霍尔位移传感器的设计
霍尔传感器位移测量系统设计背景
霍尔传感器位移测量系统设计背景随着科技的不断发展,各种新型传感器相继被研发出来,其中霍尔传感器作为一种新型传感器,被广泛应用于各个领域。
霍尔传感器可以将物理量转化为电信号,能够实现对物体的测量和监测,是一种十分重要的传感器。
在工业生产领域,霍尔传感器常被用于位移测量,为了更好地实现位移测量,我们需要设计一种高精度的霍尔传感器位移测量系统。
一、霍尔传感器的原理霍尔传感器是基于霍尔效应工作的,霍尔效应是指当电流通过一段导体时,会在另一段垂直于电流方向的导体上产生电势差,这种现象称为霍尔效应。
霍尔传感器利用霍尔效应的原理,将电信号转换为物理量,实现对物体的测量和监测。
二、霍尔传感器位移测量系统的设计为了实现高精度的位移测量,我们需要设计一套完整的霍尔传感器位移测量系统。
该系统主要由霍尔传感器、信号调理电路、数据采集模块和显示模块四部分组成。
1. 霍尔传感器霍尔传感器是位移测量系统的核心部件,它能够将物体的位移转化为电信号输出。
为了实现高精度的位移测量,我们可以采用高精度的霍尔传感器,如磁敏霍尔传感器。
磁敏霍尔传感器的测量范围广,测量精度高,能够满足高精度的位移测量需求。
2. 信号调理电路为了保证传感器输出的电信号质量,我们需要对信号进行调理。
信号调理电路的主要作用是对传感器输出的信号进行放大、滤波和电平转换等处理,使信号质量更加稳定和可靠。
在信号调理电路中,放大器是十分重要的一部分,它能够放大微弱的信号,使其能够被后续的电路处理。
3. 数据采集模块数据采集模块是位移测量系统的核心部件之一,它能够将信号转化为数字信号,实现对信号的数字化处理。
在数据采集模块中,我们可以采用高精度的ADC芯片,实现高精度的信号采集和数字化处理。
4. 显示模块显示模块是位移测量系统的输出部分,它能够将测量结果显示出来,并且实现对数据的存储和传输。
在显示模块中,我们可以采用LCD 显示屏或者LED数码管等显示设备,实现对测量结果的直观显示和实时监测。
霍尔式传感器应用设计报告
霍尔式传感器应用设计报告1.设计题目:霍尔式传感器位移特性2.设计要求:根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它就可以进行位移测量。
要求分别利用直流电压和交流电压激励来对位移进行测量。
3. 霍尔式传感器的原理:金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。
具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H=K H IB,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为U H=kx,式中k—位移传感器的灵敏度。
这样它就可以用来测量位移。
霍尔电动势的极性表示了元件的方向。
磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。
4.设计所需元器件:霍尔传感器实验模板、霍尔传感器、直流源±4V、±15V、测微头、数显单元、相敏检波、移相、滤波模板、双线示波器。
5.设计的测量电路图:图1 霍尔传感器安装示意图图2 霍尔传感器位移直流激励实验接线图图3 流激励时霍尔传感器位移实验接线图6.调试过程及结果分析:(1)直流激励时霍尔式传感器1、将霍尔传感器按图1安装。
霍尔传感器与实验模板的连接按图2进行。
1、3为电源±4V,2、4为输出。
2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节R W1使数显表指示为零。
3、旋转测微头向轴向方向推进,每转动0.2mm记下一个读数,直到读数近似不变。
灵敏度分析:灵敏度定义为测量元件的输出y相对于其输入x的变化率,故而全桥电路中金属箔应变片的灵敏度为:而由绘制的曲线可知S=0.8006,近似为一个常数。
非线性误差:由上面计算可得U=SX U=0.8006X-1.5916≈0.8*(X-2)于是计算可得:U(0)=-1.6V,U(1.0)=-0.8V,U(2.0)=0V,U(3.0)=0.8V,U(4.0)=1.6V,由此可得在各处的非线性误差为:E(0)=0.007V,E(1.0)=0.004V,E(2.0)=0.001V,E(3.0)=0.01V,E(4.0)=0.65V由上面的非线性误差计算可以得出如下结论:在越远离平衡点(2.0mm)处的非线性误差越大,测量结果的非线性越明显,测量结果也就越不准确!(二)交流激励时霍尔式传感器1、将霍尔传感器按图1安装。
霍尔位移传感实验报告
一、实验目的1. 理解霍尔位移传感器的工作原理。
2. 掌握霍尔位移传感器的安装和调试方法。
3. 分析霍尔位移传感器的性能特点。
4. 验证霍尔位移传感器的测量精度和稳定性。
二、实验原理霍尔位移传感器是基于霍尔效应原理设计的。
当电流通过半导体材料,并受到垂直于电流方向的磁场作用时,在半导体材料的两侧会产生电压,这个电压称为霍尔电压。
霍尔电压的大小与磁感应强度、电流强度和半导体材料的厚度有关。
霍尔位移传感器通常由一个线性霍尔元件、永久磁钢组和测量电路组成。
当传感器沿轴向移动时,由于磁场分布的变化,霍尔元件的输出电压也随之变化,从而实现位移的测量。
三、实验仪器与设备1. 霍尔位移传感器2. 永久磁钢组3. 信号调理电路4. 数据采集器5. 移动平台6. 精密尺四、实验步骤1. 将霍尔位移传感器安装在移动平台上,确保传感器轴线与移动平台轴线一致。
2. 将传感器连接到信号调理电路,并进行电路调试,确保信号输出稳定。
3. 使用数据采集器记录传感器在不同位移位置下的输出电压。
4. 将实验数据与理论计算结果进行对比分析。
5. 改变传感器轴线与磁场方向的夹角,观察霍尔电压的变化,分析传感器的性能特点。
五、实验数据与结果分析1. 实验数据记录表| 位移(mm) | 霍尔电压(mV) | 理论计算值(mV) ||------------|----------------|------------------|| 0 | 0 | 0 || 1 | 0.5 | 0.5 || 2 | 1.0 | 1.0 || 3 | 1.5 | 1.5 || 4 | 2.0 | 2.0 |2. 实验结果分析(1)实验数据与理论计算值基本一致,说明霍尔位移传感器的测量精度较高。
(2)当传感器轴线与磁场方向的夹角为90°时,霍尔电压最大;当夹角为0°时,霍尔电压最小。
这表明霍尔位移传感器的输出电压与传感器轴线与磁场方向的夹角有关。
线性霍尔传感器位移特性实验
线性霍尔传感器位移特性实验1.实验目的通过对线性霍尔传感器位移特性的实验,使学生了解线性霍尔传感器的基本工作原理,并了解它在位移测量中的应用。
2.实验仪器线性霍尔传感器、数字万用表、调整电源。
3.实验原理线性霍尔传感器是一种基于霍尔效应工作的传感器。
当通过传感器的电流与磁场相互作用时,传感器的输出电压会发生变化。
通过调整传感器附近的磁场,可以改变传感器的输出电压。
线性霍尔传感器的输出电压与输出电流成正比,因此可以用来测量位移。
4.实验步骤(1)将调整电源的电压调整到3V左右,将线性霍尔传感器连接到数字万用表的电流输入端。
(2)将线性霍尔传感器固定在一个平面表面上,并将测量头固定在传动机构上。
(3)在传动机构上固定一块磁铁,并将磁铁与线性霍尔传感器保持一定的距离。
(4)用手慢慢地移动传动机构,观察及记录数字万用表的输出读数,同时测量传动机构的位移。
(5)按照步骤(4),沿一个方向不断地调整传动机构的位置,获得输出电压和位移数据。
然后,沿相反的方向重复这个过程。
(6)根据实验中获得的数据绘制线性霍尔传感器的位移特性曲线。
5.实验注意事项(1)实验时应防止磁场干扰,以免影响实验结果。
(2)在实验过程中需要减小环境磁场干扰。
(3)尽量减少传动机构的摩擦,以确保实验结果的准确性。
6.实验结果分析根据实验分析得到的数据,可以绘制线性霍尔传感器的位移特性曲线。
通过分析该曲线,可以了解线性霍尔传感器的工作特性。
根据曲线的斜率,可以计算出线性霍尔传感器的灵敏度,进一步推断出它在位移测量中的应用范围。
直流激励霍尔传感器实验报告
9.5 0.113079
ΔLmax
yFS
δL
10.5 -0.134341 11 -0.099551 11.5 0.045239 12 0.04281 12.5 -0.005335 13 -0.03348 13.5 -0.021625 14 0.00023 14.5 0.042085
1.8 11.5
44.3 7.2
61.9 5.1
62.2 3.9
61.1 2.5
59.3 1.8
54.8 1.3
X/mm
5
5.5
6
6.5
7
7.5
8
8.5
V/mv
正行程 反行程
38.4 0.3
25.3 0.1
-2.1 -3.2
-54.8 -134.2 -60 -140
-247 -260
-412 -470
-0.22008 3.5722 -6.161%
0.5 -0.029736 1 -0.028031
1.5 -0.024126 2 -0.019321
2.5 -0.014716 3 -0.009411
3.5 -0.003906 4 0.001299
4.5 0.007204 最大偏差
满量程输出 非线性误差
=
������‘(������)
由公式可看出它就是输出—输入特性曲线的斜率,在这里用理论拟合直线的
斜率代替,因此可得到三个灵敏度
k1=12.01mv/mm
k2=789.58 mv/mm
5、迟滞误差
k3=83.71 mv/mm
迟滞指正反行程中输出—输入特性曲线的不重合程度,用最大输出差值
实验五霍尔传感器位移特性实验
实验五霍尔传感器位移特性实验(共2页)(一)直流激励时位移特性实验一、实验目的:了解霍尔传感器的原理与应用。
二、实验仪器:霍尔传感器模块、霍尔传感器、测微头、直流电源、数显电压表。
三、实验原理:根据霍尔效应,霍尔电势U H=K H IB,其中K H为灵敏度系数,由霍尔材料的物理性质决定,当通过霍尔组件的电流I一定,霍尔组件在一个梯度磁场中运动时,就可以用来进行位移测量。
四、实验内容与步骤1.按图5-1接线。
图5-1 霍尔传感器直流激励接线图2.开启电源,直流数显电压表选择“2V”档,将测微头的起始位置调到“1cm”处,手动调节测微头的位置,先使霍尔片大概在磁钢的中间位置(数显表大致为0),固定测微头,再调节Rw1使数显表显示为零。
3.分别向左、右不同方向旋动测微头,每隔0.2mm记下一个读数,直到读数近似不变,将读数填入下表5-1及5-2。
五、实验报告1.作出U-X曲线,计算灵敏度。
2.何为霍尔效应?制作霍尔元件应采用什么材料,为什么?(二)交流激励时位移特性实验一、实验目的:了解交流激励时霍尔传感器的特性二、实验仪器:霍尔传感器模块、霍尔传感器、测微头、直流电源、数显电压表。
三、实验原理:交流激励时霍尔式传感器与直流激励一样,基本工作原理相同,不同之处是测量电路。
四、实验内容与步骤:1.接线如下图5-2。
图5-22.调节振荡器的音频调频和音频调幅旋钮,使音频振荡器的“00”输出端输出频率为1K,Vp-p=4V的正弦波(注意:峰峰值不应过大,否则烧毁霍尔组件)。
3.开启电源,直流数显电压表选择“2V”档,将测微头的起始位置调到“10mm”处,手动调节测微头的位置,使霍尔片大概在磁钢的中间位置(数显表大致为0),固定测微头,再调节Rw1使数显表为零。
4.分别向左、右不同方向旋动测微头,每隔0.2mm记一个读数,直到读数近似不变,将读数填入下表5-3及5-4。
五、实验报告1.作出U-X曲线,计算灵敏度。
霍尔式传感器位移实验
CSY-3000系列传感器与检测技术实验台说明书一、实验台的组成CSY-3000系列传感器与检测技术实验台由主机箱、温度源、转动源、振动源、传感器、相应的实验模板、数据采集卡及处理软件、实验台桌等组成。
1、主机箱:提供高稳定的±15V、±5V、+5V、±2V-±10V(步进可调)、+2V-+24V(连续可调)直流稳压电源;直流恒流源0.6mA-20mA可调;音频信号源(音频振荡器)1KHz~10KHz(连续可调);低频信号源(低频振荡器)1Hz~30Hz(连续可调);气压源0-20KPa (可调);温度(转速)智能调节仪(开关置内为温度调节、置外为转速调节);计算机通信口;主机箱面板上装有电压、电流、频率转速、气压、光照度数显表;漏电保护开关等。
其中,直流稳压电源、音频振荡器、低频振荡器都具有过载切断保护功能,在排除接线错误后重新开机一下才能恢复正常工作。
2、振动源:振动台振动频率1Hz-30Hz可调(谐振频率9Hz左右)。
转动源:手动控制0-2400转/分;自动控制300-2400转/分。
温度源:常温-150℃。
3、传感器:有电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式位移传感器、霍尔式位移传感器、霍尔式转速传感器、磁电转速传感器、压电式传感器、电涡流传感器、光纤传感器、光电转速传感器(光电断续器)、集成温度传感器、K型热电偶、E型热电偶、Pt100铂电阻、Cu50铜电阻、湿敏传感器、气敏传感器、光照度探头、纯白高亮发光二极管、红外发光二极管、光敏电阻、光敏二极管、光敏三极管、硅光电池、反射式光电开关共二十六个(其中二个光源)。
4、实验模板:有应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/低通滤波模板、光电器件(一)、光开关共十二块模板。
二、使用方法1、开机前将电压表显示选择旋钮打到2V档;电流表显示选择旋钮打到200mA档;步进可调直流稳压电源旋钮打到±2V档;其余旋钮都打到中间位置。
霍尔式位移计课程设计
霍尔式位移计课程设计一、课程目标知识目标:1. 让学生理解霍尔效应的基本原理,掌握霍尔式位移计的工作原理及其在工程测量中的应用。
2. 让学生掌握霍尔式位移计的电路组成、结构特点及其影响参数,能解释其测量过程中的信号变化。
3. 使学生了解霍尔式位移计在智能制造、自动化控制等领域的重要性,明确其在现代工程技术中的地位。
技能目标:1. 培养学生运用所学知识分析和解决实际工程问题的能力,能正确操作霍尔式位移计进行位移测量。
2. 培养学生设计简单的位移测量电路,具备初步的电路调试和故障排除能力。
3. 提高学生的实验操作技能,使其能熟练使用相关仪器设备进行数据采集和处理。
情感态度价值观目标:1. 激发学生对电子测量技术的兴趣,培养其探索精神和创新意识。
2. 培养学生严谨、务实的学习态度,使其认识到精确测量在工程实践中的重要性。
3. 通过团队合作完成实验任务,提高学生的沟通协作能力和团队意识。
课程性质:本课程为高二年级物理选修课程,以实验和实践为主,注重理论知识与实际应用相结合。
学生特点:高二学生具备一定的物理知识和实验技能,具有较强的求知欲和动手能力。
教学要求:结合学生特点,采用启发式、探究式教学方法,注重培养学生的实际操作能力和问题解决能力,使学生在实践中掌握知识,提高技能。
通过分解课程目标为具体的学习成果,为后续的教学设计和评估提供依据。
二、教学内容1. 霍尔效应基本原理:包括磁场对电荷的作用、霍尔电压的产生及霍尔系数的计算。
2. 霍尔式位移计的结构与原理:讲解位移计的组成、工作原理、灵敏度及线性度等性能指标。
3. 霍尔式位移计的电路设计:介绍常见的霍尔式位移计电路,如差动式、积分式等,分析其优缺点及适用场合。
4. 霍尔式位移计的安装与调试:讲解位移计的安装方法、注意事项,以及如何进行电路调试和故障排除。
5. 霍尔式位移计在实际应用中的案例分析:分析位移计在智能制造、自动化控制等领域的应用案例,展示其测量效果和优势。
12 霍尔传感器的位移特性实验
• 霍尔电势与位移量成线性关系,其输出电 势的极性反映了元件位移方向。磁场梯度 越大,灵敏度越高;磁场梯度越均匀,输 出线性度就越好。利用这一原理可以测量 与位移有关的非电量,如力,压力,加速 度,液位和压差。这种传感器一般可测量12mm的微小位移,特点是惯性小,响应速 度快,无触点测量。
实验内容及步骤
• 由于磁路系统的气隙较大,应使霍尔片尽 量靠近极靴,以提高灵敏度。
• 一旦调整好后,测量过程中不能移动磁路 系统。 • 对传感器要轻拿轻放,绝不可掉到地上。 • 不要将霍尔传感器的激励电压错接成±15V, 否则将可能烧毁霍尔元件。
思考题
• 本实验中霍尔元件位移的线性度实际上反 映的是什么量的变化?
• 1、霍尔传感器安装将霍尔传感器安装在霍 尔传感器实验模块上,将传感器引线插头 插入实验模板的插座中,实验板的连接线。 • 2、数显表调零:开启电源,调节测微头使 霍尔片大致在磁铁中间位置,再调节RW1 使数显表指示为零。 • 3、实验记录:测微头往轴向方向推进,从 15.00mm到5.00mm左右为止。将读数填入
• 了解霍尔式传感器的结构、工作原理; • 学会用霍尔传感器做静态位移测试。
实验原理
• 1、 霍尔效应
• 金属或半导体薄片置于磁场中,当有电流流过时,在垂直 于磁场和电流的方向上将产生电动势,这种物理现象称为 霍尔效应。具有这种效应的元件成为霍尔元件。 • 2、霍尔位移传感器工作原理 • 霍尔式传感器是由两个环形磁钢组成梯度磁场和位于梯度 磁场中的霍尔元件组成,如右图所示。当霍尔元件通过恒 定电流时,霍尔元件有电势输出。 B • U H K H BI K 1 B x O • 当磁场与位移成正比时, B K2 x • U H K 1 K 2 x Kx (K ——位移传感器的灵敏度) •
霍尔式位移传感器实验报告
霍尔式位移传感器实验报告1. 实验目的本实验旨在通过实际操作,了解和验证霍尔式位移传感器的工作原理,并掌握其在实际应用中的使用方法。
2. 实验材料•霍尔式位移传感器•磁铁•Arduino开发板•连接线•电脑3. 实验步骤步骤1:准备工作1.将Arduino开发板连接至电脑,并打开Arduino IDE软件。
2.将霍尔式位移传感器与磁铁连接,并确保连接稳固。
步骤2:编写代码1.在Arduino IDE软件中,新建一个空白文件,并编写以下代码:int hallPin = 2; // 将霍尔式位移传感器连接至Arduino的2号引脚void setup() {pinMode(hallPin, INPUT); // 将2号引脚设置为输入模式Serial.begin(9600); // 打开串口通信,波特率设置为9600}void loop() {int sensorValue = digitalRead(hallPin); // 读取霍尔式位移传感器的数值 Serial.println(sensorValue); // 打印数值至串口监视器delay(1000); // 等待1秒}步骤3:上传代码1.将Arduino开发板通过USB线连接至电脑。
2.在Arduino IDE软件中,选择正确的开发板类型和端口。
3.点击“上传”按钮,将代码上传至Arduino开发板。
步骤4:实验操作1.将磁铁靠近霍尔式位移传感器,并观察串口监视器的输出。
2.移开磁铁,并再次观察串口监视器的输出。
3.可以尝试改变磁铁的距离和位置,观察传感器输出的变化。
4. 实验结果与分析根据实验步骤操作后,我们可以观察到串口监视器输出的数值会随着磁铁距离传感器的远近而变化。
当磁铁靠近传感器时,传感器输出为高电平(1),当磁铁远离传感器时,传感器输出为低电平(0)。
这是因为霍尔式位移传感器是基于霍尔效应工作的。
当有磁场作用于霍尔元件时,霍尔元件的输出电压会发生变化,从而实现对磁场的检测和测量。
霍尔传感器位移测量电路的设计
目录第一章虚拟仪器课程设计的意义及任务 (2)1.1课程设计的意义 (2)1.2 课程设计任务说明 (2)第二章关于虚拟仪器和Labview (2)2.1 虚拟仪器简介 (2)2.2 Labview概述 (3)2.2.1 Labview的发展历程 (3)2.2.2 什么是VI? (3)2.2.3 Labview的操作面板 (3)第三章霍尔传感器位移测量电路的设计 (5)3.1 设计要求 (5)3.2测量电路原理与设计 (5)3.2.1 模型的建立 (5)3.2.2 放大电路设计 (6)第四章对电路仿真分析 (7)4.1 交流分析 (7)4.2 傅里叶分析 (8)4.3 直流扫描分析 (8)4.4 传递函数分析 (9)4.5 参数扫描分析 (9)第五章LabVIEW显示模块设计 (10)5.1 位移测量子程序的设计 (10)5.2 接口电路的设计与编译 (11)第六章总结 (15)第一章虚拟仪器课程设计的意义及任务1.1课程设计的意义虚拟仪器是随着计算机技术、电子测量技术和通信技术发展起来的一种新型仪器。
在国外,虚拟仪器技术已经比较熟了,由于其很强的灵活性,使得该技术非常适用于现代复杂的测试测量系统中。
近几年,虚拟仪器技术在国内的发展势也越来越受到重视。
成熟的虚拟仪器技术由三大部分组成:高效的软件编程环境、模块化仪器和一个支持模块化I/O集成的开放的硬件构架,该课程设计的目的就是,通过一些功能简单的仪表系统的设计,要在这三个方面上有更深一步的了解。
1.2 课程设计任务说明用霍尔传感器设计一个量程范围为-0.6mm~0.6mm的位移测量仪。
霍尔传感器是利用霍尔效应实现磁电转换的一种传感器。
当霍尔元件作线性测量时,最好选用灵敏度低一点、不等位电位小、稳定性和线性度优良的霍尔元件。
当物体在一对相对的磁铁中水平运动时,在一定的范围内,磁场的大小随位移的变化而发生线性变化,利用此原理可制成位移测量器。
通过本设计,要掌握以下内容:1)了解霍尔传感器测量位移的原理;2)掌握霍尔元件的测量电路;3)熟悉Labview 虚拟仪器向Multisim 10.0的导入方法;4)测量电路硬件实现后,当输出模拟信号,会用数据采集卡进行采集;5)掌握采集后的信号在LabVIEW中的处理,实现位移值的显示;6)了解分别采用软件仿真和实际硬件电路时,在LabVIEW中编程与处理的不同。
线性霍尔式传感器位移特性实验
大器等做在一个芯片上的集成电路型结构,与霍尔元件相比,它具有微型化、灵敏度高、可
靠性高、寿命长、功耗低、负载能力强以及使用方便等等优点。
本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔元件、两只半
圆形永久磁钢组成,其它很多物理量如:力、压力、机械振动等本质上都可转变成位移的变
外二个2(V-)、4(Vo-)是输出端。接线时,电源输入激励端与输出端千万不能颠倒,否则霍尔元件要损坏。
3、将测头从处调到3=处作为位移起点并记录电对针方向)仔细调节测微头的微分筒(0.01m/每小格)△x=0.1m(实验总位移从15mm~5mm)从电压表上读出相应的电压Vo值,填人下表24表24霍尔传感器位移实验数据
9.3
0.725
4.9
-0.038
0.6
-0.607
9.2
0.725
4.8
-0.067
0.5
-0.607
9.1
0.724
4.7
-0.1
0.4
-0.607
9
0.723
4.6
-0.135
0.3
-0.607
8.9
0.722
4.5
-0.159
0.2
-0.607
8.8
0.721
4.4
-0.187
0.1
-0.607
式中:RB=-1/(ne)是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数
KH=R/d灵敏度系数,与材料的物理性质和几何尺寸有关。
具有上述霍尔效应的元件称为霍尔元件,霍尔元件大多采用N型半导体材料(金属材料中
实验 线性霍尔式传感器位移特性实验
实验 线性霍尔式传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。
二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。
它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。
霍尔效应是具有载流子的半导体同时处在电场和磁场中而产生电势的一种现象。
如图28—1(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板图28—1霍尔效应原理的横向两侧面A ,A 之间就呈现出一定的电势差,这一现象称为霍尔效应(霍尔效应可以用洛伦兹力来解释),所产生的电势差U H 称霍尔电压。
霍尔效应的数学表达式为:U H =R H dIB =K H IB 式中:R H =-1/(ne)是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数;K H = R H /d 灵敏度系数,与材料的物理性质和几何尺寸有关。
具有上述霍尔效应的元件称为霍尔元件,霍尔元件大多采用N 型半导体材料(金属材料中自由电子浓度n很高,因此R H 很小,使输出U H 极小,不宜作霍尔元件),厚度d 只有1µm 左右。
霍尔传感器有霍尔元件和集成霍尔传感器两种类型。
集成霍尔传感器是把霍尔元件、放大器等做在一个芯片上的集成电路型结构,与霍尔元件相比,它具有微型化、灵敏度高、可靠性高、寿命长、功耗低、负载能力强以及使用方便等等优点。
本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔元件、永久磁钢组成,其它很多物理量如:力、压力、机械振动等本质上都可转变成位移的变化来测量。
霍尔式位移传感器的工作原理和实验电路原理如图28—2 (a)、(b)所示。
将磁场强度相同的两块永久磁钢同极性相对放置着,线性霍尔元件置于两块磁钢间的中点,其磁感应强度为0,(a)工作原理(b)实验电路原理图28—2霍尔式位移传感器工作原理图设这个位置为位移的零点,即X=0,因磁感应强度B=0,故输出电压U H=0。
霍尔位移传感器
霍尔传感器资料霍尔效应定义:霍尔效应是磁电效应的一种,这一现象是美国物理学家霍尔(A.H.Hall,1855~1938)于1879年在研究金属的导电机构时发现的。
当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。
这个电势差也被叫做霍尔电势差。
霍尔传感器定义:霍尔传感器是根据霍尔效应制作的一种磁场传感器。
霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。
后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。
霍尔效应是研究半导体材料性能的基本方法。
通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。
霍尔元件定义:根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。
它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。
霍尔传感器工作原理霍尔电流传感器是根据霍尔原理制成的。
它有两种工作方式,即磁平衡式和直式。
霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、(次级线圈)和放大电路等组成。
[1]1 直放式电流传感器(开环式)众所周知,当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出。
这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V。
2 磁平衡式电流传感器(闭环式)磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿,从而使霍尔器件处于检测零磁通的工作状态。
磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is。
霍尔位移传感器的设计
霍尔位移传感器的设计学院(系):电气信息工程学院年级专业:电自09102学号:学生姓名:黄晶晶摘要:霍尔传感器是基于霍效应而将被测量转化成电动势输出的一种传感器。
霍尔元件已发展成一个品种多样的磁传感器产品簇,并且得到广泛的应用。
霍尔器件是一种磁传感器,用它可以检测磁场及其变化,可以在各种与磁有关的场合中使用。
霍尔期间以霍尔效应为其工作原理。
本文主要研究霍尔位移传感器的设计。
如图所示,被测物体分别与恒定电流I和恒定磁场B垂直。
当被测物体相对于原来位置有微小位移变化时,会产生变化的磁通量,会在导体垂直于磁场和电流的两个端面之间产生电势差,即UH(霍尔电压)。
本文主要研究微小位移与霍尔电压的关系来设计霍尔位移传感器。
关键字:霍尔传感器位移霍尔电压霍尔效应原理图正文:一.霍尔传感器的工作原理1、霍尔效应如霍尔效应原理图所示,在半导体薄片两端通以恒定电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为UH的霍尔电压,它们之间的关系为UH=KHIBCOSA,式中KH称为霍尔系数,它的大小与薄片的材料有关。
上述效应称为霍尔效应,它是德国物理学家霍尔于1879年研究载流导体在磁场中受力的性质时发现的。
I为所加的电流(一般为恒流源),B为均匀磁场,A为磁场与法线的夹角。
EH为电场(图中所示)2、霍尔元件霍尔元件是半导体四端薄片,一般做成正方形,在薄片的相对两侧对称的焊上两对电极引出线(一对称激励电流端,另一对称霍尔电势输出端),如下图所示。
霍尔元件结构3、霍尔元件的主要特性及材料1)霍尔元件的主要特性参数灵敏度KH:表示元件在单位的磁感应强度和单位控制电流所得到的开路霍尔电动势霍尔输入电阻:霍尔控制及间的电阻值霍尔最大允许激励电流:以霍尔元件允许的最大温度为限所对应的激励电流不等位电势:当霍尔元件的控制电流为额定值时,若元件所处位置的磁感应强度为零,测得的空载霍尔电势。
霍尔传感器整体设计方案
[
1. 框图设计
根据霍尔传感器的工作原理, 设计一个路程测试电路, 通过信号拾取、低通滤波电路、单片机信号处理、显示输出等单元电路实现其功能, 采用数字示波器进行输出信号的动态观察和测量。
该测试系统的结构框图如图3所示。
2、硬件电路设计
5.1整体电路设计
5.2传感器部分
5.3定时器中断
5.3显示程序设计LED数码管显示
5.4报警程序设计
5.5转速处理程序的设计
3,发展前景
新的应用环境要求霍尔器件更加小型化、更高的灵敏度且集成度更高。
为了适用于空间较小的检测环境,例如电动机中的间隙、磁力轴承以及其他像永磁体扫描等需接近测量表面的场合,需要更加小型化的器件。
另外,霍尔传感器的成本较高,因此其应用领域基本锁定在汽车等高端市场,而对于需求量较大、对成本控制非常严格的消费电子市场则受到了成本的限制。
相信随着技术的进一步发展,霍尔传感器走进手柄等消费电子应用领域将是大势所趋。
霍尔传感器位移测量系统设计选题背景
霍尔传感器位移测量系统设计选题背景背景介绍:随着现代工业的发展,越来越多的机械设备需要精确的位移测量,而霍尔传感器作为一种新型的非接触式传感器,因其具有高精度、高灵敏度、线性度好等优点,被广泛应用于位移测量领域。
因此,设计一套基于霍尔传感器的位移测量系统具有重要意义。
研究目的:本文旨在设计一套基于霍尔传感器的位移测量系统,通过对系统原理和结构设计进行分析和研究,实现对物体位置变化的精确测量,并能够实时显示和记录数据。
系统结构设计:1. 系统框架本系统采用微处理器作为控制核心,通过AD转换芯片将霍尔传感器采集到的模拟信号转换为数字信号,并通过LCD显示屏实时显示和记录数据。
同时,在系统中还设置了按键开关、电源管理模块等辅助模块。
2. 传感器选型在本系统中选择了线性霍尔传感器作为位移测量元件。
线性霍尔传感器是一种基于霍尔效应工作原理的非接触式线性位移传感器,其具有高灵敏度、高分辨率、高精度等特点。
3. 信号处理模块本系统采用AD转换芯片对传感器采集到的模拟信号进行转换,将其转换为数字信号后进行处理。
通过对数字信号的滤波、放大等处理,可以提高系统的精度和稳定性。
4. 显示模块本系统采用LCD显示屏作为数据显示和记录设备,可以实时显示测量到的位移数据,并可通过按键开关进行数据记录和保存。
5. 电源管理模块本系统采用锂电池作为电源供应,同时设置了充电管理模块和低功耗管理模块,以保证系统长时间稳定运行。
总体方案:基于以上结构设计,本系统的总体方案如下:1. 系统硬件设计包括微处理器选型、传感器选型、信号处理模块设计、显示模块设计、电源管理模块设计等。
2. 系统软件设计包括程序框架设计、AD转换程序编写、滤波和放大程序编写、LCD显示程序编写等。
3. 系统测试与优化在完成硬件和软件设计后,需要对整个系统进行测试,并根据测试结果对系统进行优化调整,以提高测量精度和稳定性。
结论:本文设计了一套基于霍尔传感器的位移测量系统,通过对系统原理和结构设计进行分析和研究,实现了对物体位置变化的精确测量,并能够实时显示和记录数据。
霍尔式位移传感器实验报告
霍尔式位移传感器实验报告霍尔式位移传感器实验报告引言:霍尔式位移传感器是一种常用的非接触式位移传感器,可以测量物体的位移大小。
本实验旨在通过实际操作和数据分析,探究霍尔式位移传感器的工作原理和性能特点。
一、实验目的本实验的主要目的是掌握霍尔式位移传感器的工作原理,了解其特点和应用场景,并通过实验验证其测量精度和稳定性。
二、实验原理霍尔式位移传感器利用霍尔效应来测量物体的位移。
霍尔效应是指当电流通过导体时,如果该导体处于磁场中,就会在导体两侧产生电势差。
利用这一原理,霍尔式位移传感器可以通过测量电势差的大小来确定物体的位移。
三、实验步骤1. 准备实验所需材料和仪器,包括霍尔式位移传感器、电源、数字万用表等。
2. 将霍尔式位移传感器固定在待测物体上,并连接电源和数字万用表。
3. 调整电源的输出电压,使其适合传感器的工作范围。
4. 缓慢移动待测物体,观察数字万用表上的数据变化,并记录下来。
5. 反复进行多次实验,以保证实验结果的准确性和可靠性。
四、实验数据分析通过实验得到的数据,我们可以进行进一步的分析和计算,以评估霍尔式位移传感器的性能。
1. 测量精度:通过对实验数据的比较和统计,可以计算出霍尔式位移传感器的测量精度。
精度越高,表示传感器的测量结果与实际值的偏差越小。
2. 稳定性:通过观察实验数据的变化趋势,可以评估霍尔式位移传感器的稳定性。
稳定性好的传感器在不同条件下测量结果的波动较小,具有更高的可靠性。
3. 响应时间:通过分析实验数据中位移变化和传感器响应的时间差,可以计算出霍尔式位移传感器的响应时间。
响应时间越短,表示传感器对位移变化的反应速度越快。
五、实验结果与讨论根据实验数据的分析和计算,我们可以得出霍尔式位移传感器的性能评估结果。
在此基础上,我们可以讨论传感器的优缺点以及适用的应用场景。
1. 优点:霍尔式位移传感器具有非接触式测量、高精度、稳定性好等优点。
它可以用于测量各种物体的位移,特别适用于高温、高湿、易腐蚀等恶劣环境。
霍尔位移实验报告
一、实验目的1. 理解霍尔位移传感器的工作原理和基本结构。
2. 掌握霍尔位移传感器的使用方法和操作步骤。
3. 通过实验验证霍尔位移传感器的线性度、精度和稳定性。
4. 分析影响霍尔位移传感器测量结果的因素。
二、实验原理霍尔效应是指当电流通过一个导体或半导体时,在导体或半导体中垂直于电流方向和磁场方向的平面内,会产生一个与电流方向和磁场方向都垂直的电势差。
利用霍尔效应可以制成霍尔位移传感器,用于测量物体的位移。
霍尔位移传感器主要由霍尔元件、放大电路、滤波电路和显示电路等组成。
当霍尔元件受到磁场的作用时,会产生霍尔电压,该电压与磁场强度成正比。
通过测量霍尔电压,可以计算出磁场强度,从而实现位移的测量。
三、实验仪器与设备1. 霍尔位移传感器2. 信号发生器3. 电压表4. 静电场发生器5. 移动平台6. 数据采集系统四、实验步骤1. 将霍尔位移传感器安装在移动平台上,并调整其初始位置。
2. 连接信号发生器和电压表,设置合适的信号频率和幅度。
3. 将静电场发生器放置在霍尔位移传感器附近,产生一个稳定的磁场。
4. 逐步移动移动平台,记录不同位置下霍尔位移传感器的输出电压。
5. 将实验数据输入数据采集系统,进行数据处理和分析。
五、实验结果与分析1. 线性度分析:根据实验数据,绘制霍尔位移传感器的输出电压与位移的曲线。
通过分析曲线,可以判断传感器的线性度。
实验结果表明,霍尔位移传感器的线性度较好,满足实际应用需求。
2. 精度分析:通过多次测量同一位移值,计算其标准偏差。
实验结果表明,霍尔位移传感器的测量精度较高,满足实际应用需求。
3. 稳定性分析:在不同环境条件下,对霍尔位移传感器进行长时间测量,分析其输出电压的稳定性。
实验结果表明,霍尔位移传感器的输出电压稳定性较好,满足实际应用需求。
4. 影响因素分析:通过实验,分析以下因素对霍尔位移传感器测量结果的影响:(1)温度:温度变化会影响霍尔元件的性能,从而影响测量结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
霍尔位移传感器的设计 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】
霍尔位移传感器的设计
学院(系):电气信息工程学院
年级专业:电自09102
学号:
学生姓名:黄晶晶
摘要:霍尔传感器是基于霍效应而将被测量转化成电动势输出的一种传感器。
霍尔元件已发展成一个品种多样的磁传感器产品簇,并且得到广泛的应用。
霍尔器件是一种磁传感器,用它可以检测磁场及其变化,可以在各种与磁有关的场合中使用。
霍尔期间以霍尔效应为其工作原理。
本文主要研究霍尔位移传感器的设计。
如图所示,被测物体分别与恒定电流I和恒定磁场B垂直。
当被测物体相对于原来位置有微小位移变化时,会产生变化的磁通量,会在导体垂直于磁场和电流的两个端面之间产生电势差,即UH(霍尔电压)。
本文主要研究微小位移与霍尔电压的关系来设计霍尔位移传感器。
关键字:霍尔传感器位移霍尔电压
霍尔效应原理图
正文:
一.霍尔传感器的工作原理
1、霍尔效应
如霍尔效应原理图所示,在半导体薄片两端通以恒定电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于
电流和磁场的方向上,将产生电势差为UH的霍尔电压,它们之间的关系为UH=KHIBCOSA,式中KH称为霍尔系数,它的大小与薄片的材料有关。
上述效应称为霍尔效应,它是德国物理学家霍尔于1879年研究载流导体在磁场中受力的性质时发现的。
I为所加的电流(一般为恒流源),B为均匀磁场,A为磁场与法线的夹角。
EH为电场(图中所示)
2、霍尔元件
霍尔元件是半导体四端薄片,一般做成正方形,在薄片的相对两侧对称的焊上两对电极引出线(一对称激励电流端,另一对称霍尔电势输出端),如下图所示。
霍尔元件结构
3、霍尔元件的主要特性及材料
1)霍尔元件的主要特性参数
灵敏度KH:表示元件在单位的磁感应强度和单位控制电流所得到的开路霍尔电动势
霍尔输入电阻:霍尔控制及间的电阻值
霍尔最大允许激励电流:以霍尔元件允许的最大温度为限所对应的激励电流
不等位电势:当霍尔元件的控制电流为额定值时,若元件所处位置的磁感应强度为零,测得的空载霍尔电势。
(不等位电势是由霍尔电极2和之间的电阻决定的, r 0称不等位电阻)寄生直流电势(霍尔元件零位误差的一部分):
当没有外加磁场,霍尔元件用交流控制电流时,霍尔电极的输出有一个直流电势控制电极和霍尔电极与基片的连接是非完全欧姆接触时,会产生整流效应。
两个霍尔电极焊点的不一致,引起两电极温度不同产生温差电势
霍尔电势温度系数:在一定磁感应强度和控制电流下,温度每变化1度时,霍尔电势变化的百分率。
基本应用电路
2)霍尔元件的材料
目前最常用的霍尔元件材料是锗(Ge)、硅(Si)、锑化铟(InSb)、砷化铟(InAs)和不同比例亚砷酸铟和磷酸铟组成的In (As y P1-y)型固熔体(其中y表示百分比)等半导体材料。
其中N型锗容易加工制造,其霍尔系数、温度性能和线性度都较好。
N型硅的线性度最好,其霍尔系数、温度性能同N型锗,但其电子迁移率比较低,带负载能力较差,通常不用作单个霍尔元件。
锑化铟对温度最敏感,尤其在低温范围内温度系数大,但在室温时其霍尔系数较大。
砷化铟的霍尔系数较小,温度系数也较小,输出特性线性度好。
In(As y P1-y)型固熔体的热稳定性最好。
二.霍尔元件的误差及补偿
1、霍尔元件的零位误差与补偿
霍尔元件的零位误差是指无外加磁场或无控制电流情况下霍尔元件产生输出电压并由此产生误差。
它主要表现有以下几种形式:1)不等位电动势
它是零位误差中最重要的一种,他是当霍尔元件在额定控制电流下,不外加磁场时,霍尔输出端之间的空载电动势。
2)寄生直流电势
再无磁场的情况下,元件通入交流电流,输出端除交流不等位电压以外的直流分量
3)感应零电动势
感应零电动势是在未通电流情况下,由于脉动或交变磁场作用在输出端产生的电动势。
4)自激场零电动势
霍尔元件控制电流产生自激场
2、霍尔元件的温度误差及补偿
1)温度误差产生原因:
霍尔元件的基片是半导体材料,因而对温度的变化很敏感。
其载流子浓度和载流子迁移率、电阻率和霍尔系数都是温度的函数。
当温度变化时,霍尔元件的一些特性参数,如霍尔电势、输入电阻和输出电阻等都要发生变化,从而使霍尔式传感器产生温度误差。
2)减小霍尔元件的温度误差的方法
选用温度系数小的元件、采用恒温措施、采用恒流源供电、采用适当的补偿电路
恒流源温度补偿电路
注:当霍尔元件的输入电阻随温度升高而增加时,旁路分流电阻自动地加强分流,减少了霍尔元件的控制电流。
三.霍尔传感器的应用
1、霍尔传感器的优点及应用
1)优点:结构简单,体积小,重量轻,频带宽,动态特性好和寿命长
2)应用:
电磁测量:测量恒定的或交变的磁感应强度、有功功率、无功功率、相位、电能等参数;
自动检测系统:多用于位移、压力的测量。
2、微位移和压力的测量
测量原理:霍尔电势与磁感应强度成正比,若磁感应强度是位置的函数,则霍尔电势的大小就可以用来反映霍尔元件的位置。
应用:位移测量、力、压力、应变、机械振动、加速度
3、霍尔位移传感器的设计电路图
图1
图2
图1特殊用法,使得霍尔元件的输出不必使用差值放就可以处理UH 的信号放大,及与图3的恒流源构成温度度补偿电路。
(图中的纳极管期限压的作用,使1、3端的电压不超过)
图2的功能,霍尔电压的放大及霍尔元件的归零校正(既当无电流或无磁场或无微小位移变动时,霍尔电压不为零,可通过滑动变阻器调节电阻使最后输出电压变为零)
图3
图3是恒流源,他可以使输出电流恒定不变,维持在一定的数值,通过调节图中滑动变阻器的变化可以改变图中恒流源的输出值
4、霍尔元件的技术参数
1)测量范围:由于没弄实物,无法得知该电路的实际测量范围。
但通过查资料可知霍尔式传感器的测量范围一般大约在1到2mm之间2)迟滞误差:因为电路仿真无迟滞误差,所以不确定。
但由于电路有滑动变阻器可以调节,弄实物时迟滞误差应该不会太大。
3)电压灵敏度:在这里的电压灵敏度为最后电压输出差值与位移差值的比值乘%。
参考文献
张玉龙等?传感器电路设计手册?中国计量出版社?1989年
李科杰等?新编传感器技术手册?国防工业出版社?2002年
吴桂秀?传感器应用制作入门?浙江科学技术出版社?2004年
杨宝清?孙宝元?传感器及其应用手册?2004年
单成祥?传感器的理论与设计基础及其应用?国防工业出版
社?1999年。