机械加工工艺制造工程与技术外文文献翻译

合集下载

机械加工介绍外文文献翻译、中英文翻译、外文翻译

机械加工介绍外文文献翻译、中英文翻译、外文翻译

题目机械加工介绍学院专业班级姓名学号指导教师Machining Processing Introduction1 LatheLathes are machine tools designed primarily to do turning, facing and bori ng, Very little turning is done on other types of machine tools, and none can do it with equal facility. Because lathes also can do drilling and reaming, their versatility permits several operations to be done with a single setup of the work piece. Consequently, more lathes of various types are used in manufacturing than any other machine tool.The essential components of a lathe are the bed, headstock assembly, tailstock assembly, and the leads crew and feed rod.The bed is the backbone of a lathe. It usually is made of well normalized or aged gray or nodular cast iron and provides s heavy, rigid frame on which all the other basic components are mounted. Two sets of parallel, longitudinal ways, inner and outer, are contained on the bed, usually on the upper side. Som makers use an inverted V-shape for all four ways, whereas others utilize one inverted V and one flat way in one or both sets, they are precision-machined to assure accuracy of alignment. On most modern lathes the way are surface-hardened to resist wear and abrasion, but precaution should be taken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed.The headstock is mounted in a foxed position on the inner ways, usually at the left end of the bed. It provides a powered means of rotating the word at various speeds. Essentially, it consists of a hollow spindle, mounted in accurate bearings, and a set of transmission gears-similar to a truck transmission—through which the spindle can be rotated at a number of speeds. Most lathes provide from 8 to 18 speeds, usually in a geometric ratio, and on modern lathes all the speeds can be obtained merely by moving from two to four levers. An increasing trend is to provide a continuously variable speed range through electrical or mechanical drives.Because the accuracy of a lathe is greatly dependent on the spindle, it is of heavy construction and mounted in heavy bearings, usually preloaded tapered roller or ball types. The spindle has a hole extending through its length through which long bar stock can be fed. The size of maximum size of bar stock that can be machined when the material must be fed through spindle.The tailsticd assembly consists, essentially, of three parts. A lower casting fits on the inner ways of the bed and can slide longitudinally thereon, with means for clamping the entire assembly in any desired location; an upper casting fits on the lower one and can be moved transversely upon it, on some type of keyed ways, to permit aligning the assembly is the tailstock quill. This is hollow steel cylinder, usually about 51 to 76mm (2to 3 inches) in diameter, that can be moved several inches longitudinally in and out of the upper casting by means of a hand wheel and screw.The size of a lathe is designated by two dimensions. The first is known as theswing. This is the maximum diameter of work that can be rotated on a lathe. It is approximately twice the distance between the line connecting the lathe centers and the nearest point on the ways, the second size dimension is the maximum distance between centers. The swing thus indicates the maximum work piece diameter that can be turned in the lathe, while the distance between centers indicates the maximum length of work piece that can be mounted between centers.Engine lathes are the type most frequently used in manufacturing. They are heavy-duty machine tools with all the components described previously and have power drive for all tool movements except on the compound rest. They commonly range in size from 305 to 610 mm(12 to 24 inches)swing and from 610 to 1219 mm(24 to 48 inches) center distances, but swings up to 1270 mm(50 inches) and center distances up to 3658mm(12 feet) are not uncommon. Most have chip pans and a built-in coolant circulating system. Smaller engine lathes-with swings usually not over 330 mm (13 inches) –also are available in bench type, designed for the bed to be mounted on a bench on a bench or cabinet.Although engine lathes are versatile and very useful, because of the time required for changing and setting tools and for making measurements on the work piece, thy are not suitable for quantity production. Often the actual chip-production tine is less than 30% of the total cycle time. In addition, a skilled machinist is required for all the operations, and such persons are costly and often in short supply. However, much of the operator’s time is consumed by simple, repetitious adjustments and in watching chips being made. Consequently, to reduce or eliminate the amountof skilled labor that is required; turret lathes, screw machines, and other types of semiautomatic and automatic lathes have been highly developed and are widely used in manufacturing.2 Numerical ControlOne of the most fundamental concepts in the area of advanced manufacturing technologies is numerical control (NC). Prior to the advent of NC, all machine tools ere manually operated and controlled. Among the many limitations associated with manual control machine tools, perhaps none is more prominent than the limitation of operator skills. With manual control, the quality of the product is directly related to and limited to the skills of the operator. Numerical control represents the first major step away from human control of machine tools.Numerical control means the control of machine tools and other manufacturing systems through the use of prerecorded, written symbolic instructions. Rather than operating a machine tool, an NC technician writes a program that issues operational instructions to the machine tool. For a machine tool to be numerically controlled, it must be interfaced with a device for accepting and decoding the programmed instructions, known as a reader.Numerical control was developed to overcome the limitation of human operators, and it has done so. Numerical control machines are more accurate than manually operated machines, they can produce parts more uniformly, they are faster, and the long-run tooling costs are lower. The development of NC led to the development of several other innovations in manufacturing technology:Electrical discharge machining, Laser cutting, Electron beam welding.Numerical control has also made machine tools more versatile than their manually operated predecessors. An NC machine tool can automatically produce a wide of parts, each involving an assortment of widely varied and complex machining processes. Numerical control has allowed manufacturers to undertake the production of products that would not have been feasible from an economic perspective using manually controlled machine tolls and processes.Like so many advanced technologies, NC was born in the laboratories of the Massachusetts Institute of Technology. The concept of NC was developed in the early 1950s with funding provided by the U.S. Air Force. In its earliest stages, NC machines were able to made straight cuts efficiently and effectively.However, curved paths were a problem because the machine tool had to be programmed to undertake a series of horizontal and vertical steps to produce a curve. The shorter the straight lines making up the steps, the smoother is the curve, each line segment in the steps had to be calculated.This problem led to the development in 1959 of the Automatically Programmed Tools (APT) language. This is a special programming language for NC that uses statements similar to English language to define the part geometry, describe the cutting tool configuration, and specify the necessary motions. The development of the APT language was a major step forward in the fur ther development from those used today. The machines had hardwired logic circuits. The instructional programs were written on punched paper, which was later to be replaced by magnetic plastic tape. Atape reader was used to interpret the instructions written on the tape for the machine. Together, all of this represented a giant step forward in the control of machine tools. However, there were a number of problems with NC at this point in its development.A major problem was the fragility of the punched paper tape medium. It was common for the paper tape containing the programmed instructions to break or tear during a machining process. This problem was exacerbated by the fact that each successive time a part was produced on a machine tool; the paper tape carrying the programmed instructions had to be rerun through the reader. If it was necessary to produce 100 copies of a given part, it was also necessary to run the paper tape through the reader 100 separate tines. Fragile paper tapes simply could not withstand the rigors of a shop floor environment and this kind of repeated use.This led to the development of a special magnetic plastic tape. Whereas the paper carried the programmed instructions as a series of holes punched in the tape, the plastic tape carried the instructions as a series of magnetic dots. The plastic tape was much stronger than the paper tape, which solved the problem of frequent tearing and breakage. However, it still left two other problems.The most important of these was that it was difficult or impossible to change the instructions entered on the tape. To make even the most minor adjustments in a program of instructions, it was necessary to interrupt machining operations and make a new tape. It was also still necessary to run the tape through the reader as many times as there were parts to be produced. Fortunately, computer technology became areality and soon solved the problems of NC associated with punched paper and plastic tape.The development of a concept known as direct numerical control (DNC) solved the paper and plastic tape problems associated with numerical control by simply eliminating tape as the medium for carrying the programmed instructions. In direct numerical control, machine tools are tied, via a data transmission link, to a host computer. Programs for operating the machine tools are stored in the host computer and fed to the machine tool an needed via the data transmission linkage. Direct numerical control represented a major step forward over punched tape and plastic tape. However, it is subject to the same limitations as all technologies that depend on a host computer. When the host computer goes down, the machine tools also experience downtime. This problem led to the development of computer numerical control.3 TurningThe engine lathe, one of the oldest metal removal machines, has a number of useful and highly desirable attributes. Today these lathes are used primarily in small shops where smaller quantities rather than large production runs are encountered.The engine lathe has been replaced in today’s production shops by a wide variety of automatic lathes such as automatic of single-point tooling for maximum metal removal, and the use of form tools for finish on a par with the fastest processing equipment on the scene today.Tolerances for the engine lathe depend primarily on the skill of the operator. The design engineer must be careful in using tolerances of an experimental part that has been produced on the engine lathe by a skilled operator. In redesigning an experimental part for production, economical tolerances should be used.Turret Lathes Production machining equipment must be evaluated now, more than ever before, this criterion for establishing the production qualification of a specific method, the turret lathe merits a high rating.In designing for low quantities such as 100 or 200 parts, it is most economical to use the turret lathe. In achieving the optimum tolerances possible on the turrets lathe, the designer should strive for a minimum of operations.Automatic Screw Machines Generally, automatic screw machines fall into several categories; single-spindle automatics, multiple-spindle automatics and automatic chucking machines. Originally designed for rapid, automatic production of screws and similar threaded parts, the automatic screw machine has long since exceeded the confines of this narrow field, and today plays a vital role in the mass production of a variety of precision parts. Quantities play an important part in the economy of the parts machined on the automatic screw machine. Quantities less than on the automatic screw machine. The cost of the parts machined can be reduced if the minimum economical lot size is calculated and the proper machine is selected for these quantities.Automatic Tracer Lathes Since surface roughness depends greatly on material turned, tooling , and feeds and speeds employed, minimum tolerances that can be held on automatic tracer lathes are not necessarily the most economical tolerances.In some cases, tolerances of 0.05mm are held in continuous production using but one cut . groove width can be held to 0.125mm on some parts. Bores and single-point finishes can be held to 0.0125mm. On high-production runs where maximum output is desirable, a minimum tolerance of 0.125mm is economical on both diameter and length of turn.机械加工介绍1.车床车床主要是为了进行车外圆、车端面和镗孔等项工作而设计的机床。

机械手设计英文参考文献原文翻译

机械手设计英文参考文献原文翻译

翻译人:王墨墨山东科技大学文献题目:Automated Calibration of Robot Coordinatesfor Reconfigurable Assembly Systems翻译正文如下:针对可重构装配系统的机器人协调性的自动校准T.艾利,Y.米达,H.菊地,M.雪松日本东京大学,机械研究院,精密工程部摘要为了实现流水工作线更高的可重构性,以必要设备如机器人的快速插入插出为研究目的。

当一种新的设备被装配到流水工作线时,应使其具备校准系统。

该研究使用两台电荷耦合摄像机,基于直接线性变换法,致力于研究一种相对位置/相对方位的自动化校准系统。

摄像机被随机放置,然后对每一个机械手执行一组动作。

通过摄像机检测机械手动作,就能捕捉到两台机器人的相对位置。

最佳的结果精度为均方根值0.16毫米。

关键词:装配,校准,机器人1 介绍21世纪新的制造系统需要具备新的生产能力,如可重用性,可拓展性,敏捷性以及可重构性[1]。

系统配置的低成本转变,能够使系统应对可预见的以及不可预见的市场波动。

关于组装系统,许多研究者提出了分散的方法来实现可重构性[2][3]。

他们中的大多数都是基于主体的系统,主体逐一协同以建立一种新的配置。

然而,协同只是目的的一部分。

在现实生产系统中,例如工作空间这类物理问题应当被有效解决。

为了实现更高的可重构性,一些研究人员不顾昂贵的造价,开发出了特殊的均匀单元[4][5][6]。

作者为装配单元提出了一种自律分散型机器人系统,包含多样化的传统设备[7][8]。

该系统可以从一个系统添加/删除装配设备,亦或是添加/删除装配设备到另一个系统;它通过协同作用,合理地解决了工作空间的冲突问题。

我们可以把该功能称为“插入与生产”。

在重构过程中,校准的装配机器人是非常重要的。

这是因为,需要用它们来测量相关主体的特征,以便在物理主体之间建立良好的协作关系。

这一调整必须要达到表1中所列到的多种标准要求。

机械加工外文翻译、中英文翻译、机械类外文文献翻译

机械加工外文翻译、中英文翻译、机械类外文文献翻译

外文原文:Machining TurningThe engine lathe, one of the oldest metal removal machines, has a number of useful and highly desirable attributes. Today these lathes are used primarily in small shops where smaller quantities rather than large production runs are encountered.The engine lathe has been replaced in today’s production shops by a wide variety of automatic lathes such as automatic tracer lathes, turret lathes, and automatic screw machines. All the advantages of single-point tooling for maximum metal removal, and the use of form tools for finished on a par with the fastest processing equipment on the scene today.Tolerances for the engine lathe depend primarily on the skill of the operator. The design engineer must be careful in using tolerances of an experimental part that has been produced on the engine lathe by a skilled operator. In redesigning an experimental part for production, economical tolerances should be used.Turret LathesProduction machining equipment must be evaluated now, more than ever before, in terms of ability to repeat accurately and rapidly. Applying this criterion for establishing the production qualification of a specific method, the turret lathe merits a high rating.In designing for low quantities such as 100 or 200 parts, it is most economical to use the turret lathe. In achieving the optimum tolerances possible on the turret lathe, the designer should strive for a minimum of operations.Automatic Screw MachinesGenerally, automatic screw machines fall into several categories; single-spindle automatics, multiple-spindle rapid, automatic chucking machines. Originally designed for rapid, automatic production of screws and similar threaded parts, the narrow field, and today plays a vital role in the mass production of a variety of precision parts. Quantities play an important part in the economy of the parts machined on the automatic screw machine. The cost of the parts machined can be reduced if the minimum economical lot size is calculated and the proper machine is selected for these quantities.Automatic Tracer LathesSince surface roughness depends greatly upon material turned, tooling, and feeds and speeds employed, minimum tolerances that can be held on automatic tracer lathes are not necessarily the most economical tolerances.In some cases, tolerances of ±0.05mm are held in continuous production using but one cut. Groove width can be held to ±0.0125mm on some parts. Bores and single-point finishes can be held to ±0.0125mm. On high-production runs where maximum output is desirable, a minimum tolerance of ±0.125mm is economical on both diameter and length of turn.MillingWith the exceptions of turning and drilling, milling is undoubtedly the most widely used method of removing metal. Well suited and readily adapted to the economical production of any quantity of parts, the almost unlimited versatility of milling process merits the attention and consideration of designers seriously with the manufacture of their product.As in any other process, parts that have to be milled should be designed with economical tolerances that can be achieved in production mill. If the part is designed with tolerances finer than necessary, additional operations will have to be added to achieve these tolerances-and this will increase the cost of the part.GrindingGrinding is one of the most widely used methods of finishing parts to extremely close tolerances and fine surface finishes. Currently, there are grinders for almost every type of grinding machine required. Where processing costs are excessive, parts redesigned to worthwhile. For example, wherever possible the production economy of centerless grinding should be taken advantage of by proper design consideration.Although grinding is usually considered a finishing operation, it is often employed as a complete machining process on work which can be ground down from rough condition without being turned or otherwise machined. Thus many types of forgings and other parts are finished completely with the grinding wheel at appreciable savings of time and expense.Classes of grinding machines include the following: cylindrical grinders, centerless grinders, internal grinders, surface grinders, and tool expense.The cylindrical and centerless grinders or taper work; thus splines, shafts, and similar parts are ground on cylindrical machines either of the common-center type orthe centerless machine.Thread grinders are used for grinding precision threads for thread gages, and threads on precision parts where the concentricity between the diameter of the shaft and pitch diameter of thread must be held to close tolerances.The internal grinders are used for grinding of precision holes, cylinder bores, and similar operations where bores of all kinds are to be finished.The surface grinders are for finishing all kinds of flat work, or work with plain surfaces which may be operated upon either by the edge of a wheel or by the face of a grinding wheel. These machines may have reciprocating or rotating tables.译文:机械加工金属切削机床中最早的一种是普通车床,当今仍有许多有用的特性。

机械手臂外文翻译

机械手臂外文翻译

外文出处:《Manufacturing Engineering and Technology—Maching》附件1:外文原文ManipulatorFirst, an overview of industrial manipulatorWith the rapid development of China's industrial production, especially the reform and openingup after the rapid increase in the degree of automation to achieve the workpiece handling, steering,transmission or operation of brazing, spray gun, wrenches and other tools for processing and assembly operations since, which has more and more attracted our attention. Robot is to imitate the manual part of the action, according to a given program, track and requirements for automatic capture, handling or operation of the automatic mechanical devices.Production of mechanical hand can increase the automation level of production and labor productivity; can reduce labor intensity, ensuring product quality, to achieve safe production; particularly in the high-temperature, high pressure, low temperature, low pressure, dust, explosive, toxic andradioactive gases such as poor environment can replace the normal working people. Here I would like to think of designing a robot to be used in actual production.Why would a robot designed to provide a pneumatic power:1." Air inexhaustible, used later discharged into the atmosphere, does not require recycling and disposal, do not pollute the environment. (Concept of environmental protection)2." Air stick is small, the pipeline pressure loss is small (typically less than asphalt gas path pressure drop of one-thousandth), to facilitate long-distance transport.5." The air cleaner media, it will not degenerate, not easy to plug the pipeline. But there are also places where it fly in the ointment:2." As the use of low atmospheric pressure, the output power can notbe too large; in order to increase the output power is bound to the structure of the entire pneumaticsystem size increased.Air inexhaustible, used later discharged into the atmosphere, without recycling and disposal, donot pollute the environment. Accidental or a small amount of leakage would not be a serious impact on production. Viscosity of air is small, the pipeline pressure loss also is very small, easy long-distance transport.Compared with the hydraulic transmission, and its faster action and reaction, which is one of the outstanding merits of pneumatic.1.Implementing agencies2. Transmission3. Control SystemRobots are generally divided into three categories:Main features:First, mechanical hand (the upper and lower material robot, assembly robot, handling robot, stacking robot, help robot, vacuum handling machines, vacuum suction crane, labor-saving spreader, pneumatic balancer, etc.).Second, cantilever cranes (cantilever crane, electric chain hoist crane, air balance the hanging, etc.)Third, rail-type transport system (hanging rail, light rail, single girder cranes, double-beam crane)Four, industrial machinery, application of hand(3) The working conditions may be poor, monotonous, repetive easy to sub-fatigue working environment to replace human labor.(4) May be in dangerous situations, such as military goods handling, dangerous goods and hazardous materials removal and so on..(5) Universe and ocean development.(6), military engineering and biomedical research and testing.Help mechanical hands:附件1:外文资料翻译译文机械手机械手是近几十年发展起来的一种高科技自动化生产设备。

机械加工中英文资料外文翻译文献

机械加工中英文资料外文翻译文献

机械加工中英文资料外文翻译文献机械加工介绍作为产生形状的一种加工方法,机械加工是所有制造过程中最普遍使用的而且是最重要的方法。

机械加工过程是一个产生形状的过程,在这过程中,驱动装置使工件上的一些材料以切屑的形式被去除。

尽管在某些场合,工件无承受的情况下,使用移动式装备来实现加工,但大多数的机械加工是通过既支承工件又支承刀具的装备来完成。

加工知识的过程有两个方面。

小批生产低费用。

对于铸造、锻造和压力加工,每一个要生产的具体工件形状,即使是一个零件,几乎都要花费高额的加工费用。

靠焊接来产生的结构形状,在很大程度上取决于有效的原材料的形式。

一般来说,通过利用贵重设备而又无需特种加工条件下,几乎可以以任何种类原材料开始,借助机械加工把原材料加工成任意所需要的结构形状,只要外部尺寸足够大,那都是可能的。

因此对于生产一个零件,甚至当零件结构及要生产的批量大小上按原来都适于用铸造、锻造或者压力加工来生产的,但通常宁可选择机械加工。

严密的精度和良好的表面光洁度,机械加工的第二方面用途是建立在高精度和可能的表面光洁度基础上。

许多零件,如果用别的其他方法来生产属于大批量生产的话,那么在机械加工中则是属于低公差且又能满足要求的小批量生产了。

另方面,许多零件靠较粗的生产加工工艺提高其一般表面形状,而仅仅是在需要高精度的且选择过的表面才进行机械加工。

例如内螺纹,除了机械加工之外,几乎没有别的加工方法能进行加工。

又如已锻工件上的小孔加工,也是被锻后紧接着进行机械加工才完成的。

1 基本的机械加工参数切削中工件与刀具的基本关系是以以下四个要素来充分描述的:刀具的几何形状,切削速度,进给速度,和背吃刀量。

切削刀具必须用一种合适的材料来制造,它必须是强固、韧性好、坚硬而且耐磨的。

刀具的几何形状——以刀尖平面和刀具角为特征——对于每一种切削工艺都必须是正确的。

切削速度是切削刃通过工件表面的速率,它是以每分钟英寸来表示。

为了有效地加工,切削速度高低必须适应特定的工件——刀具配合。

成组技术外文文献翻译、机械加工工艺方面外文翻译、中英文翻译

成组技术外文文献翻译、机械加工工艺方面外文翻译、中英文翻译

成组技术外文文献翻译、机械加工工艺方面外文翻译、中英文翻译外文原文:Group TechnologyGroup technology GT is a very important methodology in today’s manufacturing significant. The reason for this is that group technology, when utilized to its fullest extent, can affect most areas of manufacturing, including design, process planning, scheduling, routing, factory layout, procurement, quality assurance, machine tool utilization, tool design, producibility engineering, and assembly.1 IntroductionGroup technology is a simple concept that is used widely in various forms. For a variety of reasons, it is logical to collect and associate things based on features that they have in common. This approach is familiar to everyone for plants, animals, and chemicals. Such organizational structures have also been used for hardware and other obviously similar products within the manufacturing world. Group technology represents structured categorization of particular value to the manufacturing community. It is already widely used; perhaps 50% of manufacturing companies use some form of GT.Bath or lot production suffers from many inefficiencies due to part variety and the general-purpose nature flexibility requirements of machine tools in use on the shop floor. In fact, a Cincinnati Milacron study showed that 95% of the time a part spends on the shop floor is idle time, the other 5% is divided between setup and teardown of the machine tool. The future breakdown of the 5% of on-machine time was developed by Dunlap. Based on this estimate, only 24% of the 5% is time which actually involves cutting; i.e., parts are being machined during only 1.2% of the total time spent in manufacturing. Group technology makes possible the application of several methods of analysis which assist in making batch production more efficient by reducing part variety via part families and improving throughout and work-in-process inventory. It is for this reason that group technology is becoming a key concept in manufacturing.2 DefinitionManufacturing philosophy to some, fundamental building block for more efficient production to most, group technology is a simple concept which utilizes/exploits similarities for more efficient production in bath manufacturing. Group technology usually classifies parts in the form of a code which is assigned to each part based on its shape or production processing characteristics. In use, coding parts assists in the control of planning and processing. This added control, which exploits similarities, leads to economies in the overall manufacturing process.The actual operator on the shop floor may never know this code, but designers, engineers, and planners find it an invaluable tool, allowing them to do more productive and useful analysis.3 General BenefitsIn practice, group technology is really nothing more than an information/indexing system. However, because of its focus on part design and processing similarities, analysis is possible which creates manufacturing economies of scale, encourages standardization, and eliminates duplication in design and process planning.Mass production enjoys the benefits of what are called economies of scale. Economies of scale achieved by processing a large number of parts over the same workstations or equipment. This result in less labor per part, more efficient machine utilization, and a faster turnover of inventory. Batch production in the past has not enjoyed economies of scale because of the need to remain flexible for changing part types and products. However, by grouping parts into families based on their similarities, much of the manufacturing processing of these parts can be done on entire families. This increases the number of parts processed with the same equipment conditions, thereby permitting some of the economies of scale of mass production.Standardization is achieved in both design and part process planning. Essentially, group technology creates an efficient design retrievalsystem since parts have been code based on shape. Similar design are located quickly and aspects such as part tolerances and producibility can be better understood, more easily applied, and kept more consistent from design to design. When standardized process planes are developed and include in the group technology code, new parts and repeat orders can follow similar processing routes through the shop floor, simplifying scheduling and flow through the shop.Group technology eliminates duplication. In both design and process planning, there is much les “reinventing of the wheel” since there is sufficient retrieval of standard designs and process plans.4 Application of GT in Process PlanningAlthough many areas of business operation can benefit from GT, manufacturing, the original application area, continues to be the place where GT is most widely practiced. Two important tasks in manufacturing planning and manufacturing engineering are scheduling and process planning. Job scheduling sets the order in which parts should be processed and can determine expected completion times for operation and orders. Process planning, on the other hand, decides the sequence of machines to which a part should be routed when it is manufactured and the operations that should be performed at each machine. Process planning also encompasses tool, jig, and fixture selection as well as documentation of the time standards run and setup time associated with each operation.Process planning can directly affect scheduling efficiency and, thus, many of the performance measures normally associated with manufacturing planning and control.Some of the largest productivity gains have been reported in the creation of process plans that determine how a part should be produced. With computer-aided process planning CAPP and GT it is possible to standardize such plans, reduce the number of new ones, and store, retrieve, edit, and print them out very efficiently.Process planning normally is not a formal procedure. Each time a new part is designed, a process planner will look at the drawing and decide which machine tools should process the parts, which operations should be performed, and in what sequenceThere are two reasons why companies often generate excess process plans. First, most companies have several planners, and each may come up with a different process plan for the very same part, Second, process; planning is developed with the existing configuration of machine tools in mind. Over time, the addition of new equipment will change the suitability of existing plans. Rarely are alterations to old process plans made. One company reportedly had 477 process plans developed for 523 different gears. A close look revealed that more than 400 of the plans could be eliminated. Process planning using CAPP can avoid these problems.Process planning with CAPP takes two different forms;With variant-based planning, one standardized plan and possibly one or more alternate plans is created and stored for each part family. When the planner enters the GT code for a part, the computer will retrieve the best process plan. If none exists, the computer will search for routings and operations for similar parts. The planner can edit the scheme on the CRT screen before printout.With generative planning, which can but does not necessarily rely on coded and classified parts, the computer forms the process plan through a series of questions the computer poses on the screen. The end product is also a standardized process plan, which is the best plan for a particular part.The variant-based approach relied on established plans entered into the computer memory, while the generative technique creates the process plans interactively, relying on the same logic and knowledge that a planner has. Generative process planning is much more complex than variant-based planning; in fact, it approaches the art of artificial intelligence. It is also much more flexible; by simply changing the planning logic, for instance, engineers can consider the acquisition of a new machine tool. With the variant-based method, the engineers must look over and possibly correct all plans that the new tool might affect.CAPP permits creation and documentation of process plans in a fraction of the time it would take a planner to do the work manually and vastlyreduces the number of errors and the number of new plans that must be stored. When you consider that plans normally are handwritten and that process planners spend as much as 30% of their time preparing them, CAPP’S contribution of standardized formats for plans and more readable documents is important. CAPP, in effect, functions as advanced text editor. Furthermore, it can be linked with an automated standard data system that will calculate and record the run times and the setup times for each operation.CAPP can lead to lower unit costs through production of parts in an optimal way. That is, cost savings come not only via more efficient process planning but also through reduced labor, material, tooling, and inventory costs.GT can help in the creation of programs that operate numerically NC machinery, n area related to process planning. For example, after the engineers at Otis Engineering had formed part families and cells, the time to produce a new NC tape dropped from between 4 and 8 hours to 30 minutes. The company thereby improved the potential for use of NC equipment on batches with small manufacturing quantities.编者:吴非晓等《机械英语2》外语教学与研究出版社2002.7译文:成组技术在当今的制造环境下,尤其是对批量生产来说,成组技术(GT)是一个很重要的生产方式而且它正变得越来越重要。

机械专业外文文献翻译

机械专业外文文献翻译

利用CAD / CAM/ CAE系统开发操纵机器人H.S.李*,S.E.张华为技术学院,电力机械工程,云林,台湾,中国摘要在这项研究中,需要开发用于机器人操作臂的CAD/CAE/CAM集成系统。

通过变换矩阵,利用D-H坐标系变换方法对机器人的位姿进行分析,我们使用MATAB软件对其进行计算。

一般来说,利用PRO/E对机械臂的参数进行实体化建模,用Pro / Mechanical软体模拟动态仿真和工作空间,MasterCAM用来实现切削模拟仿真,而最终的模型用CNC数控铣床制造出来。

这样,一个用于机器人操作臂的CAD/CAE/CAM集成系统便开发出来了。

我们用一个范例来验证这种设计,分析以及制造的结果的正确性。

该集成系统不仅促进机器人的生产自动化功能,而且还简化了机械臂的CAD / CAE / CAM的分析过程。

这种集成系统是用于开发一个实用的计算机辅助机构设计课程的教学辅助工具。

©2003由Elsevier B.V.出版关键词:CAD / CAE/ CAM;机械臂;Denavit,Hartenberg坐标系变换引言许多研究已涉及到的CAD / CAE/ CAM集成系统的原理。

吕[1]讨论了平面五杆受电弓的运动学分析并设计制造了基于此弓的机械手。

通过研究五杆受电弓的运动性能,设计出一款简单的控制器来对机械手进行控制。

李某和陈某[2]描述了一个自动升降轮椅固定装置内的全尺寸货车的开发。

开发的过程中,包括机制的概念设计,运动仿真,工程分析,原型开发和测试。

周[3]使用参数化CAD系统的实体模型表达设计理念。

首先开发的是模具,其次是基于CAM系统的模型。

通过与产业界的合作,对试模调整,粉末形成,烧结,烧结后处理在专业的粉末冶金工厂进行了实验。

徐[4]在UG2通用CAD / CAM系统的基础上通过将注塑模具的CAD/CAM软件与注塑模具CAE软件集成建立了一个注塑用CAD / CAE/ CAM系统。

机械专业英语短文带翻译

机械专业英语短文带翻译
设计与分析
机械工程师的关键责任之一是设计与分析机械系统。这涉及使用计算机辅助设计(CAD)软件创建系统的详细三维模型,并在不同条件下模拟其性能。通过分析作用于系统组件的力、应力和振动,机械工程师可以优化设计,确保安全、可靠和高效。
Case Study: Designing an Automotive Suspension System
案例研究:汽车悬挂系统设计
例如,让我们考虑一下汽车悬挂系统的设计。悬挂系统负责在保持车辆稳定控制的同时提供平稳的行驶。机械工程师使用CAD软件设计悬挂系统的各个组件,例如弹簧、减振器和控制臂。
在完成初始设计后,工程师将使用有限元分析(FEA)软件对系统进行分析。这样可以模拟系统在不同的道路条件下(如坑洼或减速带)的行为。通过分析组件中的应力和位移,工程师可以确定潜在的设计问题,并进行必要的修改,以改善悬挂系统的性能和安全性。
For example, let's consider the design of an automotive suspension system. A suspension system is responsible for providing a smooth ride while maintaining the stability and control of the vehicle. A mechanical engineer would use CAD software to design the various components of the suspension system, such as the springs, dampers, and control arms.
After the initial design is complete, the engineer would then analyze the system using finite element analysis (FEA) software. This allows them to simulate the behavior of the system under different road conditions, such as potholes or speed bumps. By analyzing the stresses and displacements in the components, the engineer can identify potential design issues and make necessary modifications to improve the performance and safety of the suspension system.

机械制造专业英语文章

机械制造专业英语文章

机械制造专业英语文章篇一:机械专业英语文章中英文对照Types of Materials材料的类型Materials may be grouped in several ways. Scientists often classify materials by their state: solid, liquid, or gas. They also separate them into organic (once living) and inorganic (never living) materials.材料可以按多种方法分类.科学家常根据状态将材料分为:固体.液体或气体.他们也把材料分为有机材料(曾经有生命的)和无机材料(从未有生命的).For industrial purposes, materials are divided into engineering materials or nonengineering materials. Engineering materials are those used in manufacture and become parts of products.就工业效用而言,材料被分为工程材料和非工程材料.那些用于加工制造并成为产品组成部分的就是工程材料.Nonengineering materials are the chemicals, fuels, lubricants, and other materials used in the manufacturing process, which do not become part of the product.非工程材料则是化学品.燃料.润滑剂以及其它用于加工制造过程但不成为产品组成部分的材料.Engineering materials may be further subdivided into: ①Metal ②Ceramics ③Composite ④Polymers, etc.工程材料还能进一步细分为:①金属材料②陶瓷材料③复合材料④聚合材料,等等.Metals and Metal Alloys金属和金属合金Metals are elements that generally have good electrical and thermal conductivity. Many metals have high strength, high stiffness, and have good ductility.金属就是通常具有良好导电性和导热性的元素.许多金属具有高强度.高硬度以及良好的延展性.Some metals, such as iron, cobalt and nickel, are magnetic. At low temperatures, some metals and intermetallic compounds become superconductors.某些金属能被磁化,例如铁.钴和镍.在极低的温度下,某些金属和金属化合物能转变成超导体.What is the difference between an alloy and a pure metal? Pure metals are elements which come from a particular area of the periodic table. E_amples of pure metals include copper in electrical wires and aluminum in cooking foil and beverage cans.合金与纯金属的区别是什么?纯金属是在元素周期表中占据特定位置的元素.例如电线中的铜和制造烹饪箔及饮料罐的铝.Alloys contain more than one metallic element. Their properties can be changed by changing the elements present in the alloy. E_amples of metal alloys include stainless steel which is an alloy of iron, nickel, and chromium; and gold jewelry which usually contains an alloy of gold and nickel.合金包含不止一种金属元素.合金的性质能通过改变其中存在的元素而改变.金属合金的例子有:不锈钢是一种铁.镍.铬的合金,以及金饰品通常含有金镍合金.Why are metals and alloys used? Many metals and alloys have high densities and are used in applications which require a high mass-to-volume ratio.为什么要使用金属和合金?许多金属和合金具有高密度,因此被用在需要较高质量体积比的场合.Some metal alloys, such as those based on aluminum, have low densities and are used in aerospace applications for fuel economy. Many alloys also have high fracture toughness, which means they can withstand impact andare durable.某些金属合金,例如铝基合金,其密度低,可用于航空航天以节约燃料.许多合金还具有高断裂韧性,这意味着它们能经得起冲击并且是耐用的What are some important properties of metals?Density is defined as a material’s mass divided by its volume. Most metals have relatively high densities, especially compared to polymers.金属有哪些重要特性?密度定义为材料的质量与其体积之比.大多数金属密度相对较高,尤其是和聚合物相比较而言.Materials with high densities often contain atoms with high atomic numbers, such as gold or lead. However, some metals such as aluminum or magnesium have low densities, and are used in applications that require other metallic properties but also require low weight.高密度材料通常由较大原子序数原子构成,例如金和铅.然而,诸如铝和镁之类的一些金属则具有低密度,并被用于既需要金属特性又要求重量轻的场合.Fracture toughness can be described as a material’s ability to avoid fracture, especially when a flaw is introduced. Metals can generally contain nicks and dents without weakening very much, and are impact resistant. A football player counts on this when he trusts that his facemask won’t shatter.断裂韧性可以描述为材料防止断裂特别是出现缺陷时不断裂的能力.金属一般能在有缺口和凹痕的情况下不显著削弱,并且能抵抗冲击.橄榄球运动员据此相信他的面罩不会裂成碎片.Plastic deformation is the ability of bend or deform before breaking. As engineers, we usually design materials so that they don’t deform under normal conditions. You don’t want your car to lean to the east after a strong west wind.塑性变形就是在断裂前弯曲或变形的能力.作为工程师,设计时通常要使材料在正常条件下不变形.没有人愿意一阵强烈的西风过后自己的汽车向东倾斜.However, sometimes we can take advantage of plastic deformation. The crumple zones in a car absorb energy by undergoing plastic deformation before they break.然而,有时我们也能利用塑性变形.汽车上压皱的区域在它们断裂前通过经历塑性变形来吸收能量.The atomic bonding of metals also affects their properties. In metals, the outer valence electrons are shared among all atoms, and are free to travel everywhere. Since electrons conduct heat and electricity, metals make good cooking pans and electrical wires.金属的原子连结对它们的特性也有影响.在金属内部,原子的外层阶电子由所有原子共享并能到处自由移动.由于电子能导热和导电,所以用金属可以制造好的烹饪锅和电线.It is impossible to see through metals, since these valence electrons absorb any photons of light which reach the metal. No photons pass through.因为这些阶电子吸收到达金属的光子,所以透过金属不可能看得见.没有光子篇二:机械专业英语作文1Mechanical engineeringEngineering Science in life are widely used, especially in mechanical engineering in the application of life is almost throughout life in all its aspects, to automobiles, aircraft, small electric fans, umbrella, all of these and related machinery. The project includes many subjects, but the mechanical engineering is one of the most important subjects, not only because of our life and it is closely related to, but with the progress of the times, people have to rely on mechanical engineering products, in automation today, machine instead of many this is the part of the human labor, improve the efficiency and save time.As a result of mechanical engineering in every aspect of life, therefore, as an engineer, be faced with a great many challenges, inaddition to a solid with knowledge, but also keep pace with the times, familiar with the machinery and related software, can be very good use of software, and as a an engineer, we should try our best to design and produce and closely related to the life of the machine, and can in life play a real role, also have only such, we address and remission now social needs, therefore, the mechanical engineering in the future social development, will play the important role, especially China s case, the industry also is not very developed, machinery can be greater development space.Before the industrial revolution, machinery is mostly wood structure, wood made by hand by. The development of social economy, the demand for mechanical products. The bulk of the production increasing and precision processing technology progress, promote the mass production method ( interchangeability of parts production, professional division of labor and cooperation, water processing lines and assembly lines ) formation. Study of mechanical products in the manufacturing process, especially when used in the pollution of the environment and natural resources e_cessive consumption problems and their treatment measures. This is a modern mechanical engineering is an especially important task to grow with each passing day, and its importance.Application of mechanical products. This includes selection, ordering, acceptance, installation, adjustment, operation, maintenance, repair and transformation of the industrial use of machinery and complete sets of machinery and equipment, to ensure that the mechanical products in the long-term use of reliability and economy. As a student, we are now the most important to learn professional knowledge, only in this way, can we later life and learning, to do its part.机械工程工程科学在生活中应用广泛,特别是机械工程在生活中的应用几乎就是遍布了生活中的各个方面,大到汽车.飞机,小到电风扇.雨伞,这些都和机械有关.工程包括很多科目,但是机械工程是最重要的科目之一,不仅是因为它和我们的生活关系密切,而是随着时代的进步,人们已经依赖上机械工程制造出来的产品,而在自动化的今天,机器代替了许多本该是人类该做的部分劳动,提高了效率和节约了时间.由于机械工程遍布了生活的每一个方面,因此,做为一个工程师,要面临很大且很多的挑战,除了要具备扎实的装也知识外,还要与时俱进,熟悉和机械有关的软件,并要能很好的运用软件,而作为的一个工程师,我们要尽量设计和制造出和生活密切相关的机器,并能够在生活中起到真正的作用,也只有这样,我们解决和缓解现在社会上的需要,因此,机械工程在今后的社会的发展中,还是会起这重要的作用,特别是我国的这样的情况,工业还不是很发达的情况下,机械可发展的空间更大.工业革命以前,机械大都是木结构的,由木工用手工制成.社会经济的发展,对机械产品的需求猛增.生产批量的增大和精密加工技术的进展,促进了大量生产方法(零件互换性生产.专业分工和协作.流水加工线和流水装配线等)的形成.研究机械产品在制造过程中,尤其是在使用中所产生的环境污染和自然资源过度耗费方面的问题及其处理措施.这是现代机械工程的一项特别重要的任务,而且其重要性与日俱增.机械产品的应用.这方面包括选择.订购.验收.安装.调整.操作.维护.修理和改造各产业所使用的机械和成套机械装备,以保证机械产品在长期使用中的可靠性和经济性.做为学生,我们现在最重要的学好专业知识,只有这样,我们才能以后是生活和学习中,才能尽自己的一份力量.篇三:机械类专业英语课文参考翻译_pdf第一课该○翻译整理于网络,It is known that metals are very important in our life. Metals have the greatest importance for industry. All machines and other engineering[7endVi5niEriN] constructions have metal[5metl] parts; some of them consistonly of metal parts.众所周知,金属在我们的生活中是非常重要的,金属对于工业而言是有巨大的重要性,所有机器和其他工程构造都有金属零部件,其中一些还只能由金属组成.There are two large groups of metals:1) Simple metal- more or less pure chemical elements[5elimEnt]2) Alloys[5AlCi]- materials consisting of a simple metal combined with some other elements.有两大类金属:(1)纯金属——或多或少的金属元素(2)合金——组成纯金属的原料结合其他元素.About two thirds of all elements found in the earth are metals, but not all metals may be used in industry. Those metals which are used in industry are called engineering metals. The most important engineering metal is iron[5aiEn], which in the form of alloys with carbon[5kB:bEn] and other elements, finds greater use than any other metal. Metals consisting of iron combined with some other elements are known as ferrous[5ferEs] metals; all the other metals are called nonferrous[5nCn5ferEs] metals. The most importantnonferrous metal are copper[5kCpE], aluminum[E5lju:minEm], lead[li:d], zinc[ziNk], tin[tin], but all these metals are used much less than ferrous metals, because the ferrous metals are much cheaper.第 _._._._. 在地球上发现的所有元素中,大约三分之二是金属元素,但是并不是所有的金属都能够用于工业上.那些金属—我们用于工业上的金属—被称为工程金属,最重要的工程金属那就是铁,铁跟碳和其他元素结合形成合金的那些金属比其他金属发现有更大用途.铁与别的其他某些元素相结合而组成的金属称为黑色金属,此外所有其他金属都称为有色金属,最重要的有色金属是---铜,铝.铅.锌.锡.但是使 _课的翻译暂时没有. 用这些有色金属比使用黑色金属要少的多,因为黑色金属便宜得多.Engineering metals are used in industry in the form of alloys because the properties[5prCpEti] of alloys are much better than the properties of pure[pjuE] metals. Only aluminum may be largely used in the form of simple metal. Metals have such a great importance because of their useful properties or their strength, hardness, 翻译标准.请放心使 and their plasticity[plAs5tisiti].因为合金的特性比纯金属的好,所以工程金属以合金的形式用于工业,只有铝以纯金属的形式被广泛应用.金属因为具有强度.硬度和可塑性而发挥着特别重要的作用. 用.Different metals are produced in different ways, but almost all the metal are found in the forms of metal ore[C:(r)] (iron ore, copper ore, etc[et cetra].)以不同的方法生产不同的合金但是几乎所有的金属都是以金属矿的形式(铁矿.铜矿)被发现的.The ore is a mineral[5minErEl] consistence of a metal combined with some impurities[im5pjuEriti]. Inorder to produce a metal from some metal ore, we must separate these impurities from the metal that is done by metallurgy[me5tAlEdVi].矿石是一种由金属与某些杂质相混合而组成的矿物质,为了用金属矿石来生产出一种金属,我们必须把杂质从金属矿中分离出去,那就要靠冶炼来实现. Te_t:12. Plastics and Other MaterialsTe_t:Plastics[5plAstik, plB:stik] have specific properties which may makeik] acids[5AsId], such as sulphuric[sQl5fjuErik] acid and hydrochloric[7haidrEu5klC:rik] acid. Plastics tend to be resistant to these acids, but can have dissolved or deformed by solvent[5sClvEnt], suchas carbon tetrachloride[7tetrE5klC:raid], which have the same carbon base as the plastics. Color must be applied to the surface of metals, whereas it can be mi_ed in with plastics. Metals are more rigid[5ridVid] than most plastics while plastics are very light, with a specific[spi5sifik] gravity normally between 0.9 and 1.8. Most plastics do not readily[5redili] conduct[5kCndQkt] heat or electricity[Ilek5trIsItI]. Plastics soften slowly and can easily be shaped[Feip] when they are soft.塑料具有特殊的性能.对于某种用途而言,这些性能使得塑料比传统材料更为可取.例如,跟金属相比较,塑料既有优点也有缺点.金属易受到无机酸的腐蚀,如硫酸和盐酸,塑料能抵抗这些酸的腐蚀,但可被溶剂所洛解或引起变形,例如溶剂四氯化碳与塑料具有同样的碳基.颜色必定只能涂到金属的表面.而它可以跟塑料混合为一体.金属比大多数塑料刚性要好,而塑料则非常之轻,通常塑料密度在0. 9-1. 8之间.大多数塑料不易传热导电.塑料能缓慢软化,而当其还是在软的状态时,能容易成形.It is their plasticity[plAs5tisiti] at certain temperatures[5temprItFE(r)] which gives plastics their main advantages over many other materials. It permits the large-scale production of molded[mEuld] articles, such as containers, at an economic unit cost, where other materials require laborious[lE5bC:riEs] and often costly processes involving cutting, shaping, machining, assembly[E5sembli] and decoration.在某一温度下塑料是处于塑性状态的,这就使塑料具备超过许多其他材料的主要优点.它容许大量生产单位成本低廉的模制式器件,例如,各种容器.于此,若用其他材料则需要大量劳力和往往需要很费钱的加工工艺,比如,切割.成形.加工.装配和装饰.Plastics not only replace other materials. Their properties can be e_ploited[iks5plCit] for entirely[In5taIElI] new applications. For e_ample, plastics heart valves[vAlv] and other human spare parts have make possible many recent developments in surgery[5sE:dVEri].塑料不仅可以代替其他材料,而且它的特性能被开拓应用于全新领域,比如:随着最近外科手术的发展可能做成塑料的心脏瓣膜和其他人类的器官.There is no single plastics material which is suitable for all applications. It is important that the most suitable plastics should be chosen, and if necessary adapted[E5dApt], for each particular requirement. It is also important that the properties of the plastics chosen should be e_ploited to the best advantage.没有一种纯塑料材料适用于各个领域,如果有必要改进,对于每个有特殊要求的来说选择最合适的塑料是最重要的,被选择的塑料材料的特性被开拓得到更好的应用也是很重要的.A plastics article may need to differ in design and appearance from a similar article made from another material such as metal or wood. This is due[ ] not only to the properties of plastics but also to thetechniques[tek5ni:k] employed in fabricating[5fAbrikeit] plastics. These techniques include injection[in5dVekFEn] molding[5mEuldiN], blow molding, compression molding, e_trusion[eks5tru:VEn] and vacuum[5vAkjuEm] forming.塑料器件可能需要用其他材料比如:与金属或木材制作的类似的器件从设计和外观上加以区别,这不仅是由于塑料性能不同的原因,也是由于制造塑料产品所用的技术不同所致,这些技术包括:注塑.模制.吹塑模制.压模.挤压和真空成型等.23. Casting and Die-Casting AlloysTe_t:Casting[5kB:stiN] is one of the oldest metal working techniques known to man. Our country made metal castings as early as _ B.C., and the process used then is not much different in principle[5prinsEpl] from the one used today.铸造是入类所掌握的最古老的金属加工技术之一.我国早在公元前 _年就已把金属制成铸件,而所使用的工艺从原理上和今天的工艺没有多大的区别.Foundry[5faundri]processesconsistof makingmolds,preparingandmelting[melt]themetal, pouring[pC:, pCE] the metal into the molds, and cleaning the castings. The product of the foundry is a casting, which may vary from a fraction[5frAkFEn] of a kilogram to several hundred tons. It may also vary in composition[kCmpE5ziFEn] as practically all metals and alloys can be cast.铸造工艺由制模.备料和金属熔炼,金属液浇注入模和铸件清砂等.铸造的产品是铸件,铸件可能从零点几公斤到几百吨范围变化.实际上所有金属在成分上也是变化的,而合金也可以铸造.The metals most frequently cast are iron, steel, aluminum and so on. Of these, iron, because of its low melting point, low price and ease of control, is outstanding for its suitability[9sjU:tE`bIlEtI] for casting and is used far more than all the others.最常铸造的金属是铸铁.钢.铝等等.这些金属中,铸铁,由于其低熔点,低价格和易控制,因而其铸造适应性是最突出的,而且使用也远比所有其他金属多.Castingisawidelyusedmethodofproducingmetalproducts,particularlythosew hichareintricate[5intrikit]. Since molten materials will readily take the shape of the container into which they are poured, it is nearly as easy to cast fairly comple_ shapes as to produce simple forms.由于熔融的物料能容易取得被浇注进去的容器(模型)的形状,因此,几乎像生产简单形状铸件那样颇为容易地铸造出复杂形状的铸件.The place where the metals are cast is called a foundry. The most important of cast metals is cast iron which is made from pig iron by remelting it in a special melting furnace[5fE:nis] called a cupola[5kju:pElE].铸造金属的地方叫做铸造车间.最重要的铸造金属是铸铁,铸铁是用生铁在一个特殊的熔炉—叫冲天炉的炉子中重新熔炼而制造出来的.From the cupola, the cast iron flows into ladles[5leidl] of different size, and from these ladles it is poured into the molds.从冲天炉中出来的铁水流入到不同规格的铁水包中,并从这些铁水包中被浇注到模型中.The molds may be of two kinds: sand molds and metal molds. A metal mold consists of two hollow parts which should be joined for pouring the metal into it. The inside of this mold is covered with carbon or graphite[5 Afait] so that the metal could not stick[stik] to the wall of the form. When the metal has solidlocks of steel produced by pouring the metal into these molds are called ingots and the process is called ingot casting.模型有两种类型:砂模和金属模.金属模是由两个中空的部件组成,它们应被联结在一起以便将金属液浇入模箱中.这模腔的内侧是要涂以碳粉或石墨,因此金属不玫于粘贴到型腔壁上口当金属液凝固后,这中空的型箱部件被打开并取出铸件.也有一种特殊模型,在该模型中可以铸造大型钢块.这些模型通常用铸铁米制造,并被称为锭模.而浇注金属液到这些模子中生产出的钢块被称为钢锭.该工艺过程叫锭铸.A relatively[5relEtIvlI] wide range of nonferrous alloys can be die-cast. The principal base metals used, in order to commercial importance, are zinc, aluminum, copper, magnesium[mA ni:zjEm], lead, and tin. The alloys may be further classified as low-temperature alloys and high-temperature alloys; those having a casting 3temperature below 538C, such as zinc, tin, and lead, are in the low-temperature class. The low-temperature alloys have the advantages of lower cost of production and lower die-maintenance[5meintinEns] costs. As the casting temperature increases, alloy and other special steels in the best treated condition are required to resist the erosion[i5rEuVEn] and heat checking[5tFekiN] of die surface. The destructive[dis5trQktiv] effect of high temperaturesonthedies hasbeentheprincipalfactorinretarding[ri5tB:d] thedevelopmentof high-temperature die castings.相当大量的有色金属合金可以进行模铸}h 用的主要而基本的金属,按其在工业上应用的重要性的顺序是锌.铝.铜.锰.铅和锡.这些合金可以进一步进行分类为低温类合金和高温类合金.铸造温度低于538℃的那些合金,就像锌.锡和铅,是属于低温类合金.低温类合金具有低生产成本和低的模具维修费用等优点.当铸造温度上升时,需要最佳条件下处理过的合金钢和其他特种钢来抵抗腐蚀及防止模具表面的热裂纹.高温在模具上的损坏作用已经成为阻碍.延缓高温模铸发展的主is more pronounced[pr5naunst] with some alloys than with others. Aluminum, in particular, has a destructive action on ferrous metals and, for this reason, is seldom melted in the machine, whereas the copper-basealloys are never melted in the machine.控制选择合金的另外一个因素就是熔融的金属在相关的机器零件上和模具上的腐蚀或溶解作用.这种作用随着温度的升高而增加,甚至某些合金比另一些合金更为明显.特别是 .铝对黑色金属有一种破坏作用,为此.铝几乎不熔混于机器零件中,而铜基合金是决不能熔混于机器构件中的.44. ForgingTe_t:Press forging[5fC:dViN] employs a slow squeezing[skwi:z] action in deforming[di:5fC:m] the plastic metal, as contrasted with the rapid-impact[5impAkt] blows of a hammer. The squeezing action is carried completely to the center of the part being pressed, thoroughly working the entire section[5sekFEn]. These presses are the vertical[5vE:tikEl] type and may be either mechanically[mi5kAnikEli] or hydraulically[hai5drC:lik] operated. The mechanical presses, which are faster operating and most commonly used, range in capacity[kE5pAsiti] from 5_ to 1_0 tons.与锤锻的快速冲击不同,压力机锻造是用缓慢的挤压作用使塑性金属变形.这挤压作用完全被施加到正在被压锻的零件中心位置上,直至彻底使整个工件得到加工.这些压力机都是立式的,可能是机械操作也可能是液压操作的.机械操作压力机,操作速度比较快,使用最普遍,锻造能力从 5_吨到1__吨范围.For small press forgings, closed impression dies are used and only one stoke of the ram[rAm] is normally required to perform[pE5fC:m] the forging operation. The ma_imum[5mAksimEm] pressure is built up at the endof the stroke which forces the metal into shape. Dies may be mounted[maunt] as separate units, or all the cavities may be put into single block. Forsmall forgings, individual[7indi5vidjuEl] die unites are more convenient. There is some difference in the design of dies for different metals; copper-alloy forgings can be made withless draft[drB:ft] than steel,consequently more complicated[5kCmplikeitid]shapes can be produced. These alloys flow well in the die and are rapidly e_truded 对于小型压力锻使用闭式锻模.通常要求锻锤仅一个冲程就完成锻造工艺.在冲程终端产生最大压力,该冲击压力迫使金属成形.模具可由各白独立的单元装配而成,即把所有个别模腔都放到一起,组成整体.对于小型锻件使用分模装置更为方便.对于不同的金属在模具设计上有些区别 .铜合金锻件比钢件用较小的拔模斜度,因此可生产更加复杂形状的锻件.这些合金在该种模具中流动性好,而且能快速挤压成形.In the forging press, a greater proportion of the total work put into the machine is transmitted[trAnz5mit] to the metal than in a drop hammer press. Much of the impact of the drop hammer is absorbed by the machine and foundation. Press reduction of the metal is faster, and the cost of operation is consequently lower. Most press forgings are symmetrical[si5metrikEl] in shape, having surfaces which are quite smooth, and provide a closer tolerance[5tClErEns] than is obtained by a drop hammer. However, many parts of irregular[i5re…ulE] and complicated shapes can be forged more economically by drop forging. Forging press is often used for sizing operations on parts made by other forging processes.锻压机比落锤锻,输入到机器里的总能量中有更大部分的能量被传输到金属坯料上.落锤锻的冲击能量被机器和基础吸收得较多(比起压力机来〕.金属上的压力衰减较快,因此生产成本比较低.大多数压力锻锻件形状.产生的表面都是对称的,而且表面非常光滑,并比落锤锻件的公差尺寸更加精确.然而落锤锻造可以锻制形状复杂而不规则的锻件,因而较为经济.锻压机常常用来为其他锻造工艺所生产的锻件进行整形和校正加工用.In drop forging, a piece of metal, roughly[5rQflI] or appro_imately of the desired[di5zaiE] shape, is placed between die faces having the e_act form of the finished piece, and forced to take thin form by drawing the dies together. Large ingots are now almost always forged with hydraulic presses instead of with steam hammers, sinc。

机械类英语论文及翻译

机械类英语论文及翻译

机械类英语论文及翻译Mechanical design involves the n of machines。

which are composed of mechanisms and other components that can transform and transmit ___ machines include engines。

turbines。

vehicles。

hoists。

printing presses。

washing machines。

and ___ and methods of design that apply to machines also apply to ___。

the term "mechanical design" is used in a broader sense than "machine design" to include their design.When ___。

___ to take into account。

The n and structural aspects of the device。

as well as the ___。

___ apply not only to machines but also to other mechanical devices。

such as switches。

cams。

valves。

vessels。

and mixers.Mechanical design is a critical field in ___ disciplines。

It plays an essential role in the ___ the success of a mechanical design project。

it is essential to follow a set of rules for design。

机械制造专业外文翻译--机械设计及加工工艺1

机械制造专业外文翻译--机械设计及加工工艺1

外文原文:Mechanical Design and Manufacturing ProcessesMechanical design is the application of science and technology to devise new or improved products for the purpose of satisfying human needs. It is a vast field of engineering technology which not only concerns itself with the original conception of the product in terms of its size, shape and construction details, but also considers the various factors involved in the manufacture, marketing and use of the product.People who perform the various functions of mechanical design are typically called designers, or design engineers. Mechanical design is basically a creative activity. However, in addition to being innovative, a design engineer must also have a solid background in the areas of mechanical drawing, kinematics,dynamics, materials engineering, strength ofmaterials and manufacturing processes.As stated previously, the purpose of mechanical design is to produce a product which will serve a need for man. Inventions, discoveries and scientific knowledge by themselves do not necessarily benefit people; only if they are incorporated into a designed product will a benefit be derived. It should berecognized,therefore, that a human need must be identified before a particular product is designed.Mechanical design should be considered to be an opportunity to use innovative talents to envision a design of a product, to analyze the system and then make sound judgments on how the product is to be manufactured. It is important to understand the fundamentals of engineering rather than memorize mere facts and equations. There are no facts or equations which alone can be used to provide all the correct decisions required to produce a good design.On the other hand, any calculations made must be done with the utmost care and precision. For example, if a decimal point is misplaced, an otherwise acceptable design may not function.Good designs require trying new ideas and being willing to take a certain amount of risk, knowing that if the new idea does not work the existing method can be reinstated. Thus a designer must have patience, since there is no assurance of success for the time and effort expended. Creating a completely new design generally requires that many old and well-established methods be thrust aside. This is not easy sincemany people cling to familiar ideas, techniques and attitudes. A design engineer should constantly search for ways to improve an existing product and must decide what old, proven concepts should be used and what new, untried ideas should be incorporated.New designs generally have "bugs" or unforeseen problems which must be worked out before the superior characteristics of the new designs can be enjoyed. Thus there is a chance for a superior product, but only at higher risk.It should be emphasized that,if a design does not warrant radical new methods, such methods should not be applied merely for the sake of change.During the beginning stages of design, creativity should be allowed to flourish without a great number of constraints.Even though many impractical ideas may arise, it is usually easy to eliminate them in the earlystages of design before firm details are required by manufac-turing. In this way, innovative ideas are not inhibited. Quite often, more than one design is developed, up to the point where they can be compared against each other.It is entirely possible that the design which is ultimately accepted will use ideas existing in one of the rejected designs that did not show as much overall promise.Psychologists frequently talk about trying to fit people to the machines they operate. It is essentially the responsibility of the design engineer to strive to fit machines to people. This is not an easy task, since there is really no average person for which certain operating dimensions and procedures are optimum.Another important point which should be recognized is that a design engineer must be able to communicate ideas to other people if they are to be incorporated. Communicating the design to others is the final, vital step in the design process. Undoubtedly many great designs, inventions, and creative works have been lost to mankind simply because the originators were unable or unwilling to explain their accomplishments to others. Presentation is a selling job. The engineer, when presenting a new solution to administrative, management, or supervisory persons, is attempting to sell or to prove to them that this solution is a better one. Unless this can be done successfully, the time and effort spent on obtaining the solution have been largely wasted.Basically, there are only three means of communication available to us. Theseare the written, the oral, and the graphical forms. Therefore the successful engineer will be technically competent and versatile in all three forms of communication. A technically competent person who lacks ability in any one of these forms is severely handicapped.If ability in all three forms is lacking, no one will ever know how competent that person is!The competent engineer should not be afraid of the possibility of not succeeding in a presentation. In fact, occasional failure should be expected because failure or criticism seems to accompany every really creative idea. There is a great deal to be learned from a failure,and the greatest gains are obtained by those willing to risk defeat. In the final analysis, the real failure would lie in deciding not to make the presentation at all. To communicate effectively, the following questions must be answered:(1) Does the design really serve a human need?(2) Will it be competitive with existing products of rival companies?(3) Is it economical to produce?(4) Can it be readily maintained?(5) Will it sell and make a profit?Only time will provide the true answers to the preceding questions, but the product should be designed, manufactured and marketed only with initial affirmative answers. The design engineer also must communicate the finalized design to manufacturing through the use of detail and assembly drawings.Quite often, a problem will occur during the manufacturing cycle[3]. It may be that a change is required in the dimensioning or tolerancing of a part so that it can be more readily produced. This fails in the category of engineering changes which must be approved by the design engineer so that the product functionwill not be adversely affected. In other cases, a deficiency in the design may appear during assembly or testing just prior to shipping. These realities simply bear out the fact that design is a living process. There is always a better way to do it and the designer should constantly strive towards finding that better way.Designing starts with a need,real or imagined.Existing apparatus may need improvements in durability, efficiently, weight, speed, or cost. New apparatus maybe needed to perform a function previously done by men, such as computation, assembly, or servicing. With the obj ective wholly or partly defined, the next step in design is the conception of mechanisms and their arrangements that will perform the needed functions.For this, freehand sketching is of great value, not only as a record of one's thoughts and as an aid in discussion with others, but particularly for communication with one's own mind, as a stimulant for creative ideas. to fluctuating stress, particular attention is given to a reduction in stress concentration, and to an increase of strength at fillets, threads, holes, and fits. Stress reduction are made by modification in shape, and strengthening may be done by prestressing treatments such as surface rolling and shallow hardening. Hollow shafts and tubing, and box sections give a favorable stress distribution, together with stiffness and minimum weight. Sufficient stiffness to maintain alignment and uniform pressure between contacting surfaces should be provided for crank, cam, and gear shafts, and for enclosures and frames containing bearing supports. The stiffness of shafts and other components must be suitable to avoid resonant vibrations.e &zsic equations to calculate and optimize dimensions.The fundamental equations of mechanics and the other sciences are the accepted bases for calculations. They are sometimes rearranged in special forms to facilitate the determination or optimization of dimensions, such as the beam and surface stress equations for determining gear-tooth size. Factors may be added to a fundamental equation for conditions not analytically determinable, e. g. , on thin steel tubes, an allowance for corrosion added to the thickness based on pressure. When it is necessary to apply a fundamental equation to shapes, materials, or conditions which only approximate the assumptions for its derivation, it is done in a manner which gives results "on the safe side".In situations where data are incomplete, equations of the sciences may be used as proportioning guides to extend a satisfactory design to new capacities.4.Choose materials for a combination of properties.Materials should be chosen fora combination of pertinent properties, not only for strengths, hardness, and weight, but sometimes for resistance to impact, corrosion, and low or high temperatures. Cost and fabrication properties are factors, such as weldability, machinability, sensitivity to variation in heat-treating temperatures, and required coating.5.Select carefully between stock and integral components. A previously developed components is frequently selected by a designer and his company from the stocks of parts manufacturers, if the component meet the performance and reliability requirements and is adaptable without additional development costs to the particular machine being designed.However, its selection should be carefully made wi'th a full knowledge of its propcrties, since the reputation and liability of the company suffer if there is a failure in any one of the machine's parts. In other eases the strength, reliability, and cost requirements are better met if the designer of the machine also designs the component, with the particular advantage of compactness if it is designs integral with other components, e. g., gears to be forged in clusters or integral with a shaft.6. Provide for accurate location and non interference of parts in assembly. A good design provides for the correct locating of parts and for easy assembly and repair.Shoulders and pilot surfaces give accurate location without measurement during assembly. Shapes can be designed so that parts cannot be assembled backwards or in the wrong place. Interferences, as between screws in tapped holes, and between linkages must he foreseen and prevended.Inaccurate alignment and positioning between such assemblies must be avoided, or provision must be made to minimize any resulting detrimental displacements and stresses.The human race has distinguished itself from all other forms of life by using tools and intelligence to create items that serve to make life easier and more enjoyable. Through the centuries, both the tools and theenergy sources to power these tools have evolved to meet the increasing sophistication and complexity ofmankind's ideas.In their earliest forms, tools primarily consisted of stone instruments. Considering tile relative simplicity of the items being made and the materials being shaped, stone was adequate. When iron tools were invented, durable metals and more sophisticated articles could be produced. The twentieth century has seen the creation of products made from the most durable and,consequently, the most unmachinable materials in history. In an effort to meet the manufacturing challenges created by these materials, tools have now evolved to include materials such as alloy steel, carbide, diamond, and ceramics.A similar evolution has taken place with the methods used to power our tools. Initially,tools were powered by muscles; either human or animal. However as the powers of water, wind, steam, and electricity were harnessed, mankind was able tofurther extended manufacturing capabilities with new machines, greater accuracy, and faster machining rates.Every time new tools, tool materials, and power sources are utilized, the efficiency and capabilities of manufacturers are greatly enhanced. However as old problems are solved, new problems and challenges arise so that the manufacturers of today are faced with tough questions such as the following: How do you drill a 2 mm diameter hole 670 mm deep without experiencing taper or runout? Is there a way to efficiently deburr passageways inside complex castings and guarantee 100 % that no burrs were missed? Is there a welding process that can eliminate the thermal damage now occurring to my product?Since the 1940s, a revolution in manufacturing has been taking place that once again allows manufacturers to meet the demands imposed by increasingly sophisticated designs and durable, but in many cases nearly unmachinable, materials. This manufacturing revolution is now, as it has been in the past, centered on the use of new tools and new forms of energy.The result has been the introduction of new manufacturing processes used for material removal, forming, and joining, known today as nontraditional manufacturing processes.The conventional manufacturing processes in use today for material removal primarily rely on electric motors and hard tool materials to perform tasks such as sawing, drilling, an broaching. Conventional forming operations are performed with the energy from electric motors, hydraulics, and gravity. Likewise, material joining is conventionally accomplished with thermal energy sources such as burning gases and electric arcs.In contrast, nontraditional manufacturing processes harness energy sources considered unconventional by yesterday's standards. Material removal can now be accomplished with electrochemical reactions, high-temperature plasmas, and high-velocity jets of liquids and abrasives. Materials that in the past have been extremely difficult to form, are now formed with magnetic fields, explosives, and the shock waves from powerful electric sparks. Material-joining capabilities have been expanded with the use of high-frequency sound waves and beams of electrons.In the past 50 years, over 20 different nontraditional manufacturing processes have been invented andsuccessfully implemented into production. The reason there are such a large number of nontraditional processes is the same reason there aresuch a large number of conventional processes; each process has its own characteristic attributes and limitations, hence no one process is best for all manufacturing situations.For example, nontraditional process are sometimes applied to increase productivity either by reducing the number of overall manufacturing operations required to produce a product or by performing operations faster than the previously used method.In other cases, nontraditional processes are used to reduce the number of rejects experienced by the old manufacturing method by increasing repeatability, reducing in-process breakage of fragile workpieces, or by minimizing detrimental effects on workpiece properties.Because of the aforementioned attributes, nontraditional manufacturing processes have experienced steady growth since their introduction. An increasing growth rate for these processes in the future is assured for the following reasons:1.Currently, nontraditional processes possess virtually unlimited capabilities when compared with conventional processes, except for volumetric material removal rates. Great advances have been made in the past few years in increasing the removal rates of some of these processes, and there is no reason to believe that this trend will not continue into the future.2. Approximately one half of the nontraditional manufacturing processes are available with computer control of the process parameters. The use of computers lends simplicity to processes that people may be unfamiliar with, and thereby accelerates acceptance.Additionally, computer control assures reliability and repeatability[s], which also accelerates acceptance and implementation.3.Most nontraditional processes are capable of being adaptively-controlled through the use of vision systems, laser gages, and other in-process inspection techniques. If, for example, the in-process inspection system determines that the size of holes being produced in a product are becoming smaller, the size can be modified without changing hard tools, such as drills.4.The implementation of nontraditional manufacturing processes will continus to increase as manufacturing engineers, product designers, and metallurgical engineers become increasingly aware of the unique capabilties and benefits that nontraditional manufacturing processes provide.The high speed milling processing is more and more high to the numericalcontrol programming system request, the price expensive high speed processing equipment proposed a higher secure and the valid request to the software. The high-speed cutting has compared to the traditional cutting special technological requirement, besides must have the high-speed cutting engine bed and the high-speed cutting cutting tool, has the appropriate CAM programming software also is very important. The numerical control processing numerical control instruction has contained all technological process, outstanding high speed processes the CAM programming system to be supposed to have the very high computation speed, strong inserts makes up the function, the entire journey is automatic has cut the inspection and the handling ability, the automatic hilt and the jig interference inspection, enters for rate the optimized processing function, treats the processing path monitoring function, the cutting tool path edition optimization function and the processing remaining analysis function and so on. The high-speed cutting programming first must pay attention to the processing method the security and the validity; Next, must guarantee with utmost effort the cutting tool path smooth is steady, this can affect components the directly and so on processing quality and engine bed main axle life; Finally, must cause the cutting tool load to be even as far as possible, this can affect the cutting tool directly the life.1. The CAM system should have the very high computation programming speedIn the high speed processing uses extremely small entering and cuts the depth for the quantity, its NC procedure must be much bigger than to the traditional numerical control processing procedure, thus requests the software computation speed to have to be quick, by saves the cutting tool path edition and the optimized programming time.2. The entire journey automatically guards against has cut the handling ability and the automatic hilt interference inspection abilityThe high speed processing processes the nearly 10 time of cuttings speeds by the tradition to carry on the processing, once will occur has cut to the engine bed, the product and the cutting tool has the calamity consequence, therefore will request its CAM system to have to have the entire journey automatically to guard against has cut processing the ability and the automatic hilt and the jig interference inspection, circles evades the function. The system can automatically prompt short supports on both sides the cutting tool length, and automatically carries on the cutting tool interference inspection.3. Rich high-speed cutting cutting tool path strategyThe high speed processing to processes the craft to feed the way to have the special request compared to the traditional way, in order to can guarantee the maximum cutting efficiency, also guaranteed when high-speed cutting processes the security, the CAM system ought to be able to act according to processes the instantaneous remainder the size automatically to enter for rate carries on optimized processing, can automatically carry on the cutting tool path edition to optimize, the processing remaining analysis and the treatment processing path monitoring, by guarantees the high speed processing cutting tool stressful condition the stability, enhances the cutting tool the service life.After uses the high speed processing equipment, will be able to increase to programmers' demand, because high speed will process the technological requirement strictly, has cut the protection to be more important, therefore will have to spend the much time to carry on the simulation examination to the NC instruction. In the ordinary circumstances, high speed processes the programming time the to be ordinary than processing programming time to have to be much longer. In order to guarantee the high speed processing equipment enough utilization ratio, must dispose the more CAM personnel. The existing CAM software, like PowerMILL, MasterCAM, UnigraphicsNX, Cimatron and so on have all provided the correlation function high speed milling cutting tool path strategy.中文译文:机械设计及加工工艺机械设计是一门通过设计新产品或者改进老产品,满足人类需求的应用技术科学。

机械类数控车床外文翻译外文文献英文文献数控

机械类数控车床外文翻译外文文献英文文献数控

数控加工中心技术开展趋势与对策原文来源:Zhao Chang-ming Liu Wang-ju(C Machining Processand equipment,2002,China)一、摘要Equip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment.Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry,Keywords:Numerical ControlTechnology, E quipment,industry二、译文数控技术和装备开展趋势与对策装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术与装备是开展新兴高新技术产业和尖端工业〔如信息技术与其产业、生物技术与其产业、航空、航天等国防工业产业〕的使能技术和最根本的装备。

先进制造技术(有出处)--中英文翻译

先进制造技术(有出处)--中英文翻译

毕业设计(论文)外文资料翻译系别:机械工程学院专业:机械设计制造及其自动化外文出处:Advanced Manufacturing Technology附件:1、外文原文;2、外文资料翻译译文。

1、外文原文(复印件)2、外文资料翻译译文先进制造技术尽管裁断的深度是由材料去除率的总额决定的,增加径向的裁断深度同样能够增加磨损率。

就像增加进给速度一样,工具的使用寿命会随着切削深度的加深而缩短。

因此,工具的使用寿命与磨损率能够像预期那样保持平衡。

每个金属在切削过程中会产生三个力:切向力,即零件运转时产生的力;径向力,由工件材料切削深度的阻隔产生的力;纵向力,利用进给速度产生的力。

这些力比机器运转过程中产生的力强30%到80%。

例如,在洛氏硬度62HRC的强度下,分别经过预热处理和热处理,纵向力会从30%增加到50%,切向力会从30%增加到50%,径向力会从70%增加到100%。

因此,机床必须能够承受不断增加的切削力,尤其是径向的切削力。

切削液能够影响白层的产生,因为白层是物象变化在表面发生的结果,当冷却工件表面时,切削液能够减轻热损坏。

一些报道认为切削液会消除白层,但却有研究表明切削液没有这样的作用。

刀具状态也是一个很重要的因素,然而白层的增加同样伴随着刀具的磨损。

如果硬态切削能够代替精磨操作,硬态切削的产品表面光洁度能够与精磨操作相媲美。

与精磨操作不同的是,表面光洁度是由大小,形状,强度和在磨削砂轮中磨粒的作用决定的。

硬车削表面通常是由切削过程中形成的几何图形决定的,其中主要是由切削工具的进给和刀尖半径决定的。

对于磨削圆柱的应用,其砂轮和工件必须能够顺利的旋转。

其次,砂轮飞快旋转的同时工件要缓慢的旋转。

如果旋转的构件不完全同心,组合的缺陷和旋转速度的细微差别会引起圆柱的凸角。

当生产的几何图形不够圆时,这会影响最终的生产。

另一方面,对于硬切削来说,工件或者切削工具不能同时旋转。

因此,机器加工表面将会与机床主轴和紧挨机床的中心线的机床纵向的方向一样精准。

机械加工切削加工中英文对照外文翻译文献

机械加工切削加工中英文对照外文翻译文献

中英文资料翻译英文部分The new concept of cutting processingThe nowadays cutting tool company cannot only be again the manufacture and the sales cutting tool, in order to succeed, they must be consistent with the globalization manufacture tendency maintenance, through enhances the efficiency, cooperates with the customer reduces the cost. Approaches the instantaneous global competition after this after NAFTA, the WTO time, the world company is making quickly to the same feeling, is lighter, a cheaper response. In other words, they make the product and the components contain can in high speed under revolve, as a result of the cost pressure, best, is lighter moreover must make cheaply. Obtains these goals a best way is through develops and applies the new material, but these is new and the improvement material usually all with difficulty processes. In in this kind of commercial power and the technical difficulty combination is especially prominent in the automobile and the aviation industry, and has become has the experience the cutting tool company to research and develop the department the most important driving influence.For example, takes the modular cast iron to say that, it has become the engine part and other automobiles, the agriculture the material which see day by day with the equipment and in the machine tool industry components. This kind of alloy provides the low production cost and the good machine capability combination. They are cheaper than the steel products, but has a higher intensity and toughness compared to the cast iron. But at the same time the modular cast iron is extremely wear-resisting, has fast breaks by rubbing the cutting tool material the tendency. In this wear resistant very great degree bead luminous body content influence. Some known modular cast iron bead luminous body content higher, its resistance to wear better, moreover its machinability is worse. Moreover, the modular cast iron porosity causes off and on to cut, this even more reduces the life.May estimate that, the high degree of hardness and the high wear-resisting cutting material quality must consider the modular cast iron the high resistance to wear. And the material quality contains extremely hard TiC in fact (carbonized titanium) or TiCN (carbon titanium nitrides) thick coating when cutting speed each minute 300 meters processes the modular cast iron to prove usually is effective. But along with cutting speed increase, scrap/The cutting tool junctionplane temperature also is increasing. When has such situation, the TiC coating favors in has the chemical reaction with the iron and softens, more pressures function in anti- crescent moon hollow attrition coating. Under these conditions, hoped has one chemical stability better coating, like Al2O3 (although under low speed was inferior to TiC hard or is wear-resisting).The chemical stability becomes an important performance performance dividing line compared to the resistance to wear the factor, the speed and the temperature is decided in is processed the modular cast iron the crystal grain structure and the performance. But usually thick coating of TiCN and TiC or only ductile iron oxides in the soil coating is applied to, because the today majority of this kinds are processed the material the cutting speed in each minute 150 to 335 meters between. Is higher than each minute 300 meter applications regarding the speed, the people to this kind of material are satisfied.In order to cause this scope performance to be most superior, the mountain high researched and developed and has promoted in view of modular cast iron processing material quality TX150. This kind of material quality has hard also the anti- distortion substrate, is very ideal regarding the processing modular cast iron. Its coating the oxide compound coating which hollowly wears by thick very wear-resisting carbon titanium nitrides and a thin anti- crescent moon, the top is thin layer TiN. This kind of coating which needs the center warm chemistry gas phase deposition using the state of the art production resistance to wear and the anti- crescent moon hollow attrition which the CVD coating complete degree of hardness moreover the tough smoothness increases (MTCVD) the craft. Substrate/The coating combination performance gives the very high anti- plastic deformation and the cutting edge micro collapses the ability, causes it to become under the normal speed to process the modular cast iron the ideal material quality.The coating ceramics also display can effectively process the modular cast iron. In the past, the aluminum oxide ceramics application which not the coating tough good such as nitriding silicon and the silicon carbide textile fiber strengthened the work piece material chemistry paralysis limit. Today but could resist the scrap distortion process through the use to have the high thermal coating cutting tool life already remarkably to increase. But certain early this domains work piece processing use aluminum oxides spread the layer crystals to have to strengthen the ceramics, today most research concentrate in the TiN coating nitriding silicon. This kind of coating can remarkably open up the tough good ceramics the application scope.When machining, the work piece has processed the surface is depends upon the cutting tool and the work piece makes the relative motion to obtain.According to the surface method of formation, the machining may divide into the knife point path law, the formed cutting tool law, the generating process three kinds.The knife point path law is depends upon the knife point to be opposite in the work piecesurface path, obtains the superficial geometry shape which the work piece requests, like the turning outer annulus, the shaping plane, the grinding outer annulus, with the profile turning forming surface and so on, the knife point path are decided the cutting tool and the work piece relative motion which provides in the engine bed;The formed cutting tool law abbreviation forming, is with the formed cutting tool which matches with the work piece final superficial outline, or the formed grinding wheel and so on processes the formed surface, like formed turning, formed milling and form grinding and so on, because forms the cutting tool the manufacture quite to be difficult, therefore only uses in processing the short formed surface generally;The generating process name rolls cuts method, is when the processing the cutting tool and the work piece do unfold the movement relatively, the cutting tool and the work piece centrode make the pure trundle mutually, between both maintains the definite transmission ratio relations, obtains the processing surface is the knife edge in this kind of movement envelope, in the gear processing rolls the tooth, the gear shaping, the shaving, the top horizontal jade piece tooth and rubs the tooth and so on to be the generating process processing.Some machining has at the same time the knife point path law and the formed cutting tool method characteristic, like thread turning.The machining quality mainly is refers to the work piece the processing precision and the surface quality (including surface roughness, residual stress and superficial hardening).Along with the technical progress, the machining quality enhances unceasingly.The 18th century later periods, the machining precision counts by the millimeter; At the beginning of 20th century, machining precision Gao Yida 0.01 millimeter; To the 50's, the machining precision has reached a micron level; The 70's, the machining precision enhances to 0.1 micron.The influence machining quality primary factor has aspects and so on engine bed, cutting tool, jig, work piece semifinished materials, technique and processing environment.Must improve the machining quality, must take the suitable measure to the above various aspects, like reduces the engine bed work error, selects the cutting tool correctly, improves the semifinished materials quality, the reasonable arrangement craft, the improvement environmental condition and so on.Enhances the cutting specifications to enhance the material excision rate, is enhances the machining efficiency the essential way.The commonly used highly effective machining method has the high-speed cutting, the force cutting, the plasma arc heating cuts and vibrates the cutting and so on.The grinding speed is called the high-speed grinding in 45 meters/second above es the high-speed cutting (or grinding) both may enhance the efficiency, and mayreduce the surface roughness.The high-speed cutting (or grinding) requests the engine bed to have the high speed, the high rigidity, the high efficiency and the vibration-proof good craft system; Requests the cutting tool to have the reasonable geometry parameter and the convenience tight way, but also must consider the safe reliable chip breaking method.The force cutting refers to the roughing feed or cuts the deep machining greatly, uses in the turning and the grinding generally.The force turning main characteristic is the lathe tool besides the main cutting edge, but also some is parallel in the work piece has processed superficial the vice-cutting edge simultaneously to participate in the cutting, therefore may enhance to feed quantity compared to the general turning several times of even several pares with the high-speed cutting, the force cutting cutting temperature is low, the cutting tool life is long, the cutting efficiency is high; The shortcoming is processes the surface to be rough.When force cutting, the radial direction cutting force death of a parent is not suitable for to process the tall and slender work piece very much.The vibration cutting is along the cutting tool direction of feed, the attachment low frequency or the high frequency vibration machining, may enhance the cutting efficiency.The low frequency vibration cutting has the very good chip breaking effect, but does not use the chip breaking equipment, makes the knife edge intensity to increase, time the cutting total power dissipation compared to has the chip breaking installment ordinary cutting to reduce about 40%.The high frequency vibration cutting also called the ultrasonic wave vibration cutting, is helpful in reduces between the cutting tool and the work piece friction, reduces the cutting temperature, reduces the cutting tool the coherence attrition, thus the enhancement cutting efficiency and the processing surface quality, the cutting tool life may enhance 40% approximately.To lumber, plastic, rubber, glass, marble, granite and so on nonmetallic material machining, although is similar with the metal material cutting, but uses the cutting tool, the equipment and the cutting specifications and so on has the characteristic respectively.The lumber product machining mainly carries in each kind of joiner's bench, its method mainly has: The saw cuts, digs cuts, the turning, the milling, drills truncates with the polishing and so on.The plastic rigidity is worse than the metal, the easy bending strain, the thermoplastic thermal conductivity to be in particular bad, easy to elevate temperature the conditioning.When cutting plastic, suitably with the high-speed steel or the hard alloy tools, selects the small to feed quantity and the high cutting speed, and uses compressed air cooling.If the cutting tool is sharp, the angle is appropriate, may produce the belt-shaped scrap, easy to carry off the quantity of heat.Glass (including semiconducting material and so on germanium, silicon) but degree of hardness high brittleness is big.To methods and so on glass machining commonly used cutting, drill hole, attrition and polishing.To thickness in three millimeters following glass plates, the simple cutting method is with the diamond or other hard materials, in glass surface manual scoring, the use scratch place stress concentration, then uses the hand to break off.To the marble, the granite and the concrete and so on the hard material processing, mainly uses methods and so on cutting, turning, drill hole, shaping, attrition and polishing.When cutting the available circular saw blade adds the grinding compound and the water; The outer annulus and the end surface may use the negative rake the hard alloy lathe tool, by 10~30 meter/minute cutting speed turning; Drills a hole the available hard alloy drill bit; The big stone material plane available hard alloy planing tool or rolls cuts planing tool shaping; The precise smooth surface, available three mutually for the datum to the method which grinds, or the grinding and the polishing method obtains.Cutting tool in hot strong alloy applicationThe aviation processing also changes rapidly. For example, nickel base heat-resisting alloy like several years ago the most people had not heard Rene88 now occupies to the aircraft engine manufacture uses the total metal quantity 10~25%. Has very good showing and the commercial reason regarding this. For example, these heat strong alloy will be able to increase the engine endurance moreover to permit the small engine work on the big airplane, that will enhance the combustion efficiency and reduces the operation cost. These tough good materials also present the expense on the cutting tool. Their thermal stability causes on the knife point the temperature to be higher, thus reduced the cutting tool life. Similarly, in these alloy carbide pellet remarkably increased the friction, thus reduces the cutting tool life.As a result of changes in these conditions, can be very pleased to have processed many titanium alloys and nickel-based alloy materials C-2 hard metal alloys, in the application to today's cutting edge of blade to the crushing and cutting depth of the trench lines badly worn. But using the latest high-temperature processing of small particles hard metal alloys to be effective, cutlery life improved, but more importantly to enhance the reliability of applications in high-temperature alloys. Small particles hard metal than traditional hard metal materials higher compression strength and hardness, only a small increase in the resilience of the cost. And resulted in high temperature alloy processing than traditional hard metal resistance common failure mode more effective.PVD (physical gas phase deposition) coating also by certificate effective processing heat-resisting alloy. TiN (titanium nitrides) the PVD coating was uses and still was most early most receives welcome. Recently, TiAlN (nitrogen calorization titanium) and TiCN (carbontitanium nitrides) the coating also could very good use. In the past the TiAlN coating application scope and TiN compared the limit to be more. But after the cutting speed enhances them is a very good choice, enhances the productivity in these applications to reach 40%. On the other hand, is decided under the low cutting speed in coating superficial operating mode TiAlN can cause to accumulate the filings lump afterwards, micro collapses with the trench attrition.Recently, used in the heat-resisting alloy application material quality already developing, these coating but became by several combinations. The massive laboratories and the scene test has already proven this kind of combination and other any kind of sole coating compares in time the very wide scope application is very effective. Therefore aims at the heat-resisting alloy application the PVD compound coating possibly to become the focal point which the hard alloy new material quality research and development continues. With the MTCVD coating, the coating ceramics gather in the same place, they hopefully become a more effective processing to research and develop newly are more difficult to process the work piece material the main impact strength.Dry processingIncluding the refrigerant question is technical and the commercial expansion industrial production tendency another domain which the cutting tool makes. North America and the European strict refrigerant management request and the biggest three automobile manufacturer forces them the core supplier to obtain the ISO14000 authentication (the ISO9000 environment management edition), this causes the refrigerant processing cost rise. To the car company and their core supplier said obviously one of responses which welcome is in the specific processing application avoids completely the refrigerant the use. This kind did the processing the new world to propose a series of challenges for the cutting tool supplier.Recently, already appeared some to concern this topic to promulgate the speed, to enter for, the coating chemical composition and other parameters very substantial comprehensive nature very strong useful technical papers. Wants to concentrate the elaboration in here me "does the processing viewpoint" in the operation and commercial meaning automobile manufacturer new.The metal working jobholders can the very good understanding related refrigerant use question, but majority cannot understand concerns except the technical challenge (for example row of filings) beside does the processing question in the cutting tool - work piece contact face between. Usually may observe to the refrigerant disperser scrap which flows out, but the pressure surpasses 3,000 pounds/An inch 2 high speed refrigerant also can help to break the filings, specially soft also the continual scrap can cause in the cutting tool - work piece contact face trouble.Uses does the cutting craft the components result is the engine bed uses the wet typeprocessing components to be hotter than. Whether before you do allow them to survey in the open-air natural cooling? If processes newly the hot components put frequently to the turnover box, elevates the environment temperature, whether components full cooling and just right enough permission precision examination? Also has the handling side several dozens on hundred components to be able to operate the worker to increase the extra burden.With many cutting tools/The work piece technical question same place, these latent questions need to state whether dryly adds the ability line. Luckily, has very many ways to elaborate these questions. For example, the compressed air was proven row of filings becomes the question in very many applications the situation to have the successful echo.Another plan is called MQL (minimum lubrication) a technology, it replaces the traditional refrigerant by the application the quite few oil mists constitution. This is a recognition compromise plan, this kind of minimum technology can large scale reduce the refrigerant the headache matter, moreover the smooth finish which processes in many applications very is also good. This domain still had very many research to do, moreover the cutting tool company positively participated in such research was absolutely essential. If they will not do fall behind the competitor, will be at the disadvantageous position.In the factory the special details design other perhaps better plan according to the world in. The manufacturing industry jobholders possibly still could ask why they do have to use recent development the technology to replace the refrigerant method diligently which the tradition already an experience number generation of person improved enhances, because implemented especially does the experiment and the defeat which the processing or the subarid processing produced possibly causes the higher short-term cutting tool cost. The concise answer is when the bit probably accounts for the model processing components cost 3%, the refrigerant cost (from purchases to maintenance, storage, processing) can account for the components cost 15%.Perhaps does the dry processing is not all suits to each application, but above discusses likely other processing questions are same, needs from a wider operation, the environment and the commercial angle appraises. Will be able to help the cutting tool company which the customer will do this to have the competitive advantage, but these will not be able to provide unceasingly is in the passive position.Cutting tool and nanotechnologyCan fiercely change the cutting tool industry the enchanting new domain is the miniature manufacture, or the processing small granule forms the product which needs. Must refer to is its here does not have about the cutting tool miniature manufacture first matter; Second must say the matter is it is not remote.Why the miniature manufacture and are the cutting tool related. Because most main is theparticle size smaller, the hard alloy toughness of material better also is more wear-resisting. (Some experts define with the nanometer level pellet for are smaller than 0.2 mu m, but other people persisted a nanometer pellet had to be smaller than the hard alloy tools prototype which 0.1 mu m) made already to complete and the test,It is said that wear resistant theatrically increase. The question is the nanometer level hard alloy pellet cannot depend on the smashing big material formation, they are certain through the smaller material constitution, but processes the molecular level granule is not easy and the economical matter.中文部分切削加工新概念现今的刀具公司再也不能只是制造和销售刀具,为了成功,他们必须与全球化制造趋势保持一致,通过提高效率、同客户合作来降低成本。

机械加工外文翻译、中英文翻译、机械类外文文献翻译

机械加工外文翻译、中英文翻译、机械类外文文献翻译

机械加工外文翻译、中英文翻译、机械类外文文献翻译The engine lathe is an old but still useful metal removal machine with many desirable attributes。

While it is no longer commonlyXXX。

In today's n shops。

it has largely been XXX。

turret lathes。

and automatic XXX of single-point tooling for maximum metal removal。

and the use of form tools for finished products that are on par with the fastest processing XXX.When it XXX for the engine lathe。

it largely depends on the skill of the operator。

Design XXX part for n。

it is XXX.XXX cutting tools。

XXX ns。

as the machine can perform these ns in one setup。

They are also capable of producing parts with high n and accuracy。

XXX industries.Now more than ever。

n machining XXX of a specific method。

the XXX.When designing for low quantities。

such as 100 or 200 parts。

it is most cost-effective to use a XXX。

designers should aim to minimize the number of ns required.Another n for n XXX。

机械类外文文献及翻译大全

机械类外文文献及翻译大全
机械类的外文翻译机械类外文文献机械类外文翻译外文文献翻译外文文献翻译格式外文文献翻译网站外文文献翻译要求外文文献翻译软件
外文文献及其翻译 机械/数控/模具/PLC数控编程/机电一体化毕业设计外文文献及其翻译(联系 QQ:2947387549)
15号规格自动挖掘机的线性、非线性和经典的控制器--中文翻译.doc 15号规格自动挖掘机的线性、非线性和经典的控制器--外文文献.pdf 20.9 可机加工性.doc 20.9 可机加工性——外文文献.doc 20世纪到21世纪水性涂料面临的技术挑战-中文翻译.doc 20世纪到21世纪水性涂料面临的技术挑战-外文文献.pdf 5-氟尿嘧啶、阿霉素和柔红霉素在医院废水中的去向和通过活性污泥法的ห้องสมุดไป่ตู้除以及通过膜生物反应系 5-氟尿嘧啶、阿霉素和柔红霉素在医院废水中的去向和通过活性污泥法的去除以及通过膜生物反应系 5轴数铣中心下注塑模具自动抛光过程-中文翻译.doc 5轴数铣中心下注塑模具自动抛光过程-外文文献.pdf 781型铣边机维修-中文翻译.doc 781型铣边机维修-外文文献.doc AISI 304 不锈钢基体ZrN涂层的抗腐蚀性-中文翻译.doc AISI 304 不锈钢基体ZrN涂层的抗腐蚀性-外文文献.pdf ALGORYTHMS控制速度和斯特雷奇-中文翻译.doc ALGORYTHMS控制速度和斯特雷奇-外文文献.pdf AT89C51单片机-中文翻译.doc AT89C51单片机-外文文献.pdf Catia-UG-Proe 的比较与前景-中文翻译.doc Catia-UG-Proe 的比较与前景-外文文献.doc CVT--外文文献.pdf CVT.doc C型搅拌摩擦焊的现状与发展-中文翻译.doc C型搅拌摩擦焊的现状与发展-外文文献.doc DS1302时钟芯片-中文翻译.doc DS1302时钟芯片-外文文献.doc MASTERDRIVES-独一无二而范围完全的驱动器-中文翻译.doc MASTERDRIVES-独一无二而范围完全的驱动器-外文文献.doc MS Access MRP(制造资源计划)小企业的MRP-小企业的ERP基于微软的Access数据库ERPMRP ERP.MRP 制造软件项目-中文翻译.doc MS Access MRP(制造资源计划)小企业的MRP-小企业的ERP基于微软的Access数据库ERPMRP ERP.MRP 制造软件项目-外文文献.doc PAC——新一代工业控制系统, 可编程自动化控制发展的未来-中文翻译.doc PAC——新一代工业控制系统, 可编程自动化控制发展的未来-外文文献.doc PLC、工业PC与DCS的特点与趋势--中文翻译.doc PLC、工业PC与DCS的特点与趋势-外文文献.doc PLC安装须知--中文翻译.doc PLC安装须知-外文文献.doc PLC的最新发展趋势.doc PLC的最新发展趋势——外文文献.pdf PLC的特点.doc PLC的特点——外文文献.pdf PLC简介-外文文献.doc PLC简介.doc Wincc在供热站恒压供水监控系统中的应用-中文翻译.docx Wincc在供热站恒压供水监控系统中的应用-外文文献.docx 一个合理的解决多种应用-外文文献.doc 一个合理的解决多种应用.doc 一种实用的办法--带拖车移动机器人的反馈控制-中文翻译.doc 一种实用的办法--带拖车移动机器人的反馈控制-外文文献.doc

机械工程专业英语第二版康兰参考译文

机械工程专业英语第二版康兰参考译文

机械工程专业英语第二版康兰参考译文康兰简介康兰(Kanglan)是一位著名的机械工程专业翻译家,他为机械工程学科领域的英文文献提供了许多优秀的译文。

他的翻译作品以准确、流畅、专业而闻名,并且广泛被机械工程专业人士所引用和使用。

本文将为大家介绍康兰参考译文的第二版,其中涵盖了机械工程专业的各个领域。

译文内容康兰参考译文第二版涵盖了机械工程专业的许多重要内容,包括但不限于机械设计、机械制造、机械控制、热力学、流体力学等领域。

以下是其中的一些示例:1. 机械设计在机械设计方面,康兰参考译文第二版提供了一些经典的翻译作品,如《机械设计基础》、《机械元件设计》等。

这些译文涵盖了机械设计的基本原理、方法和技术,包括机械设计的概念、设计流程、设计计算等。

2. 机械制造在机械制造方面,康兰参考译文第二版涵盖了广泛的内容,包括数控机床、机械加工工艺、机械加工精度等。

这些译文详细介绍了机械制造的各个方面,从机械加工的基本原理到机床的结构与控制,让读者对机械制造有一个全面的了解。

3. 机械控制在机械控制方面,康兰参考译文第二版为读者提供了丰富的内容。

这些译文涵盖了机械控制的基本概念、控制器的设计原理、控制算法等。

通过阅读这些参考译文,读者可以了解到机械控制的基本理论和应用技术。

4. 热力学在热力学方面,康兰参考译文第二版提供了一些经典的翻译作品,如《工程热力学》、《热能转换与利用》等。

这些译文介绍了热力学的基本概念、热力学循环、热力学定律等,对于研究热力学和热能转换有着重要的参考价值。

5. 流体力学在流体力学方面,康兰参考译文第二版提供了一些重要的翻译作品,如《流体力学基础》、《流体力学与传热学》等。

这些译文详细介绍了流体力学的基本原理、流体力学方程、流体力学模型等,对于学习和研究流体力学具有重要的参考价值。

总结康兰参考译文第二版是机械工程专业英语领域的重要参考书籍,它涵盖了机械工程专业各个领域的重要内容。

通过阅读这些译文,读者可以深入了解机械工程的基本理论、方法和技术,并且能够在实际工作中运用所学知识。

机械加工外文文献翻译

机械加工外文文献翻译

外文原文MACHINABILITYThe machinability of a material usually defined in terms of four factors:1、Surface finish and integrity of the machined part;2、Tool life obtained;3、Force and power requirements;4、Chip control.Thus, good machinability good surface finish and integrity, long tool life, and low force And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by becoming entangled in the cutting zone.Because of the complex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to be the most important factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below.1、Machinability Of SteelsBecause steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been mainly improved by adding lead and sulfur to obtain so-calledfree-machining steels.Resulfurized and Rephosphorized steels. Sulfur in steels forms manganese sulfide inclusions (second-phase particles), which act as stress raisers in the primary shear zone. As a result, the chips produced break up easily and are small; this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in resulfurized steels.Phosphorus in steels has two major effects. It strengthens the ferrite, causing increased hardness. Harder steels result in better chip formation and surface finish.Note that soft steels can be difficult to machine, with built-up edge formation and poor surface finish. The second effect is that increased hardness causes the formation of short chips instead of continuous stringy ones, thereby improving machinability.Leaded Steels. A high percentage of lead in steels solidifies at the tip of manganese sulfide inclusions. In non-resulfurized grades of steel, lead takes the form of dispersed fine particles. Lead is insoluble in iron, copper, and aluminum and their alloys. Because of its low shear strength, therefore, lead acts as a solid lubricant (Section 32.11) and is smeared over the tool-chip interface during cutting. This behavior has been verified by the presence of high concentrations of lead on thetool-side face of chips when machining leaded steels.When the temperature is sufficiently high-for instance, at high cutting speeds and feeds (Section 20.6)—the lead melts directly in front of the tool, acting as a liquid lubricant. In addition to this effect, lead lowers the shear stress in the primary shear zone, reducing cutting forces and power consumption. Lead can be used in every grade of steel, such as 10xx, 11xx, 12xx, 41xx, etc. Leaded steels are identified by the letter L between the second and third numerals (for example, 10L45). (Note that in stainless steels, similar use of the letter L means “low carbon,” a condition that improves their corrosion resistance.)However, because lead is a well-known toxin and a pollutant, there are serious environmental concerns about its use in steels (estimated at 4500 tons of lead consumption every year in the production of steels). Consequently, there is a continuing trend toward eliminating the use of lead in steels (lead-free steels). Bismuth and tin are now being investigated as possible substitutes for lead in steels.Calcium-Deoxidized Steels. An important development is calcium-deoxidized steels, in which oxide flakes of calcium silicates (CaSo) are formed. These flakes, in turn, reduce the strength of the secondary shear zone, decreasing tool-chip interface and wear. Temperature is correspondingly reduced. Consequently, these steels produce less crater wear, especially at high cutting speeds.Stainless Steels. Austenitic (300 series) steels are generally difficult to machine. Chatter can be s problem, necessitating machine tools with high stiffness. However, ferritic stainless steels (also 300 series) have good machinability. Martensitic (400 series) steels are abrasive, tend to form a built-up edge, and require tool materials with high hot hardness and crater-wear resistance. Precipitation-hardening stainless steelsare strong and abrasive, requiring hard and abrasion-resistant tool materials.The Effects of Other Elements in Steels on Machinability. The presence of aluminum and silicon in steels is always harmful because these elements combine with oxygen to form aluminum oxide and silicates, which are hard and abrasive. These compounds increase tool wear and reduce machinability. It is essential to produce and use clean steels.Carbon and manganese have various effects on the machinability of steels, depending on their composition. Plain low-carbon steels (less than 0.15% C) can produce poor surface finish by forming a built-up edge. Cast steels are more abrasive, although their machinability is similar to that of wrought steels. Tool and die steels are very difficult to machine and usually require annealing prior to machining. Machinability of most steels is improved by cold working, which hardens the material and reduces the tendency for built-up edge formation.Other alloying elements, such as nickel, chromium, molybdenum, and vanadium, which improve the properties of steels, generally reduce machinability. The effect of boron is negligible. Gaseous elements such as hydrogen and nitrogen can have particularly detrimental effects on the properties of steel. Oxygen has been shown to have a strong effect on the aspect ratio of the manganese sulfide inclusions; the higher the oxygen content, the lower the aspect ratio and the higher the machinability.In selecting various elements to improve machinability, we should consider the possible detrimental effects of these elements on the properties and strength of the machined part in service. At elevated temperatures, for example, lead causes embrittlement of steels (liquid-metal embrittlement, hot shortness; see Section 1.4.3), although at room temperature it has no effect on mechanical properties.Sulfur can severely reduce the hot workability of steels, because of the formation of iron sulfide, unless sufficient manganese is present to prevent such formation. At room temperature, the mechanical properties of resulfurized steels depend on the orientation of the deformed manganese sulfide inclusions (anisotropy). Rephosphorized steels are significantly less ductile, and are produced solely to improve machinability.2、Machinability of Various Other MetalsAluminum is generally very easy to machine, although the softer grades tend to form a built-up edge, resulting in poor surface finish. High cutting speeds, high rakeangles, and high relief angles are recommended. Wrought aluminum alloys with high silicon content and cast aluminum alloys may be abrasive; they require harder tool materials. Dimensional tolerance control may be a problem in machining aluminum, since it has a high thermal coefficient of expansion and a relatively low elastic modulus.Beryllium is similar to cast irons. Because it is more abrasive and toxic, though, it requires machining in a controlled environment.Cast gray irons are generally machinable but are. Free carbides in castings reduce their machinability and cause tool chipping or fracture, necessitating tools with high toughness. Nodular and malleable irons are machinable with hard tool materials.Cobalt-based alloys are abrasive and highly work-hardening. They require sharp, abrasion-resistant tool materials and low feeds and speeds.Wrought copper can be difficult to machine because of built-up edge formation, although cast copper alloys are easy to machine. Brasses are easy to machine, especially with the addition pf lead (leaded free-machining brass). Bronzes are more difficult to machine than brass.Magnesium is very easy to machine, with good surface finish and prolonged tool life. However care should be exercised because of its high rate of oxidation and the danger of fire (the element is pyrophoric).Molybdenum is ductile and work-hardening, so it can produce poor surface finish. Sharp tools are necessary.Nickel-based alloys are work-hardening, abrasive, and strong at high temperatures. Their machinability is similar to that of stainless steels.Tantalum is very work-hardening, ductile, and soft. It produces a poor surface finish; tool wear is high.Titanium and its alloys have poor thermal conductivity (indeed, the lowest of all metals), causing significant temperature rise and built-up edge; they can be difficult to machine.Tungsten is brittle, strong, and very abrasive, so its machinability is low, although it greatly improves at elevated temperatures.Zirconium has good machinability. It requires a coolant-type cutting fluid,however, because of the explosion and fire.3、Machinability of Various MaterialsGraphite is abrasive; it requires hard, abrasion-resistant, sharp tools.Thermoplastics generally have low thermal conductivity, low elastic modulus, and low softening temperature. Consequently, machining them requires tools with positive rake angles (to reduce cutting forces), large relief angles, small depths of cut and feed, relatively high speeds, andproper support of the workpiece. Tools should be sharp.External cooling of the cutting zone may be necessary to keep the chips frombecoming “gummy” and sticking to the tools. Cooling can usually be achieved with a jet of air, vapor mist, or water-soluble oils. Residual stresses may develop during machining. To relieve these stresses, machined parts can be annealed for a period of time at temperatures ranging from C ︒80 to C ︒160 (F ︒175to F ︒315), and then cooled slowly and uniformly to room temperature.Thermosetting plastics are brittle and sensitive to thermal gradients duringcutting. Their machinability is generally similar to that of thermoplastics.Because of the fibers present, reinforced plastics are very abrasive and aredifficult to machine. Fiber tearing, pulling, and edge delamination are significant problems; they can lead to severe reduction in the load-carrying capacity of the component. Furthermore, machining of these materials requires careful removal of machining debris to avoid contact with and inhaling of the fibers.The machinability of ceramics has improved steadily with the development of nanoceramics (Section 8.2.5) and with the selection of appropriate processingparameters, such as ductile-regime cutting (Section 22.4.2).Metal-matrix and ceramic-matrix composites can be difficult to machine,depending on the properties of the individual components, i.e., reinforcing orwhiskers, as well as the matrix material.4、Thermally Assisted MachiningMetals and alloys that are difficult to machine at room temperature can bemachined more easily at elevated temperatures. In thermally assisted machining (hot machining), the source of heat —a torch, induction coil, high-energy beam (such as laser or electron beam), or plasma arc —is forces, (b) increased tool life, (c) use ofinexpensive cutting-tool materials, (d) higher material-removal rates, and (e) reduced tendency for vibration and chatter.It may be difficult to heat and maintain a uniform temperature distribution within the workpiece. Also, the original microstructure of the workpiece may be adversely affected by elevated temperatures. Most applications of hot machining are in the turning of high-strength metals and alloys, although experiments are in progress to machine ceramics such as silicon nitride.SUMMARYMachinability is usually defined in terms of surface finish, tool life, force and power requirements, and chip control. Machinability of materials depends not only on their intrinsic properties and microstructure, but also on proper selection and control of process variables.中文翻译机械加工一种材料的机械加工性通常以四种因素的方式定义:1、分的表面光滑度和表面完整性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外文献翻译摘自: 《制造工程与技术(机加工)》(英文版)《Manufacturing Engineering and Technology—Machining》机械工业出版社2004年3月第1版页P560—564美s. 卡尔帕基安(Serope kalpakjian)s.r 施密德(Steven R.Schmid) 著原文:20.9 MACHINABILITYThe machinability of a material usually defined in terms of four factors:1、Surface finish and integrity of the machined part;2、Tool life obtained;3、Force and power requirements;4、Chip control.Thus, good machinability good surface finish and integrity, long tool life, and low force And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by becoming entangled in the cutting zone.Because of the complex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness aregenerally considered to be the most important factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below.20.9.1 Machinability Of SteelsBecause steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been mainly improved by adding lead and sulfur to obtain so-called free-machining steels.Resulfurized and Rephosphorized steels. Sulfur in steels forms manganese sulfide inclusions (second-phase particles), which act as stress raisers in the primary shear zone. As a result, the chips produced break up easily and are small; this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in resulfurized steels.Phosphorus in steels has two major effects. It strengthens the ferrite, causing increased hardness. Harder steels result in better chip formation and surface finish. Note that soft steels can be difficult to machine, with built-up edge formation and poor surface finish. The second effect is that increased hardness causes the formation of short chips instead ofcontinuous stringy ones, thereby improving machinability.Leaded Steels. A high percentage of lead in steels solidifies at the tip of manganese sulfide inclusions. In non-resulfurized grades of steel, lead takes the form of dispersed fine particles. Lead is insoluble in iron, copper, and aluminum and their alloys. Because of its low shear strength, therefore, lead acts as a solid lubricant (Section 32.11) and is smeared over the tool-chip interface during cutting. This behavior has been verified by the presence of high concentrations of lead on the tool-side face of chips when machining leaded steels.When the temperature is sufficiently high-for instance, at high cutting speeds and feeds (Section 20.6)—the lead melts directly in front of the tool, acting as a liquid lubricant. In addition to this effect, lead lowers the shear stress in the primary shear zone, reducing cutting forces and power consumption. Lead can be used in every grade of steel, such as 10xx, 11xx, 12xx, 41xx, etc. Leaded steels are identified by the letter L between the second and third numerals (for example, 10L45). (Note that in stainless steels, similar use of the letter L means “low carbon,” a condition that improves their corrosion resistance.)However, because lead is a well-known toxin and a pollutant, there are serious environmental concerns about its use in steels (estimated at 4500 tons of lead consumption every year in the production of steels).Consequently, there is a continuing trend toward eliminating the use of lead in steels (lead-free steels). Bismuth and tin are now being investigated as possible substitutes for lead in steels.Calcium-Deoxidized Steels. An important development is calcium-deoxidized steels, in which oxide flakes of calcium silicates (CaSo) are formed. These flakes, in turn, reduce the strength of the secondary shear zone, decreasing tool-chip interface and wear. Temperature is correspondingly reduced. Consequently, these steels produce less crater wear, especially at high cutting speeds.Stainless Steels. Austenitic (300 series) steels are generally difficult to machine. Chatter can be s problem, necessitating machine tools with high stiffness. However, ferritic stainless steels (also 300 series) have good machinability. Martensitic (400 series) steels are abrasive, tend to form a built-up edge, and require tool materials with high hot hardness and crater-wear resistance. Precipitation-hardening stainless steels are strong and abrasive, requiring hard and abrasion-resistant tool materials.The Effects of Other Elements in Steels on Machinability. The presence of aluminum and silicon in steels is always harmful because these elements combine with oxygen to form aluminum oxide and silicates, which are hard and abrasive. These compounds increase tool wear and reduce machinability. It is essential to produce and use cleansteels.Carbon and manganese have various effects on the machinability of steels, depending on their composition. Plain low-carbon steels (less than 0.15% C) can produce poor surface finish by forming a built-up edge. Cast steels are more abrasive, although their machinability is similar to that of wrought steels. Tool and die steels are very difficult to machine and usually require annealing prior to machining. Machinability of most steels is improved by cold working, which hardens the material and reduces the tendency for built-up edge formation.Other alloying elements, such as nickel, chromium, molybdenum, and vanadium, which improve the properties of steels, generally reduce machinability. The effect of boron is negligible. Gaseous elements such as hydrogen and nitrogen can have particularly detrimental effects on the properties of steel. Oxygen has been shown to have a strong effect on the aspect ratio of the manganese sulfide inclusions; the higher the oxygen content, the lower the aspect ratio and the higher the machinability.In selecting various elements to improve machinability, we should consider the possible detrimental effects of these elements on the properties and strength of the machined part in service. At elevated temperatures, for example, lead causes embrittlement of steels(liquid-metal embrittlement, hot shortness; see Section 1.4.3), althoughat room temperature it has no effect on mechanical properties.Sulfur can severely reduce the hot workability of steels, because of the formation of iron sulfide, unless sufficient manganese is present to prevent such formation. At room temperature, the mechanical properties of resulfurized steels depend on the orientation of the deformed manganese sulfide inclusions (anisotropy). Rephosphorized steels are significantly less ductile, and are produced solely to improve machinability.20.9.2 Machinability of Various Other MetalsAluminum is generally very easy to machine, although the softer grades tend to form a built-up edge, resulting in poor surface finish. High cutting speeds, high rake angles, and high relief angles are recommended. Wrought aluminum alloys with high silicon content and cast aluminum alloys may be abrasive; they require harder tool materials. Dimensional tolerance control may be a problem in machining aluminum, since it has a high thermal coefficient of expansion and a relatively low elastic modulus.Beryllium is similar to cast irons. Because it is more abrasive and toxic, though, it requires machining in a controlled environment.Cast gray irons are generally machinable but are. Free carbides in castings reduce their machinability and cause tool chipping or fracture,necessitating tools with high toughness. Nodular and malleable irons are machinable with hard tool materials.Cobalt-based alloys are abrasive and highly work-hardening. They require sharp, abrasion-resistant tool materials and low feeds and speeds.Wrought copper can be difficult to machine because of built-up edge formation, although cast copper alloys are easy to machine. Brasses are easy to machine, especially with the addition pf lead (leadedfree-machining brass). Bronzes are more difficult to machine than brass.Magnesium is very easy to machine, with good surface finish and prolonged tool life. However care should be exercised because of its high rate of oxidation and the danger of fire (the element is pyrophoric).Molybdenum is ductile and work-hardening, so it can produce poor surface finish. Sharp tools are necessary.Nickel-based alloys are work-hardening, abrasive, and strong at high temperatures. Their machinability is similar to that of stainless steels.Tantalum is very work-hardening, ductile, and soft. It produces a poor surface finish; tool wear is high.Titanium and its alloys have poor thermal conductivity (indeed, the lowest of all metals), causing significant temperature rise and built-upedge; they can be difficult to machine.Tungsten is brittle, strong, and very abrasive, so its machinability is low, although it greatly improves at elevated temperatures.Zirconium has good machinability. It requires a coolant-type cutting fluid, however, because of the explosion and fire.20.9.3 Machinability of Various MaterialsGraphite is abrasive; it requires hard, abrasion-resistant, sharp tools.Thermoplastics generally have low thermal conductivity, low elastic modulus, and low softening temperature. Consequently, machining them requires tools with positive rake angles (to reduce cutting forces), large relief angles, small depths of cut and feed, relatively high speeds, andproper support of the workpiece. Tools should be sharp.External cooling of the cutting zone may be necessary to keep the chips from becoming “gummy” and sticking to the tools. Cooling can usually be achieved with a jet of air, vapor mist, or water-soluble oils. Residual stresses may develop during machining. To relieve these stresses, machined parts can be annealed for a period of time at temperatures ranging from C︒315), and then175to F︒160(F︒80to C︒cooled slowly and uniformly to room temperature.Thermosetting plastics are brittle and sensitive to thermal gradients during cutting. Their machinability is generally similar to that of thermoplastics.Because of the fibers present, reinforced plastics are very abrasive and are difficult to machine. Fiber tearing, pulling, and edge delamination are significant problems; they can lead to severe reduction in the load-carrying capacity of the component. Furthermore, machining of these materials requires careful removal of machining debris to avoid contact with and inhaling of the fibers.The machinability of ceramics has improved steadily with the development of nanoceramics (Section 8.2.5) and with the selection of appropriate processing parameters, such as ductile-regime cutting (Section 22.4.2).Metal-matrix and ceramic-matrix composites can be difficult to machine, depending on the properties of the individual components, i.e., reinforcing or whiskers, as well as the matrix material.20.9.4 Thermally Assisted MachiningMetals and alloys that are difficult to machine at room temperature can be machined more easily at elevated temperatures. In thermally assisted machining (hot machining), the source of heat—a torch, induction coil, high-energy beam (such as laser or electron beam), orplasma arc—is forces, (b) increased tool life, (c) use of inexpensive cutting-tool materials, (d) higher material-removal rates, and (e) reduced tendency for vibration and chatter.It may be difficult to heat and maintain a uniform temperature distribution within the workpiece. Also, the original microstructure of the workpiece may be adversely affected by elevated temperatures. Most applications of hot machining are in the turning of high-strength metals and alloys, although experiments are in progress to machine ceramics such as silicon nitride.SUMMARYMachinability is usually defined in terms of surface finish, tool life, force and power requirements, and chip control. Machinability of materials depends not only on their intrinsic properties and microstructure, but also on proper selection and control of process variables.译文:20.9 可机加工性一种材料的可机加工性通常以四种因素的方式定义:1、分的表面光洁性和表面完整性。

相关文档
最新文档