#基于单片机89c51的电子时钟设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
摘要 ............................................................. 错误!未定义书签。
1 电子时钟 (2)
1.1电子时钟简介 (2)
1.2电子时钟的基本特点 (2)
1.3电子时钟的原理 (2)
2 单片机的相关知识 (3)
2.1单片机简介 (3)
2.2 PROTEUS软件简介 (3)
2.3单片机的特点 (3)
2.489C51单片机介绍 (3)
3 控制系统的硬件设计 (5)
3.1单片机型号的选择 (5)
3.2数码管显示工作原理 (5)
3.3键盘电路设计 (5)
3.4整个电路原理图 (5)
4 控制系统的软件设计 (6)
4.1程序设计 (6)
4.2程序流程图 (11)
4.3仿真图 (13)
4.4仿真结果分析.................................................... 错误!未定义书签。
5 结束语 (14)
6 附录 (15)
参考文献 ........................................................... 错误!未定义书签。
摘要:单片计算机即单片微型计算机。
由RAM ,ROM,CPU构成,定时,计数和多种接口于一
体的微控制器。
它体积小,成本低,功能强,广泛使用于智能产业和工业自动化上。
而51系列
单片机是各单片机中最为典型和最有代表性的一种。
这次课程设计通过对它的学习,使用,从而
达到学习、设计、开发软、硬件的能力。
本设计主要设计了一个基于AT89C51单片机的电子时钟。
并在数码管上显示相应的时间。
并通过一个控制键用来实现时间的调节和是否进入省电模式的转换。
使用Proteus的ISIS软件实现了单片机电子时钟系统的设计和仿真。
该方法仿真效果真实、
准确,节省了硬件资源。
关键字:单片机;子时钟;键盘控制
1.电子时钟
1.1 电子时钟简介
1957年,Ventura发明了世界上第一个电子表,从而奠定了电子时钟的基础,电子时钟开始迅速发展起来。
现代的电子时钟是基于单片机的一种计时工具,采用延时程序产生一定的时间中断,用于一秒的定义,通过计数方式进行满六十秒分钟进一,满六十分小时进一,满二十四小时小时清零。
从而达到计时的功能,是人民日常生活补课缺少的工具。
1.2 电子时钟的基本特点
现在高精度的计时工具大多数都使用了石英晶体振荡器,由于电子钟、石英钟、石英表都采用了石英技术,因此走时精度高,稳定性好,使用方便,不需要经常调试,数字式电子钟用集成电路计时时,译码代替机械式传动,用LED显示器代替指针显示进而显示时间,减小了计时误差,这种表具有时、分、秒显示时间的功能,还可以进行时和分的校对,片选的灵活性好。
1.3 电子时钟的原理
该电子时钟由89C51,BUTTON,六段数码管等构成,采用晶振电路作为驱动电路,由延时程序和循环程序产生的一秒定时,达到时分秒的计时,六十秒为一分钟,六十分钟为一小时,满二十四小时为一天。
而电路中唯一的一个控制键却拥有多种不同的功能,按下又松开,可以实现屏蔽数码管显示的功能,达到省电的目的;直接按下不松开,则可以通过按键实现分钟的累加,每按一次分钟加一;而连续两次按下按键不放松,则可实现小时的调节,同样每按一次小时加一。
2 单片机识的相关知识
2.1 单片机简介
单片机全称为单片机微型计算机(Single Chip Microsoftcomputer)。
从使用领域来看,单片机主要用来控制,所以又称为微控制器(Microcontroller Unit)或嵌入式控制器。
单片机
是将计算机的基本部件微型化并集成在一块芯片上的微型计算机。
2.2 Proteus软件简介
PROTEUS软件由Labcenter公司开发,是目前世界上最先进、最完整的嵌入式系统设计和仿真平台,可以实现数字电路、模拟电路及微控制器系统和外设的混合电路系统的电路仿真、软件仿真、系统协同仿真和PCB设计等功能,是目前唯一能够对各种处理器进行实时仿真、调试和测试的EDA工具。
微控制器系统相关的仿真需建立编译和调试环境,可选择Keil C51uVision2 软件。
该软件支持众多不同公司的芯片,集编辑、编译和程序仿真等于一体,同时还支持PLM、汇编和C语言的程序设计。
它的界面友好易学,在调试程序、软件仿真方面有很强大的功能。
其革命性的功能是:将电路仿真和微处理器仿真进行协同,直接在基于原理图的虚拟原型上进行处理器编程调试,并进行功能验证,通过动态器件如电机、LED、LCD、开关等,实时看到运行后的
输入、输出的效果,配合系统配置的虚拟仪器如示波器、逻辑分析仪等, Proteus为我们建立了完备的电子设计开发环境。
2.3 单片机的特点
1 . 单片机的存储器ROM和RAM时严格区分的。
ROM称为程序存储器,只存放程序,固定常数,及数据表格。
RAM则为数据存储器,用作工作区及存放用户数据。
2 . 采用面向控制的指令系统。
为满足控制需要,单片机有更强的逻辑控制能力,特别是单片机具有很强的位处理能力。
3 . 单片机的I/O口通常时多功能的。
由于单片机芯片上引脚数目有限,为了解决实际引脚数和需要的信号线的矛盾,采用了引脚功能复用的方法,引脚处于何种功能,可由指令来设置或由机器状态来区分。
4 . 单片机的外部扩展能力很强。
在内部的各种功能部件不能满足使用的需求时,均可在外部进行扩展,和许多通用的微机接口芯片兼容,给使用系统设计带来了很大的方便。
2.4 89C51单片机介绍
VCC:电源。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL 门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL 门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
XTAL218XTAL119ALE 30EA 31PSEN 29RST 9P0.0/AD0
39P0.1/AD1
38P0.2/AD2
37P0.3/AD3
36P0.4/AD4
35P0.5/AD5
34P0.6/AD6
33P0.7/AD7
32P1.01P1.12P1.23P1.34P1.45P1.56P1.6
7P1.7
8P3.0/RXD
10P3.1/TXD
11P3.2/INT0
12P3.3/INT1
13P3.4/T0
14P3.7/RD 17P3.6/WR
16P3.5/T1
15P2.7/A15
28P2.0/A8
21P2.1/A9
22P2.2/A10
23P2.3/A11
24P2.4/A12
25P2.5/A13
26P2.6/A14
27U4
AT89C51
图2.1 89C51单片机
P3口:P3口管脚是8个带内部上拉电阻的双向I/O 口,可接收输出4个TTL 门电流。
当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电
平,P3口将输出电流(ILL )这是由于上拉的缘故。
P3口也可作为AT89C51的一些特殊功能口,如下表所示:
口管脚 备选功能
P3.0 RXD (串行输入口)
P3.1 TXD (串行输出口)
P3.2 /INT0(外部中断0)
P3.3 /INT1(外部中断1)
P3.4 T0(记时器0外部输入)
P3.5 T1(记时器1外部输入)
P3.6 /WR (外部数据存储器写选通)
P3.7 /RD (外部数据存储器读选通)
P3口同时为闪烁编程和编程校验接收一些控制信号。
RST :复位输入。
当振荡器复位器件时,要保持RST 脚两个机器周期的高电平时间。
ALE/PROG :当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。
在
FLASH 编程期间,此引脚用于输入编程脉冲。
在平时,ALE 端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。
因此它可用作对外部输出的脉冲或用于定时目的。
然而要注意的是:
每当用作外部数据存储器时,将跳过一个ALE脉冲。
如想禁止ALE的输出可在SFR8EH地址上置0。
此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。
另外,该引脚被略微拉高。
如果微处理器在外部执行状态ALE禁止,置位无效。
PSEN:外部程序存储器的选通信号。
在由外部程序存储器取指期间,每个机器周期两次/PSEN 有效。
但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。
EA/VPP:当/EA保持低电平时,则在此期间外部程序存储(0000H-FFFFH),不管是否有内部程序存储器。
注意加密方式1时, /EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。
在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。
3 控制系统的硬件设计
3.1 单片机型号的选择
通过对多种单片机性能的分析,最终认为89C51是最理想的电子时钟开发芯片。
89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器,器件采用ATMEL 高密度非易失存储器制造技术制造,和工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器,而且它和MCS-51兼容,且具有4K字节可编程闪烁存储器和1000写/擦循环,数据保留时间为10年等特点,是最好的选择。
3.2 数码管显示工作原理
数码管是一种把多个LED显示段集成在一起的显示设备。
有两种类型,一种是共阳型,一种是共阴型。
共阳型就是把多个LED显示段的阳极接在一起,又称为公共端。
共阴型就是把多个LED 显示段的阴极接在一起,即为公共商。
阳极即为二极管的正极,又称为正极,阴极即为二极管的负极,又称为负极。
通常的数码管又分为8段,即8个LED显示段,这是为工程使用方便如设计的,分别为A、B、C、D、E、F、G、DP,其中DP 是小数点位段。
而多位数码管,除某一位的公共端会连接在一起,不同位的数码管的相同端也会连接在一起。
即,所有的A段都会连在一起,其它的段也是如此,这是实际最常用的用法。
数码管显示方法可分为静态显示和动态显示两种。
静态显示就是数码管的8段输入及其公共端电平一直有效。
动态显示的原理是,各个数码管的相同段连接在一起,共同占用8 位段引管线;每位数码管的阳极连在一起组成公共端。
利用人眼的视觉暂留性,依次给出各个数码管公共端加有效信号,在此同时给出该数码管加有效的数据信号,当全段扫描速度大于视觉暂留速度时,显示就会清晰显示出来。
图3.1 共阴数码管
3.3 键盘电路设计
该设计只用了一个键盘,但实现的功能却是比较完善,减少了硬件资源的损耗,该键盘可以实现小时和分钟的调节以及控制是否进入省电模式。
当按键按下又松开,可以实现屏蔽数码管显示的功能,达到省电的目的;直接按下不松开,则可以通过按键实现分钟的累加,每按一次分钟加一;而连续两次按下按键不放松,则可实现小时的调节,同样每按一次小时加一。
达到时间调节的目的。
图3.2 多功能控制键
3.4 整个电路原理图
Proteus 电路图设计
运行Proteus的ISIS 后出现程序主窗口界面,鼠标左键单击窗口左侧的元器件工具栏的component.按钮, 接着再点击窗口左侧的元器件选择区的Pick Divices.按钮,弹出Pick Devices 窗口,再在Categ栏里点击MicroprocessorICs项后,在Results栏里会出现各种类型的CPU器件,找到 AT89C51后双击,AT89C51就被添加到当前窗口左侧的元器件列表区了。
用同样的方法依次把数码管、晶振以及多个电阻、电容也添加到器件列表区里。
然后再依次点击列表区里的器件,单击左键把他们放到绘图区,右键选中元件,并编辑其属性,合理布局后,进行连线。
连线时当鼠标的指针靠近一个对象的引脚时,跟着鼠标的指针r ICs 就会出现一个“×”提示符号,点击鼠标左键即可画线了,需要拐弯时点击一下即可,在终点再点击确认一下就画出了一段导线,所有导线画完后,点击工具栏的 Inter-sheeTerminal.按钮,添加上电源和接地符号,原理图的绘制就完成了。
图3.3 系统电路原理图
4 控制系统的软件设计
4.1 程序设计
本系统的软件系统主要可分为主程序、定时计数中断程序、时间调整程序、延时程序四大模块。
在程序设计过程中,加强了部分软件抗干扰措施,下面对部分模块作介绍。
定时计数中断程序:
MOV TMOD,#00H ;写控制字
MOV TH0,#0F0H ;写定时常数
MOV TLO,#0CH
SETB TR0 ;启动T0
SETB ETO ;允许T0中断
SETB EA ;开放CPU中断
AJMP $
时间调整程序:
SETMM: cLR ET0 ;关定时器T0中断
CLR TR0 ;关闭定时器T0
LCALL DL1S ;调用1秒延时程序
JB P3.7,CLOSEDIS ;键按下时间小于1秒,关闭显示(省电)MOV R2,#06H ;进入调时状态,赋闪烁定时初值
SETB ET1 ;允许T1中断
SETB TR1 ;开启定时器T1
SET2: JNB P3.7,SET1 ;P3.7口为0(键未释放),等待
SETB 00H ;键释放,分调整闪烁标志置1
SET4: JB P3.7,SET3 ;等待键按下
LCALL DL05S ;有键按下,延时0.5秒
JNB P3.7,SETHH ;按下时间大于0.5秒转调小时状态
MOV R0,#77H ;按下时间小于0.5秒加1分钟操作
LCALL ADD1 ;调用加1子程序
MOV A,R3 ;取调整单元数据
CLR C ;清进位标志
CJNE A,#60H,HHH ;调整单元数据和60比较
HHH: JC SET4 ;调整单元数据小于60转SET4循环
LCALL CLR0 ;调整单元数据大于或等于60时清0
CLR C ;清进位标志
AJMP SET4 ;跳转到SET4循环
CLOSEDIS:SETB ET0 ;省电(LED不显示)状态。
开T0中断
SETB TR0 ;开启T0定时器(开时钟)
CLOSE: JB P3.7,CLOSE ;无按键按下,等待。
LCALL DISPLAY ;有键按下,调显示子程序延时削抖
JB P3.7,CLOSE ;是干扰返回CLOSE等待
WAITH: JNB P3.7,WAITH ;等待键释放
LJMP START1 ;返回主程序(LED数据显示亮)
SETHH: CLR 00H ;分闪烁标志清除(进入调小时状态)SETHH1: JNB P3.7,SET5 ;等待键释放
SETB 01H ;小时调整标志置1
SET6: JB P3.7,SET7 ;等待按键按下
LCALL DL05S ;有键按下延时0.5秒
JNB P3.7,SETOUT ;按下时间大于0.5秒退出时间调整MOV R0,#79H ;按下时间小于0.5秒加1小时操作LCALL ADD1 ;调加1子程序
MOV A,R3 ;
CLR C ;
CJNE A,#24H,HOUU ;计时单元数据和24比较
HOUU: JC SET6 小于24转SET6循环
LCALL CLR0 ;大于或等于24时清0操作
AJMP SET6 ; 跳转到SET6循环
SETOUT: JNB P3.7,SETOUT1 ;调时退出程序。
等待键释放LCALL DISPLAY ;延时削抖
JNB P3.7,SETOUT ;是抖动,返回SETOUT再等待
CLR 01H ;清调小时标志
CLR 00H ;清调分标志
CLR 02H ;清闪烁标志
CLR TR1 ;关闭定时器T1
CLR ET1 ;关定时器T1中断
SETB TR0 ;开启定时器T0
SETB ET0 ;开定时器T0中断(计时开始)LJMP START1 ;跳回主程序
SET1: LCALL DISPLAY ;键释放等待时调用显示程序(调分)AJMP SET2 ;防止键按下时无时钟显示
SET3: LCALL DISPLAY ;等待调分按键时时钟显示用
AJMP SET4
SET5: LCALL DISPLAY ;键释放等待时调用显示程序(调小时)AJMP SETHH1 ;防止键按下时无时钟显示
SET7: LCALL DISPLAY ;等待调小时按键时时钟显示用AJMP SET6
SETOUT1: LCALL DISPLAY ;退出时钟调整时键释放等待
AJMP SETOUT ;防止键按下时无时钟显示
延时程序:
1MS延时程序,LED显示程序用
DL1MS: MOV R6,#14H
DL1: MOV R7,#19H
DL2: DJNZ R7,DL2
DJNZ R6,DL1
RET
20MS延时程序,采用调用显示子程序以改善LED的显示闪烁现象DS20MS: ACALL DISPLAY
ACALL DISPLAY
ACALL DISPLAY
RET
4.2程序流程图
系统的流程图如图4.1和图4.2所示:
图4.1 主程序流程图
图 4.2 中断处理流程图4.3 仿真结果
图4.3 开始运行程序仿真图
图4.4 运行一段时间后仿真图
实现的功能:按键调时、按键调分、按键调秒、,按设置键切换工作模式。
元件清单:
单片机:AT80C51
按键:BUTTON
电阻:RES
电容:CAP
晶振:CRYSTAL
LED数码管:7SEG-MPX8-CA-BLUE(CA:共阳)
地:GROUND
电源:POWER
4.4 仿真结果分析
功能太过单调,只能实现时分秒的显示,设计比较简单。
电路图的设计过于单调,用的器件
太少,实现调节时间的按钮太少,不能很好的实现时间的调节。
在测试过程中,六位数码显示管
只显示五位数字,有一位数字不亮,通过多次的修改程序并在PROTEUS软件环境中进行仿真,最
终解决了这个问题,同时也透露出本人在单片机电路设计和程序设计方面的不足。
不过最后的仿
真效果非常好,实现了预期的效果,能过通过多功能控制键调节时间和是否进入省电模式,是一
个比较令人满意的设计。
5、心得体会
通过这次的设计使我认识到我对单片机方面的知识知道的太少了,对于书本上的很多知识还不能灵活运用,有很多我们需要掌握的知识在等着我去学习,我会在以后的学习生活中弥补我所缺少的知识。
本次的设计使我从中学到了一些很重要的东西,那就是如何从理论到实践的转化,怎样将我所学到的知识运用到我以后的工作中去。
另外还了解了基于单片机的电子时钟的设计方法,但由于时间的原因,其中还有不明白的地方。
本次的设计使我从中学到了一些很重要的东西,那就是如何从理论到实践的转化,怎样将我
所学到的知识运用到我以后的工作中去。
在大学的课堂的学习只是在给我们灌输专业知识,而我
们应把所学的用到我们现实的生活中去,此次的电子时钟设计给我奠定了一个实践基础,我会在
以后的学习、生活中磨练自己,使自己适应于以后的竞争,同时在查找资料的过程中我也学到了
许多新的知识,在和同学协作过程中增进同学间的友谊,使我对团队精神的积极性和重要性有了
更加充分的理解。
6 附录
ORG 0000H ;程序执行开始地址
LJMP START ;跳到标号START执行
ORG 0003H ;外中断0中断程序入口
RETI ;外中断0中断返回
ORG 000BH ;定时器T0中断程序入口
LJMP INTT0 ;跳至INTTO执行
ORG 0013H ;外中断1中断程序入口
RETI ;外中断1中断返回
ORG 001BH ;定时器T1中断程序入口
LJMP INTT1 ;跳至INTT1执行
ORG 0023H ;串行中断程序入口地址
RETI ;串行中断程序返回
主程序开始;
START: MOV R0,#70H ;清70H-7AH共11个内存单元MOV R7,#0BH ;
CLEARDISP: MOV @R0,#00H ;
INC R0 ;
DJNZ R7,CLEARDISP ;
MOV 20H,#00H ;清20H(标志用)
MOV 7AH,#0AH ;放入"熄灭符"数据
MOV TMOD,#11H ;设T0、T1为16位定时器
MOV TL0,#0B0H ;50MS定时初值(T0计时用)MOV TH0,#3CH ;50MS定时初值
MOV TL1,#0B0H ;50MS定时初值(T1闪烁定时用)MOV TH1,#3CH ;50MS定时初值
SETB EA ;总中断开放
SETB ET0 ;允许T0中断
SETB TR0 ;开启T0定时器
MOV R4,#14H ;1秒定时用初值(50MS×20)START1: LCALL DISPLAY ;调用显示子程序
JNB P3.7,SETMM1 ;P3.7口为0时转时间调整程序SJMP START1 ;P3.7口为1时跳回START1 SETMM1: LJMP SETMM ;转到时间调整程序SETMM
;; 1秒计时程序 ;;
INTT0: PUSH ACC ;累加器入栈保护
PUSH PSW ;状态字入栈保护
CLR ET0 ;关T0中断允许
CLR TR0 ;关闭定时器T0
MOV A,#0B7H ;中断响应时间同步修正
ADD A,TL0 ;低8位初值修正
MOV TL0,A ;重装初值(低8位修正值)
MOV A,#3CH ;高8位初值修正
ADDC A,TH0 ;
MOV TH0,A ;重装初值(高8位修正值)
SETB TR0 ;开启定时器T0
DJNZ R4, OUTT0 ;20次中断未到中断退出
ADDSS: MOV R4,#14H ;20次中断到(1秒)重赋初值
MOV R0,#71H ;指向秒计时单元(71H-72H)
ACALL ADD1 ;调用加1程序(加1秒操作)
MOV A,R3 ;秒数据放入A(R3为2位十进制数组合)
CLR C ;清进位标志
CJNE A,#60H,ADDMM ;
ADDMM: JC OUTT0 ;小于60秒时中断退出
ACALL CLR0 ;大于或等于60秒时对秒计时单元清0 MOV R0,#77H ;指向分计时单元(76H-77H)
ACALL ADD1 ;分计时单元加1分钟
MOV A,R3 ;分数据放入A
CLR C ;清进位标志
CJNE A,#60H,ADDHH ;
ADDHH: JC OUTT0 ;小于60分时中断退出
ACALL CLR0 ;大于或等于60分时分计时单元清0 MOV R0,#79H ;指向小时计时单元(78H-79H)
ACALL ADD1 ;小时计时单元加1小时
MOV A,R3 ;时数据放入A
CLR C ;清进位标志
HOUR: JC OUTT0 ;小于24小时中断退出
ACALL CLR0 ;大于或等于24小时小时计时单元清0
OUTT0: MOV 72H,76H ;中断退出时将分、时计时单元数据移
MOV 73H,77H ;入对应显示单元
MOV 74H,78H ;
MOV 75H,79H ;
POP PSW ;恢复状态字(出栈)
POP ACC ;恢复累加器
SETB ET0 ;开放T0中断
RETI ;中断返回
;; 闪动调时程序 ;;
;T1中断服务程序,用作时间调整时调整单元闪烁指示
INTT1: PUSH ACC ;中断现场保护
PUSH PSW ;
MOV TL1, #0B0H ;装定时器T1定时初值
MOV TH1, #3CH ;
DJNZ R2,INTT1OUT ;0.3秒未到退出中断(50MS中断6次)
MOV R2,#06H ;重装0.3秒定时用初值
CPL 02H ;0.3秒定时到对闪烁标志取反
JB 02H,FLASH1 ;02H位为1时显示单元"熄灭" MOV 72H,76H ;02H位为0时正常显示
MOV 73H,77H ;
MOV 74H,78H ;
MOV 75H,79H ;
INTT1OUT: POP PSW ;恢复现场
POP ACC ;
RETI ;中断退出
FLASH1: JB 01H,FLASH2 ;01H位为1时,转小时熄灭控制
MOV 72H,7AH ;01H位为0时,"熄灭符"数据放入分
MOV 73H,7AH ;显示单元(72H-73H),将不显示分数据
MOV 75H,79H ;
AJMP INTT1OUT ;转中断退出
FLASH2: MOV 72H,76H ;01H位为1时,"熄灭符"数据放入小时MOV 73H,77H ;显示单元(74H-75H),小时数据将不显示MOV 74H,7AH ;
MOV 75H,7AH ;
AJMP INTT1OUT ;转中断退出
;; 加1子程序 ;;
ADD1: MOV A,@R0 ;取当前计时单元数据到A
DEC R0 ;指向前一地址
SWAP A ;A中数据高四位和低四位交换
ORL A,@R0 ;前一地址中数据放入A中低四位
ADD A,#01H ;A加1操作
DA A ;十进制调整
MOV R3,A ;移入R3寄存器
ANL A,#0FH ;高四位变0
MOV @R0,A ;放回前一地址单元
MOV A,R3 ;取回R3中暂存数据
INC R0 ;指向当前地址单元
SWAP A ;A中数据高四位和低四位交换
ANL A,#0FH ;高四位变0
MOV @R0,A ;数据放入当削地址单元中
RET ;子程序返回
;; 清零程序 ;;
;对计时单元复零用
CLR0: CLR A ;清累加器
MOV @R0,A ;清当前地址单元
DEC R0 ;指向前一地址
MOV @R0,A ;前一地址单元清0
RET ;子程序返回
;; 时钟调整程序 ;;
;当调时按键按下时进入此程序
SETMM: CLR ET0 ;关定时器T0中断
CLR TR0 ;关闭定时器T0
LCALL DL1S ;调用1秒延时程序
JB P3.7,CLOSEDIS ;键按下时间小于1秒,关闭显示(省电)MOV R2,#06H ;进入调时状态,赋闪烁定时初值
SETB ET1 ;允许T1中断
SETB TR1 ;开启定时器T1
SET2: JNB P3.7,SET1 ;P3.7口为0(键未释放),等待
SETB 00H ;键释放,分调整闪烁标志置1
SET4: JB P3.7,SET3 ;等待键按下
LCALL DL05S ;有键按下,延时0.5秒
JNB P3.7,SETHH ;按下时间大于0.5秒转调小时状态
MOV R0,#77H ;按下时间小于0.5秒加1分钟操作
LCALL ADD1 ;调用加1子程序
MOV A,R3 ;取调整单元数据
CLR C ;清进位标志
CJNE A,#60H,HHH ;调整单元数据和60比较
HHH: JC SET4 ;调整单元数据小于60转SET4循环LCALL CLR0 ;调整单元数据大于或等于60时清0
CLR C ;清进位标志
AJMP SET4 ;跳转到SET4循环
CLOSEDIS:SETB ET0 ;省电(LED不显示)状态。
开T0中断
SETB TR0 ;开启T0定时器(开时钟)
CLOSE: JB P3.7,CLOSE ;无按键按下,等待。
LCALL DISPLAY ;有键按下,调显示子程序延时削抖
JB P3.7,CLOSE ;是干扰返回CLOSE等待
WAITH: JNB P3.7,WAITH ;等待键释放
LJMP START1 ;返回主程序(LED数据显示亮)
SETHH: CLR 00H ;分闪烁标志清除(进入调小时状态)
SETHH1: JNB P3.7,SET5 ;等待键释放
SETB 01H ;小时调整标志置1
SET6: JB P3.7,SET7 ;等待按键按下
LCALL DL05S ;有键按下延时0.5秒
JNB P3.7,SETOUT ;按下时间大于0.5秒退出时间调整MOV R0,#79H ;按下时间小于0.5秒加1小时操作LCALL ADD1 ;调加1子程序
MOV A,R3 ;
CLR C ;
CJNE A,#24H,HOUU ;计时单元数据和24比较
HOUU: JC SET6 ;小于24转SET6循环
LCALL CLR0 ;大于或等于24时清0操作
AJMP SET6 ;跳转到SET6循环
SETOUT: JNB P3.7,SETOUT1 ;调时退出程序。
等待键释放LCALL DISPLAY ;延时削抖
JNB P3.7,SETOUT ;是抖动,返回SETOUT再等待
CLR 01H ;清调小时标志
CLR 00H ;清调分标志
CLR 02H ;清闪烁标志
CLR TR1 ;关闭定时器T1
CLR ET1 ;关定时器T1中断
SETB TR0 ;开启定时器T0
SETB ET0 ;开定时器T0中断(计时开始)
LJMP START1 ;跳回主程序
SET1: LCALL DISPLAY ;键释放等待时调用显示程序(调分)AJMP SET2 ;防止键按下时无时钟显示
SET3: LCALL DISPLAY ;等待调分按键时时钟显示用
AJMP SET4
SET5: LCALL DISPLAY ;键释放等待时调用显示程序(调小时)AJMP SETHH1 ;防止键按下时无时钟显示
SET7: LCALL DISPLAY ;等待调小时按键时时钟显示用
AJMP SET6
SETOUT1: LCALL DISPLAY ;退出时钟调整时键释放等待AJMP SETOUT ;防止键按下时无时钟显示
;; 显示程序 ;; DISPLAY: MOV R1,#70H ;指向显示数据首址
MOV R5,#0FEH ;扫描控制字初值
PLAY: MOV A,R5 ;扫描字放入A
MOV P3,A ;从P3口输出
MOV A,@R1 ;取显示数据到A
MOV DPTR,#TAB ;取段码表地址
MOVC A,@A+DPTR ;查显示数据对应段码
MOV P1,A ;段码放入P1口
LCALL DL1MS ;显示1MS
INC R1 ;指向下一地址
MOV A,R5 ;扫描控制字放入A
JNB ACC.5,ENDOUT ;ACC.5=0时一次显示结束
RL A ;A中数据循环左移
MOV R5,A ;放回R5内
AJMP PLAY ;跳回PLAY循环
ENDOUT: SETB P3.5 ;一次显示结束,P3口复位MOV P1,#0FFH ;P1口复位
RET ;子程序返回
TAB: DB 0C0H,0F9H,0A4H,0B0H,99H
DB 92H,82H,0F8H,80H,90H,0FFH
;共阳段码表
;; 延时程序 ;;
;1MS延时程序,LED显示程序用
DL1MS: MOV R6,#14H
DL1: MOV R7,#19H
DL2: DJNZ R7,DL2
DJNZ R6,DL1
RET
;20MS延时程序,采用调用显示子程序以改善LED的显示闪烁现象
DS20MS: ACALL DISPLAY
ACALL DISPLAY
ACALL DISPLAY
RET
20MS延时程序,用作按键时间的长短判断
DL1S: LCALL DL05S
LCALL DL05S
RET
DL05S: MOV R3,#20H ;8毫秒*32=0.196秒
DL05S1: LCALL DISPLAY
DJNZ R3,DL05S1
RET
END ;程序结束
参考书目:
【1】张毅刚、彭喜元,单片机原理和使用技术,电子工业出版社,2008年。