《理论力学》第二章作业答案

合集下载

理论力学(机械工业出版社)第二章平面力系习题解答

理论力学(机械工业出版社)第二章平面力系习题解答

第二章 习 题2-1 试计算图2-55中力F 对点O 之矩。

图2-55(a) 0)(=F O M (b) Fl M O =)(F (c) Fb M O -=)(F (d) θsin )(Fl M O =F(e) βsin )(22b l F M O +=F(f) )()(r l F M O +=F2-2 一大小为50N 的力作用在圆盘边缘的C 点上,如图2-56所示。

试分别计算此力对O 、A 、B 三点之矩。

图2-56mN 25.6m m N 625030sin 2505060cos 30sin 5060sin 30cos 50⋅=⋅=︒⨯⨯=︒⨯︒-︒⨯︒=R R M Om N 075.17825.1025.630cos 50⋅=+=⨯︒+=R M M O A m N 485.9235.325.615sin 50⋅=+=⨯︒+=R M M O B2-3 一大小为80N 的力作用于板手柄端,如图2-57所示。

(1)当︒=75θ时,求此力对螺钉中心之矩;(2)当θ为何值时,该力矩为最小值;(3) 当θ为何值时,该力矩为最大值。

图2-57(1)当︒=75θ时,(用两次简化方法)m N 21.20mm N 485.59.202128945.193183087.21sin 8025075sin 80⋅=⋅=+=⨯︒⨯+⨯︒⨯=O M (2) 力过螺钉中心 由正弦定理)13.53sin(250sin 30θθ-︒= 08955.03/2513.53cos 13.53sin tan =+︒︒=θ ︒=117.5θ(3) ︒=︒+︒=117.95117.590θ2-4 如图2-58所示,已知N 200N,300N,200N,150321='====F F F F F 。

试求力系向O 点的简化结果,并求力系合力的大小及其与原点O 的距离d 。

图2-58kN64.1615110345cos kN64.4375210145cos 321R321R-=+-︒-=∑='-=--︒-=∑='F F F F F F F F F F y y x x主矢RF '的大小 kN 54.466)()(22R =∑+∑='y x F F F 而 3693.064.43764.161tan RR ==''=x y F F α ︒=27.20α m N 44.21162.0511.045cos )(31⋅=-⨯+⨯︒=∑=F F M M O O Fmm 96.45m 04596.054.466/44.21/R==='=F M d O2-5 平面力系中各力大小分别为kN 60kN,260321===F F F ,作用位置如图2-59所示,图中尺寸的单位为mm 。

理论力学课后习题第二章思考题答案

理论力学课后习题第二章思考题答案

理论力学课后习题第二章思考题解答2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。

对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。

2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。

2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以n3预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有个相互关联的三个二阶微分方程组,难以解算。

但对于二质点组成的质点组,每一质点的运动还是可以解算的。

若质点组不受外力作用,由于每一质点都受到组内其它各质点的作用力,每一质点的合内力不一定等于零,故不能保持静止或匀速直线运动状态。

这表明,内力不改变质点组整体的运动,但可改变组内质点间的运动。

2.4.答:把碰撞的二球看作质点组,由于碰撞内力远大于外力,故可以认为外力为零,碰撞前后系统的动量守恒。

如果只考虑任一球,碰撞过程中受到另一球的碰撞冲力的作用,动量发生改变。

2.5.答:不矛盾。

因人和船组成的系统在人行走前后受到的合外力为零(忽略水对船的阻力),且开船时系统质心的初速度也为零,故人行走前后系统质心相对地面的位置不变。

当人向船尾移动时,系统的质量分布改变,质心位置后移,为抵消这种改变,船将向前移动,这是符合质心运动定理的。

2.6.答:碰撞过程中不计外力,碰撞内力不改变系统的总动量,但碰撞内力很大,使物体发生形变,内力做功使系统的动能转化为相碰物体的形变能(分子间的结合能),故动量守恒能量不一定守恒。

只有完全弹性碰撞或碰撞物体是刚体时,即相撞物体的形变可以完全恢复或不发生形变时,能量也守恒,但这只是理想情况。

2.7.答:设质心的速度,第个质点相对质心的速度,则,代入质点组动量定理可得这里用到了质心运动定理。

理论力学第二章习题答案

理论力学第二章习题答案

理论力学第二章习题答案理论力学是物理学中研究物体运动规律和相互作用的分支学科,它以牛顿运动定律为基础,通过数学方法来描述物体的运动和力的作用。

本章习题答案将帮助学生更好地理解和掌握理论力学的基本概念和计算方法。

习题1:考虑一个质量为m的物体在重力作用下自由下落。

忽略空气阻力,求物体下落过程中的速度和位移。

答案:物体自由下落时,受到的力只有重力,大小为mg,方向向下。

根据牛顿第二定律,F=ma,可以得到加速度a=g。

物体的速度v随时间t变化,可以使用公式v=gt计算。

物体的位移s随时间变化,可以使用公式s=1/2gt^2计算。

习题2:一个质量为m的物体在水平面上以初速度v0开始运动,受到一个大小为k的恒定摩擦力作用。

求物体停止前所经过的距离。

答案:物体在水平面上运动时,受到的摩擦力与物体的位移成正比,即F=-kx。

根据牛顿第二定律,F=ma,可以得到加速度a=-k/m。

物体的位移x随时间t变化,可以使用公式x=v0t - 1/2(k/m)t^2计算。

当物体速度减至0时,物体停止,此时t=2v0/k,代入公式得到x=2v0^2/k。

习题3:一个质量为m的物体在斜面上,斜面与水平面的夹角为θ。

物体受到一个向上的拉力F,使得物体沿斜面匀速上升。

求拉力F的大小。

答案:物体沿斜面匀速上升时,拉力F与重力分量mgsinθ和摩擦力μmgcosθ平衡。

根据平衡条件,F=mgsinθ + μmgcosθ。

如果摩擦系数为μ,可以进一步简化为F=mg(sinθ + μcosθ)。

习题4:考虑一个质量为m的物体在竖直平面内做圆周运动,圆心位于物体的正下方。

物体的运动由一个弹簧连接到圆心,弹簧的劲度系数为k。

求物体在圆周运动中的角速度。

答案:物体在圆周运动中,受到弹簧力和重力的作用。

根据牛顿第二定律,向心力Fc=mv^2/r=ma,其中r为圆的半径。

由于物体做圆周运动,向心力由弹簧力和重力的垂直分量提供。

因此,Fc=kx - mgcosθ,其中x为弹簧的伸长量,θ为物体与竖直方向的夹角。

理论力学作业卷答案(第二章)

理论力学作业卷答案(第二章)
a
16 2 4 2 m/ s 2 9 3 100 2 10 2 2 r1 1 0.3 m/ s 2 9 3
at R 20 rad s 2
鼓轮轮缘上一点的加速度
10(m/ s 2 ) at v an v 2 R 20t 2 (m/ s 2 )
2 a at2 an 10 1 4t 4 (m/ s 2 )
v R 20t rad s
题2-6图
题2-7图
题2-10图


2ቤተ መጻሕፍቲ ባይዱ
页共 21

n1
Ⅲ Ⅰ Ⅱ
2
v AB vBC vCD vDA a AB aCD 0
n1
30
r1 1 0.3
10 m/ s 3
W
题2-8图
2-6
升降机装置由半径为 R =50cm 的鼓轮带动,如图所示。被升降物体的运动方程为 x=5t2 (t 以 s
aBC r2 2 2 0.75
计,x 以 m 计) 。求鼓轮的角速度和角加速度,并求在任意瞬时,鼓轮轮缘上一点的全加速度的大小。 aDA 解: 轮缘上一点的速度与切向加速度为 2-10 车床的走刀架机构如图所示。已知各齿轮的齿数为 z1 =40,z2 =84 ,z3 =28 ,z4 =80 ,主轴转速 10t (m/ s) vx n1 =120r/min,丝杠螺距 t=12mm 试求走刀速度 v 2 。 a 2 10(m/ s ) at v 从而,鼓轮的角速度与角加加速度为
1
10 rad/ s 3 r i12 1 2 2 r1 30 r1 30 10 4 1 rad/ s r2 75 3 3

胡汉才编著理论力学课后习题答案第2章力系的简化

胡汉才编著理论力学课后习题答案第2章力系的简化

力系的简化第二章,的力F,5)两点(长度单位为米),且由A指向B.通过A(3,0,0),B(0,42-1 。

,对z轴的矩的大小为在z轴上投影为22 /5。

答:F / ;6 F上和y,c,则力F在轴z2-2.已知力F的大小,角度φ和θ,以及长方体的边长a,b的矩x ;F对轴;Fy= 的投影:Fz=F 。

)= M ( x)··()(··;-··;cos=FFz=F答:φsinφbFy=θFsincosφφcosφ+cMxFcos41-图2 图2-40F,则该力,若F=100N,4)两点(长度单位为米)),B(0,2-3.力4通过A(3,4、0 。

,对x轴的矩为在x轴上的投影为320N.m;答:-60NAE内有沿对角线,在平面ABED2-4.正三棱柱的底面为等腰三角形,已知OA=OB=a °,则此力对各坐标轴之矩为:α=30的一个力F,图中。

)= );M(F= ((MF)= ;MF zYx6Fa/4 =(F);M)=0,(F)=-Fa/2MF答:M(zxy2-5.已知力F的大小为60(N),则力F对x轴的矩为;对z轴的矩为。

答:M(F)=160 N·cm;M(F)=100 N·cmzx43-图2 2图-42O2-6.试求图示中力F对点的矩。

M(F)=Flsinα解:a: O M(F)=Flsinαb: Oα+ Flcos)sinc: M(F)=F(l+lα2O13??22?lM?Fl?Fsin d: 2o1。

轴的力矩M1000N2-7.图示力F=,求对于z z图题2-8 7题2-图。

试求=40N,M=30N·m=40N2-8.在图示平面力系中,已知:F=10N,F,F321其合力,并画在图上(图中长度单位为米)。

解:将力系向O点简化=30N F=F-R12X40N -=R=-F3V R=50N ∴m )··3+M=300N+FF主矩:Mo=(+F312d=Mo/R=6mO合力的作用线至点的矩离iiRR0.8-=),(cos,=0.6),(cos合力的方向:iR )=-53,°08'(iR ,')(=143°08,内作用一力偶,其矩M=50KNGA转向如图;又沿·m,2-9.在图示正方体的表面ABFE2RR =50。

理论力学(刘又文 彭献)答案第2章

理论力学(刘又文 彭献)答案第2章
12.空间平衡力系向 3 个相互垂直的坐标平面投影,得到 3 个平面任意力系, 这样该力系的独立平衡方程数为 3×3=9 个。对吗?
答:不对。因为其中一个平面上的 3 个投影方程,完全可由其他两组方程导 出,故独立平衡方程数只有 6 个。
13.均质杆 AB、AC,铅垂架在粗糙水平面上,并处于临界平衡状态,如图 2.9 所示。研究整体,其受力为平面一般力系,则可解出 3 个未知量。对吗?
可由其导出,它们与上述 6 个方程互不独立;如果使用整体及其中一刚体的共 6
个平衡方程,则另一刚体的 3 个平衡方程也可由其导出。故该系统的独立平衡方
程只有 6 个。 9. 如 图 2.6 所 示 为 两 铰 拱 , A 、 B 支 座 处 有 4 个 未 知 约 束 力 , 可 由
∑ Fx = 0, ∑ Fy = 0, ∑ M A = 0, ∑ M B = 0,共 4 个平衡方程联立解出。对吗?
答:不对。平面一般力系,只有 3 个独立平衡方程,第 4 个方程一定是前 3
个的某种线性组合,是不独立的。该结构为超静定,4 个未知量不可由平衡方程
全部求出。
10.某力系中,各力的作用线平行于某一平面,则独立平衡方程的个数是 3。
对吗?
答:不对。平行于某平面的力线不一定共面,也不一定平行。如图 2.7 所示,
吗?
答:不对。当 A、B 两矩心与汇交点共线,且力系对于 AB 轴对称时,如图
∑ ∑ 2.3 所示汇交力系中, F1 = F2 ,虽有 MA = 0, MB = 0,但该力系并不平衡。
∑ ∑ ∑ 5.平面一般力系,满足 MA =0, MB =0, Fx = 0,则一定平衡。对吗?
答:不对。应补充 AB 不垂直 x 轴的条件,否则条件不充分。如图 2.3 所示 情形,力系虽满足上述三个方程,但并不平衡。

胡汉才编著《理论力学》课后习题答案第2章力系的简化

胡汉才编著《理论力学》课后习题答案第2章力系的简化

第二章力系的简化2-1.通过A(3,0,0),B(0,4,5)两点(长度单位为米),且由A指向B的力F,在z轴上投影为,对z轴的矩的大小为。

答:F/2;62F/5。

2-2.已知力F的大小,角度φ和θ,以及长方体的边长a,b,c,则力F在轴z和y上的投影:Fz= ;Fy= ;F对轴x的矩M x(F)= 。

答:Fz=F·sinφ;Fy=-F·cosφ·cosφ;Mx(F)=F(b·sinφ+c·cosφ·cosθ)图2-40 图2-412-3.力F通过A(3,4、0),B(0,4,4)两点(长度单位为米),若F=100N,则该力在x轴上的投影为,对x轴的矩为。

答:-60N;320N.m2-4.正三棱柱的底面为等腰三角形,已知OA=OB=a,在平面ABED内有沿对角线AE 的一个力F,图中α=30°,则此力对各坐标轴之矩为:M x(F)= ;M Y(F)= ;M z(F)= 。

答:M x(F)=0,M y(F)=-Fa/2;M z(F)=6Fa/42-5.已知力F的大小为60(N),则力F对x轴的矩为;对z轴的矩为。

答:M x(F)=160 N·cm;M z(F)=100 N·cm图2-42 图2-432-6.试求图示中力F 对O 点的矩。

解:a: M O (F)=F l sin αb: M O (F)=F l sin αc: M O (F)=F(l 1+l 3)sin α+ F l 2cos αd: ()2221l l F F M o +=αsin2-7.图示力F=1000N ,求对于z 轴的力矩M z 。

题2-7图 题2-8图2-8.在图示平面力系中,已知:F 1=10N ,F 2=40N ,F 3=40N ,M=30N ·m 。

试求其合力,并画在图上(图中长度单位为米)。

解:将力系向O 点简化R X =F 2-F 1=30N R V =-F 3=-40N ∴R=50N主矩:Mo=(F 1+F 2+F 3)·3+M=300N ·m 合力的作用线至O 点的矩离 d=Mo/R=6m合力的方向:cos (R ,i )=0.6,cos (R ,i )=-0.8(R,i)=-53°08’(R,i)=143°08’2-9.在图示正方体的表面ABFE内作用一力偶,其矩M=50KN·m,转向如图;又沿GA,BH作用两力R、R',R=R'=502KN;α=1m。

南华理论力学练习册的答案2-7(完全版)

南华理论力学练习册的答案2-7(完全版)

第二章 平面力系2-1. 已知:CD AB AC ==,kN 10P =,求A 、B 处约束反力。

解:取杆ACD 为研究对象,受力如图。

0=∑Am ,0245sin 0=⨯-⨯AC P AC F CkN P F C 28.282==∑=0xF,045cos 0=-Ax C F F)(10←=kN F Ax∑=0yF,045sin 0=--P F F Ay C)(10↓=kN F Ay2-2. 已知力P 的作用线垂直于AB 杆,BC 杆与P 力的作用线夹角为045,杆BC 垂直于杆CD ,力Q的作用线与CD 杆的夹角为060。

kN 1P =,求系统平衡时Q =?解:分别取节点B 、C 为研究对象,受力如图。

对于节点B :0=∑xF,045cos 0=-BC F P对于节点C :0=∑x F ,030cos 0'=-Q F BC联立上两式解得:kN P Q 362362==2-3. 图示结构中,AB 杆水平,AC 杆与AB 杆的夹角为030,杆件的自重不计,kN 10W =,求B 、C 处反力。

解:取整体为研究对象,受力如图。

0=∑yF,045cos 30sin 00=--T C F W FkN W F C 14.34)22(=+=(压)0=∑XF,045sin30cos 00=-+T C B F F F)(43.15←-=kN F B2-4. 已知:m N 200M 1⋅=,m N 500M 2⋅=,m 0.8AB CD AC ===, 求A 、C 处支反力。

解:取杆ACD 为研究对象,受力如图。

0=∑Am,08.045sin 210=-+⨯M M F CB C F N F ==3752-5. 已知AD 杆上固接一销钉,此销钉可以在BC 杆的滑道内无摩擦地滑动,系统平衡在图示位置,BC 与AD 成045,m N 1000M 1⋅=,求2M 。

解:取杆AD 为研究对象,受力如图。

0=∑Am,045cos 10=-⨯M AC F C取杆BC 为研究对象,受力如图。

理论力学第二章习题答案

理论力学第二章习题答案

理论力学第二章习题答案理论力学第二章习题答案理论力学是物理学的基础学科之一,它研究物体的运动规律以及力的作用原理。

在理论力学的学习过程中,习题是检验学生理解和掌握程度的重要方式之一。

下面将为大家提供理论力学第二章的习题答案,希望对大家的学习有所帮助。

1. 一个质点在匀速直线运动中,它的加速度是多少?答:在匀速直线运动中,速度保持不变,所以加速度为0。

2. 一个质点的速度随时间的变化规律为v=3t+2,求它在t=2s时的速度。

答:将t=2s代入速度变化规律中,得到v=3*2+2=8m/s。

3. 一个质点做匀加速直线运动,它的初速度为2m/s,加速度为3m/s²,求它在t=4s时的位移。

答:根据匀加速直线运动的位移公式s=vt+1/2at²,将初速度v=2m/s,时间t=4s,加速度a=3m/s²代入,得到s=2*4+1/2*3*4²=8+24=32m。

4. 一个质点做匀加速直线运动,它的初速度为4m/s,位移为20m,加速度为2m/s²,求它的末速度。

答:根据匀加速直线运动的末速度公式v²=u²+2as,将初速度u=4m/s,位移s=20m,加速度a=2m/s²代入,得到v²=4²+2*2*20=16+80=96,所以末速度v=√96≈9.8m/s。

5. 一个质点做直线运动,它的速度随时间的变化规律为v=2t²+3t,求它在t=3s时的加速度。

答:加速度是速度对时间的导数,所以将速度变化规律v=2t²+3t对时间t求导,得到加速度a=dv/dt=4t+3。

将t=3s代入,得到a=4*3+3=15m/s²。

6. 一个质点做直线运动,它的速度随时间的变化规律为v=5t²+2t,求它在t=2s 时的加速度。

答:同样地,将速度变化规律v=5t²+2t对时间t求导,得到加速度a=dv/dt=10t+2。

理论力学第二章答案

理论力学第二章答案

[
]
代入完整保守体系的拉格朗日方程,并化简得
&& θ + sinθ ⋅ cosθ ⋅ ω 2 = 0
2.9 用拉格朗日方程写出习题1.27的运动微分方程 解:体系为自由度为2的完整约束体系,取x,y为广义坐标
m & & T = (x2 + y2) 2

V =−
e2 4 πε 0

1 x2 + y2 1 x2 + y2
ϕ +ϕ ϕ +ϕ m1g sinϕ1 − k cos 1 2 ⋅ (l − 2R) ⋅ sin 1 2 = 0 2 2 m g sinϕ − k cosϕ1 + ϕ2 ⋅ (l − 2R) ⋅ sinϕ1 + ϕ2 = 0 2 2 2 2
o
ϕ1 ϕ2
m2
m1
2.23 质量为m,电荷为q的粒子在轴对称电场 中运动。写出粒子的拉格朗日函数和运动微分方程。 v v v v 解: 由题中 E = E 0 e r ,B = B 0 k 令 ϕ = E 0 ln R v 1 v A = B 0 R eθ 2 v v 在柱坐标系中,有: = 1 mv 2 − q ϕ + q A ⋅ V , L 2 d ∂L ∂L − =0 代入: & dt ∂ q α ∂ qα
o
2.6 用拉格朗日程写出习题1.20的运动微分方程 解:如图,取底面圆心处为坐标原点,建立柱坐标系,质点到 v &v v v & eϕ + ze z & 轴距为R,则: υ = R er + Rϕ & & 由几何关系 R = ( R2 + z ⋅ tan α ), R = z ⋅ tan α

理论力学第二版第二章答案 罗特军

理论力学第二版第二章答案 罗特军

w.
kh
da
w.
三角形 EAB
1 aymax 2
co
正方形 ABCD
a2
静力学习题及解答—力系的简化
2.12 求图示均质混凝土基础重心的位置(图中长度单位为 m )

体积 Si mm3 图形 1 图形 2 图形 3 图形形心:xC 10.08 2.40 1.89

形心坐标 x mm 1.8 4.6 0.9 1.0 1.0 2.5
静力学习题及解答—力系的简化
2.6 底面为正方形的长方体棱边上作用有 8 个大小均等于 FP 的力,如图所示。试 求该力系的简化结果。



m
因此,原力系合力为 4 FP k ,作用线过正方形中点。



四川大学 建筑与环境学院 力学科学与工程系 魏泳涛


ww
w.
kh
子力系 3: F7 和 F8 构成的力偶,力偶矩矢量为 FP ak 。
S 0

π
y sin x
0
dy sin xdx 2
0

π

da w. co m
yC
π y sin x 1 1 π 2 π y d x d y d x y d y sin xdx 0 0 0 S S 2S 8
由对称性, xC
π 2



四川大学 建筑与环境学院 力学科学与工程系 魏泳涛
w.
co
静力学习题及解答—力系的简化
2.11 在图示变长为 a 的均质正方形薄板 ABCD 中挖去等腰三角形 EAB , 试求 E 点 y 坐标的最大值 ymax ,使剩余薄板的重心仍在板内。

理论力学周衍柏第三版第二章习题答案

理论力学周衍柏第三版第二章习题答案

第二章习题解答2.1 解 均匀扇形薄片,取对称轴为x 轴,由对称性可知质心一定在x 轴上。

题2.1.1图有质心公式⎰⎰=dmxdm x c 设均匀扇形薄片密度为ρ,任意取一小面元dS ,drrd dS dm θρρ==又因为θcos r x =所以θθθρθρsin 32adrrd dr rd x dmxdm x c ===⎰⎰⎰⎰⎰⎰对于半圆片的质心,即2πθ=代入,有πππθθa a ax c 3422sin 32sin 32=⋅==2.2 解 建立如图2.2.1图所示的球坐标系题2.2.1图把球帽看成垂直于z 轴的所切层面的叠加(图中阴影部分所示)。

设均匀球体的密度为ρ。

则)(222z a dz y dv dm -===ρπρπρ由对称性可知,此球帽的质心一定在z 轴上。

代入质心计算公式,即)2()(432b a b a dmzdmz c ++-==⎰⎰2.3 解 建立如题2.3.1图所示的直角坐标,原来人W 与共同作一个斜抛运动。

yO题2.3.1图当达到最高点人把物体水皮抛出后,人的速度改变,设为x v ,此人即以 x v 的速度作平抛运动。

由此可知,两次运动过程中,在达到最高点时两次运动的水平距离是一致的(因为两次运动水平方向上均以αcos v 0=水平v 作匀速直线运动,运动的时间也相同)。

所以我们只要比较人把物抛出后水平距离的变化即可。

第一次运动:从最高点运动到落地,水平距离1st a v s ⋅=cos 01 ① gt v =αsin 0 ② ααcos sin 201gv s =③第二次运动:在最高点人抛出物体,水平方向上不受外力,水平方向上动量守恒,有)(cos )(0u v w Wv v w W x x -+=+α可知道u wW w a v v x ++=cos 0水平距离αααsin )(cos sin 0202uv gW w w gv t v s x ++==跳的距离增加了12s s s -=∆=αsin )(0uv gw W w +2.42.4 解 建立如图2.4.1图所示的水平坐标。

(完整版)理论力学课后答案第二章

(完整版)理论力学课后答案第二章

解 册究対繼*晦矍*曲:/」平衛ii 殳宦廉,交廉”的钓痕力耳欝珊谊寸c 乃向如I 用 b 陌示.収啪杯爺Cy*血平胡那论鬥式⑴* (?)峡立・解紂佔2…已暂 F 兰5 am N .棗与撑祎自虫不计匚求 BC'ffK 内力及铁员 的反力。

解该系统曼力如图(訂, 三力匸交于艰0・苴封訥的力 三角膠如图冷人祥得 屉二5OOON 』仏 二疔000 W2-2在铰链A 、B 处有力F i , F 2作用,如图所示。

该机 F i 与F 2的关系。

2-3铰链4杆机构CABD 的CD 边固定, 构在图示位置平衡,不计杆自重。

求力 30T >◎60°检(b)B解⑴柠点掐坐WAS 力如囲 归所示"H3平祈刖论咼节点瓦腿标歴覺力如国 所小*血丫轉理论得2S -F^ ccs 30fr -f ; cosW )0 =0^=-^=—^— = 1.553^F 、: - 0.644已扣两伦备車P A ^P L •处于T册状态,杆電不比求I )若片=丹=巴 角e -?2)若 P A - 300 B = 0血=?ffi 八5两轮受力分别 如图示■对A 辂育SX = 0* F 刚 cEjedO* — F\g oos$ = 0SY 二 0a F sx tin60T - F 屈 sinfl - P A = tj对 B 轮育 SX ■ 0, Fn ooa? - F,\&8^3(/ = 0 IV = 0. F rw sinff 下 F 斶 anJO* - P n =(1) 四牛封程嬴立求AL 爾<3-30*(2) 把拧-0\F A - 300 M 代入方社,联立解筹P fl = 100 N2-5如图2-10所示,刚架上作用力F 。

试分别计算力F解 M A (F) = -FbcoseM s [F) - -Fb cos0 + FosinB二F(osiii0-bcos0)2-6已知梁AB 上作用1力偶,力偶矩为M ,梁长为I ,梁重不计。

理论力学第二章课后习题答案

理论力学第二章课后习题答案

理论力学第二章课后习题答案·12·理论力系第2章平面汇交力系与平面力偶系一、是非题(恰当的在括号内踢“√”、错误的踢“×”)1.力在两同向平行轴上投影一定相等,两平行相等的力在同一轴上的投影一定相等。

2.用解析法求平面呈报力系的合力时,若挑选出相同的直角坐标轴,其税金的合力一定相同。

(√)3.在平面汇交力系的平衡方程中,两个投影轴一定要互相垂直。

(×)4.在维持力偶矩大小、转为维持不变的条件下,可以将例如图2.18(a)右图d处为平面力偶m移至例如图2.18(b)所示e处,而不改变整个结构的受力状态。

(×)(a)图2.185.如图2.19所示四连杆机构在力偶m1m2的作用下系统能保持平衡。

6.例如图2.20右图皮带传动,若仅就是包角发生变化,而其他条件均维持维持不变时,并使拎轮旋转的力矩不能发生改变。

(√图2.19图2.201.平面呈报力系的均衡的充要条件就是利用它们可以解言的约束反力。

2.三个力汇交于一点,但不共面,这三个力3.例如图2.21右图,杆ab蔡国用数等,在五个力促进作用下处在平衡状态。

则促进作用于点b的四个力的合力fr=f,方向沿4.如图2.22所示结构中,力p对点o的矩为plsin。

5.平面呈报力系中作力多边形的矢量规则为:各分力的矢量沿着环绕着力多边形边界的某一方向首尾相接,而合力矢量沿力多边形半封闭边的方向,由第一个分力的起点指向最后一个分力的终第面汇交力系与平面力偶图2.21图2.226.在直角坐标系中,力对坐标轴的投影与力沿坐标轴分解的分力的大小但在非直角坐标系中,力对坐标轴的投影与力沿坐标轴分解的分力的大小不相等。

1.例如图2.23右图的各图为平面呈报力系所作的力多边形,下面观点恰当的就是(c)。

(a)图(a)和图(b)就是平衡力系则(b)图(b)和图(c)就是平衡力系则(c)图(a)和图(c)就是平衡力系则(d)图(c)和图(d)就是平衡力系则f2f2f1(a)(b)(c)2.关于某一个力、分力与投影下面说法正确的是(b)。

理论力学答案第二章

理论力学答案第二章

《理论力学》第二章作业习题2-5解:(1)以D点为研究对象,其上所受力如上图(a)所示:即除了有一铅直向下的拉力Fr外, 沿DB有一拉力Tr和沿DE有一拉力ETr。

列平衡方程XYFF⎧=⎪⎨=⎪⎩∑∑cos0sin0EET TT Fθθ-=⎧⎨-=⎩解之得800/0.18000()T Fctg Nθ=≈=(2)以B点为研究对象,其上所受力如上图(b)所示:除了有一沿DB拉力T'r外,沿BA有一铅直向下的拉力ATr,沿BC有一拉力CTr,且拉力T'r与D点所受的拉力Tr大小相等方向相反,即T T'=-r r。

列平衡方程XYFF⎧=⎪⎨=⎪⎩∑∑sin0cos0CC AT TT Tθθ'-=⎧⎨-=⎩解之得8000/0.180000()AT T ctg Nθ'=≈=答:绳AB作用于桩上的力约为80000N。

习题2-6 解:(1) 取构件BC 为研究对象,其受力情况如下图(a)所示:由于其主动力仅有一个力偶M ,那末B 、C 处所受的约束力B F r 、C F r必定形成一个阻力偶与之平衡。

列平衡方程()0B M F =∑r0C M F l -=所以 C M F l=(2) 取构件ACD 为研究对象,其受力情况如上图(b)所示:C 处有一约束力C F 'r与BC 构件所受的约束力C F r 互为作用力与反作用力关系,在D 处有一约束力D F r 的方向向上,在A 处有一约束力A F r,其方向可根据三力汇交定理确定,即与水平方向成45度角。

列平衡方程0X F =∑sin 450o A C F F '-=所以 222A C C M F F F l'=== 2Ml(b)所示。

习题2-7解:(1) 取曲柄OA 为研究对象,其受力情况如下图(a)所示:由于其主动力仅有一个力偶M ,那末O 、A 处所受的约束力O F ρ、BA F ρ必定形成一个阻力偶与之平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
y
P
T
F
220
36
O
15
2-⋅图[习题2-3]动学家估计,食肉动物上颚的作用力P 可达800N ,如图2-15示。

试问此时肌肉作用于下巴的力T 、F 是多少? 解:
解:
0=∑x
F
036cos 22cos 00=-F T
22cos 36cos F T =
0=∑y
F
036sin 22sin 00=-+P F T 80036sin 22sin 22
cos 36cos 000
=+F F )(651.87436
sin 22tan 36cos 800
00N F =+=
)(179.76322
cos 36cos 651.87422cos 36cos 0
00N F T ===
18
2-⋅图
B
[习题2-6] 三铰拱受铅垂力P F 作用,如图2-18所示。

如拱的重量不计,求A 、B 处支座反力。

解:0=∑x F
0cos 45cos 0=-θB A R R
B A R l l l R 22)23()2(22
2
+=
B A R R 1012
1=
B A R R 5
1=
0=∑y
F
0sin 45sin 0=-+P B A F R R θ
P B A F R l l l R =++
22)23()2(232
1
P B A F R R =+
10
32
1
的受力图
轮A P B B F R R =+

10
35
121
P B F R =10
4
P P B F F R 791.04
10
≈=
31623.010
1)2
3()2(2cos 22≈=
+=
l l l θ
0565.71≈θ P P P A F P F R 354.04
2
41051≈=⨯
=
方向如图所示。

[习题2-10] 如图2-22所示,一履带式起重机,起吊重量kN F P 100=,在图示位置平衡。

如不计吊臂AB 自重及滑轮半径和摩擦,求吊臂AB 及揽绳AC 所受的力。

解:轮A 的受力图如图所示。

0=∑x F
030cos 20cos 45cos 000=--P AC AB F T R
的受力图
轮A 603.869397.07071.0=-AC AB T R AC AB T R 3289.1476.122+=
0=∑y
F
030sin 20sin 45sin 000=---P P AC AB F F T R
010*******.07071.0=---AC AB T R 1503420.07071.0=-AC AB T R
1503420.0)3289.1476.122(7071.0=-+⨯AC AC T T 1503420.09397.06023.86=-+AC AC T T 3977.635977.0=AC T )(069.106kN T AC ≈
)(432.263069.1063289.1476.1223289.1476.122kN T R AC AB =⨯+=+=
解法二:用如图所示的坐标系。

0=∑y
F
045sin 15sin 25sin 0
=-+P P AC F F T
00025sin )15sin 45(sin -=P AC
F T )(106077.10625sin )15sin 45(sin 1000
00kN ≈=-=
0=∑x
F
045cos 15cos 25cos 000=---P P AC AB F F T R )
45cos 15(cos 25cos 000++=P AC AB F T R
)(26337.263)45cos 15(cos 10025cos 106000kN ≈=++=
N
[习题2-12] 如图2-24所示,长l 2的杆AB ,重W F ,搁置在宽a 的槽内。

A 、D 接触处都是光滑的,试求平衡时杆AB 与水平线所成的角α(设a l >)。

解:以AB 杆为研究对象,其受力图如图所示。

0)(=∑i A
F M
0cos cos =⋅-⋅ααl W a
N D
α2cos W a
l
N D =
0=∑ix
F
0sin =-αD Ax N N
αααsin cos sin 2W a
l
N N D Ax ==
0=∑iy
F
0cos =-+W N N D Ay α
)cos 1(cos cos 33αααa
l
W W a l W N W N D Ay
-=-=-=
实际上,AB 杆在A 处所受到的约束是光滑面接触约束,约束反力的方向沿着接触面的公法线方向,即水平方向,指向AB 杆,故
0)cos 1(3=-=αa l
W N Ay
l
a
=α3cos
31
)arccos(l
a

[习题2-15] 立柱AB 用三根绳索固定,已知一根绳索在铅直平面ABE 内,其张力F
T =100kN,立柱自重W =20kN,求另外两根绳索AC 、AD 的张力及立柱在B 处受到的约束力。

解:以结点A 为研究对象,其受力图如图所示。

由定滑轮的性质可知,kN F T T AE 100==
由结点A 的平衡条件可知, ①0)(=∑i CD F M
0430cos 330sin 30
=⨯+⨯+⨯-T T A F F R
04.3461503=++-A R )(47.165kN R A =
②0=∑ix F
02234
2322334332
2222=⋅⋅-⋅
+++⋅
AD AC T T AD AC T T =
0=∑iz
F
02134
454344=⋅-⋅-⋅
-⋅
-T AD AE AC A F T T T R
05034
48034
447.165=-⋅--⋅
-AD AC T T
47.3534
434
4=⋅
+⋅AD AC T T
7.51=+AD AC T T
7.512=AC T
AD AC T kN T ==)(85.25
以主柱AB 为研究对象,其受力图如图所示。

0=∑iz F
)(47.18547.16520'
kN R W R A B =+=+=。

相关文档
最新文档