第三章 晶体结构-S

合集下载

点群、空间群和晶体结构介绍

点群、空间群和晶体结构介绍

上述的推导过程完全可以推广到其它晶系的空间群。 把上述办法依次用于7种晶系,共导出66种空间群。如果再 考虑点群元素与布喇菲点阵之间的取向关系,又能得到另 一些空间群,结果总共得出73种点式空间群。
附表3 73种点式空间群
3.4.2 非点式空间群 螺旋轴
非点式空间群必包含1个非初基平移T的非点式操作,引入了 这种非点式操作,又可以导出157种非点式空间群。
(n/2)<S<n-左螺旋
二次螺旋轴
所有可能的晶体学螺旋轴操作
石英结构中的六次螺旋轴
石英的基本结构可以看成是硅氧四面体在三和六次螺旋轴 附近的螺旋链。左边为其中一个三次螺旋,右方显示的是螺旋 连接构成晶体框架。
滑移面
由镜面和平移组合产生的对称元素称为滑移反映面,简称滑 移面。滑移面的基本操作可表示为{m· t},其对称群为{m· t}p,P=0 ,±1,±2……。 晶体中有3种不同的滑移面,即轴向滑移、对角线滑移(又称 n滑移)和金刚石滑移。 所有滑移中,都是经镜面操作后再平移单胞周期的某一分数 的距离。和螺旋轴的操作相同,镜面和平移两步操作的先后次序 是不重要的。
பைடு நூலகம்
这两种类型的对称操作正是描述整个晶体结构对称性的基本操作。 图 (a)是正交点阵的阵 点 上 放 上 对 称 性 为 C2vmm2 的物体的空间群的俯 视图。
(a)正交晶系的Pmm2空间群
图中画出单胞的轮廓,原点选在左上角,a轴指向页底,b 轴指向右, c 轴从页面指出来。以圆圈排列来表示它的对称性 ,在左边的图中每个阵点的对称性用一般位置点的等效点系表 示。其中每一个圆圈既可以代表晶体中单个原子,也可以代表 原子集团。在右边的图上给出对称元素的配置。在原点有一个 沿 c 方向的2次轴和 2个镜面 (用粗线表示 )。 P- 初基点阵, mm2基本操作。非基本操作(附加的2次轴和镜面)未表示。

2021年高中化学选修二第三章《晶体结构与性质》知识点复习(答案解析)(1)

2021年高中化学选修二第三章《晶体结构与性质》知识点复习(答案解析)(1)

一、选择题1.下列关于晶体的说法中,不正确的是()①晶体中原子呈周期性有序排列,有自范性;而非晶体中原子排列相对无序,无自范性②含有金属阳离子的晶体一定是离子晶体③共价键可决定分子晶体的熔、沸点④MgO的晶格能远比NaCl大,这是因为前者离子所带的电荷数多,离子半径小⑤晶胞是晶体结构的基本单元⑥晶体尽可能采取紧密堆积方式,以使其变得比较稳定⑦CsCl和NaCl晶体中阴、阳离子的配位数都为6A.①②③B.②③④C.④⑤⑥D.②③⑦答案:D解析:①晶体中原子呈周期性有序排列,有自范性;而非晶体中原子排列相对无序,无自范性,故①正确;②金属晶体是由金属阳离子和自由电子构成的,所以含有金属阳离子的晶体不一定是离子晶体,可能是金属晶体,故②错误;③原子晶体中共价键可决定晶体的熔、沸点,但分子晶体中共价键不决定晶体的熔、沸点,故③错误;④MgO的晶格能远比NaCl大,这是因为前者离子所带的电荷数多,离子半径小,故④正确;⑤晶胞是晶体结构的基本单元,晶体内部的微粒按一定规律作周期性重复排列,故⑤正确;⑥晶体尽可能采取紧密堆积方式,以使其变得比较稳定,故⑥正确;⑦NaCl为面心立方结构,钠离子的配位数为6,CsCl为体心立方结构,铯离子的配位数为8,故⑦错误。

所以为②③⑦故答案为D。

2.某种硫的氧化物冷却到289.8 K时凝固得到一种螺旋状单链结构的固体,其结构片段如图所示。

下列有关该物质的说法中正确的是A.固态物质中S原子的杂化轨道类型是SP2杂化B.该物质的化学式为SO3C.从该结构片段分析可知所有的O原子和S原子在同一平面上D.该结构片段中S-O键之间的夹角约为120º答案:B解析:A.由题给结构片段可知,每个硫原子的周围有4个氧原子,则固态物质中S原子的杂化轨道类型是SP3杂化,故A错误;B.由题给结构片段可知,每个硫原子的周围有4个氧原子,其中2个氧原子为该硫原子单独占有,还有2个氧原子为两个硫原子共有,则每个硫原子单独占有的氧原子数为3,氧化物的化学式为SO3,故B错误;C.由题给结构片段可知,每个硫原子的周围有4个氧原子,空间构型为四面体形,则所有的O原子和S原子不可能在同一平面上,故C错误;D.由题给结构片段可知,每个硫原子的周围有4个氧原子,空间构型为四面体形,不是平面三角形,则S-O键之间的夹角不可能约为120º,故D错误;故选B。

材料化学-晶体结构缺陷

材料化学-晶体结构缺陷
14
3. 质量平衡:缺陷方程两边必须保持质量平衡; 4. 电中性:缺陷反应两边必须具有相同数目的总有效电荷,
但不必为零; 5. 表面位置:不用特别表示,当一个M原子从晶体内部迁
移到表面时,M位置数增加。
15
有效电荷:缺陷及其周围的总电荷减去理想晶体中同一区 域的电荷之差。
—— 对于自由电子和空穴:有效电荷等于实际电荷;
平衡常数为:
Ag
Vi
Ag
• i
VAg
K
[ Agi• ][VAg ] [ Ag ][Vi ]
令N为晶体中格位总数,Ni为间隙总数,即:
[VAg
]
[
Ag
• i
]
Ni
[Ag ] N Ni
对于大多数规则晶体结构,有:
[Vi ] N
仅与体系自身结构特性有关
23
因此,
K
N
2 i
N
2 i
(N Ni )(N ) N 2
13
缺陷反应方程式
1. 位置关系:在化合物 MaXb 中,M 位置的数目必须与 X
位置的数目成一个正确的比例;
2. 位置增殖:当缺陷发生变化时,有可能引入或消除空位, 相当于增加或减少点阵位置数,这种变化必须服从位置 关系;
—— 引起位置增殖的缺陷:VM,VX,MM,MX,XM, XX,等等;
—— 不引起位置增殖的缺陷: e’,h˙,Mi,Li,等等;
35
俘获空穴中心
通过俘获空穴而形成色心。
卤素蒸气中加热
NaCl
NaCl1+
Vk心:两个相 邻卤素离子俘
获一个空穴
H心:一列卤 素离子中插入 一个卤素原子
36
非整比晶体中的空位和填隙子

晶格结构

晶格结构
1.晶体 2.晶胞 3.点阵晶系 4.金属晶体 5.离子晶体 6.分子晶体与原子晶体
重难点
晶胞的概念;原子坐标以及体心 平移、面心平移、底心平移;晶 体结构模型;
教学方法
3-1 晶 体
1、 晶体的宏观特征 远古时期,人类从宝石开始认识晶体。红宝石、 蓝宝石、祖母绿等晶体以其晶莹剔透的外观, 棱角分明的形状和艳丽的色彩,震憾人们的感 官。名贵的宝石镶嵌在帝王的王冠上,成为权 力与财富的象征,而现代人类合成出来晶体, 如超导晶体YBaCuO、光学晶体BaB2O4、 LiNbO3、磁学晶体NdFeB等高科技产品,则推 动着人类的现代化进程。
Na原子的电子组态为1S22S22P63S1,1S,2S,2P电 子正好填满,形成满带,3s轨道形成的能带只填 一半,形成导带。Mg原子的3s 轨道虽已填满, 但它与3p轨道的能带重叠。从3s3p 总体来看, 也是导带。能带的范围是允许电子存在的区域, 而能带间的间隔,是电子不能存在的区域,叫禁 带。金属在外电场作用下能导电。导带中的电子, 受外电场作用,能量分布和运动状态发生变化, 因而导电。满带中电子已填满,能量分布固定, 没有改变的可能,不能导电,空带中没有电子, 也不能导电。若空带与满带重叠,也可形成导带。
离子半径的变化规律
1.同主族, 从上到下, 电子层增加, 具有相同电荷数的离子 半径增加. 2.同周期: 主族元素, 从左至右 离子电荷数升高, 最高价离 子, 半径减小. 3.同一元素, 不同价态的离子, 正电荷高的半径小。 4.一般负离子半径较大; 正离子半径较小 5.周期表对角线上, 左上元素和右下元素的离子半径相似. 如: Li+ 和 Mg2+, Sc3+ 和 Zr4+ 的半径相似. 6. 镧系元素离子半径,随原子序数增加,缓慢减小

材料科学基础第三章典型晶体结构(共71张PPT)

材料科学基础第三章典型晶体结构(共71张PPT)
Zn离子的位置交叉错开。
表示方法:球体堆积法;坐标法;投影图;配位多面体连 接方式
与金刚石晶胞的比照 ,有什么不同?
同型结构的晶体β-SiC,GaAs,AlP 等
5、 -ZnS〔纤锌矿〕型结构 〔AB type〕
六方晶系,简单六方格子
配位数:
晶胞中正负离子个数
堆积及空隙情况
同型结构的晶体:BeO, ZnO, AlN等
笼外俘获其它原子或基团,形成类C60的衍生物,例如
C60F60。再如,把K、Cs、Ti等金属原子掺进C60分子 的笼内,就能使其具有超导性能。再有C60H60这些相 对分子质量很大地碳氢化合物热值极高,可做火箭的 燃料等等。
2〕碳纳米管
碳纳米管又称纳米碳管〔 Carbon nanotube,CNT〕,是 单质碳的一维结构形式。碳纳米 管按照石墨烯片的层数分类可分 为:单壁碳纳米管〔Singlewalled nanotubes, SWNTs〕和多 壁碳纳米管〔Multi-walled nanotubes, MWNTs〕。
4. -ZnS〔闪锌矿〕型结构 〔AB type〕 点群:
空间群:
配位数:
晶胞中正负离子个数Z:
堆积及间隙情况:
• 以体积较大的S2-作立方紧密堆积 • Zn2+如何填充? • 空隙如何分布?
等同点分布:
共有2套等同点。这种结构 可以看作是Zn离子处在由S离 子组成的面心立方点阵的4个
四面体间隙中,即有一半四面 体间隙被占据,上层和下层的
晶体结构的描述通常有三种方法:
1〕坐标法:给出单位晶胞中各质点的空间坐标,这种采用
数值化方式描述晶体结构是最标准化的。为了方便表示晶胞, 化学式可写为MO,其中M2+是二价金属离子,结构中M2+和O2-分别占据了NaCl中钠离子和氯离子的位置。 以由体正积 负还较离大子可的半径S以2比-作rN采立a方+/r用紧cl-密≈堆投0.积 影图,即所有的质点在某个晶面〔001〕上的投

点群、空间群和晶体结构介绍

点群、空间群和晶体结构介绍

群是某些具有相互联系规律的一些元素的组合,群的元素可 以是字母、数字、对称操作、点阵等。
任何一个群都应具有以下4个基本性质:

封闭性(Closure)
群G的n个不等效元素中,任两个元素组合或一个同类元素自 身组合都是群中的一个元素。
群中所有元素都遵循组合律,但组合次序不能变。
有唯一的单位元素(E)。它和群中任何一个元素的组合是元素 本身。 群中每一个元素,必有一个相应的逆元素(Inverse Element) 使得两者相乘为其本身。 以一个4次对称轴C4的全部操作所构成的群G来说明4个基本性 质。 两个独立群的直接积 设有两个独立群 GA和GB,其中GA是n阶群,GB是m阶群。两个 群中除了恒等元素外,没有其它共有元素,两个群的元素间相乘有 ai · bj=bj · ai 交换律,即 两个群的直接积G以 G G A G B 表示:
立方系各晶类的投影图
在(e)所示:在投影面上{111)位置4个3轴,单胞3个轴为4次轴, 过单胞3个轴两两构成3个镜面及6个{110}的镜面。一般位置点的等 效点系共有48个点。 5种点群中(e) 是该晶系的全对称点群。从这5种点群可以看 到立方晶系不一定有4次轴,例如点群(a) 和(b) 就没有4次轴。另 外,立方晶系并不一定总是具有最高的对称性,例如四方晶系的 点群D4h-4/mmm(16阶)和六方晶系的点群D6h-6/mmm(24阶)就 比立方晶系的点群T-23(12阶)的对称性高。
这两种类型的对称操作正是描述整个晶体结构对称性的基本操作。 图 (a)是正交点阵的阵 点 上 放 上 对 称 性 为 C2vmm2 的物体的空间群的俯 视图。
(a)正交晶系的Pmm2空间群
图中画出单胞的轮廓,原点选在左上角,a轴指向页底,b 轴指向右, c 轴从页面指出来。以圆圈排列来表示它的对称性 ,在左边的图中每个阵点的对称性用一般位置点的等效点系表 示。其中每一个圆圈既可以代表晶体中单个原子,也可以代表 原子集团。在右边的图上给出对称元素的配置。在原点有一个 沿 c 方向的2次轴和 2个镜面 (用粗线表示 )。 P- 初基点阵, mm2基本操作。非基本操作(附加的2次轴和镜面)未表示。

晶体结构

晶体结构

图8-9中,r、s、t分别为2, 分别为2 2 ,3 ; 1/r:1/s:1/t=1/2:1/2:1/3 =3:3:2, =3:3:2,即晶面指标为 332),我们说(332) ),我们说 (332),我们说(332) 晶面,实际是指一组平行 晶面, 的晶面。 的晶面。
图8-9
示出立方晶系几组晶面及其晶面指标。 图7-10 示出立方晶系几组晶面及其晶面指标。 100)晶面表示晶面与1/a轴相截与b 1/a轴相截与 轴平行; (100)晶面表示晶面与1/a轴相截与b轴、c轴平行; 110)晶面面表示与a 轴相截, 轴平行; (110)晶面面表示与a和b轴相截,与c轴平行; 111)晶面则与a 轴相截,截距之比为1:1:1 (111)晶面则与a、b、c轴相截,截距之比为1:1:1
d
= a h +k +l
(
)
8.2.1 晶体结构中可能存在的对称元素
晶体的点阵结构使晶体的对称性跟分子的对称性 有一定的差别: 有一定的差别: 晶体的对称性除了具有分子对称性的4种类型的 ⑴晶体的对称性除了具有分子对称性的 种类型的 对称操作和对称元素外,还具有与平移操作有关的3种 对称操作和对称元素外,还具有与平移操作有关的 种 类型的对称操作和对称元素。 类型的对称操作和对称元素。 (1) . (2) . (3) . (4) . (5) . (6) . (7) . 旋转轴--旋转操作 旋转轴--旋转操作 镜面--反映操作 镜面 反映操作 对称中心--反演操作 对称中心 反演操作 反轴--旋转反演操作 反轴 旋转反演操作 点阵--平移 平移操作 点阵 平移操作 螺旋轴--螺旋旋转操作 螺旋轴 螺旋旋转操作 滑移面--反演滑移操作 滑移面 反演滑移操作
反映面: 3.反映—反映面: 反映 反映面 若物体含有一个对称面, 若物体含有一个对称面,那么在对称面一侧的每一 都可在对称面的另一侧找到它的对应点。 点,都可在对称面的另一侧找到它的对应点。另一种 特殊情况是物体本身是一个平面物体, 特殊情况是物体本身是一个平面物体,被包含在对称 面内,则平面上每一点与自己对应。 面内,则平面上每一点与自己对应。 反轴: 4.旋转反演—反轴: 旋转反演 反轴 这是一个复合操作,即绕轴旋转2π/n后 这是一个复合操作,即绕轴旋转2π/n后,再按对 称中心反演后,图形仍能复原,我们称这轴为反轴, 称中心反演后,图形仍能复原,我们称这轴为反轴, 记为n 这一对称操作与分子对称性中介绍的映轴Sn 记为 n 。 这一对称操作与分子对称性中介绍的映轴 Sn 是一个相关操作。相互间的联系如下: 是一个相关操作。相互间的联系如下:

第三章晶体结构

第三章晶体结构

子晶体所释放的能量,用 U 表示。
晶格能 U 越大,则形成离子键得到离子晶体时放出的能量越多,离 子键越强。 一般而言,晶格能越高,离子晶体的熔点越高、硬度越大。晶格 能大小还影响着离子晶体在水中的溶解度、溶解热等性质。但离
子晶体在水中的溶解度与溶解热不但与晶体中离子克服晶格能进入水中 吸收的能量有关,还与进入水中的离子发生水化放出的能量(水化热) 有关。
子作周期性平移的最小集合。
复晶胞:素晶胞的多倍体;
体心晶胞(2倍体),符号I;
面心晶胞(4倍体),符号F; 底心晶胞(2倍体),符号A(B﹑C)。
二. 三种复晶胞的特征
1. 体心晶胞的特征:晶胞内的任一原子作体心平移[原子坐
标 +(1/2,1/2,1/2)]必得到与它完全相同的原子。
2. 面心晶胞的特征:可作面心平移,即所有原子均可作在其
P区的第三周期第三主族的Al3+ 也是8e-构型 ;d区第三至七副族原
素在表现族价时,恰相当于电中性原子丢失所有最外层s电子和次
外层d电子,也具有8e-构型 ;稀土元素的+3价原子也具有8e-构型 , 锕系元素情况类似。 (3)18e-构型 ds区的第一、二副族元素表现族价时,具有18e-构 型 ;p区过渡后元素表现族价时,也具有18e-构型。 (4)(9—17)e-构型 d区元素表现非族价时最外层有9—17个电
图3-6 晶体微观对称性与它的宏观外形的联系
图3-7 晶态与非晶态微观结构的对比
3-2 晶胞
3-2-1 晶胞的基本特征
1.晶体的解理性:用锤子轻敲具有整齐外形的晶体(如方解 石),会发现晶体劈裂出现的新晶面与某一原晶面是平行 的,这种现象叫晶体的解理性。 2.布拉维晶胞:多面体无隙并置地充满整个微观空间,即

三晶体结构PPT课件

三晶体结构PPT课件

2 h2
3 h3,
请同学自证: h1= h1 , h2= h2 , h3= h3
该晶面族的法向矢为倒格矢G (h’1h’2h’3) ,其中最短倒格矢Gh=h1b1+h2b2+ h3b3
a / , a / , a / 1 (h1,h2,h3为互质整数)。晶面间距即为
h1
2 h2
3 h3, 在法向的投

3
若ABC面的指数为(234),情况又如何?
5. 晶体中有哪几种密堆积,密堆积的配位数是多少?
6. 晶向指数,晶面指数是如何定义的?
第32页/共125页
5. 晶体中有哪几种密堆积,密堆积的配位数是多少? 6. 晶向指数,晶面指数是如何定义的?
第33页/共125页
§1.6 倒格子与布里渊区
一. 倒格子基矢 (Reciprocal Lattice Vector)
5. 氯化铯(CsCl)结构 Cs+,Cl-离子分别为简立方(SC)子格子,二子格子体心套构。
第22页/共125页
6. NaCl结构 Na+,Cl-分别为fcc子格子,沿立方边位移a/2套构而成。
第23页/共125页
注意
不同晶体结构的Cu.NaCl,金刚石 结构,闪锌矿结构等,它们的格子 均为fcc。
2. 体心立方元素晶体, [111]方向上的结晶学周期为 多大? 实际周期为多大?
3. 面心立方元素晶体中最小的晶列周期为多大? 该 晶列在哪些晶面内?
4. 晶面指数为(123)的晶面ABC是离原点O最近
的 重
晶 合
面 ,
, 除
O O
A点、外O,OBA和、OOCB分和别O与C基上矢是a否1
、a2 、a 有格点?
(2)将原点与各级近邻的格点连线,得 到几组格矢;

晶体结构和对称性

晶体结构和对称性
在晶体的空间点阵结构中,任何对称轴(包括旋转轴、反轴 以及以后介绍的螺旋轴)都必与一组直线点阵平行,与一组 平面点阵垂直(除一重轴外);任何对称面(包括镜面及微观 对称元素中的滑移面)都必与一组平面点阵平行,而与一组 直线点阵垂直。
晶体宏观对称性受到的限制
晶体中的对称轴(包括旋转轴,反轴和螺旋轴)的轴次n并不 是可以有任意多重,n仅为1,2,3,4,6,即在晶体结构中, 任何对称轴或轴性对称元素的轴次只有一重、二重、三重、 四重和六重这五种,不可能有五重和七重及更高的其它轴 次,这一原理称为“晶体的对称性定律”。
其对称操作是旋转反映。
sˆncˆnˆh
在晶体中反轴 n ,对应的操
作是先绕轴旋转 2P n,再过 轴的中心进行倒反。
L()I = L() ● I
由此可知,n 与Sn都属于复合对称操作,且都由旋转与另
一相连的操作组合而成。
关于旋转反映轴与反轴的说明
❖ 用映轴表示的对称操作都可以用反轴表示,所以在新的晶体 学国际表中只用反轴。
(1)晶体多面体外形是有限图形,故对称元素组合时必通 过质心,即通过一个公共点。
(2)任何对称元素组合的结果不允许产生与点阵结构不相 容的对称元素,如5、7、…。
晶体宏观对称元素的组合
组合程序:
(1)组合时先进行对称轴与对称轴的组合, (2)再在此基础上进行对称轴与对称面的组合, (3)最后为对称轴、对称面与对称中心的组合。
格子。空间格子一定是平行六面体。
顶点的阵点,对每单位贡献1/8; 边上的阵点,对每单位贡献1/4; 面上的阵点,对每单位的献1/2; 六面体内的阵点,对每单位贡献1。
空间点阵与正当空间格子
C 空间点阵
空间点阵对应的平移群
T m n p m a n b p cm , n ,p = 0 , 1 , 2 ,

无机材料科学基础第三章晶体结构缺陷

无机材料科学基础第三章晶体结构缺陷
• 点缺陷的存在会引起性能的变化: (1)物理性质、如V、ρ 等; (2)力学性能:采用高温急冷(如淬火 quenching),大 量 的 冷 变 形 (cold working), 高 能 粒 子 辐 照 (radiation)等方法可获得过饱和点缺陷,如使屈服强 度σS提高; ( 3 ) 影 响 固 态 相 变 , 化 学 热 处 理 (chemical heat treatment)等。
(4)溶质原子(杂质原子):
LM 表示溶质L占据了M的位置。如:CaNa SX 表示S溶质占据了X位置。 (5)自由电子及电子空穴:
有些情况下,价电子并不一定属于某个特定位置的原子,在光、电、热 的作用下可以在晶体中运动,原固定位置称次自由电子(符号e/ )。同 样可以出现缺少电子,而出现电子空穴(符号h. ),它也不属于某个特定 的原子位置。
(5)热缺陷与晶体的离子导电性
纯净MX晶体:只有本征缺陷(即热缺陷) 能斯特-爱因斯坦(Nernst-Einstein)方程:
n k 2 e 2 z T [a 2cex k E c p ) T a ( 2a ex k E a p )T ]( n k 2 e 2 z T D
式中 D —— 带电粒子在晶体中的扩散系数; n —— 单位体积的电荷载流子数,即单位体 积的缺陷数。 下标c、a —— 阳离子、阴离子
离子晶体中:CaF2型结构。
从形成缺陷的能量来分析——
Schttky缺陷的形成能量小,Frankel 缺陷的 形成能量大,因此对于大多数晶体来说, Schttky 缺陷是主要的。
(4) 点缺陷对结构和性能的影响
• 点缺陷引起晶格畸变(distortion of lattice),能量升 高,结构不稳定,易发生转变。

过渡晶体与混合晶体、四种晶体类型比较-高二化学课件(人教版2019选择性必修2)

过渡晶体与混合晶体、四种晶体类型比较-高二化学课件(人教版2019选择性必修2)
(4)溴化钾,无色晶体,熔融时或溶于水中都能导电:离__子__晶__体__。 (5)SiI4:熔点120.5 ℃,沸点287.4 ℃,易水解:_分__子__晶__体_。 (6)硼:熔点2 300 ℃,沸点2 550 ℃,硬度大:_共__价__晶__体_。 (7)硒:熔点217 ℃,沸点685 ℃,溶于氯仿:_分__子__晶__体_。 (8)锑:熔点630.74 ℃,沸点1 750 ℃,导电:_金__属__晶__体_。
结论二:晶体性质偏向某一晶体类型的过渡晶体通常当作该晶体类型处理
2、金刚石与石墨结构和性质的比较:
思考:同是碳单质的晶体,金刚石和石墨的性质存在哪些异同?为什么?
金刚石与石墨熔点都很高。金刚石:硬度大,几乎不导电而石墨是非金 属导体,但硬度小。这由结构决定。
问题1:比较石墨与金刚石的结构异同?
①石墨所有碳原子均采取s_p_2_杂化,形成_平__面__六__元__并__环__ 结构。金刚石碳原子均采取_sp__3 杂化,形成正__四__面__体__结构
分子晶体
金刚石晶体结构
共价晶体
铜晶体结构
离子晶体
氯化钠晶体结构
金属晶体
微粒之间的作用力决定晶体的类型。比如分子晶体的分子间作用力、离 子晶体微粒间的离子键、共价晶体微粒间的共价键、金属晶体微粒间的 金属键。这些作用力是否纯净?
几种氧化物的化学键中离子键成分的百分数
氧化物
Na2O MgO Al2O3 SiO2
氧化物 Na2O 离子键的 百分数/% 62
MgO 50
Al2O3 41
SiO2 33
P2O5
SO2 Cl2O7
离子键成分的百分数更小
共价键不再贯穿整个晶体
离子晶体与共价晶体之间的过渡晶体

晶体结构

晶体结构

1第3章晶体结构固体可分为晶体(crystal)和非晶体(noncrystal)两大类。

无定形态物质(amorphous solids)。

晶体物质的质点(分子、原子、离子)做有规则的排列,而无定性物质的质点呈混乱分布。

3-1 晶体3-1-1 晶体的宏观特征1、晶体的自范性:晶体能够自发地呈现封闭的规则凸多面体的外形。

2依晶体的凸多面体的数目对晶体的分类:单晶、双晶、晶簇、多晶。

见书123页图3-1。

金刚石单晶34磷酸盐双晶5天然白水晶晶簇。

6因生长条件不同,同一晶体可能有不同的几何外形。

见书124页图3-2、3-3、3-4。

晶面夹角不变定律:同一晶体的相同晶面有相同的晶面夹角。

见书124页图3-2。

晶体的习性:一种晶体经常呈现的外形。

72、晶体的对称性:晶体具有宏观对称性。

3、晶体的均一性:晶体的质地均匀,具有确定的熔点。

4、晶体的各向异性:晶体的某些物理性质随晶体的取向不同而异。

见书124-125页例。

晶体的宏观特征是晶体的微观特征的表象。

83-1-2 晶体的微观特征——平移对称性晶体的平移对称性:构成晶体的质点呈现周期性的整齐排列。

见书125页图3-5。

晶体的宏观对称性是晶体的微观对称性的体现。

见书126页图3-6。

非晶态物质不具有平移对称性。

见书126页图3-7。

3-2 晶胞3-2-1 晶胞的基本特征9晶胞(unit cell):晶体结构中具有代表性的最小重复单位。

1、晶体是由完全等同的晶胞无隙并置地堆积而成的。

A 、完全等同:a 、化学上等同:晶胞里原子的数目和种类完全相同。

b 、几何上等同:晶胞的形状、取向、大小、质点的排列及其取向完全相同。

B 、无隙并置:见书127页。

晶胞具有平移性。

102、晶胞的种类:见书128页图3-9。

习惯选用的晶胞是三维的平行六面体,称为布拉维晶胞。

3-2-2 布拉维系1、晶胞参数:晶角:α、β、γ。

晶柱:a 、b 、c 。

2、布拉维系的种类:见书129页及图3-12。

无机化学 晶体结构

无机化学 晶体结构
1
第三章 晶体结构
Crystal structure
2
钻石恒久远 一颗永流传
祖母绿
钠长石 Na[AlSi3O8] 绿柱石 Be3Al2(Si O3)6
3
4
5
教学大纲要求
晶格的概念,晶体的类型,离子晶体,晶格
能的概念与计算,离子极化的概念,离子极
化对物质结构和性质的影响。
分子晶体,原子晶体,金属晶体,金属键理 论,混合晶体。
a
正离子 负离子
b
c
34
半径比规则(3)

当r+/r- 0.414时,负离子接触,正、负离子 彼此不接触。体系的排斥力大于吸引力,该 构型不稳定,趋向于形成配位数少的构型。

当r+/r- 0.414时,负离子彼此不接触,正、
负离子之间接触,此时,吸引力大于排斥力, 该构型可以稳定存在。
r+/r-<0.414
CsCl型 NaCl型 ZnS型
8 6 4
1 4 4
(2)离子型晶体的特点
①离子型晶体中,正、负离子通过离子键结合,离 子的电荷越高,半径越小(核间距越小),正、负 离子间的静电作用力越强,其熔、沸点也就越高; 离子型晶体一般具有较高的熔、沸点和硬度; 化合物 NaCl KCl CaO MgO
Na+ 95 K+ 133 Ca2+ 99 Mg2+ 65 半径pm Cl- 181 Cl- 181 O2- 140 O2- 140 熔点K 沸点K 1074 1686 1041 1690 2845 3123 3073 3873
(1)几种简单的离子型晶体
NaCl 型
面心立方晶格,每个离子被 6 个相反电荷的离子包围着,配 位数为6。LiF、CsF、NaI等 属于NaCl型。

第三章晶体结构

第三章晶体结构
设按六方密堆的O2-分别为OA层与OB层,则-Al2O3中氧与铝 的排列可写成:OAAlDOBAlEOAAlFOBAlDOAAlEOBAlF∥OAAlD…, 从第十三层开始才出现重复。
三.其它晶体结构 1.金刚石结构
金刚石结构为面心立方格 子,碳原子位于面心立方的所 有结点位置和交替分布在立方 体内的四个小立方体的中心, 每个碳原子周围都有四个碳, 碳原子之间形成共价键。
一.面心立方紧密堆积结构
4. CaTiO3(钙钛矿)型结构 钙钛矿结构的通式为ABO3,其中,A2+ 、B4+或A1+ 、B5+金
属离子。CaTiO3在高温时为立方晶系,O2-和较大的Ca2+作面心 立方密堆,Ti4+填充于1/4的八面体空隙。Ca2+占据面心立方的 角顶位置。O2-居立方体六个面中心,Ti4+位于立方体中心。Z=1, CNCa2+=12 CNTi4+=6 ,O2-的配位数为6 (2个Ti4+和 4个Ca2+)。
一.面心立方紧密堆积结构 1. NaCl型结构
Cl-呈面心立方最紧密堆积,Na+则填充于全部的八面体空隙
中,(即阴离子位于立方体顶点和六个面的中心,阳离位于立
方 体 的 中 心 和 各 棱 的 中 央 ) 。 两 者 CN 均 为 6 , 单 位 晶 胞 中 含 NaCl的个数Z=4 ,四面体空隙未填充。
一.面心立方紧密堆积结构 2. β-ZnS(闪锌矿)型结构
S2-位于面心立方的结点位置,Zn2+交错地分布于立方体内 的1/8小立方体的中心,即S2-作面心立方密堆,Zn2+填充于1/2的 四面体空隙之中,CN均为4,Z=4。β -ZnS是由[ZnS4]四面体以 共顶的方式相连而成。

材料科学基础位错部分知识点

材料科学基础位错部分知识点

材料科学基础位错部分知识点第三章晶体结构缺陷(位错部分)1.刃型位错及螺型位错的特征刃型位错特征:1)刃型位错是由一个多余半原子面所组成的线缺陷;2)位错滑移矢量(柏氏向量)垂直于位错线,而且滑移面是位错线和滑移矢量所构成唯一平面;3)位错的滑移运动是通过滑移面上方的原子面相对于下方原子面移动一个滑移矢量来实现的;4)刃型位错线的形状可以是直线、折线和曲线;5)晶体中产生刃型位错时,其周围的点阵发生弹性畸变,使晶体处于受力状态,既有正应变,又有切应变。

螺型位错特征:1)螺型位错是由原子错排呈轴线对称的一种线缺陷;2)螺型位错线与滑移矢量平行,因此,位错线只能是直线;3)螺型位错线的滑移方向与晶体滑移方向、应力矢量方向互相垂直;4)位错线与滑移矢量同方向的为右螺型位错;为此系与滑移矢量异向的为左螺型位错。

刃型位错螺型位错位错线和柏氏矢量关系(判断位错类型)⊥∥滑移方向∥b∥b位错线运动方向和柏氏矢量关系∥⊥相关概念(ppt上的,大概看一看):A.位错运动与晶体滑移:通过位错运动可以在较小的外加载荷下晶体产生滑移,宏观显现为产生塑性变形。

B.位错线:位错产生点阵畸变区空间呈线状分布。

对于纯刃型位错,其可以描述为刃型位错多余半原子面的下端沿线。

为了与其它类型位错统一,位错线可表述为已滑移区与未滑移区的交界线。

C.混合型位错:在外力作用下,两部分之间发生相对滑移,在晶体内部已滑移和未滑移部分的交线既不垂直也不平行滑移方向(柏氏矢量b),这样的位错称为混合位错。

(位错线上任意一点,经矢量分解后,可分解为刃位错和螺位错分量。

晶体中位错线的形状可以是任意的。

)=l/V;单位面积内位错条数来表示位错密度:D.错位密度:单位体积内位错线的长度:ρv=n/S。

(金属中位错密度通常在106~8—1010~121/c㎡之间。

)ρs2.柏氏矢量:1)刃型位错和螺型位错的柏氏矢量表示:2)柏氏矢量的含义:柏氏矢量反映出柏氏回路包含的位错所引起点阵畸变的总累计。

《无机化学》题库(含答案)

《无机化学》题库(含答案)

2.波函数和原子轨道二者之间的关系是…………………………………………(C) A.波函数是函数式,原子轨道是电子轨迹; B.波函数和原子轨道是同义词; C.只有轨道波函数与原子轨道才是同义的; D.以上三种说法都不对. 3.多电子原子的原子轨道能级顺序随着原子序数的增加………………………(D) A.轨道能量逐渐降低,但能级顺序不变; B.轨道能量基本不变,但能级顺序改变; C.轨道能量逐渐增加,能级顺序不变; D.轨道能量逐渐降低,能级顺序也会改变. 4.周期表中各周期元素数目是由什么决定的……………………………………(C) A.2n2(n 为主量子数); B.相应能级组中所含轨道总数; C.相应能级组中所含电子总数 D. n + 0.7 规则 5.下列电子构型中,电离能最低的是……………………………………………(A) A.ns2np3 B.ns2np4 C.ns2np5 D.ns2np6 6.下列元素中,第一电离能最大的是……………………………………………(B) A.B B.C C.Al D.Si 7.原子光谱中存在着不连续的线谱,证明了……………………………………(B) A.在原子中仅有某些电子能够被激发 B. 一个原子中的电子只可能有某些特定的能量状态 C.原子发射的光,在性质上不同于普通的白光 D.白光是由许许多多单色光组成. 8.原子轨道中"填充"电子时必须遵循能量最低原理,这里的能量主要是指……(C) A.亲合能 B.电能 C.势能 D.动能 9.下列哪一原子的原子轨道能量与角量子数无关? ……………………………(D) A.Na B.Ne C.F D.H 10.下列哪一种元素性质的周期规律最不明显…………………………………(A) A.电子亲合能 B.电负性 C.电离能 D.原子体积
大学无机化学复习题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(5)能带与能带之间存在能量的间隙,简称带隙, 又叫禁带宽度。
第三章
晶体结构
§3.4 金属晶体
绝缘体:只有满带和空带, 且E超过5 eV, 在一般电场条 件下难以将满带电子激发入 空带,因此不能形成导带. 半导体:只有满带和空带, 但E小于3 eV.易受光或热激 发使满带中部分电子跃迁到 空带,形成导带而导电. E < 3 eV E > 5 eV
阳离子所含d电子数越多(18,18+2 ),电子层数越多, 阴离子的变形性越大,这种附加极化作用一般也较大。
第三章
晶体结构
§3.7 离子的极化
4、 离子极化对化合物结构和性质的影响 由于阴阳离子相互极化,使电子云发生强烈变 形,电子云发生重叠。相互极化越强,电子云重叠 程度也越大,键的极性也越弱,键长缩短,从而离 子键过渡到共价键。
第三章
晶体结构
晶体
作为半导体材料,用GaAs芯 片制造计算机将使运算速度提高 千倍.
锗酸铋(BGO)晶体是一种新型闪 烁晶体,在基本粒子、空间物理和高能 物理等研究领域有广泛应用。
第三章
晶体结构
晶体
晶体:由原子、离子或分子(质点)在空间按一 定规律周期性重复排列所构成的固体物质叫晶体。
产地:甘肃省肃北县
半径大,分子间距大,作用力小;相反,半径 小,作用力大。 NaCl 熔点 801C° NaI熔点 660C °
第三章
晶体结构
§3.5 离子晶体
2. 离子电荷数的影响 离子电荷高,离子键强 ,化合物的熔点也高。
NaCl 熔点 801C° MgO 熔点 2800C°
3. 离子的电子构型 在离子电荷和离子半径相同的条件下,离子 构型不同,正离子的有效正电荷的强弱不同,顺 序为: 8e<9-17e<18e或18+2e
高,最高价离子半径减小。 Na + > Mg 2 + > Al 3 + K + > Ca 2 +
第三章
晶体结构
§3.5 离子晶体
c ) 同一元素,不同价态的离子,电荷高的半径小。 Ti 4 + < Ti 3 + ; 第二周期 第四周期 F- Br- Fe 3 + < Fe 2 + 。
d ) 负离子半径一般较大;正离子半径一般小 。 136 pm Li + 60 pm 。 195 pm ;K+ 133 pm 。
晶 体 的 对 称 性
CaF2
第三章
晶体结构
晶体
晶 体 的 异 向 性
云 母 片
产地:甘肃省肃北县
蜡滴
玻 璃 片
云母薄片上的热导率有异向性
9
第三章
晶体结构
晶体
晶 体 有 确 定 的 熔 点
第三章
晶体结构
晶体
晶体的周期性结构能够对X光产生衍射:
晶 体 的 X 射 线 衍 射 效 应
第三章
晶 金属晶体 离子 原子晶体 原子 离子晶体 离子 分子晶体 分子
*大部分有此性质
粒子间作 用力 金属键 共价键 离子键 分子间力
物理性质 熔融 熔沸 硬度 导电 点 性 高* 高 高 低 大* 大 大 小 好* 差 好 差
实例
Cr K
SiO 2
NaCl 干冰
第三章
晶体结构
第三章
晶体结构
§3.7 离子的极化
• 对于不同电子层结构的阳离子,极化作用大小的 顺序为:18,18+2 >9~17 >8 2、 离子的变形性(主要指阴离子) 被带相反电荷离子极化而发生离子电子云变形的 性质称为离子的变形性,或可极化性。 (1)电子层结构相同的离子,负电荷数越大,变形 性越大。O2->F(2)电子层结构相同的离子,电子层越多,离子半 径越大,变形性越大。如;I- > Cl-> Br- > F-
§3.4 金属晶体
§3.4
3.4.1 金属键
金属晶体
金属晶体中原子之间的化学作用力叫做金属键。 金属键是一种遍布整个晶体的离域化学键。
金属键没有饱和性和方向性. 原子化热:指1mol金属完全气化成互相远离的 气态原子吸收的能量。
第三章
晶体结构
§3.4 金属晶体
1、经典的金属键理论(电子气理论)。
把金属键描绘成从金属原子上“脱落”下来的大量 自由电子形成 “电子气”,金属原子则“浸泡”在“电子 气”的“海洋”之中。
第三章
晶体结构
§3.5 离子晶体
3.5.5 离子晶体的性质
熔沸点高,硬度大 晶体无延展性。 熔融后或溶解在水中具有良好的导电性。 晶格能较小、离子水合热较大的晶体,易溶于水。
第三章
晶体结构
§3.6 分子晶体和原子晶体
3.6 分子晶体和原子晶体
3.6.1 分子晶体
在分子晶体中,分子之间的作用力是分子间力, 因而分子晶体的熔点很低。如干冰晶体和碘晶体。
BeCl2 MgCl2 714 CaCl2 782 SrCl2 875 BaCl2 963
熔点
405
第三章
晶体结构
§3.7 离子的极化
阳离子的半径增大,极化力减小,离子键的成分 多,熔点增大。 AgCl(728K) NaCl(1074K) HgCl2(550K) (3) 离子键向共价键过渡,导致化合物在水中溶解 度降低。 离子键结合的无机化合物一般是可溶于水的,而 共价型的无机晶体,却难溶于水。 AgF、AgCl、AgBr、 AgI 共价程度依次增大,故 溶解度依次减小。
离子相互极化的增强
-+ -+
. .
259 307 322 346
. .
246 277 288 299
. .
键型 离子型 过渡型 过渡型 共价型
. .
离子半径之和/pm 实测键长/pm AgF AgCl AgBr AgI
第三章
晶体结构
§3.7 离子的极化
(1) 化合物的晶体结构 较强的极化作用使晶体结构从高配位结构形式向 低配位结构形式过渡。 AgBr(0.51)、CuI(0.44)的晶型为ZnS型,配位数为4。 实际上,典型的离子化合物很少,绝大部分化合 物是介于离子型和共价型之间。 (2)离子键向共价键过渡,引起晶格能降低,导致 化合物的熔沸点降低。
第三章
晶体结构
§3.5 离子晶体
3.5 离子晶体
3.5.1 离子键理论的基本要点
靠正、负离子的静电引力而形成的化学键叫做离 子键。
3.5.2 离子键的特征
1 作用力的实质是静电引力
q1 ⋅ q2 F∝ 2 r
2 离子键无方向性和饱和性
第三章
晶体结构
§3.5 离子晶体
只要空间许可,一个离子可以同时和几个电荷相 反的离子相吸引,因此离子键无饱和性。 在离子晶体中,每一个离子周围排列异号离子 的数目(配位数)是固定的。
第三章
晶体结构
§3.5 离子晶体
NaCl离子晶体的结构
Na+ Cl-
第三章
晶体结构
§3.5 离子晶体
CsCl离子晶体的结构
Cs+ Cl-
第三章
晶体结构
§3.5 离子晶体
ZnS 离子晶体的结构
Zn2+ S2-
第三章
晶体结构
§3.5 离子晶体
注意:离子晶体中没有独立的“分子”,因 此,其化学式只表示晶体中正负离子数量比,并 不表示实际分子。如 NaCl并不表示NaCl晶体中存 在NaCl分子。 3 P152表3-7
第三章
晶体结构
§3.5 离子晶体
3.5.3 离子键的特征
1 离子半径的变化规律 a ) 同主族从上到下,电子层增加,具有相同电荷 数的离子半径增加。 Li + < Na + < K + < Rb + < Cs + b ) F- < Cl- < Br- < I- 同周期的主族元素,从左至右离子电荷数升
第三章
晶体结构
§3.7 离子的极化
AgS、 Cu2S 溶解度也非常小? S2-离子的负电荷高、半径又大、变形性和极化作 用都大。 (4) 导致化合物颜色的加深 一般情况下,如果组成化合物的两种离子都是无色 的,这个化合物也无色。如:NaCl KNO3 如果其中一个离子是无色的,另一个离子有颜色,则 这个离子的颜色就是该化合物的颜色。如:KCrO4
c a b
第三章
晶体结构
§3.6 分子晶体和原子晶体
3.6.2 原子晶体
原子晶体是以共价键为骨架形成的晶体。 金刚石和石英(SiO2)是最典型的原子晶体
第三章
晶体结构
§3.7 离子的极化
3.7 离子极化理论
第三章
晶体结构
§3.7 离子的极化
3.7 离子极化理论
基本要点 1、离子极化:
在自身电场的作用下,正负离子的原子核和电子发生 位移,导致正负离子变形,产生诱导偶极的过程。 结果:发生电子云重叠。 离子极化力(主要指阳离子) • 高电荷,小半径的阳离子有强的极化能力, Si4+>Al3+>Mg2+>Na+ Mg2+ >Ca2+>Sr2+>Ba2+ + +-
第三章 晶体结构
§3.4 金属晶体(3.4.1 金属键) §3.5 离子晶体 §3.6 分子晶体和原子晶体 §3.7 离子的极化
第3章
第25题
第163页
补充1:试解释下列各组化合物熔点的高低关系。 (1)NaCl> NaBr (2)CaO>KCl (3) MgO>Al2O3 补充2:试用离子极化理论解释下列各组化合物热分 解温度的高低关系。 (1)CaSO4> CdSO4 (3) MnSO4 >MgSO4 (2) MnSO4 > Mn2(SO4 ) 3
相关文档
最新文档