测量放大器设计
测量微弱信号的放大电路设计要点与技巧
测量微弱信号的放大电路设计要点与技巧测量微弱信号是科研领域中常见的实验任务之一,而放大电路设计则是实现这一目标的关键。
在本文中,我将探讨一些测量微弱信号的放大电路设计要点和技巧,希望能为科研工作者提供有益的指导。
首先,了解信号的性质至关重要。
微弱信号通常在低频范围内,并且很容易受到环境干扰。
因此,在设计放大电路时,要考虑选择适当的频率带宽。
一般来说,带宽应该比信号频率的两倍高,这样能够有效地避免高频噪声的干扰。
其次,选择合适的放大器是成功设计放大电路的关键。
低噪声放大器是测量微弱信号的理想选择,因为它们能够增加信号的幅度同时减少噪声的干扰。
常见的低噪声放大器包括运算放大器和差动放大器。
运算放大器广泛应用于各种测量仪器中,而差动放大器则在抵抗共模噪声方面表现出色。
此外,合理设置放大器的增益也是非常重要的。
过高的增益可能会引入更多的噪声,因此需要在信号幅度和噪声干扰之间寻找一个平衡点。
经验表明,设置适当的增益可以确保信号得到放大,同时保持噪声干扰的最低程度。
在设计放大电路时,还需要注意地线的布局和连接。
地线是将电路与外界连接的重要通道,不良的地线布局可能导致干扰信号的引入。
因此,要确保地线布线短小粗直,尽量减少环路面积,以减少可能引入的噪声干扰。
此外,选择合适的滤波器也是测量微弱信号的成功关键之一。
滤波器能够消除信号中的杂散噪声,从而提高信噪比。
常见的滤波器类型包括低通滤波器、带通滤波器和带阻滤波器。
不同的信号频率需要不同类型的滤波器,因此在设计放大电路时要仔细选择合适的滤波器。
最后,校准和调整放大电路也是设计过程中的关键环节。
由于不同的器件走线、元件容差等原因,放大电路可能存在一些偏差。
因此,需要通过校准和调整来保证放大电路的准确性和稳定性。
校准过程中需要使用特定的校准仪器和设备,例如示波器和信号发生器。
综上所述,设计测量微弱信号的放大电路需要特别关注信号性质、放大器选择、增益设置、地线布局、滤波器选择和校准调整等方面。
实验一 单管放大电路测量(1)(1)
bbec b R U E -=Ib ceo b cQ I I I ββ≈+=IccQ c ceQ R I E U -=eQbb be I r r 26)1('β++=bes li o u r R R U U A +-=='βlc l c lR R R R R +='实验一 单管共射极放大器班级学号:1906202-08 姓名;谭湘一、实验目的1、 了解放大器电路参数对放大性能的影响。
2、 学习调整、测量放大器性能的方法。
二、实验原理 图1所示为单级阻容耦合共射放大电路电原理图。
调节Rb 可调整放大器的静态工作点。
图1-1为放大器工作点之图解。
由图可知其中Ic Q为集电极静态工作电流,Uce Q为集电集静态工作电压。
在中频段不需要考虑耦合电容和分布电容、晶体管结电容的影响。
利用微变等效电路法可得: 三极管输入端的微变等效电阻:中频段电压放大倍数:其中等效负载电阻:图2 单管放大器电路图 由Au 表达式可知当Rc 、Ic 变化时,Au 随之变化。
三、 实验内容与方法实验电路如图2所示。
各元件参考值为:T3DG6B, Rb1=10k Ω, Rb2=10K(RW1100k), Rc1=3.3K ,Re1=1K Cl=C2=10μF, Ce=100μF,RL=1.8K, Ui=10mV/1kHz, EC=+9V , 1、 观察放大器的输出波形按图3接通测试电路,由低频信号发生器在放大器的输入端输入UI=10mV/1kHz 的信号,用示波器观察并比较放大器的输出波形与输入波形的相位之间有什么不同,波形有无失真?绘出波形图。
…(1) …(2)…(3)…(4)…(5)…(6)图1 单管放大器原理图2、测量放大器中频段放大倍数 (1)保持输入信号KHzmV u i 1/10=不变,用毫伏表测出放大器的输入电压与输出电压,计算放大倍数i uu u A 0-=(2)保持输入信号KHzmV u i 1/10=不变,在放大器的输出端加负载电阻RL =1.8K 用毫伏表测出放大器的输入电压与输出电压,计算放大倍数3、 放大器的最佳工作点与晶体管最大允许输入电压的研究(1)仍保持输入信号KHzmV u i 1/10=不变,用钟表启逆时针慢慢调节Rb2(RW1)改变放大器的静态工作点,并用示波器观察输出波形,绘出波形并分析产生现象的原因。
心电图用放大器的设计注意事项
心电图用放大器的设计注意事项心电图是一种测量心脏电活动的重要工具,而放大器的设计对于心电图的准确性和可靠性起着至关重要的作用。
以下是心电图用放大器设计时需要注意的几个关键方面:1.噪声控制:心电图信号较小且容易受到噪声的干扰,因此放大器设计应具备良好的噪声控制能力。
首先,需要选择低噪声运算放大器作为信号放大的核心。
此外,还可采取隔离、滤波和屏蔽等措施来减少噪声的干扰。
2.带宽要求:心电图信号的带宽通常在0.05Hz至100Hz之间,因此放大器必须具备足够的带宽来传输这些信号。
通常情况下,放大器的带宽应大于信号最高频率的两倍。
3.阻抗匹配:放大器的输入和输出阻抗必须能够与心电图采集设备相匹配,以避免信号损失和阻抗不匹配引起的偏差。
一般来说,输入阻抗应大于10MΩ,输出阻抗应小于100Ω。
4.增益控制:放大器的增益应具备一定的可调节范围,以便根据实际需要选择适当的放大倍数。
增益过高可能导致信号饱和和失真,增益过低则会使信号变得难以辨识。
5.安全考虑:心电图放大器设计时必须注意电源和地线的绝缘,以防止电击等安全问题发生。
此外,在输入端和输出端都应添加适当的保护电路,以避免静电、电压过载和电流过大等问题。
6.线性度和准确性:心电图信号的准确性对于诊断和分析非常重要,因此放大器设计应具备良好的线性度和准确性。
线性度方面,放大器应具备宽动态范围和低非线性失真。
准确性方面,应尽可能减小系统误差,如偏移电压、漂移和失调。
7.低功耗:心电图放大器通常需要长时间连续工作,因此低功耗设计至关重要。
采用低功耗的运算放大器和设计合理的电源管理措施,可延长电池寿命、减少能源消耗,同时降低设备温升和噪声。
8.抗干扰能力:心电图信号容易受到外界的干扰,如电源噪声、高频干扰和交叉干扰等。
放大器设计时应添加合适的抗干扰电路,如滤波器、隔离器和屏蔽,以分离并抑制这些干扰源。
总之,心电图用放大器的设计需要充分考虑信号质量、噪声控制、带宽要求、阻抗匹配、增益控制、安全和可靠性等因素。
模拟电子技术实验三_基本放大器的调整与测量
思考题
⑴ 改变放大器的静态工作点,对放大器的输出 有何影响?
⑵ 如何寻找放大器的最大不失真输出? 提示:将输入信号的峰峰值设置为 0.2V 以上, 输出波形会出现削顶失真,调节 R1 阻值,使得 输出信号波峰和波谷的削顶失真对称,然后再 减小输入信号的峰峰值,直至输出信号削顶失 真消失,此时放大器即工作在最大不失真输出 状态。
⑴ 连接电路测静态工作点,VB、VC、VE,计算IB、 IC、IE、VCE。
⑵ 测量放大器空载和 RL=2KΩ时的电压增益。测量 放大器最大不失真输出幅度Vpp(有负载)。 ⑶ 测量放大器的输入电阻与输出电阻。 ⑷ 测量放大器的通频带。输入信号峰峰值20mV。 注:在改变频率的过程中,必须保持输入信号的峰 峰值为20mV。
模拟电子技术实验
实验三 基本放大器的调整与测量
实验目的
⑴ 掌握示波器、函数信号发生器、直流稳压电 源、数字万用表的使用方法。
⑵ 掌握放大电路的调试方法,掌握放大电路静 态工作点、电压放大倍数、输入电阻和输出电 阻的测量方法。
⑶ 理解共发射级放大电路的工作原理和性能特 点。Leabharlann 实验原理静态工作点
在忽略基极电流的情况下, 三级管基极的电压为: R1 VB Vcc R1 R 2 三级管的发射极电压为: VE VB VBE 三级管的集极电压为: VC VCC IC R3
Vi 20mV 1kHz R2 15K R4 1K C2 100uF Vcc=9V R1 56K R3 2K C3 Vo C1 10uF 10uF
RL 2K
实验原理
电压增益
信号源产生的正弦波信号为Vi,示波器测量的输出峰峰 值为Vo,则放大电路的电压增益为: Vo Av Vi
温度测量放大电路的设计
温度测量放大电路的设计概述:温度测量是工业生产、实验研究和日常生活中常见的一项任务。
温度测量放大电路是用来增强传感器输出信号的弱电流和电压的放大器电路。
本文将对温度测量放大电路的设计进行详细的介绍。
设计目标:设计一个温度测量放大电路,实现以下目标:1.准确测量温度,并将温度信号放大到合适的幅度。
2.提供稳定、可靠的放大功能,同时保持低噪声3.能够适应不同类型的温度传感器4.电路设计简单,成本低廉5.能够工作在较宽的温度范围内温度传感器:温度传感器是测量温度的核心设备。
常见的温度传感器有热电偶、热敏电阻和半导体温度传感器。
本设计将以热敏电阻为例进行介绍。
电路设计:为了准确测量温度,我们需要将热敏电阻的变化转换为电压信号。
热敏电阻的电阻值随温度的变化而改变,这样可以通过将热敏电阻串联在一个已知电阻上,利用电阻分压原理将电阻值转换为电压信号,然后将该信号放大。
在这里,我们选择了运算放大器(Op Amp)作为放大电路的关键元件。
运算放大器具有高放大度、低噪声和稳定性好的特点,非常适合温度测量放大电路的设计。
具体的电路设计步骤如下:1.选择适当的运算放大器:根据设计要求选择适合的运算放大器。
常见的运算放大器有:LM741、LM358、TL071等。
选择时需要考虑输入和输出电压范围、增益带宽积、噪声等参数。
2.确定电源电压:根据运算放大器的工作电压范围确定电源电压。
一般地,运算放大器的电源电压为正负15V,也有一些运算放大器可以在单电源供电下工作。
3.设计电阻分压网络:根据热敏电阻的特性和测量范围选择合适的电阻值。
通过将热敏电阻串联在一个已知电阻上,利用电阻分压原理将电阻值转换为电压信号。
根据设计要求确定电阻值,并进行串联连接。
4.设计反馈电阻:为了放大电路中的信号,需要设计一个反馈电阻。
反馈电阻的值决定了放大倍数。
一般地,反馈电阻的值越大,放大倍数越高。
通过选择合适的反馈电阻可以实现所需要的放大倍数。
5.添加输入和输出保护:为了保护运算放大器和其他部件,可以添加输入和输出保护电路。
测量放大器.
测量放大器摘要:放大器是能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。
用在通讯、广播、雷达、电视、自动控制等各种装置中。
了解和掌握放大器对于学习和应用电子系统有很大的帮助。
信号检测中的放大电路有很多种类型,实际系统中常采用的有测量放大器和隔离放大器。
测量放大器也称为仪表放大器或数据放大器,它是一种可以用来放大微弱差值信号的高精度放大器,在测量控制等领域具有广泛的用途。
通常,测量放大器多采用专用集成模块来实现,虽然有很高的性能指标,但不便于实现增益的预置与数字控制,同时价格较高。
为此,结合应用实际,利用高增益运放,设计了一种具有高共模抑制比,高增益数控可显的测量放大器。
提高了测量放大器的性能指标,并实现放大器增益较大范围的步进调节。
本次设计通过采用仪用放大器的改造来实现设计一测量放大器及其所用的稳压电源,并满足其高输入阻抗和高共模抑制比及高通频带的要求.。
测量放大器主要实现对微信号的测量,主要通过运用集成运放组成测量放大电路实现对微弱信号的放大,要求有较高的共模抑制能力及较高的输入电阻,减少测量的误差及对被测电路的影响,并要求放大器的放大倍数可调已实现对比较大的范围的被测信号的测量。
测量放大器前级主要用差分输入,经过双端信号到单端信号的转换,最终经比例放大进行放大。
2.1设计任务设计并制作一个测量放大器及所用的直流稳压电源。
参见图1。
输入信号V I取自桥式测量电路的输出。
当R1=R2=R3=R4时,V I=0。
R2改变时,产生V I≠0的电压信号。
测量电路与放大器之间有1米长的连接线。
2.2测量放大器的设计2.2.1 设计内容及要求a. 差模电压放大倍数A VD=1~500,可手动调节;b. 最大输出电压为± 10V,非线性误差< 0.5%;c. 在输入共模电压+7.5V~-7.5V范围内,共模抑制比K CMR >105 ;d. 在A VD=500时,输出端噪声电压的峰-峰值小于1V;e. 通频带0~10Hz2.2.2设计原理原理概述:放大器是电子系统的重要组成部分,了解和掌握放大器对于学习和应用电子系统有很大的帮助。
测量放大器的原理
测量放大器的原理放大器是电子电路中最为基本和重要的器件之一,它广泛应用于信号处理、功率放大、采样与保持等众多领域,具有重要的意义和作用。
测量放大器是用来测量不同信号的电压大小,比如测量声音信号、视频信号、射频信号等。
本文将介绍测量放大器的原理及相关内容。
一、测量放大器的原理测量放大器主要由输入电阻、放大器、输出电阻组成。
当输入电信号进入测量放大器时,首先经过输入电阻的阻挡,将输入信号的电压降低到输入电阻的端口电压,同时输入电阻将输入信号作为放大器的输入信号传送到放大器。
放大器对输入的信号进行加倍,同时将其放大到可测量的输出电压,即放大输出信号的电压。
在放大器中,有许多因素会影响其放大效果,例如放大器的开环增益、截止频率、带宽、噪声等,这些因素都会对放大器的测量性能产生影响。
因此,要了解测量放大器的测量性能和参数,需要对放大器进行特性测试来进行评估。
二、测量放大器测量性能的指标1.增益(Gain)增益是指测量放大器输出信号与输入信号之间的比率。
一般情况下,放大器的增益会受到温度、频率和射频功率等因素的影响。
增益是用来评估放大器功率的测量性能最基本和最重要的指标。
增益越高,放大器的功率处理能力越强。
2.带宽(Bandwidth)带宽是指放大器能增益的范围。
在工作中,高带宽意味着放大器可以工作在更宽的频段内,并能够测量更多的信号。
因此,带宽是测量放大器性能的另一个重要指标之一,带宽越高表明放大器的性能越好。
3.噪声(Normal Mode Rejection)在电路中,由于外部干扰信号和电源中的噪声信号,在放大信号过程中可能会对放大器的测量性能产生影响。
为了避免这些干扰信号对放大器造成影响,需要使用具有噪声抑制功能的测量放大器。
噪声越小,测量效果越好。
4.温度漂移(Temperature Drift)温度漂移是测量放大器温度变化对放大器测量性能的影响。
在实际应用中,温度的变化可能会影响放大器的增益和噪声等性能参数,因此需要对温度漂移进行限制。
测量放大器的静态工作点的测量方法
一、概述测量放大器的静态工作点是放大器设计和分析中的重要参数,它直接影响到放大器的线性度、功耗和稳定性。
准确地测量静态工作点对于放大器的设计和调试至关重要。
二、测量放大器的静态工作点的重要性1. 静态工作点的定义及其对放大器性能的影响放大器的静态工作点是指在没有输入信号的情况下,放大器的直流工作状态。
它通常表示为静态电流和静态电压的值。
静态工作点的选择会直接影响放大器的线性度和功耗。
如果静态工作点选择不当,会出现信号失真、功耗增大等问题。
2. 静态工作点的测量方法静态工作点的测量方法一般有直流测量法和交流测量法两种。
三、直流测量法1. 实验装置概述直流测量法主要通过连接电流表、电压表等仪器测量放大器的静态工作点。
2. 测量步骤1) 电压放大器的静态工作点的测量a) 将电流表连接到电源端,通过电流表测量输入端的静态电流。
b) 将电压表连接到输出端,通过电压表测量输出端的静态电压。
2) 电流放大器的静态工作点的测量a) 将电流表连接到输入端,通过电流表测量输入端的静态电流。
b) 将电压表连接到负载端,通过电压表测量负载端的静态电压。
3. 实验结果分析直流测量法可以较为准确地测量放大器的静态工作点,但在实际应用中需要注意避免对放大器的工作状态造成干扰。
四、交流测量法1. 实验装置概述交流测量法主要通过连接示波器、信号源等仪器,测量放大器的静态工作点。
2. 测量步骤1) 通过信号源输入一个直流电压,使其通过放大器。
2) 通过示波器观察输出端信号的直流偏置情况。
3) 调整输入直流电压的大小,直到输出信号的直流偏置为零。
3. 实验结果分析交流测量法可以观察到放大器输出端信号的直流偏置情况,从而间接得到放大器的静态工作点。
五、总结通过直流测量法和交流测量法,可以较为准确地测量放大器的静态工作点。
在实际工程应用中,根据实际情况选择合适的测量方法,可以更好地指导放大器的设计和调试工作。
静态工作点的准确测量可以保证放大器性能的稳定和可靠。
测量放大器的原理
测量放大器的原理测量放大器是一种用于放大电阻传感器、电容传感器或者其他传感器输出信号的设备。
它可以将传感器输出的微小电信号放大到可以进行后续处理或者测量的适当范围内。
测量放大器通常用于工业自动化、科学实验、医学设备等领域。
测量放大器的工作原理主要涉及到增益、输入电阻、带宽和噪声等方面。
1. 增益:测量放大器的主要功能之一是放大输入信号,其增益决定了放大倍数。
增益可以通过电路中的运算放大器或者放大器电路来实现,其中放大器电路通常采用晶体管、运算放大器、仪表放大器等。
2. 输入电阻:测量放大器需要具有较高的输入电阻,以保证输入信号的稳定性。
较高的输入电阻可以减少由于传感器输出电流引起的电流失真,同时也可以减少由于输入信号与放大电路之间的电压分压引起的误差。
3. 带宽:测量放大器的带宽是指放大器能够处理的频率范围。
带宽的大小取决于放大器的设计和组件的特性。
较宽的带宽可以支持处理较高频率的输入信号,而较窄的带宽则适用于低频信号的处理。
4. 噪声:测量放大器中的噪声是指在放大过程中引入的信号干扰。
噪声可以由电源杂散、放大器内部电子元件的热噪声以及输入信号本身的噪声引起。
降低噪声对于保证测量信号的准确性和精度至关重要。
在测量放大器的设计中,需要综合考虑上述因素以及其他一些技术要求,如输入输出接口、电源供应、保护电路等。
此外,还需注意:1. 信号输入范围:测量放大器一般有一定的信号输入范围,超出该范围的输入信号可能引起放大器的非线性失真。
因此,在设计选择时需根据实际需要选择适当的放大器。
2. 校准和线性度:放大器在使用过程中可能会存在一定的误差,因此需要进行校准以确保输出的准确性。
此外,线性度也是一个重要的指标,它描述了输入信号和输出信号之间的关系是否为线性关系。
总之,测量放大器是一种关键的信号处理设备,它可以将微小的传感器输出信号放大到适当的范围,以进行后续处理或者测量。
在设计和选择测量放大器时,需要考虑增益、输入电阻、带宽、噪声等多个因素,并根据实际需要进行校准和线性度测试。
集成运放同相放大器带宽测量设计与仿真实验报告
集成运放同相放大器带宽测量设计与仿真实验报告一、试验目标1、熟悉放大器幅频特征测量方法。
2、掌握集成运算放大器带宽和电压放大倍数关系。
3、了解掌握Proteus软件基础操作和应用。
二、试验线路及原理1、试验原理(1)同相放大器同相放大器又称同相百分比运算放大器,其基础形式图2.1所表示。
输入信号Ui经R2加至集成运放同相端。
Rf为反馈电阻,输出电压经Rf 及R1组成分压电路,取R1上分压作为反馈信号加至运放反相输入端,形成了深度电压串联负反馈。
R2为平衡电阻,其值为R2=R1//Rf。
电压放大倍数为。
输出电压和输入电压相位相同,大小成百分比关系。
百分比系数(即电压放大倍数)等于1+Rf/R1,和运放本身参数无关。
图2.1同相放大器图2.2某放大电路幅频特征(2)基础概念1)带宽运放带宽是表示运放能够处理交流小信号能力。
运放带宽简单来说就是用来衡量一个放大器能处理信号频率范围,带宽越高,能处理信号频率越高,高频特征就越好,不然信号就轻易失真。
图2.2所表示为某放大电路幅频响应,中间一段是平坦,即增益保持不变,称为中频区(也称通带区)。
在fL和fH两点增益分别下降3dB,而在低于fL和高于fH两个区域,增益随频率远离这两点而下降。
在输入信号幅值保持不变条件下,增益下降3dB频率点,其输出功率约等于中频区输出功率二分之一,通常称为半功率点。
通常把幅频响应高、低两个半功率点间频率定义为放大电路带宽或通频带,即BW=fH-fL。
式中fH是频率响应高端半功率点,也称为上限频率,而fL则称为下限频率。
通常有fL<<fH,故有BW≈fH。
2)单位增益带宽运放闭环增益为1倍条件下,将一个频率可变恒幅正弦小信号输入到运放输入端,伴随输入信号频率不停变大,输出信号增益将不停减小,当从运放输出端测得闭环电压增益下降3db(或是相当于运放输入信号0.707)时,所对应信号频率乘以闭环放大倍数1所得增益带宽积。
电子课程设计报告(测速表、测量放大器)
北京工业大学电子课程设计报告学号:姓名:学院:电控学院专业:自动化指导教师:数电课设自行车速度表第一章设计要求设计任务根据车轮周长、辐条数和车轮转数等参考设计、调试完成一个进行车用速度表,要求具有根据不同的车型随时进行调整的功能,以保证速度表显示的正确。
1.显示数字为三位,精度为0.1公里,即(00.0-99.9公里)。
2.数码管要有小数点显示,即个位于十分位之间的小数点要亮起来。
3.标明你所设计的条件,(轮周长、辐条数等)。
给出根据不同车型进行调整的依据。
4.结构简单、所用器件尽量少、便于调整、成本低。
5.所用芯片、元件等在参考元器件范围内选择(实验室没有的需自行解决)。
一、设计参考方案通过测量在单位时间内通过红外光电传感器的轮辐数,折算出车轮走过的距离,即每秒通过多少根辐条等于1公里每小时的速度。
时速值按十进制由多位数码管显示。
假定车速为1公里/小时,那么车轮每秒走过的距离为100000厘米/3600秒≈27.8厘米/秒。
因测得的是每秒通过光电传感器的辐条数,故须将27.8厘米/秒化作多少根辐条/秒,两根辐条间的车周长=轮周长/辐条数。
对于每小时一公里的速度,相当于每秒通过的辐条数为27.8厘米/辐条间轮周长(即门控脉冲的频率),此数的倒数即为每通过一条辐条所需要的时间(秒)。
如果在此时间内通过1根辐条即表示速度为1公里/小时,数码管显示01.0,若通过20根辐条,则车速为20公里/小时,速度表(数码管)就显示20.0。
第二章设计与说明设计方案的选择根据分析,我们将测速仪分为四个模块:信号输入模块,锁存和复位模块,计数器驱动模块,显示模块。
信号输入模块由红外线传感器和施密特组成,红外线传感器用于产生信号,施密特用于波形整形。
此模块没有可选性。
计数器驱动模块用计数器CD4553和译码器CD4543或CD4511组成。
两者从功能上并无本质区别。
CD4553用于对输入信号基数,译码器用于驱动三位数码管。
测量放大器工作原理
测量放大器工作原理
放大器是一种电子设备,用于将输入信号放大到更大的幅度,输出一个相应放大的信号。
其工作原理可分为两个基本部分:输入阶段和输出阶段。
输入阶段:输入阶段接收来自信号源的输入信号。
一般情况下,输入信号经过耦合电容或直接耦合的方式进入放大器。
输入阶段可以分为共射极(emitter follower)、共基极(common base)和共集极(common collector)几种形式。
其中,共基极放大
器具有较高增益,共射极放大器具有较低输出阻抗等特点。
输出阶段:输出阶段将输入阶段放大的信号送入负载,如扬声器、电动机等。
输出阶段一般使用功率放大器来实现,它能够提供足够大的输出功率,以驱动负载。
输出阶段可以分为甲类、乙类和丙类放大器等形式。
甲类放大器具有较高的线性度,但功率效率较低;乙类放大器具有较高的效率,但线性度稍微差一些;丙类放大器具有很高的效率,但只能放大一个输入信号的一半周期。
放大器的工作原理实际上就是将输入信号通过适当的电路设计和参数设置,使得输出信号得到放大,以满足一定的应用要求。
不同类型的放大器采用不同的电路设计和放大原理,以实现不同的放大效果。
测量放大器实验报告
测量放大器实验报告一、系统功能及性能指标500~1A VD = V 10U 0±= f =0~10HZ ΩM R id 2≥id U =V V 5.7~5.7-+时,510>CMR K 500=VD A 时,噪声电压峰峰值< 1V电路类型:测量放大器二、实验目的本实验是学习测量放大器的设计方法和掌握测量放大器的调试方法。
其中,测量放大器称为仪表放大器或数据放大器,是对微信号进行测量,主要通过运用集成运放组成测量放大电路实现对微弱电压信号的放大,要求有较高的输入电阻来减少测量的误差和被测电路的影响。
通过实验,熟悉OP07的参数和应用,掌握电路设计调试的基本流程和方法,通过分析和计算完成实验的内容。
三、实验要求图(1)1、差模电压放大倍数500A=,可手动调节;1~VD2、最大输出电压为±10V,非线性误差< 0.5%;3、在输入共模电压+7.5V~-7.5V范围内,共模抑制5K;>10CMR4、在500=A时,输出端噪声电压的峰-峰值小于1V;VD4、通频带0~10Hz;5、直流电压放大器的差模输入电阻≥2MΩ(可不测试,由电路设计予以保证)。
四、方案论证在测量放大器的设计中,第一级应采用两个集成运放OP07同向并联接入,组成同相的差动放大器,因为这样可以增强共模抑制能力。
其中,要求两个运放的输入阻抗,共模抑制比,开环增益一致,这样才能保证具有差模和共模电阻大,还能保证使两运放的共模增益和失调及漂移产生的误差相互的抵消。
在第二级中,为了阻止共模信号的传递,差分放大电路在同向并联电路之后再接上一个OP07,从而使双端输出变成单端输出。
在输出端接一个电位器,使得电压放大倍数改变,实现放大倍数500A1~=可调,从而完成本实验的要求。
VD六、OP07芯片手册OP07简介:OP07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。
具有低失调、低漂移、低噪声、偏置电流小等优点。
历届全国大学生电子设计竞赛试题
历届全国大学生电子设计竞赛试题第一届(1994年)全国大学生电子设计竞赛题目(1)简易数控直流电源(A题)(2)多路数据采集系统(B题)第二届(1995年)全国大学生电子设计竞赛题目(1)实用低频功率放大器(A题)(2)实用信号源的设计和制作(B题)(3)简易无线电遥控系统(C题)(4)简易电阻、电容和电感测试仪(D题)第三届(1997年)全国大学生电子设计竞赛题目(1)直流稳压电源(A题)(2)简易数字频率计(B题)(3)水温控制系统(C题)(4)调幅扩播收音机(D题)第四届(1999年)全国大学生电子设计竞赛题目(1)测量放大器设计(A题)(2)数字式工频有效值多用表(B题)(3)频率特性测量仪设计(C题)(4)短波调频接收机设计(D题)(5)数字化语音存储与回放系统(E题)第五届(2001年)全国大学生电子设计竞赛题目(1)波形发生器(A题)(2)简易数字存储示波器(B题)(3)自动往返电动小汽车(C题)(4)高效率音频功率放大器(D题)(5)数据采集与传输系统(E题)(6)调频收音机(F题)第六届(2003年)全国大学生电子设计竞赛题目(1)电压控制LC振荡器(A题)(2)宽带放大器(B题)(3)低频数字式相位测量仪(C题)(4)简易逻辑分析仪(D题)(5)简易智能电动车(E题)(6)液体点滴速度监控装置(F题)第七届(2005年)全国大学生电子设计竞赛题目(1)正弦信号发生器(A题)(2)集成运放测试仪(B题)(3)简易频谱分析仪(C题)(4)单工无线呼叫系统(D题)(5)悬挂运动控制系统(E题)(6)数控恒流源(F题)(7)三相正弦波变频电源(G题)第八届(2007年)全国大学生电子设计竞赛题目(1)音频信号分析仪(八)【本科组】(2)无线识别(B)【本科组】(3)数字示波器(C)【本科组】(4)程控滤波器(D)【本科组】(5)开关稳压电源(E)【本科组】(6)电动车跷跷板(F)【本科组】(7)积分式直流数字电压表(G)【高职高专组】(8)信号发生器(三)【高职高专组】(9)可控放大器(D【高职高专组】(10)电动车跷跷板(J)【高职高专组】第九届(2009年)全国大学生电子设计竞赛题目(1)光伏并网发电模拟装置(A题)【本科组】(2)声音导引系统(B题)【本科组】(3)宽带直流放大器(C题)【本科组】(4)无线环境监测模拟装置(D题)【本科组】(5)电能收集充电㈱(E题)【本科组】(6)数字幅频均衡的功率放大器(F题)【本科组】(7)低频功率放大器(G题【高职高专组D(8)LED点阵书写显示屏(H题【高职高专组D (9)模拟路灯控制系统Q题【高职高专组】)。
实验三、运算放大器参数测量与基本应用
实验三、运算放大器参数测量及基本应用一、实验目的1.认识运算放大器的基本特性,通过仿真和测试了解运放基本参数,理解参数的物理含义,学会根据实际需求选择运放;2.掌握由运放构成的基本电路和分析方法;3.熟悉仿真软件Multisim的使用,掌握基于软件的电路设计和仿真分析方法;4.熟悉便携式虚拟仿真实验平台,掌握利用其进行实验的使用方法。
二、实验预习1. 复习运放的理想化条件,了解集成运算放大器的主要技术指标和含义;2. 复习运放应用的各种基本电路结构;3. 熟悉运放LM358L(因multisim元器件库中没有LM358L,所以仿真用LM358J来做,而实际电路用LM358L,它们DIP封装引脚排列是一样的)的性能参数及管脚布局,管脚布局如图3.1所示,并根据图3.2所示的内部原理图理解电路结构和工作原理。
图3.1 LM358L管脚LM358J为单片集成的双运放,采用DIP-8封装,INPUT1(-)为第一个运放的反相端输入,INPUT1(+)为同相端输入,OUTPUT1为输出,第二个运放命名原则相同。
Vcc为正电源输入端,V EE/GND可以接地,也可以接负电压。
双电源(±1.5-±16V)。
图3.2 LM358J内部原理图LM358L主要由输入差分对放大器、单端放大器、推挽输出级以及偏置电路构成。
三、实验设备便携式虚拟仿真实验平台(PocketLab、元器件)。
四、实验内容(一)仿真实验1. 运放基本参数仿真测量(用LM358J 代替LM358L) (1) 电压传输特性根据图3.3所示电路,采用正负电源供电,运放反相端接地,同相端接直流电压源V 3,在-150μV~150μV 范围内扫描V 3电压,步进1μV ,得到运放输出电压(节点3)随输入电压V 3的变化曲线,即运放电压传输特性,根据仿真结果给出LM358J 线性工作区输入电压范围,根据线性区特性估算该运放的直流电压增益A vd 。
放大器的测量方法
放大器的测量方法
放大器的测量方法可以分为以下几个方面:
1. 输出功率测量:通过连接一个负载(如扬声器)来测量放大器的输出功率。
可以使用功率计或示波器进行测量。
通常会进行不同负载阻抗下的功率测量,以了解放大器的输出特性。
2. 频率响应测量:通过输入不同频率的信号,测量放大器在不同频率下的增益,以了解放大器的频率响应。
可以使用频谱分析仪或示波器进行测量。
3. 输入/输出阻抗测量:通过连接不同阻抗的信号源和负载,测量输入和输出端口的阻抗来了解放大器的匹配性能。
可以使用阻抗分析仪或示波器进行测量。
4. 噪声测量:通过测量放大器的输出信号中的噪声电平,以了解放大器的噪声性能。
可以使用噪声分析仪进行测量。
5. 谐波失真测量:通过输入一个正弦信号以及其谐波分量,测量放大器输出信号中的谐波分量,以了解放大器的谐波失真程度。
可以使用谐波分析仪进行测量。
6. 直流偏置测量:通过测量输入和输出端口的直流电压,了解放大器的直流偏置情况。
可以使用直流电压表进行测量。
以上是一些常见的放大器测量方法,具体的测量方法会根据放大器的类型和应用而有所差异。
在测量时应该注意选择合适的测量设备,并按照设备的操作说明进行操作。
心电信号放大器设计
心电信号放大器设计一、设计用于检测人体心电信号的放大器,要求如下:1、输入阻抗≥10MΩ。
2、共模抑制比≥80dB。
3、电压放大倍数1000倍。
4、频带宽度为0.5Hz~100Hz。
5、放大器的等效输入噪声(包括50Hz交流干扰)≤200μV。
二、设计方案分析1、心电信号的特点及检测人体的各种生理参数如心电、脑电、肌电等生物电信号都是属于强噪声背景下微弱的低频信号,是由复杂的生命体发出的不稳定的自然信号。
心电信号是人类最早研究并应用于临床医学的生物电信号之一,与其他生物电信号相比,该信号也比较容易检测同时具有直观的规律性。
一般人体心电信号的幅值约20μV~5mV,频带宽度为0.05Hz~100Hz,由于心电信号取自于活体,所以信号源内阻较高,且存在着较强的背景噪声和干扰。
在检测人体生物电信号时,需要采用所谓的生物电测量电极,又称引导电极来实现的,通过引导电极将生物电信号引入到放大器的输入端。
对于心电信号的检测,临床上为了统一和便于比较所获得心电信号波形,对测定心电信号(ECG)的电极和引线与放大器的联接方式有严格的统一规定,称之为心电图的导联系统。
目前国际上均采用标准导联,即将电极捆绑在手腕或脚腕的内侧面,并通过较长的屏蔽导线与心电放大器相连接。
标准导联有Ⅰ、Ⅱ、Ⅲ。
其具体联接方法如图。
LAⅠ导联Ⅱ导联Ⅲ导联图1 标准导联联线方法2、心电信号放大器设计要求及组成根据心电信号的特点,对心电信号放大器的要求是高输入阻抗、高增益、高共模抑制比、低噪声、低漂移、合适的通频带宽度和输出较大的动态范围等。
典型的心电信号放大器的组成如图所示,主要有前置放大、高通滤波、低通滤波、50Hz陷波器、电压放大等电路。
图2 心电信号放大器组成框图三、 主要单元电路参考设计 1、 心电信号输入电极电极(导联)对心电信号放大器的质量影响很大,采用的电极应该具有贴附力强、透 气性好、吸汗、电极导电性能好、极化电压低的优质电极。
表面肌电信号检测电路的放大器设计与噪声分析
表面肌电信号检测电路的放大器设计与噪声分析对于表面肌电信号的检测电路来说,放大器的设计和噪声分析是非常重要的方面。
本文将介绍表面肌电信号检测电路放大器的设计原理和噪声分析方法。
我们将深入探讨这两个方面,并提供一些实际案例和技术指导,以帮助读者更好地理解和应用。
一、放大器设计放大器是表面肌电信号检测电路中的关键部件之一。
它的主要作用是将微弱的肌电信号放大到适合测量和分析的范围内。
在进行放大器设计时,我们需要考虑以下几个关键因素:1. 频率响应:表面肌电信号的频率范围一般在10Hz到500Hz之间。
放大器必须能够在这个频率范围内保持相对平坦的增益响应,以确保准确的信号放大。
2. 噪声特性:由于表面肌电信号是微弱的生物电信号,放大器必须具有很低的噪声水平。
低噪声放大器可以帮助提高信号的信噪比,从而更好地提取有用的生物电信号。
3. 输入阻抗:放大器的输入阻抗应该足够高,以确保信号源不被放大器本身的阻抗所影响。
一般来说,输入阻抗应该在100兆欧姆以上,以满足表面肌电信号检测的要求。
4. 输出阻抗:放大器的输出阻抗应该尽可能低,以便有效地传输信号和减少干扰引入。
基于以上要求,我们可以选择一些常用的放大器电路拓扑结构,如差分放大器、运放放大器等。
根据具体需求,我们可以做出适当的选择和调整。
在进行实际电路设计时,还需要注意电源噪声的抑制和电路的稳定性,以避免产生不必要的干扰和失真。
二、噪声分析噪声是表面肌电信号检测电路中的一个常见问题。
噪声可以来自各种各样的源,如电源、电路元件和环境。
因此,在进行噪声分析时,我们需要从源头入手,逐个分析和优化。
首先,电源噪声是一个重要的噪声源。
当设计电源供电电路时,我们应该选择低噪声的电源,例如线性稳压器或低噪声开关稳压器。
此外,还可以采用滤波电容和地线设计来有效地抑制电源噪声的传播。
其次,电路元件本身也会引入噪声。
例如,运放引入的噪声主要来自其输入电压噪声和电流噪声。
在选择运放时,我们应该注重其噪声指标,尽量选择低噪声的运放器件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集成电路作业
——测量放大器的设计
一、 题目:测量放大器的设计
设计一个超低噪声、高阻、浮地输入的测量放大器,要求: a) 远程输入:01000,0100Ui mV Fi Hz ≈=::
b) 增益:80Avf dB =;
c) 输出:10om U V ≥±,非线性误差0.1%r ≤;
d) 共模抑制比:120CMRR dB ≥;
e) 通频带:0100Hz :,阻带衰减大于:40/10dB f -;
推荐芯片:
二、方案设计
1)题目分析
题目要求设计一个超低噪声、高阻、浮地输入的测量放大器,同时要求具有较高增益,高共模抑制比,低通频带,阻带衰减大于40/10dB f -等。
结合所学知识,参考相关资料,决定前级采用具备超低噪声、高阻、浮地输入、高增益、高共模抑制比等优良属性的仪用放大器来实现信号的放大,后级采用二阶低通滤波器实现对信号的滤波,使其满足频带约束。
100,300,90A Aud dB BW kHz CMRR dB ≈≈≈
2)具体方案
A 放大电路
结合我们要实现的测量放大器参数,选取OP07型集成运算放大器。
表格 1 OP07芯片参数
分析电路要实现的最大增益80dB ,也即闭环增益要求最大达到10000倍。
考虑运放的交流动态特性,以及非线性失真等因素
非线性失真:
交流动态特性:
(210)f A H BW Auf ≤:
将OP07芯片的具体参数带入求得在保证电路性能稳定可靠的情况下,OP07芯片单级最大可实现的放大倍数大约为100倍。
因此为了实现对信号最大放大80dB 的参数要求我决定采用两级放大,即前级采用仪用放大器,对信号最大放大100倍,保证系统对超低噪声、高阻、浮地输入的要求,第二级采用反相放大器,最大放大100倍,最终实现系统对信号稳定可靠放大80dB 。
(210)
Aud r Auf ≤g :
图1是采用OP07型运算放大器搭接的仪用放大器,通过调节可调电阻Rg 对信号稳定可靠的放大10—100倍,作为第一级放大电路。
(注:电路所采用的电阻,电容参数如图中所示)。
图1仪用放大器
增益计算公式:
图2是第二级反相放大器电路,考虑到信号的最大输入1000mv ,如果直接对其放大80dB 必定发生饱和失真,因此设置可调电阻R10根据输入信号的大小来动态调节放大倍数实现对信号稳定可靠放大10—100倍。
612312
[(R )R ]
()g I g R R R A R R R +++=+
图2第二级放大器
增益计算公式:
当电路中各电阻取如图阻值时可实现
最大增益80dB B 滤波电路
分析题目要求通频带为0—100Hz ,阻带衰减大于40/10dB f -,所以考虑采用二阶低通滤波器,如下图所示电路。
(图中C1=C2=C ,R13=R )
零频放大倍数: 12108'I R R A R +=01f
R G R
=+
截止频率计算公式:
将图中电阻电容值带入上述公式,即可实现截止频率为100Hz ,而中频增益约等于1。
C 整体电路图
系统整体共模抑制比分析:
共模抑制比计算公式如下:
1212
*CMRR CMRR CMRR CMRR CMRR =- 注:CMRR1,CMRR2分别是仪用放大器差分输入级的两个运放的共
模抑制比。
由于本电路全部芯片均采用OP07,所以理想状态下器共模抑制比可达到无穷大。
在实际情况下,假使CMRR1=100dB ,CMRR2=97dB ,01w RC
=
计算得其共模抑制比为3233dB远大于题目要求的120dB。
三、仿真检验
A)分立检验
当输入频率10Hz,振幅1mVpp,如下图所示正弦信号时,设置放大器放大倍数为最大即80dB,即设置Rg=0Ω,R13=90kΩ观察第二级放大器输出波形,如下图所示
分析对比上述读数可以算出增益约为80dB 当输入信号为频率为10Hz,振幅为10mVpp时,如下图所示正弦信号时,为了避免饱和失真,设置系统增益为60dB,即设置Rg=0Ω,R13=0Ω。
观察第二级放大器输出波形,如下图所示
分析对比上述读数可以算出增益约为60dB 当输入频率100Hz,振幅1mVpp,如下图所示正弦信号时,设置放大器放大倍数为最大即80dB,即设置Rg=0Ω,R13=90kΩ观察第二级放大器输出波形,如下图所示
分析对比上述读数可以看出增益约为80dB
当输入频率100Hz,振幅1mVpp,如下图所示正弦信号时,设置放大器放大倍数为最大即80dB,即设置Rg=0Ω,R13=90kΩ观察滤波器端输出波形,如下图所示
分析对比上述读数可以计算出增益不足80dB,这是由于100hz是截止频率点,即-3dB衰减点。
B)系统整体波特图分析
通过波特测试仪进行输入输出分析如下图所示:
通带波特图
截止频率点100Hz
分析上述图像可知系统基本符合题目要求的增益80dB,通频带为0—100Hz。
四、分析总结
由上述三中的仿真结果可知,该电路基本实现了题目给定的参数要求,可实现最大增益80dB,同时可根据输入信号的大小改变相应的放大倍数,避免发生饱和失真。
此外,由于采用了仪用放大器该电路的共模抑制比远远高于设计要求,是该电路的一大好处。