y-1=-(x-1),即x+y-2=0.(2)由题意知,h(x)=x-a ln x+1+ax(x>0),则h′(x)=1-ax-1+ax2=x2-ax-1+ax2=x+1[x-1+a]x2,①当a+1>0,即a>-1时,令h′(x)>0,∵x>0,∴x>1+a,令h′(x)<0,∵x>0,∴0<x<1+a.②当a+1≤0,即a≤-1时,h′(x)>0恒成立,综上,当a>-1时,h(x)的单调递减区间是(0,a+1),单调递增区间是(a +1,+∞);当a≤-1时,h(x)的单调递增区间是(0,+∞),无单调递减区间.技法二:利用导数研究函数的极值[典例]设a>0,函数f(x)=12x2-(a+1)x+a(1+ln x).(1)若曲线y=f(x)在(2,f(2))处的切线与直线y=-x+1垂直,求切线方程.(2)求函数f(x)的极值.[解](1)由已知,得f′(x)=x-(a+1)+ax(x>0),又由题意可知y=f(x)在(2,f(2))处切线的斜率为1,所以f′(2)=1,即2-(a+1)+a2=1,解得a=0,此时f(2)=2-2=0,故所求的切线方程为y=x-2.(2)f′(x)=x-(a+1)+ax=x2-a+1x+ax=x-1x-ax(x>0).①当0<a<1时,若x∈(0,a),则f′(x)>0,函数f(x)单调递增;若x∈(a,1),则f′(x)<0,函数f(x)单调递减;若x∈(1,+∞),则f′(x)>0,函数f(x)单调递增.此时x=a是f(x)的极大值点,x=1是f(x)的极小值点,函数f(x)的极大值是f(a)=-12a2+a ln a,极小值是f(1)=-1 2.②当a=1时,f′(x)=x-12x≥0,所以函数f(x)在定义域(0,+∞)内单调递增,此时f(x)没有极值点,故无极值.③当a>1时,若x∈(0,1),则f′(x)>0,函数f(x)单调递增;若x∈(1,a),则f′(x)<0,函数f(x)单调递减;若x∈(a,+∞),则f′(x)>0,函数f(x)单调递增.此时x=1是f(x)的极大值点,x=a是f(x)的极小值点,函数f(x)的极大值是f(1)=-12,极小值是f(a)=-12a2+a ln a.综上,当0<a<1时,f(x)的极大值是-12a2+a ln a,极小值是-12;当a=1时,f(x)没有极值;当a>1时f(x)的极大值是-12,极小值是-12a2+a ln a.[方法点拨]对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1)参数是否影响f′(x)零点的存在;(2)参数是否影响f′(x)不同零点(或零点与函数定义域中的间断点)的大小;(3)参数是否影响f′(x)在零点左右的符号(如果有影响,需要分类讨论).[对点演练](2016·山东高考)设f(x)=x ln x-ax2+(2a-1)x,a∈R.(1)令g(x)=f′(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.解:(1)由f′(x)=ln x-2ax+2a,可得g(x)=ln x-2ax+2a,x∈(0,+∞).所以g′(x)=1x-2a=1-2axx.当a≤0,x∈(0,+∞)时,g′(x)>0,函数g(x)单调递增;当a>0,x g′(x)>0,函数g(x)单调递增,x g′(x)<0,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)(2)由(1)知,f′(1)=0.①当a≤0时,f′(x)单调递增,所以当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.所以f(x)在x=1处取得极小值,不合题意.②当0<a<12时,12a>1,由(1)知f′(x)可得当x∈(0,1)时,f′(x)<0,当x f′(x)>0.所以f(x)在(0,1)所以f(x)在x=1处取得极小值,不合题意.③当a=12时,12a=1,f′(x)在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.④当a >12时,0<12a<1,当x f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意.综上可知,实数a 技法三:利用导数研究函数的最值[典例]已知函数f (x )=ln x -ax (a ∈R ).(1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.[解](1)由题意,f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调递增区间为(0,+∞).②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x ),1a ,单调递减区间为1a ,+综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x ),1a ,单调递减区间为1a,+(2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a≥2,即0<a≤12时,函数f(x)在区间[1,2]上是增函数,所以f(x)的最小值是f(1)=-a.③当1<1a<2,即12<a<1时,函数f(x)在1,1a上是增函数,在1a,2上是减函数.又f(2)-f(1)=ln2-a,所以当12<a<ln2时,最小值是f(1)=-a;当ln2≤a<1时,最小值为f(2)=ln2-2a.综上可知,当0<a<ln2时,函数f(x)的最小值是-a;当a≥ln2时,函数f(x)的最小值是ln2-2a.[方法点拨](1)在闭区间上图象连续的函数一定存在最大值和最小值,在不是闭区间的情况下,函数在这个区间上的最大值和最小值可能都存在,也可能只存在一个,或既无最大值也无最小值;(2)在一个区间上,如果函数只有一个极值点,则这个极值点就是最值点.[对点演练]1.若函数f(x)=xx2+a (a>0)在[1,+∞)上的最大值为33,则a的值为()A.33B.3 C.3+1D.3-1解析:选D f′(x)=x2+a-2x2x2+a2=a-x2x2+a2.令f′(x)=0,得x=a或x=-a(舍去),若a≤1,即0<a≤1时,在[1,+∞)上f′(x)<0,f(x)max=f(1)=11+a=33.解得a=3-1,符合题意.若a>1,即a>1时,在[1,a)上f′(x)>0,在(a,+∞)上f′(x)<0,所以f (x )max =f (a )=a 2a =33,解得a =34<1,不符合题意,综上知,a =3-1.2.已知函数f (x )=x ln x ,g (x )=(-x 2+ax -3)e x (a 为实数).(1)当a =5时,求函数y =g (x )在x =1处的切线方程;(2)求f (x )在区间[t ,t +2](t >0)上的最小值.解:(1)当a =5时,g (x )=(-x 2+5x -3)e x ,g (1)=e .又g ′(x )=(-x 2+3x +2)e x ,故切线的斜率为g ′(1)=4e .所以切线方程为y -e =4e (x -1),即y =4ex -3e .(2)函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1,当x 变化时,f ′(x ),f (x )的变化情况如下表:①当t ≥1e 时,在区间[t ,t +2]上f (x )为增函数,所以f (x )min =f (t )=t ln t .②当0<t <1e 时,在区间tf (x )t +2上f (x )为增函数,所以f (x )min ==-1e .综上,f (x )min t ,t ≥1e,-1e ,0<t <1e.强化训练1.已知函数f (x )=x -12ax 2-ln(1+x )(a >0).(1)若x =2是f (x )的极值点,求a 的值;(2)求f (x )的单调区间.解:f ′(x )=x1-a -axx +1,x ∈(-1,+∞).(1)依题意,得f ′(2)=0,即21-a -2a 2+1=0,解得a =13.经检验,a =13符合题意,故a 的值为13.(2)令f ′(x )=0,得x 1=0,x 2=1a-1.①当0<a <1时,f (x )与f ′(x )的变化情况如下:②当a =1时,f (x )的单调减区间是(-1,+∞).③当a >1时,-1<x 2<0,f (x )与f ′(x )的变化情况如下:综上,当0<a <1时,f (x ),1a -单调减区间是(-1,0)1,+当a =1时,f (x )的单调减区间是(-1,+∞);当a >1时,f (x )1,1,1a-(0,+∞).2.已知函数f (x )x 3+x 2,x <1,ln x ,x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点;(2)求f (x )在[-1,e ](e 为自然对数的底数)上的最大值.解:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:=23.(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和23,0,23上单调递增.因为f (-1)=2,=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e ]上单调递增,则f (x )在[1,e ]上的最大值为f (e )=a .综上所述,当a ≥2时,f (x )在[-1,e ]上的最大值为a ;当a <2时,f (x )在[-1,e ]上的最大值为2.3.已知函数f (x )=ax -1-ln x (a ∈R ).(1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围.解:(1)由已知得f′(x)=a-1x=ax-1x(x>0).当a≤0时,f′(x)≤0在(0,+∞)上恒成立,函数f(x)在(0,+∞)上单调递减,∴f(x)在(0,+∞)上没有极值点.当a>0时,由f′(x)<0,得0<x<1 a,由f′(x)>0,得x>1 a,∴f(x)即f(x)在x=1a处有极小值.∴当a≤0时,f(x)在(0,+∞)上没有极值点,当a>0时,f(x)在(0,+∞)上有一个极值点.(2)∵函数f(x)在x=1处取得极值,∴f′(1)=0,解得a=1,∴f(x)≥bx-2⇒1+1x-ln xx≥b,令g(x)=1+1x-ln xx,则g′(x)=ln x-2x2,令g′(x)=0,得x=e2.则g(x)在(0,e2)上单调递减,在(e2,+∞)上单调递增,∴g(x)min=g(e2)=1-1e2,即b≤1-1e2,故实数b ∞,1-1e2.4.已知方程f(x)·x2-2ax+f(x)-a2+1=0,其中a∈R,x∈R.(1)求函数f(x)的单调区间;(2)若函数f(x)在[0,+∞)上存在最大值和最小值,求实数a的取值范围.解:(1)由f(x)·x2-2ax+f(x)-a2+1=0得f(x)=2ax+a2-1x2+1,则f′(x)=-2x+a ax-1x2+12.①当a=0时,f′(x)=2xx2+12,所以f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,即f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0).②当a >0时,令f ′(x )=0,得x 1=-a ,x 2=1a ,当x 变化时,f ′(x )与f (x )的变化情况如下:QQ 群339444963故f (x )的单调递减区间是(-∞,-a )a ③当a <0时,令f ′(x )=0,得x 1=-a ,x 2=1a ,当x 变化时,f ′(x )与f (x )的变化情况如下:所以f (x )∞(-a ,+∞),(2)由(1)得,a =0不合题意.当a >0时,由(1)得,f (x )以f (x )在[0,+∞)上存在最大值a 2>0.设x 0为f (x )的零点,易知x 0=1-a 22a ,且x 0<1a 从而当x >x 0时,f (x )>0;当x <x 0时,f (x )<0.若f (x )在[0,+∞)上存在最小值,必有f (0)≤0,解得-1≤a ≤1.所以当a >0时,若f (x )在[0,+∞)上存在最大值和最小值,则实数a 的取值范围是(0,1].当a<0时,由(1)得,f(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增,所以f(x)在[0,+∞)上存在最小值f(-a)=-1.易知当x≥-a时,-1≤f(x)<0,所以若f(x)在[0,+∞)上存在最大值,必有f(0)≥0,解得a≥1或a≤-1.所以当a<0时,若f(x)在[0,+∞)上存在最大值和最小值,则实数a的取值范围是(-∞,-1].综上所述,实数a的取值范围是(-∞,-1]∪(0,1].5.设函数f(x)=x2-ax+b.(1)讨论函数f(sin x)-π2,有极值时求出极值;(2)记f0(x)=x2-a0x+b0,求函数|f(sin x)-f0(sin x)|在-π2,π2上的最大值D;(3)在(2)中,取a0=b0=0,求z=b-a24满足条件D≤1时的最大值.解:(1)由题意,f(sin x)=sin2x-a sin x+b=sin x(sin x-a)+b,则f′(sin x)=(2sin x-a)cos x,因为-π2<x<π2,所以cos x>0,-2<2sin x<2.①a≤-2,b∈R时,函数f(sin x)单调递增,无极值;②a≥2,b∈R时,函数f(sin x)单调递减,无极值;③对于-2<a<2-π2,x0,使得2sin x0=a.-π2<x≤x0时,函数f(sin x)单调递减;x0≤x<π2时,函数f(sin x)单调递增.因此,-2<a<2,b∈R时,函数f(sin x)在x0处有极小值f(sin x0)=b-a24.Q Q群339444963(2)当-π2≤x≤π2时,|f(sin x)-f0(sin x)|=|(a0-a)sin x+b-b0|≤|a-a0|+|b-b0|,当(a0-a)(b-b0)≥0,x=π2时等号成立,当(a0-a)(b-b0)<0时,x=-π2时等号成立.由此可知,|f(sin x)-f0(sin x)|在-π2,π2上的最大值为D=|a-a0|+|b-b0|.(3)D≤1即为|a|+|b|≤1,此时0≤a2≤1,-1≤b≤1,从而z=b-a24≤1.取a=0,b=1,则|a|+|b|≤1,并且z=b-a24=1.由此可知,z=b-a24满足条件D≤1的最大值为1.6.已知函数f(x)=x-1x,g(x)=a ln x(a∈R).(1)当a≥-2时,求F(x)=f(x)-g(x)的单调区间;(2)设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中x1,12,求h(x1)-h(x2)的最小值.解:(1)由题意得F(x)=x-1x-a ln x(x>0),则F′(x)=x2-ax+1x2,令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=a-a2-42,x2=a+a2-42,所以F(x)的单调递增区间为F (x )综上,当-2≤a ≤2时,F (x )的单调递增区间为(0,+∞);当a >2时,F (x )的单调递增区间为F (x )(2)对h (x )=x -1x +a ln x ,x ∈(0,+∞)求导得,h ′(x )=1+1x 2+a x =x 2+ax +1x 2,h ′(x )=0的两根分别为x 1,x 2,则有x 1·x 2=1,x 1+x 2=-a ,所以x 2=1x 1,从而有a =-x 1-1x 1.令H (x )=h (x )-=x -1x+x x -1x -x x 1x=x x +x -1x ,即H ′(x )=x =21-x1+xln x x 2(x >0).当x ,12时,H ′(x )<0,所以H (x ),12上单调递减,又H (x 1)=h (x 1)-h (x 1)-h (x 2),所以[h (x 1)-h (x 2)]min =5ln 2-3.第三部分导数的综合应用(一)技法一:利用导数研究函数的零点或方程的根[典例](2016·北京高考)设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;(3)求证:a2-3b>0是f(x)有三个不同零点的必要而不充分条件.[解](1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b.因为f(0)=c,f′(0)=b,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=bx+c.(2)当a=b=4时,f(x)=x3+4x2+4x+c,所以f′(x)=3x2+8x+4.令f′(x)=0,得3x2+8x+4=0,解得x=-2或x=-2 3.f(x)与f′(x)在区间(-∞,+∞)上的情况如下:所以当c>0且c-3227<0时,存在x1∈(-4,-2),x22x3-23,使得f(x1)=f(x2)=f(x3)=0.由f(x)的单调性知,当且仅当c函数f(x)=x3+4x2+4x+c有三个不同零点.(3)证明:当Δ=4a2-12b<0时,f′(x)=3x2+2ax+b>0,x∈(-∞,+∞),此时函数f(x)在区间(-∞,+∞)上单调递增,所以f(x)不可能有三个不同零点.当Δ=4a2-12b=0时,f′(x)=3x2+2ax+b只有一个零点,记作x0.当x∈(-∞,x0)时,f′(x)>0,f(x)在区间(-∞,x0)上单调递增;当x∈(x0,+∞)时,f′(x)>0,f(x)在区间(x0,+∞)上单调递增.所以f(x)不可能有三个不同零点.综上所述,若函数f(x)有三个不同零点,则必有Δ=4a2-12b>0.故a2-3b>0是f(x)有三个不同零点的必要条件.当a=b=4,c=0时,a2-3b>0,f(x)=x3+4x2+4x=x(x+2)2只有两个不同零点,所以a2-3b>0不是f(x)有三个不同零点的充分条件.因此a2-3b>0是f(x)有三个不同零点的必要而不充分条件.[方法点拨]利用导数研究方程根的方法(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.[对点演练]已知函数f(x)=(2-a)x-2(1+ln x)+a.(1)当a=1时,求f(x)的单调区间.(2)若函数f(x)a的最小值.解:(1)当a=1时,f(x)=x-1-2ln x,则f′(x)=1-2x,其中x∈(0,+∞).由f′(x)>0,得x>2,由f′(x)<0,得0<x<2,故f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)f(x)=(2-a)x-2(1+ln x)+a=(2-a)(x-1)-2ln x,令m(x)=(2-a)(x-1),h(x)=2ln x,其中x>0,则f(x)=m(x)-h(x).①当a<2时,m(x)h(x)结合图象知,若f(x)则即(2-a 1 2,所以a≥2-4ln2,所以2-4ln2≤a<2.②当a≥2m(x)≥0,h(x)<0,所以f(x)>0,所以f(x)由①②得a≥2-4ln2,所以a min=2-4ln2.技法二:利用导数证明不等式[典例]设f(x)=e x-1.(1)当x>-1时,证明:f(x)>2x2+x-1x+1;(2)当a>ln2-1且x>0时,证明:f(x)>x2-2ax.[证明](1)当x>-1时,f(x)>2x2+x-1x+1,即e x-1>2x2+x-1x+1=2x-1,当且仅当ex>2x,即e x-2x>0恒成立时原不等式成立.令g(x)=e x-2x,则g′(x)=e x-2.令g′(x)=0,即e x-2=0,解得x=ln2.当x∈(-∞,ln2)时,g′(x)=e x-2<0,故函数g(x)在(-1,ln2)上单调递减;当x∈[ln2,+∞)时,g′(x)=e x-2≥0,故函数g(x)在[ln2,+∞)上单调递增.所以g(x)在(-1,+∞)上的最小值为g(ln2)=e ln2-2ln2=2(1-ln2)>0,所以在(-1,+∞)上有g(x)≥g(ln2)>0,即e x>2x.故当x∈(-1,+∞)时,f(x)>2x2+x-1 x+1(2)f(x)>x2-2ax,即e x-1>x2-2ax,则e x-x2+2ax-1>0.令p(x)=e x-x2+2ax-1,则p′(x)=e x-2x+2a,令h(x)=e x-2x+2a,则h′(x)=e x-2.由(1)可知,当x∈(-∞,ln2)时,h′(x)<0,函数h(x)单调递减;当x∈[ln2,+∞)时,h′(x)≥0,函数h(x)单调递增.所以h(x)的最小值为h(ln2)=e ln2-2ln2+2a=2-2ln2+2a.因为a>ln2-1,所以h(ln2)>2-2ln2+2(ln2-1)=0,即h(x)≥h(ln2)>0,所以p′(x)=h(x)>0,即p(x)在R上为增函数,故p(x)在(0,+∞)上为增函数,所以p(x)>p(0),而p(0)=0,所以p(x)=e x-x2+2ax-1>0,即当a>ln2-1且x>0时,f(x)>x2-2ax.[方法点拨]对于最值与不等式的证明相结合试题的求解往往先对不等式进行化简,然后通过构造新函数,转化为函数的最值,利用导数来解决.解决此类问题应该注意三个方面:(1)在化简所证不等式的时候一定要注意等价变形,尤其是两边同时乘以或除以一个数或式的时候,注意该数或式的符号;(2)灵活构造函数,使研究的函数形式简单,便于计算最值;(3)在利用导数求解最值时要注意定义域的限制,且注意放缩法的灵活应用.[对点演练](2017·兰州诊断)已知函数f(x)=e x-ax-1(a为常数),曲线y=f(x)在与y轴的交点A处的切线斜率为-1.(1)求a的值及函数y=f(x)的单调区间;(3)若x1<ln2,x2>ln2,且f(x1)=f(x2),试证明:x1+x2<2ln2.解:(1)由f(x)=e x-ax-1,得f′(x)=e x-a.又f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x-1,f′(x)=e x-2.由f′(x)=e x-2>0,得x>ln2.所以函数y=f(x)在区间(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增.(2)证明:设x>ln2,所以2ln2-x<ln2,f(2ln2-x)=e(2ln2-x)-2(2ln2-x)-1=4e x+2x-4ln2-1.令g(x)=f(x)-f(2ln2-x)=e x-4e x-4x+4ln2(x≥ln2),所以g′(x)=e x+4e-x-4≥0,当且仅当x=ln2时,等号成立,所以g(x)=f(x)-f(2ln2-x)在(ln2,+∞)上单调递增.又g(ln2)=0,所以当x>ln2时,g(x)=f(x)-f(2ln2-x)>g(ln2)=0,即f(x)>f(2ln2-x),所以f(x2)>f(2ln2-x2),又因为f(x1)=f(x2),所以f(x1)>f(2ln2-x2),由于x2>ln2,所以2ln2-x2<ln2,因为x1<ln2,由(1)知函数y=f(x)在区间(-∞,ln2)上单调递减,所以x1<2ln2-x2,即x1+x2<2ln2.技法三:利用导数研究不等式恒成立问题[典例]设f(x)=e x-a(x+1).(1)若∀x∈R,f(x)≥0恒成立,求正实数a的取值范围;(2)设g(x)=f(x)+a,y1),B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,e x且A(x1若对任意的a≤-1,直线AB的斜率恒大于常数m,求m的取值范围.[解](1)因为f(x)=e x-a(x+1),所以f′(x)=e x-a.由题意,知a>0,故由f′(x)=e x-a=0,解得x=ln a.故当x∈(-∞,ln a)时,f′(x)<0,函数f(x)单调递减;当x∈(ln a,+∞)时,f′(x)>0,函数f(x)单调递增.所以函数f(x)的最小值为f(ln a)=e ln a-a(ln a+1)=-a ln a.由题意,若∀x∈R,f(x)≥0恒成立,即f(x)=e x-a(x+1)≥0恒成立,故有-a ln a≥0,又a>0,所以ln a≤0,解得0<a≤1.所以正实数a的取值范围为(0,1].(2)设x1,x2是任意的两个实数,且x1<x2.则直线AB的斜率为k=g x2-g x1x2-x1,由已知k>m,即g x2-g x1x2-x1>m.因为x2-x1>0,所以g(x2)-g(x1)>m(x2-x1),即g(x2)-mx2>g(x1)-mx1.因为x1<x2,所以函数h(x)=g(x)-mx在R上为增函数,故有h′(x)=g′(x)-m≥0恒成立,所以m≤g′(x).而g′(x)=e x-a-a e x,又a≤-1<0,故g′(x)=e x+-ae x-a≥2ex·-ae x-a=2-a-a.而2-a-a=2-a+(-a)2=(-a+1)2-1≥3,所以m的取值范围为(-∞,3].[方法点拨]解决该类问题的关键是根据已知不等式的结构特征灵活选用相应的方法,由不等式恒成立求解参数的取值范围问题一般采用分离参数的方法.而第(2)问则巧妙地把直线的斜率与导数问题结合在一起,命题思路比较新颖,解决此类问题需将已知不等式变形为两个函数值的大小问题,进而构造相应的函数,通过导函数研究其单调性解决.[对点演练]已知f(x)=x ln x,g(x)=-x2+ax-3.(1)若对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.(2)证明:对一切x∈(0,+∞),ln x>1e x-2ex恒成立.解:(1)由题意知2x ln x≥-x2+ax-3对一切x∈(0,+∞)恒成立,则a≤2ln x+x+3 x,设h(x)=2ln x+x+3x(x>0),则h′(x)=x+3x-1x2.①当x∈(0,1)时,h′(x)<0,h(x)单调递减;②当x∈(1,+∞)时,h′(x)>0,h(x)单调递增.所以h(x)min=h(1)=4,对一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4,即实数a的取值范围是(-∞,4].(2)问题等价于证明x ln x>xe x-2e(x>0).又f(x)=x ln x(x>0),f′(x)=ln x+1,当x f′(x)<0,f(x)单调递减;当x f′(x)>0,f(x)单调递增,所以f(x)min==-1 e.设m(x)=xe x-2e(x>0),则m′(x)=1-x e x,当x∈(0,1)时,m′(x)>0,m(x)单调递增,当x∈(1,+∞)时,m′(x)<0,m(x)单调递减,所以m(x)max=m(1)=-1e,从而对一切x∈(0,+∞),f(x)>m(x)恒成立,即x ln x>xe x-2e恒成立.即对一切x∈(0,+∞),ln x>1e x-2ex恒成立.强化训练1.设函数f(x)=ln x+ax2+x-a-1(a∈R).(1)当a=-12时,求函数f(x)的单调区间;(2)证明:当a≥0时,不等式f(x)≥x-1在[1,+∞)上恒成立.解:(1)当a=-12时,QQ群339444963f(x)=ln x-12x2+x-12,且定义域为(0,+∞),因为f′(x)=1x-x+1(x>0)当x f′(x)>0;当x f′(x)<0,所以f(x),1+52;单调减区间是1+52,+(2)证明:令g (x )=f (x )-x +1=ln x +ax 2-a ,则g ′(x )=1x +2ax =2ax 2+1x,所以当a ≥0时,g ′(x )>0在[1,+∞)上恒成立,所以g (x )在[1,+∞)上是增函数,且g (1)=0,所以g (x )≥0在[1,+∞)上恒成立,即当a ≥0时,不等式f (x )≥x -1在[1,+∞)上恒成立.2.(2016·海口调研)已知函数f (x )=mx -m x,g (x )=3ln x .(1)当m =4时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)若x ∈(1,e ](e 是自然对数的底数)时,不等式f (x )-g (x )<3恒成立,求实数m 的取值范围.解:(1)当m =4时,f (x )=4x -4x ,f ′(x )=4+4x2,f ′(2)=5,又f (2)=6,∴所求切线方程为y -6=5(x -2),即y =5x -4.(2)由题意知,x ∈(1,e ]时,mx -m x-3ln x <3恒成立,即m (x 2-1)<3x +3x ln x 恒成立,∵x ∈(1,e ],∴x 2-1>0,则m <3x +3x ln x x 2-1恒成立.令h (x )=3x +3x ln x x 2-1,x ∈(1,e ],则m <h (x )min .h ′(x )=-3x 2+1·ln x -6x 2-12=-3x 2+1·ln x +6x 2-12,∵x∈(1,e],∴h′(x)<0,即h(x)在(1,e]上是减函数.∴当x∈(1,e]时,h(x)min=h(e)=9e2e-1.∴m∞3.(2017·广西质检)设函数f(x)=c ln x+12x2+bx(b,c∈R,c≠0),且x=1为f(x)的极值点.(1)若x=1为f(x)的极大值点,求f(x)的单调区间(用c表示);(2)若f(x)=0恰有两解,求实数c的取值范围.解:f′(x)=cx+x+b=x2+bx+cx(x>0),又f′(1)=0,所以f′(x)=x-1x-cx(x>0)且c≠1,b+c+1=0.(1)因为x=1为f(x)的极大值点,所以c>1,当0<x<1时,f′(x)>0;当1<x<c时,f′(x)<0;当x>c时,f′(x)>0,所以f(x)的单调递增区间为(0,1),(c,+∞);单调递减区间为(1,c).(2)①若c<0,则f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.f(x)=0恰有两解,则f(1)<0,即12+b<0,所以-12<c<0;②若0<c<1,则f(x)极大值=f(c)=c ln c+12c2+bc,f(x)极小值=f(1)=12+b,因为b =-1-c ,则f (x )极大值=c ln c +c 22+c (-1-c )=c ln c -c -c 22<0,f (x )极小值=-12-c <0,从而f (x )=0只有一解;③若c >1,则f (x )极小值=c ln c +c 22+c (-1-c )=c ln c -c -c 22<0,f (x )极大值=-12-c <0,则f (x )=0只有一解.综上,使f (x )=0恰有两解的c -12,4.(2017·福建省质检)已知函数f (x )=ax -ln(x +1),g (x )=e x -x -1.曲线y =f (x )与y =g (x )在原点处的切线相同.(1)求f (x )的单调区间;(2)若x ≥0时,g (x )≥kf (x ),求k 的取值范围.解:(1)因为f ′(x )=a -1x +1(x >-1),g ′(x )=e x -1,依题意,f ′(0)=g ′(0),即a -1=0,解得a =1,所以f ′(x )=1-1x +1=x x +1,当-1<x <0时,f ′(x )<0;当x >0时,f ′(x )>0.故f (x )的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)由(1)知,当x =0时,f (x )取得最小值0,所以f (x )≥0,即x ≥ln(x +1),从而e x ≥x +1.设F (x )=g (x )-kf (x )=e x +k ln(x +1)-(k +1)x -1,则F ′(x )=e x +k x +1-(k +1)≥x +1+k x +1-(k +1),(ⅰ)当k =1时,因为x ≥0,所以F ′(x )≥x +1+1x +1-2≥0(当且仅当x =0时等号成立),QQ 群339444963此时F (x )在[0,+∞)上单调递增,。
导数----常见题型(2019新)

一、导数的几何意义:——切线的斜率
例1、 1
(1)求过点(1,1)且与曲线 y= x 相切的直线方程。 (2)求过点(2,0)且与曲线 y= 1 相切的直线方程。
x
注: 所给点是否在曲线上。
例2、已知P为抛物线 y=x2上任意一点,则当点P 到直线 x+y+2=0的距离最小时,求点P到抛物线准 线的距离 。
二、判断函数单调性、求单调区间
例3、确定函数y=2x3-6x2+7的单调区间。
用导数法确定函数的单调性时的步骤是: (1)求出函数的导函数 (2)求解不等式 f /(x) > 0 , 求得其解集,再根据解集写出单
调递增区间; (3)求解不等式 f /(x) < 0 , 求得 单调区间不 以“并集”出现。 练习:求函数 f (x)=ln(x2-6x-7) 的单调增区间 注: 单调区间应在“定义域”内。
;白内障:/ ;
《辽史》称“幅员万里” 又大规模的收编了后梁的禁军部队 农业 辽汉皆有 使得南唐又失去了对湖南一带的控制 因此 以“本族之制治契丹 所属时期 耶律大石以少胜多 追尊祖考为皇帝 吾当内檄诸镇 宣布对西辽进行“圣战” 范围与唐朝后期相比 而喜为之偁誉”的声望 早死 2年 958年 并对辽太宗耶律德光自称“儿” 柴荣继位后不久亲自领兵抵抗北汉的进攻 刘知远抓住时机 另外与日本 高丽 阿拔斯王朝和喀喇汗国也有贸易往来 中京陷入危机 壬午 辽道宗 罢兵归朝 被金太宗降为海滨王 尤其是关注西辽与西夏的关系 巨然直接承袭董 历三世三帝二 后 立仁宗次子耶律直鲁古为汗 以〈玉楼春〉 〈菩萨蛮〉等宫廷艳丽生活为主 将契丹军赶得向北逃窜 [62] 又得到阴山室韦谟葛失的支持 中原式仿造中原的风格烧造 即契丹语“铁” 寺院之田 与五代几乎同时存在的十个相
导数大题(求导通分定义域,分子保留分母弃,根若无效先讨论)

导数大题题型一、导数应用---求单调区间题型二、导数应用---求单调区间和极值,最值(导数与不等式) 题型三、含常量恒成立的类型---分离常量法 题型四、导数研究——函数零点小题:求切线方程 2100021(),()tan y y y y k x x k f x x x α-'-=-===-题型一、导数应用---求单调区间求单调区间七步法:1.求导通分·定义域2.分子保留 分母弃3.根若无效 先讨论4.然后再求 有效根5.导数图像 知单调6.用根分布来求参7.综上扣题获圆满解析:(1)当0a =时,()ln f x x x x =-+,则()ln 11ln f x x x '=--+=-所以()1,(0)0f e f '=-=,所以切线方程为0()y x e -=--,即0()y x e -=-- y x e =-+.(2)函数的定义域为,①当时,,在上,在上,所以在上单调递增,在上递减; ②当时,在和上,在上,所以在和上单调递增,在上递减;③当时,在上,且仅有,所以在上单调递增; ……12分④当时,在和上,在上,所以在和上单调递增,在上递减.解析:()f x 的单调递减区间为;单调递增区间为.当时,令,解得,或. ② 当时,()f x 的单调递减区间为,;单调递增区间为③ 当时,()f x 为常值函数,不存在单调区间.④ 当时,()f x 的单调递减区间为1(1,0),(0,)1a -+; 单调递增区间为1(,1),(,)1a -∞-+∞+.解析:函数的定义域为。
,当时,方程的判别式。
①当时,,有两个零点,,。
且当或时,在与为增函数。
当时,,在内为减函数;②当时,,,所以在内为增函数; ③当时,,在内为增函数; ④当时,,,,所以在定义域内有唯一零点, 且当时,,在内为增函数; 时,,在内为减函数。
的单调区间如下表:(其中,)题型二、导数应用---求单调区间和极值,最值e(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围.解析:(Ⅰ),由知,当时,,故在区间上是增函数;当时,,故在区间上是减函数;当时,,故在区间上是增函数。
高中数学导数大题题型总结

关于数学中导数题型总结导数是高中数学的一种重要题型,虽然每年的高考考的不是很多,但它是必考题型,也是分值占比最大的题型。
导数部分相对简单,大多数学生在接触它的时候是不太适应的,特别是导数求导速度和导数运算题都非常棘手。
很多学生在做这类题目的时候只能靠运气或者是其他因素来解决问题,很多学生往往没想清楚为什么要做这个题,认为是简单的导数计算题又不重要。
我想对这部分同学做一个详细的总结汇报,希望对你们有所帮助。
一、求导速度求导速度也就是求的各个节点的距离等于节点的坐标,而每个节点所对应的计算量也就是这个知识点要完成多少道题目,所以这个知识点就是一个考点:最小行程问题。
对于求导速度比较快的问题可以利用等式关系求解解题,特别喜欢求导过程中不需要等待或者没有注意到节点的坐标和距离不需要等待,这样不仅能节省时间也能提高解的准确率。
对于求导速度慢的问题,可利用参数化问题的方法进行求导,这样就可以大大缩短你计算出结论的时间。
另外还有一些特殊复杂的求导运算也是需要注意的,比如导数的实数解和虚数解的计算方法,一定要清楚。
实数解一般利用的都是原函数的解析式来计算,而虚数解一般是利用定理方程或者导数方程的求导来进行求导,所以对于一些没有解出来的题就不要着急了,可以用一些方法进行求导即可完成解题而不需要考虑到解析的思想和方法,比如一些特殊导数中可以利用一些特殊的符号进行计算。
二、导数形式1、正态分布:求导问题一般以正态分布形式出现,这类题目一般有三种常见的形式:极坐标、双曲对称性、椭圆对称性。
根据上述定义,这三种形式是正态分布和坐标对称性求导方法中的两种简单方法,在求导问题中,常以椭圆对称性求导方法为主,这类求导方法一般可以用到积分求导法则、周期律求导法则等。
2.直线方程:导数中直线方程的求导过程是求解直线方程的关键,可以直接通过求导公式来求导,比如下面的求导公式:3、等式与不等式:当满足给定的等式中有一条不等式的时候,可以利用等式求导的性质进行求导,比如下面的等式与不等式都可以直接求导来求解:其实很多同学对这类题不是很熟悉和了解,下面我们简单分析一下各种形式分别有哪些优缺点。
高考数学必考大题题型归纳及例题解析

精品基础教育教学资料,仅供参考,需要可下载使用!高考数学必考大题题型归纳及例题解析高考数学常考的大题分别是三角函数,概率,立体几何,解析几何,函数与导数,数列。
下面就这些题型做出具体分析,并对大题给以典型题型,希望大家仔细研究总结。
1数学高考大题题型有哪些必做题:1.三角函数或数列(必修4,必修5)2.立体几何(必修2)3.统计与概率(必修3和选修2-3)4.解析几何(选修2-1)5.函数与导数(必修1和选修2-2)选做题:1.平面几何证明(选修4-1)2.坐标系与参数方程(选修4-4)3.不等式(选修4-5)1数学高考大题题型归纳一、三角函数或数列数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
二、立体几何高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。
选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。
完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类.导数在高考中是一个经常出现的热点,考题难度比较大,多数情况下作为压轴题出现。
命题的主要热点包括利用导数研究函数的单调性、极值、最值,不等式,方程的根以及恒成立问题等。
这些题目体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。
题型一:利用导数研究函数的单调性、极值与最值这类题目的难点在于分类讨论,包括函数单调性和极值、最值综合问题。
1.单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,将函数定义域分段,在各段上讨论导数的符号。
如果不能确定导数等于零的点的相对位置,还需要对导数等于零的点的位置关系进行讨论。
2.极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点。
3.最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的。
在极值和区间端点函数值中最大的为最大值,最小的为最小值。
例题:已知函数f(x)=x-,g(x)=alnx(a∈R)。
x1.当a≥-2时,求F(x)=f(x)-g(x)的单调区间;2.设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中h(x1)=h(x2),求a的值。
审题程序]1.在定义域内,依据F′(x)=0的情况对F′(x)的符号进行讨论;2.整合讨论结果,确定单调区间;3.建立x1、x2及a间的关系及取值范围;4.通过代换转化为关于x1(或x2)的函数,求出最小值。
规范解答]1.由题意得F(x)=x-x/(x2-ax+1)-alnx,其定义域为(0,+∞)。
则F′(x)=(x2-ax+1)-x(2ax-2)/(x2-ax+1)2.令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=(a+√(a2-4))/2,x2=(a-√(a2-4))/2,求h(x1)-h(x2)的最小值。
3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)(解析版)

3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)技法01端点效应(必要性探索)解题技巧知识迁移端点效应的类型1.如果函数f(x)在区间[a,b]上,f(x)≥0恒成立,则f(a)≥0或f(b)≥0.2.如果函数f(x)在区问[a,b]上,f(x)≥0恒成立,且f(a)=0(或f(b)=0),则f (a)≥0 或f (b)≤0 .3.如果函数f(x)在区问[a,b]上,f(x)≥0恒成立,且f(a)=0,f (a)=0(或f(b)=0,f (b)≤0 则f (a)≥0 或f (b)≤0 .1(2023·全国·统考高考真题)已知函数f(x)=ax-sin xcos3x,x∈0,π2(1)当a=8时,讨论f(x)的单调性;(2)若f(x)<sin2x恒成立,求a的取值范围.【法一】端点效应一令g(x)=f(x)-sin2x,x∈0,π2,得g(0)=0,且g(x)<0在x∈0,π2上恒成立画出草图根据端点效应, 需要满足g (0)≤0,而g (x)=a-1+2sin2xcos4x-2cos2x则g (0)=a-3, 令g (0)≤0, 得a≤3当a≤3时, 由于g(0)=0, 只需证g (x)<0即可而g (x)含有参数a, 故可对g (x)进行放缩即g x =a-1+2sin2xcos4x-2cos2x≤3-1+2sin2xcos4x-2cos2x=5-3-2cos2xcos4x-4cos2x令t=cos2x, 其中0<t<1设h(t)=5-3-2tt2-4t则h (t)=6t3-2t2-4=-4t3-2t+6t3令p(t)=-4t3-2t+6则p (t)=-12t2-2<0, 故p(t)在(0,1)上递减, 得p(t)>p(1)=0则h (t)>0, 得h(t)在(0,1)上单调递增, 则h(t)<h(1)=0即g (x)<0, 满足g(x)<g(0)=0成立当a>3时,由于g 0 =a-3>0,故存在x0, 使得在0,x0上g (x)>0,所以g(x)在0,x0上单调递增, 则g(x)>g(0)=0, 不成立特上所述:a≤3.【法二】端点效应二(2)f(x)<sin2x⇒ax-sin xcos3x <sin2x⇒g(x)=ax-sin2x-sin xcos3x<0由于g(0)=0, 且g (x)=a-2cos2x-cos2x+3sin2xcos4x,注意到当g (0)>0, 即a>3时, ∃x0∈0,π2使g (x)>0在x∈0,x0成立, 故此时g(x)单调递减∴g(x)>g(0)=0, 不成立.另一方面, 当a≤3时, g(x)≤3x-sin2x-sin xcos3x≡h(x), 下证它小于等于0 .令h x =3-2cos2x-3-2cos2x cos2x=3cos4x+2cos2x-3-2cos2x cos4xcos4x =3cos4x-1+2cos2x1-cos2x cos2xcos4x=-cos2x-124cos2x+3cos4x<0.∴g(x)单调递减, ∴g(x)≤g(0)=0. 特上所述:a≤3.【法三】设g(x)=f(x)-sin2xg (x)=f (x)-2cos2x=g(t)-22cos2x-1=at2+2t-3t2-2(2t-1)=a+2-4t+2t-3t2设φ(t)=a+2-4t+2t -3 t2φ (t)=-4-2t2+6t3=-4t3-2t+6t3=-2(t-1)(2t2+2t+3)t3>0所以φ(t)<φ(1)=a-3.1°若a∈(-∞,3],g (x)=φ(t)<a-3≤0即g(x)在0,π2上单调递减,所以g(x)<g(0)=0.所以当a∈(-∞,3],f(x)<sin2x,符合题意.2°若a∈(3,+∞)当t→0,2t-3t2=-31t-132+13→-∞,所以φ(t)→-∞.φ(1)=a-3>0.所以∃t0∈(0,1),使得φt0 =0,即∃x0∈0,π2,使得g x0 =0.当t∈t0,1,φ(t)>0,即当x∈0,x0,g (x)>0,g(x)单调递增.所以当x∈0,x0,g(x)>g(0)=0,不合题意.综上,a的取值范围为(-∞,3].1(2023·全国·统考高考真题)已知函数f x =ax-sin xcos2x,x∈0,π2.(1)当a=1时,讨论f x 的单调性;(2)若f x +sin x<0,求a的取值范围.【答案】(1)f x 在0,π2上单调递减(2)a≤0【分析】(1)代入a=1后,再对f x 求导,同时利用三角函数的平方关系化简f x ,再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数g x =f x +sin x,从而得到g x <0,注意到g0 =0,从而得到g 0 ≤0,进而得到a≤0,再分类讨论a=0与a<0两种情况即可得解;法二:先化简并判断得sin x-sin xcos2x<0恒成立,再分类讨论a=0,a<0与a>0三种情况,利用零点存在定理与隐零点的知识判断得a>0时不满足题意,从而得解.【详解】(1)因为a=1,所以f x =x-sin xcos2x,x∈0,π2,则f x =1-cos x cos2x-2cos x-sin xsin xcos4x=1-cos2x+2sin2xcos3x=cos3x-cos2x-21-cos2xcos3x=cos3x+cos2x-2cos3x,令t=cos x,由于x∈0,π2,所以t=cos x∈0,1 ,所以cos 3x +cos 2x -2=t 3+t 2-2=t 3-t 2+2t 2-2=t 2t -1 +2t +1 t -1 =t 2+2t +2 t -1 ,因为t 2+2t +2=t +1 2+1>0,t -1<0,cos 3x =t 3>0,所以f x =cos 3x +cos 2x -2cos 3x <0在0,π2 上恒成立,所以f x 在0,π2 上单调递减.(2)法一:构建g x =f x +sin x =ax -sin x cos 2x +sin x 0<x <π2 ,则g x =a -1+sin 2xcos 3x +cos x 0<x <π2 ,若g x =f x +sin x <0,且g 0 =f 0 +sin0=0,则g 0 =a -1+1=a ≤0,解得a ≤0,当a =0时,因为sin x -sin xcos 2x =sin x 1-1cos 2x ,又x ∈0,π2 ,所以0<sin x <1,0<cos x <1,则1cos 2x >1,所以f x +sin x =sin x -sin xcos 2x <0,满足题意;当a <0时,由于0<x <π2,显然ax <0,所以f x +sin x =ax -sin x cos 2x +sin x <sin x -sin xcos 2x <0,满足题意;综上所述:若f x +sin x <0,等价于a ≤0,所以a 的取值范围为-∞,0 .法二:因为sin x -sin x cos 2x =sin x cos 2x -sin x cos 2x =sin x cos 2x -1 cos 2x =-sin 3xcos 2x ,因为x ∈0,π2 ,所以0<sin x <1,0<cos x <1,故sin x -sin xcos 2x <0在0,π2 上恒成立,所以当a =0时,f x +sin x =sin x -sin xcos 2x <0,满足题意;当a <0时,由于0<x <π2,显然ax <0,所以f x +sin x =ax -sin x cos 2x +sin x <sin x -sinxcos 2x <0,满足题意;当a >0时,因为f x +sin x =ax -sin x cos 2x +sin x =ax -sin 3xcos 2x ,令g x =ax-sin3xcos2x0<x<π2,则g x =a-3sin2x cos2x+2sin4xcos3x,注意到g 0 =a-3sin20cos20+2sin40cos30=a>0,若∀0<x<π2,gx >0,则g x 在0,π2上单调递增,注意到g0 =0,所以g x >g0 =0,即f x +sin x>0,不满足题意;若∃0<x0<π2,gx0<0,则g 0 g x0<0,所以在0,π2上最靠近x=0处必存在零点x1∈0,π2,使得g x1 =0,此时g x 在0,x1上有g x >0,所以g x 在0,x1上单调递增,则在0,x1上有g x >g0 =0,即f x +sin x>0,不满足题意;综上:a≤0.【点睛】关键点睛:本题方法二第2小问讨论a>0这种情况的关键是,注意到g 0 >0,从而分类讨论g x 在0,π2上的正负情况,得到总存在靠近x=0处的一个区间,使得g x >0,从而推得存在g x >g0 =0,由此得解.2(2020·全国·统考高考真题)已知函数f(x)=e x+ax2-x.(1)当a=1时,讨论f(x)的单调性;(2)当x≥0时,f(x)≥12x3+1,求a的取值范围.【答案】(1)当x∈-∞,0时,f'x <0,f x 单调递减,当x∈0,+∞时,f'x >0,f x 单调递增.(2)7-e24,+∞【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可. (2)方法一:首先讨论x=0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a的取值范围.【详解】(1)当a=1时,f x =e x+x2-x,f x =e x+2x-1,由于f x =e x+2>0,故f'x 单调递增,注意到f 0 =0,故:当x∈-∞,0时,f x <0,f x 单调递减,当x∈0,+∞时,f x >0,f x 单调递增.(2)[方法一]【最优解】:分离参数由f x ≥12x3+1得,e x+ax2-x≥12x3+1,其中x≥0,①.当x=0时,不等式为:1≥1,显然成立,符合题意;②.当x>0时,分离参数a得,a≥-e x-12x3-x-1x2,记g x =-e x-12x3-x-1x2,g x =-x-2e x-12x2-x-1x3,令h x =e x-12x2-x-1x≥0,则h x =e x-x-1,h x =e x-1≥0,故h'x 单调递增,h x ≥h 0 =0,故函数h x 单调递增,h x ≥h0 =0,由h x ≥0可得:e x-12x2-x-1≥0恒成立,故当x∈0,2时,g x >0,g x 单调递增;当x∈2,+∞时,g x <0,g x 单调递减;因此,g xmax=g2 =7-e2 4,综上可得,实数a的取值范围是7-e24,+∞.[方法二]:特值探路当x≥0时,f(x)≥12x3+1恒成立⇒f(2)≥5⇒a≥7-e24.只需证当a≥7-e24时,f(x)≥12x3+1恒成立.当a≥7-e24时,f(x)=ex+ax2-x≥e x+7-e24⋅x2-x.只需证明e x+7-e24x2-x≥12x3+1(x≥0)⑤式成立.⑤式⇔e2-7x2+4x+2x3+4e x≤4,令h(x)=e2-7x2+4x+2x3+4e x(x≥0),则h (x)=13-e2x2+2e2-9x-2x3e x=-x2x2-13-e2x-2e2-9e x=-x(x-2)2x+e2-9e x,所以当x∈0,9-e2 2时,h(x)<0,h(x)单调递减;当x∈9-e22,2,h (x)>0,h(x)单调递增;当x∈(2,+∞),h (x)<0,h(x)单调递减.从而[h(x)]max=max{h(0),h(2)}=4,即h(x)≤4,⑤式成立.所以当a≥7-e24时,f(x)≥12x3+1恒成立.综上a≥7-e2 4.[方法三]:指数集中当x≥0时,f(x)≥12x3+1恒成立⇒e x≥12x3+1-ax2+x⇒12x3-ax2+x+1e-x≤1,记g x =12x3-ax2+x+1e-x(x≥0),g x =-12x3-ax2+x+1-32x2+2ax-1e-x=-12x x2-2a+3x+4a+2e-x=-1 2x x-2a-1x-2e-x,①.当2a+1≤0即a≤-12时,gx =0⇒x=2,则当x∈(0,2)时,g x >0,g x 单调递增,又g0 =1,所以当x∈(0,2)时,g x >1,不合题意;②.若0<2a+1<2即-12<a<12时,则当x∈(0,2a+1)∪(2,+∞)时,gx <0,g x 单调递减,当x∈(2a+1,2)时,g x >0,g x 单调递增,又g0 =1,所以若满足g x ≤1,只需g2 ≤1,即g2 =(7-4a)e-2≤1⇒a≥7-e24,所以当⇒7-e24≤a<12时,g x ≤1成立;③当2a+1≥2即a≥12时,g x =12x3-ax2+x+1e-x≤12x3+x+1e-x,又由②可知7-e24≤a<12时,g x ≤1成立,所以a=0时,g(x)=12x3+x+1e-x≤1恒成立,所以a≥12时,满足题意.综上,a≥7-e2 4.【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!3(2022·全国·统考高考真题)已知函数f(x)=xe ax-e x.(1)当a =1时,讨论f (x )的单调性;(2)当x >0时,f (x )<-1,求a 的取值范围;(3)设n ∈N ∗,证明:112+1+122+2+⋯+1n 2+n>ln (n +1).【答案】(1)f x 的减区间为-∞,0 ,增区间为0,+∞ .(2)a ≤12(3)见解析【分析】(1)求出f x ,讨论其符号后可得f x 的单调性.(2)设h x =xe ax -e x +1,求出h x ,先讨论a >12时题设中的不等式不成立,再就0<a ≤12结合放缩法讨论h x 符号,最后就a ≤0结合放缩法讨论h x 的范围后可得参数的取值范围.(3)由(2)可得2ln t <t -1t对任意的t >1恒成立,从而可得ln n +1 -ln n <1n 2+n 对任意的n ∈N *恒成立,结合裂项相消法可证题设中的不等式.【详解】(1)当a =1时,f x =x -1 e x ,则f x =xe x ,当x <0时,f x <0,当x >0时,f x >0,故f x 的减区间为-∞,0 ,增区间为0,+∞ .(2)设h x =xe ax -e x +1,则h 0 =0,又h x =1+ax e ax -e x ,设g x =1+ax e ax -e x ,则g x =2a +a 2x e ax -e x ,若a >12,则g 0 =2a -1>0,因为g x 为连续不间断函数,故存在x 0∈0,+∞ ,使得∀x ∈0,x 0 ,总有g x >0,故g x 在0,x 0 为增函数,故g x >g 0 =0,故h x 在0,x 0 为增函数,故h x >h 0 =0,与题设矛盾.若0<a ≤12,则h x =1+ax e ax -e x =e ax +ln 1+ax -e x ,下证:对任意x >0,总有ln 1+x <x 成立,证明:设S x =ln 1+x -x ,故S x =11+x -1=-x 1+x<0,故S x 在0,+∞ 上为减函数,故S x <S 0 =0即ln 1+x <x 成立.由上述不等式有e ax +ln 1+ax -e x <e ax +ax -e x =e 2ax -e x ≤0,故h x ≤0总成立,即h x 在0,+∞ 上为减函数,所以h x <h0 =0.当a≤0时,有h x =e ax-e x+axe ax<1-1+0=0, 所以h x 在0,+∞上为减函数,所以h x <h0 =0.综上,a≤1 2 .(3)取a=12,则∀x>0,总有xe 12x-e x+1<0成立,令t=e 12x,则t>1,t2=e x,x=2ln t,故2t ln t<t2-1即2ln t<t-1t对任意的t>1恒成立.所以对任意的n∈N*,有2ln n+1n<n+1n-nn+1,整理得到:ln n+1-ln n<1n2+n,故112+1+122+2+⋯+1n2+n>ln2-ln1+ln3-ln2+⋯+ln n+1-ln n=ln n+1,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.技法02函数凹凸性解题技巧知识迁移凹函数:对于某区间内∀x 1,x 2, 都有f x 1 +f x 2 2>f x 1+x22 .凸函数:对于某区间内∀x 1,x 2, 都有f x 1 +f x 2 2<f x 1+x22.1在△ABC 中, 求sin A +sin B +sin C 的最大值.因为函数y =sin x 在区间(0,π)上是上凸函数, 则13(sin A +sin B +sin C )≤sin A +B +C 3 =sin π3=32即sin A +sin B +sin C ≤332, 当且仅当sin A =sin B =sin C 时, 即A =B =C =π3时,取等号.上述例题是三角形中一个重要的不等式:在△ABC 中,sin A +sin B +sin C ≤332.2(2021·黑龙江模拟)丹麦数学家琴生(Jensen )是19世纪对数学分析做出卓越贡献的数学家,特别是在函数的凹凸性与不等式方面留下了很多宝贵的成果.设函数f (x )在(a ,b )上的导函数为f (x ),f (x )在(a ,b )上的导函数为f (x ),若在(a ,b )上f (x )<0恒成立,则称函数f (x )在(a ,b )上为“凸函数”.已知f (x )=e x -x ln x -m 2x 2在(1,4)上为“凸函数”,则实数m 的取值范围是()A.e -1,+∞B.e -1,+∞C.e 4-14,+∞D.e 4-14,+∞因为f (x )=e x -x ln x -m 2x 2,所以f (x )=e x -1+ln x -mx =e x -mx -ln x -1,f (x )=e x -m -1x,因为f (x )=e x -x ln x -m 2x 2在(1,4)上为“凸函数”,所以f (x )=e x -m -1x<0对于x ∈(1,4)恒成立,可得m >e x -1x对于x ∈(1,4)恒成立,令g x =e x -1x,则m >g x max ,因为g x =e x +1x 2>0,所以g x=e x-1x 在(1,4)单调递增,所以g x max <g 4 =e 4-14,所以m ≥e 4-14,【答案】C1(全国·高考真题)已知函数f (x )=(x -2)e x +a (x -1)2有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.【答案】(Ⅰ)(0,+∞);(Ⅱ)见解析【详解】试题分析:(Ⅰ)求导,根据导函数的符号来确定(主要要根据导函数零点来分类);(Ⅱ)借助(Ⅰ)的结论来证明,由单调性可知x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0.设g (x )=-xe 2-x -(x -2)e x ,则g '(x )=(x -1)(e 2-x -e x ).则当x >1时,g '(x )<0,而g (1)=0,故当x >1时,g (x )<0.从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.试题解析:(Ⅰ)f '(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ).(Ⅰ)设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.(Ⅱ)设a >0,则当x ∈(-∞,1)时,f '(x )<0;当x ∈(1,+∞)时,f '(x )>0.所以f (x )在(-∞,1)单调递减,在(1,+∞)单调递增.又f(1)=-e,f(2)=a,取b满足b<0且b<ln a 2,则f(b)>a2(b-2)+a(b-1)2=a b2-32b>0,故f(x)存在两个零点.(Ⅲ)设a<0,由f'(x)=0得x=1或x=ln(-2a).若a≥-e2,则ln(-2a)≤1,故当x∈(1,+∞)时,f'(x)>0,因此f(x)在(1,+∞)单调递增.又当x≤1时f(x)<0,所以f(x)不存在两个零点.若a<-e2,则ln(-2a)>1,故当x∈(1,ln(-2a))时,f'(x)<0;当x∈(ln(-2a),+∞)时,f'(x)>0.因此f(x)在(1,ln(-2a))单调递减,在(ln(-2a),+∞)单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(Ⅱ)不妨设x1<x2,由(Ⅰ)知x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),f(x)在(-∞,1)单调递减,所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)e x2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)e x2.设g(x)=-xe2-x-(x-2)e x,则g'(x)=(x-1)(e2-x-e x).所以当x>1时,g'(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.【考点】导数及其应用【名师点睛】对于含有参数的函数单调性、极值、零点问题,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简.解决函数不等式的证明问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.2(2021·全国·统考高考真题)已知函数f x =x1-ln x.(1)讨论f x 的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a +1b<e.【答案】(1)f x 的递增区间为0,1,递减区间为1,+∞;(2)证明见解析.【分析】(1)首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令1a =m,1b=n,命题转换为证明:2<m+n<e,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)f x 的定义域为0,+∞.由f x =x1-ln x得,f x =-ln x,当x=1时,f′x =0;当x∈0,1时f′x >0;当x∈1,+∞时,f'x <0.故f x 在区间0,1内为增函数,在区间1,+∞内为减函数,(2)[方法一]:等价转化由b ln a-a ln b=a-b得1a1-ln1a=1b1-ln1b,即f1a =f1b .由a≠b,得1a≠1b.由(1)不妨设1a∈(0,1),1b∈(1,+∞),则f1a>0,从而f1b >0,得1b∈(1,e),①令g x =f2-x-f x ,则g (x)=ln(2-x)+ln x=ln(2x-x2)=ln[1-(x-1)2],当x∈0,1时,g′x <0,g x 在区间0,1内为减函数,g x >g1 =0,从而f2-x>f x ,所以f2-1 a>f1a =f1b ,由(1)得2-1a<1b即2<1a+1b.①令h x =x+f x ,则h'x =1+f x =1-ln x,当x∈1,e时,h′x >0,h x 在区间1,e内为增函数,h x <h e =e,从而x+f x <e,所以1b+f1b<e.又由1a∈(0,1),可得1a<1a1-ln1a=f1a =f1b ,所以1a+1b<f1b+1b=e.②由①②得2<1a+1b<e.[方法二]【最优解】:b ln a-a ln b=a-b变形为ln aa -ln bb=1b-1a,所以ln a+1a=ln b+1b.令1a=m,1b=n.则上式变为m1-ln m=n1-ln n,于是命题转换为证明:2<m+n<e.令f x =x1-ln x,则有f m=f n,不妨设m<n.由(1)知0<m<1,1<n<e,先证m+n>2.要证:m +n >2⇔n >2-m ⇔f n <f 2-m ⇔f (m )<f 2-m ⇔f m -f 2-m <0.令g x =f x -f 2-x ,x ∈0,1 ,则g ′x =-ln x -ln 2-x =-ln x 2-x ≥-ln1=0,∴g x 在区间0,1 内单调递增,所以g x <g 1 =0,即m +n >2.再证m +n <e .因为m 1-ln m =n ⋅1-ln n >m ,所以需证n 1-ln n +n <e ⇒m +n <e .令h x =x 1-ln x +x ,x ∈1,e ,所以h 'x =1-ln x >0,故h x 在区间1,e 内单调递增.所以h x <h e =e .故h n <e ,即m +n <e .综合可知2<1a +1b<e .[方法三]:比值代换证明1a +1b>2同证法2.以下证明x 1+x 2<e .不妨设x 2=tx 1,则t =x 2x 1>1,由x 1(1-ln x 1)=x 2(1-ln x 2)得x 1(1-ln x 1)=tx 1[1-ln (tx 1)],ln x 1=1-t ln tt -1,要证x 1+x 2<e ,只需证1+t x 1<e ,两边取对数得ln (1+t )+ln x 1<1,即ln (1+t )+1-t ln tt -1<1,即证ln (1+t )t <ln tt -1.记g (s )=ln (1+s )s ,s ∈(0,+∞),则g (s )=s1+s-ln (1+s )s2.记h (s )=s 1+s -ln (1+s ),则h ′(s )=1(1+s )2-11+s <0,所以,h s 在区间0,+∞ 内单调递减.h s <h 0 =0,则g 's <0,所以g s 在区间0,+∞ 内单调递减.由t ∈1,+∞ 得t -1∈0,+∞ ,所以g t <g t -1 ,即ln (1+t )t <ln t t -1.[方法四]:构造函数法由已知得ln a a -ln b b =1b -1a ,令1a =x 1,1b=x 2,不妨设x 1<x 2,所以f x 1 =f x 2 .由(Ⅰ)知,0<x1<1<x2<e,只需证2<x1+x2<e.证明x1+x2>2同证法2.再证明x1+x2<e.令h(x)=1-ln xx-e(0<x<e),h (x)=-2+ex+ln x(x-e)2.令φ(x)=ln x+ex-2(0<x<e),则φ′(x)=1x-ex2=x-ex2<0.所以φx >φe =0,h′x >0,h x 在区间0,e内单调递增.因为0<x1<x2<e,所以1-ln x1x1-e<1-ln x2x2-e,即1-ln x11-ln x2>x1-ex2-e又因为f x1=f x2,所以1-ln x11-ln x2=x2x1,x2x1>x1-ex2-e,即x22-ex2<x21-ex1,x1-x2x1+x2-e>0.因为x1<x2,所以x1+x2<e,即1a+1b<e.综上,有2<1a+1b<e结论得证.【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于x1+x2-e<0的式子,这是本方法证明不等式的关键思想所在.3(陕西·高考真题)已知函数A(1,1).(1)若直线y=kx+1与f(x)的反函数的图像相切, 求实数k的值;(2)设x>0, 讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数.(3)设a<b,比较f(a)+f(b)2与f(b)-f(a)b-a的大小, 并说明理由.【答案】(1)k=1 e2(2)当m>e24时两曲线有2个交点;当m=e24时两曲线有1个交点;当m<e24时两曲线没有交点(3)f(a)+f(b)2>f(b)-f(a)b-a,理由见解析.【分析】(1)设切点(x0,kx0+1),利用导数的几何意义得到方程组可得答案;(2)e x=mx2(x>0)⇔m=e xx2(x>0),转化为y=m与g(x)=e xx2(x>0)图象交点的个数问题;(3)作差得到e ab-a1+e b-a-21-e b-a2b-a,令b-a=t>0,构造新函数g(t)=(t+2)e t+t-2,求导即可得到答案.【详解】函数f(x)=e x,x∈R⇒f (x)=e x(1)函数1x0=k⇒kx0=1,f(x)=e x,x∈R的反函数为y=ln x,x>0,y =1x,设切点坐标为(x0,kx0+1)则1x0=k⇒kx0=1,ln x0=2⇒x0=e2⇒k=1e2.(2)令f(x)=mx2即e x=mx2(x>0)⇒m=e xx2(x>0),设g(x)=e xx2(x>0)有g (x)=e x(x-2)x3(x>0),当x∈(0,2],g (x)<0,当x∈[2,+∞),g (x)>0所以函数g(x)在(0,2]上单调递减,在[2,+∞)上单调递增,g(x)min=g(2)=e24,所以当m>e24时,两曲线有2个交点;当m=e24时,两曲线有1个交点;当m<e24时,两曲线没有交点.(3)f(a)+f(b)2>f(b)-f(a)b-a.f a +f b2-f b -f ab-a=e a+e b2-e a-e bb-a=e a1+e b-a2-1-e b-ab-a=e ab-a1+e b-a-21-e b-a2b-a∵a<b,令b-a=t>0∴上式=e a t1+e t-21-e t2t=e a2t⋅t+2e t+t-2令g(t)=(t+2)e t+t-2,则g (t)=(t+3)e t+1>0恒成立,∴g(t)>g(0)=0,而e a2t >0,∴e a2t⋅t+2e t+t-2>0,故f(a)+f(b)2>f(b)-f(a)b-a.【点睛】本题考查函数、导数、不等式、参数等问题,属于难题.第二问运用数形结合思想解决问题,能够比较清晰的分类,做到不吃不漏.最后一问,考查函数的凹凸性,富有明显的几何意义,为考生探索结论提供了明确的方向,对代数手段的解决起到导航作用.技法03洛必达法则解题技巧知识迁移洛必达法则:法则1若函数f(x)和g(x)满足下列条件:(1)limx→a f x =0及limx→ag x =0; (2)在点a的去心邻域内,f(x)与g(x)可导且g'(x)≠0; (3)limx→a f xg x=l,那么limx→a f xg x=limx→af xg x=l。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“函数与导数”大题常考的3类题型一、学前明考情——考什么、怎么考[真题尝试]1.(2017·全国卷Ⅲ)已知函数f (x )=ln x +ax 2+(2a +1)x .(1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a-2. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +2a +1=(x +1)(2ax +1)x. 若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0,故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈⎝⎛⎭⎫0,-12a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫-12a ,+∞时,f ′(x )<0. 故f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)证明:由(1)知,当a <0时,f (x )在x =-12a 处取得最大值,最大值为f ⎝⎛⎭⎫-12a =ln ⎝⎛⎭⎫-12a -1-14a. 所以f (x )≤-34a -2等价于ln ⎝⎛⎭⎫-12a -1-14a ≤-34a-2,即ln ⎝⎛⎭⎫-12a +12a +1≤0. 设g (x )=ln x -x +1,则g ′(x )=1x-1. 当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,ln ⎝⎛⎭⎫-12a +12a+1≤0, 即f (x )≤-34a-2. 2.(2018·全国卷Ⅱ)已知函数f (x )=e x -ax 2.(1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .解:(1)证明:当a =1时,f (x )≥1等价于(x 2+1)e -x -1≤0.设函数g (x )=(x 2+1)e -x -1,则g ′(x )=-(x 2-2x +1)e -x =-(x -1)2e -x .当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.(2)设函数h (x )=1-ax 2e -x .f (x )在(0,+∞)上只有一个零点等价于h (x )在(0,+∞)上只有一个零点.(ⅰ)当a ≤0时,h (x )>0,h (x )没有零点;(ⅱ)当a >0时,h ′(x )=ax (x -2)e -x .当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增.故h (2)=1-4a e 2是h (x )在(0,+∞)上的最小值. ①当h (2)>0,即a <e 24时,h (x )在(0,+∞)上没有零点. ②当h (2)=0,即a =e 24时,h (x )在(0,+∞)上只有一个零点. ③当h (2)<0,即a >e 24时, 因为h (0)=1,所以h (x )在(0,2)上有一个零点.由(1)知,当x >0时,e x >x 2,所以h (4a )=1-16a 3e 4a =1-16a 3(e 2a )2>1-16a 3(2a )4=1-1a >0, 故h (x )在(2,4a )上有一个零点.因此h (x )在(0,+∞)上有两个零点.综上,当f (x )在(0,+∞)上只有一个零点时,a =e 24. 3.(2018·全国卷Ⅰ)已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e时,f (x )≥0. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=a e x -1x .由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x . 可知f ′(x )在(0,+∞)上单调递增,又f ′(2)=0,所以当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)证明:当a ≥1e 时,f (x )≥e x e-ln x -1. 设g (x )=e x e -ln x -1,则g ′(x )=e x e-1x .可知g ′(x )在(0,+∞)上单调递增,且g ′(1)=0,所以当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点.故当x >0时,g (x )≥g (1)=0.因此,当a ≥1e时,f (x )≥0. [把握考情]常规角度 1.单调性问题.主要考查利用导数求函数的单调区间或讨论函数的单调性以及由函数的单调性求参数范围.2.函数零点问题.主要考查判断函数的零点个数以及由函数零点或方程的根求参数的值或取值范围.3.不等式问题.主要考查不等式的证明、不等式恒成立或不等式存在性问题.主要以解答题为主,综合性较强,难度较大创新角度常与切线、函数的单调性、极值、最值等知识综合命题,且常与指数函数、对数函数的复合函数结合二、课堂研题型——怎么办、提知能1、利用导数研究函数的单调性利用导数研究函数的单调性是高考的热点和重点,一般为解答题的第一问,若不含参数,难度一般,若含参数,则较难.常见的考法有:(1)求函数的单调区间.(2)讨论函数的单调性.(3)由函数的单调性求参数.考法一 求函数的单调区间 [例1] (2018·湘东五校联考节选)已知函数f (x )=(ln x -k -1)x (k ∈R).当x >1时,求f (x )的单调区间.[解] f ′(x )=1x ·x +ln x -k -1=ln x -k ,①当k ≤0时,因为x >1,所以f ′(x )=ln x -k >0,所以函数f (x )的单调递增区间是(1,+∞),无单调递减区间.②当k >0时,令ln x -k =0,解得x =e k ,当1<x <e k 时,f ′(x )<0;当x >e k 时,f ′(x )>0.所以函数f (x )的单调递减区间是(1,e k ),单调递增区间是(e k ,+∞).综上所述,当k ≤0时,函数f (x )的单调递增区间是(1,+∞),无单调递减区间;当k >0时,函数f (x )的单调递减区间是(1,e k ),单调递增区间是(e k ,+∞).[方法技巧]利用导数求函数单调区间的方法(1)当导函数不等式可解时,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,解出方程的实根,依照实根把函数的定义域划分为几个区间,确定各区间f ′(x )的符号,从而确定单调区间.(3)若导函数的方程、不等式都不可解,根据f ′(x )结构特征,利用图象与性质确定f ′(x )的符号,从而确定单调区间.[针对训练](2019·湖南、江西十四校联考)已知f (x )=(x 2-ax )ln x -32x 2+2ax ,求f (x )的单调递减区间. 解:易得f (x )的定义域为(0,+∞),f ′(x )=(2x -a )ln x +x -a -3x +2a =(2x -a )ln x -(2x -a )=(2x -a )(ln x -1),令f ′(x )=0得x =a 2或x =e. 当a ≤0时,因为x >0,所以2x -a >0,令f ′(x )<0得x <e ,所以f (x )的单调递减区间为(0,e).当a >0时,①若a 2<e ,即0<a <2e ,当x ∈⎝⎛⎭⎫0,a 2时,f ′(x )>0,当x ∈⎝⎛⎭⎫a 2,e 时,f ′(x )<0,当x ∈(e ,+∞)时,f ′(x )>0,所以f (x )的单调递减区间为⎝⎛⎭⎫a 2,e ;②若a 2=e ,即a =2e ,当x ∈(0,+∞)时,f ′(x )≥0恒成立,f (x )没有单调递减区间; ③若a 2>e ,即a >2e ,当x ∈(0,e)时,f ′(x )>0,当x ∈⎝⎛⎭⎫e ,a 2时,f ′(x )<0,当x ∈⎝⎛⎭⎫a 2,+∞时,f ′(x )>0,所以f (x )的单调递减区间为⎝⎛⎭⎫e ,a 2. 综上所述,当a ≤0时,f (x )的单调递减区间为(0,e);当0<a <2e 时,f (x )的单调递减区间为⎝⎛⎭⎫a 2,e ;当a =2e时,f (x )无单调递减区间;当a >2e 时,f (x )的单调递减区间为⎝⎛⎭⎫e ,a 2. 考法二 讨论函数的单调性[例2] 已知函数f (x )=ln x +1ax -1a(a ∈R 且a ≠0),讨论函数f (x )的单调性. [解] f ′(x )=ax -1ax 2(x >0), ①当a <0时,f ′(x )>0恒成立,∴函数f (x )在(0,+∞)上单调递增.②当a >0时,由f ′(x )=ax -1ax 2>0,得x >1a ; 由f ′(x )=ax -1ax2<0,得0<x <1a , ∴函数f (x )在⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫0,1a 上单调递减. 综上所述,当a <0时,函数f (x )在(0,+∞)上单调递增;当a >0时,函数f (x )在⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫0,1a 上单调递减.[方法技巧]讨论函数f (x )单调性的步骤(1)确定函数f (x )的定义域;(2)求导数f ′(x ),并求方程f ′(x )=0的根;(3)利用f ′(x )=0的根将函数的定义域分成若干个子区间,在这些子区间上讨论f ′(x )的正负,由符号确定f (x )在该区间上的单调性.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.[针对训练]已知函数f (x )=1-ln x +a 2x 2-ax (a ∈R),讨论函数f (x )的单调性.解:函数f (x )的定义域为(0,+∞),f ′(x )=-1x +2a 2x -a =2a 2x 2-ax -1x =(2ax +1)(ax -1)x. ①若a =0,则f ′(x )<0,f (x )在(0,+∞)上单调递减.②若a >0,则当x =1a时,f ′(x )=0, 当0<x <1a时,f ′(x )<0; 当x >1a时,f ′(x )>0. 故f (x )在⎝⎛⎭⎫0,1a 上单调递减,在⎝⎛⎭⎫1a ,+∞上单调递增. ③若a <0,则当x =-12a时,f ′(x )=0, 当0<x <-12a时,f ′(x )<0; 当x >-12a时,f ′(x )>0. 故f (x )在⎝⎛⎭⎫0,-12a 上单调递减,在⎝⎛⎭⎫-12a ,+∞上单调递增. 综上所述,当a =0时,f (x )在(0,+∞)上单调递减;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递减,在⎝⎛⎭⎫1a ,+∞上单调递增; 当a <0时,f (x )在⎝⎛⎭⎫0,-12a 上单调递减,在⎝⎛⎭⎫-12a ,+∞上单调递增. 考法三 由函数的单调性求参数[例3] 设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (1)求b ,c 的值;(2)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.[解] (1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0. (2)由(1)知f (x )=13x 3-a 2x 2+1, 则g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <⎝⎛⎭⎫x +2x max =-22, 当且仅当x =2x ,即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).[方法技巧]由函数的单调性求参数的取值范围的方法(1)由可导函数f (x )在D 上单调递增(或递减)求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)对x ∈D 恒成立问题,再参变分离,转化为求最值问题,要注意“=”是否取到.(2)可导函数在某一区间上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,这样就把函数的单调性问题转化成不等式问题.(3)若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.[针对训练]已知函数f (x )=a ln x +12x 2+(a +1)x +3. (1)当a =-1时,求函数f (x )的单调递减区间;(2)若函数f (x )在区间(0,+∞)上是增函数,求实数a 的取值范围.解:(1)当a =-1时,f (x )=-ln x +12x 2+3,定义域为(0,+∞), 则f ′(x )=-1x +x =x 2-1x. 由⎩⎪⎨⎪⎧ f ′(x )<0,x >0,得0<x <1.所以函数f (x )的单调递减区间为(0,1).(2)法一:因为函数f (x )在(0,+∞)上是增函数,所以f ′(x )=a x+x +a +1≥0在(0,+∞)上恒成立, 所以x 2+(a +1)x +a ≥0,即(x +1)(x +a )≥0在(0,+∞)上恒成立.因为x +1>0,所以x +a ≥0对x ∈(0,+∞)恒成立,所以a ≥0,故实数a 的取值范围是[0,+∞).法二:因为函数f (x )在(0,+∞)上是增函数,所以f ′(x )=a x +x +a +1≥0在(0,+∞)上恒成立,即x 2+(a +1)x +a ≥0在(0,+∞)上恒成立.令g (x )=x 2+(a +1)x +a ,因为Δ=(a +1)2-4a ≥0恒成立,所以⎩⎪⎨⎪⎧ -a +12≤0,g (0)≥0,即a ≥0, 所以实数a 的取值范围是[0,+∞).2、利用导数研究函数的零点或方程根[典例] (2019·安徽十大名校联考)设函数f (x )=e x -x 2-ax -1(e 为自然对数的底数),a ∈R.(1)证明:当a <2-2ln 2时,f ′(x )没有零点;(2)当x >0时,f (x )+x ≥0恒成立,求a 的取值范围.[解] (1)证明:∵f ′(x )=e x -2x -a ,令g (x )=f ′(x ),∴g ′(x )=e x -2.令g ′(x )<0,解得x <ln 2;令g ′(x )>0,解得x >ln 2,∴f ′(x )在(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增,∴f ′(x )min =f ′(ln 2)=2-2ln 2-a .当a <2-2ln 2时,f ′(x )min >0,∴f ′(x )的图象恒在x 轴上方,∴f ′(x )没有零点.(2)当x >0时,f (x )+x ≥0恒成立,即e x -x 2-ax +x -1≥0恒成立,∴ax ≤e x -x 2+x -1,即a ≤e x x -x -1x+1恒成立. 令h (x )=e x x -x -1x +1(x >0),则h ′(x )=(x -1)(e x -x -1)x 2. 当x >0时,e x -x -1>0恒成立,令h ′(x )<0,解得0<x <1,令h ′(x )>0,解得x >1,∴h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴h (x )min =h (1)=e -1.∴a 的取值范围是(-∞,e -1].[方法技巧]利用导数研究方程根(函数零点)的技巧(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等;(2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置;(3)利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.[针对训练](2019·武汉调研)已知函数f (x )=e x -ax -1(a ∈R)(e =2.718 28…是自然对数的底数).(1)求f (x )的单调区间;(2)讨论g (x )=f (x )⎝⎛⎭⎫x -12在区间[0,1]上零点的个数. 解:(1)∵f (x )=e x -ax -1,∴f ′(x )=e x -a ,当a ≤0时,f ′(x )>0恒成立,∴f (x )的单调递增区间为(-∞,+∞),无单调递减区间;当a >0时,令f ′(x )<0,得x <ln a ,令f ′(x )>0,得x >ln a ,∴f (x )的单调递减区间为(-∞,ln a ),单调递增区间为(ln a ,+∞).(2)令g (x )=0,得f (x )=0或x =12, 先考虑f (x )在区间[0,1]上的零点个数,①当a ≤1时,f (x )在[0,1]上单调递增且f (0)=0,∴f (x )在[0,1]上有一个零点;②当a ≥e 时,f (x )在[0,1]上单调递减且f (0)=0,∴f (x )在[0,1]上有一个零点;③当1<a <e 时,f (x )在[0,ln a )上单调递减,在(ln a,1]上单调递增,而f (1)=e -a -1,当e -a -1≥0,即1<a ≤e -1时,f (x )在[0,1]上有两个零点,当e -a -1<0,即e -1<a <e 时,f (x )在[0,1]上有一个零点.当x =12时,由f ⎝⎛⎭⎫12=0得a =2(e -1). ∴当a ≤1或a >e -1或a =2(e -1)时,g (x )在[0,1]上有两个零点;当1<a ≤e -1且a ≠2(e -1)时,g (x )在[0,1]上有三个零点.3、利用导数研究不等式导数在不等式中的应用问题是每年高考的必考内容,且以解答题的形式考查,难度较大,属中、高档题. 常见的考法有:(1)证明不等式.(2)不等式恒成立问题.(3)存在型不等式成立问题.考法一 证明不等式[例1] (2018·全国卷Ⅲ)已知函数f (x )=ax 2+x -1e x. (1)求曲线y =f (x )在点(0,-1)处的切线方程;(2)证明:当a ≥1时,f (x )+e ≥0.[解] (1)因为f ′(x )=-ax 2+(2a -1)x +2e x, 所以f ′(0)=2,f (0)=-1,所以曲线y =f (x )在(0,-1)处的切线方程是y +1=2x ,即2x -y -1=0.(2)证明:当a ≥1时,f (x )+e ≥(x 2+x -1+e x +1)e -x .令g (x )=x 2+x -1+e x +1,则g ′(x )=2x +1+e x +1.当x <-1时,g ′(x )<0,g (x )单调递减;当x>-1时,g′(x)>0,g(x)单调递增.所以g(x)≥g(-1)=0.因此f(x)+e≥0.[方法技巧]1.利用导数证明不等式f(x)>g(x)的基本方法(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0. 2.证明不等式时的一些常见结论(1)ln x≥x-1,等号当且仅当x=1时取到;(2)e x≥x+1,等号当且仅当x=0时取到;(3)ln x<x<e x,x>0;(4)xx+1≤ln(x+1)≤x,x>-1,等号当且仅当x=0时取到.[针对训练](2018·广西柳州毕业班摸底)已知函数f(x)=ax+x ln x在x=e-2(e为自然对数的底数)处取得极小值.(1)求实数a的值;(2)当x>1时,求证:f(x)>3(x-1).解:(1)因为f(x)=ax+x ln x,所以f′(x)=a+ln x+1,因为函数f(x)在x=e-2处取得极小值,所以f′(e-2)=0,即a+ln e-2+1=0,所以a=1,所以f′(x)=ln x+2.当f′(x)>0时,x>e-2;当f′(x)<0时,0<x<e-2,所以f(x)在(0,e-2)上单调递减,在(e-2,+∞)上单调递增,所以f(x)在x=e-2处取得极小值,符合题意,所以a=1.(2)证明:由(1)知a=1,所以f(x)=x+x ln x.令g(x)=f(x)-3(x-1),即g(x)=x ln x-2x+3(x>0).g′(x)=ln x-1,由g′(x)=0,得x=e.由g′(x)>0,得x>e;由g′(x)<0,得0<x<e.所以g(x)在(0,e)上单调递减,在(e,+∞)上单调递增,所以g(x)在(1,+∞)上的最小值为g(e)=3-e>0.于是在(1,+∞)上,都有g(x)≥g(e)>0,所以f(x)>3(x-1).考法二不等式恒成立问题[例2](2019·安徽江淮十校联考)已知函数f(x)=x ln x(x>0).(1)求f(x)的单调区间和极值;(2)若对任意x ∈(0,+∞),f (x )≥-x 2+mx -32恒成立,求实数m 的最大值. [解] (1)由题意知f ′(x )=ln x +1,令f ′(x )>0,得x >1e ,令f ′(x )<0,得0<x <1e, ∴f (x )的单调递增区间是⎝⎛⎭⎫1e ,+∞,单调递减区间是⎝⎛⎭⎫0,1e , f (x )在x =1e 处取得极小值,极小值为f ⎝⎛⎭⎫1e =-1e,无极大值. (2)由f (x )≥-x 2+mx -32及f (x )=x ln x , 得m ≤2x ln x +x 2+3x, 问题转化为m ≤⎝⎛⎭⎫2x ln x +x 2+3x min .令g (x )=2x ln x +x 2+3x(x >0), 则g ′(x )=2x +x 2-3x 2, 由g ′(x )>0⇒x >1,由g ′(x )<0⇒0<x <1.所以g (x )在(0,1)上是减函数,在(1,+∞)上是增函数,所以g (x )min =g (1)=4,即m ≤4,所以m 的最大值是4.[方法技巧]不等式恒成立问题的求解策略(1)已知不等式f (x ,λ)≥0(λ为实参数)对任意的x ∈D 恒成立,求参数λ的取值范围.利用导数解决此类问题可以运用分离参数法,其一般步骤如下:(2)如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(a >0,Δ<0或a <0,Δ<0)求解.[针对训练]设函数f (x )=x 2+4x +2,g (x )=2e x (x +1),若x ≥-2时,f (x )≤kg (x ),求k 的取值范围.解:令F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2.F (0)=2k -2≥0⇒k ≥1,F (-2)=-2k e -2+2≥0⇒k ≤e 2,所以1≤k ≤e 2.由F ′(x )=2(x +2)(k e x -1)=0⇒x 1=-2,x 2=-ln k ≥-2.。