最新初中数学代数式技巧及练习题附答案
九年级数学 代数式 中考考点复习 练习题及答案
1.如果3x2n-1ym与-5xmy3是同类项,则m和n的取值是()
A.3和-2 B.-3和2 C.3和2 D.-3和-2
解析:根据题意得 解得
例2下列计算正确的是()
A.x+x=x2B.x·x=2xC.(x2)3=x5D.x3÷x=x2
解析:A中x+x=2x,B中x·x= x2,C中(x2)3=x6.
答案:解:因为2< <3,3< <4,而 <x< ,故2<x<4,
又x是整数,所以x=3.
所以原式=x2+2x+1-(x2-4)=2x+5=2×3+5=11.
小结:(1)对于整式的加、减、乘、除、乘方运算,要充分理解其运算法则,注意运算顺序,正确应用乘法公式以及整体和分类等数学思想.
(2)在应用乘法公式时,要充分理解乘法公式的结构特点,分析是否符合乘法公式的条件.
(2)提取公因式后,若括号内合并的项有公因式应再次提取.
(3)注意符号的变换:y-x=-(x-y),(y-x)2=(x-y)2.
(4)分解因式要分解到不能再分解为止.
举一反三:
1.分解因式:-a3+a2b- ab2=_____________.
解析:-a3+a2b- ab2=- a(4a2-4ab+b2)=- a(2a-b)2.
解析:方法一:因为 = = ,所以ab=2(b-a),所以 = =-2;
方法二:特值法:取a=1,b=2,满足 ,所以 = =-2.
考点8分式的运算
温故而知新:
1.分式的加减法:(1)同分母的分式相加减,分母不变,把分子相加减,即 .
(2)异分母的分式相加减,先通分,变为同分母的分式,然后相加减,即 = = .
2024-2025学年人教版七年级数学上册《第3章代数式》单元同步练习题(附答案)
2024-2025学年人教版七年级数学上册《第3章代数式》单元同步练习题(附答案)一、单选题1.下列式子,符合代数式书写格式的是()A.2B.283C.×7D.+人2.下列各式中是代数式的是()A.2−2=0B.6C.4>3D.5−2≠0 3.“4与x的平方的积”可表示为()A.4B.42C.16D.1624.一本笔记本原价a元,降价后比原来便宜了b元,小玲买了3本这样的笔记本,比原来便宜了()A.3−元B.3−元C.3元D.3元5.若=5,=2,且B<0,则−的值为()A.7B.3或−3C.3D.7或36.(代数式应用)一个两位数,十位上的数字是a,个位上的数字是6,表示这个两位数的式子是()A.6B.60+C.6+D.6+107.已知式子−3的值是3,则式子1−3+9的值是().A.−8B.−6C.6D.88.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.15B.17C.19D.24二、填空题9.试写出一个含x的代数式:当=3时,它的值为−5.这个代数式可以是.10.若s互为相反数,是最大的负整数,则3+3−4=.11.学校买来6个足球,每个元,又买来个篮球,每个58元,6+58表示.12.当=2时,整式B3+B−1的值等于−19,那么当=−2时,整式B3+B−1的值为.13.小强购买绿、橙两种颜色的珠子串成一条手链,已知绿色珠子m个,每个2元,橙色珠子n个,每个5元,那么小强购买珠子需花费元.14.一组按规律排列的代数式:+2,2−23,3+25,4−27,…,则第10个式子是.15.观察下列各式:22−2×1=1+1,32−2×2=4+1,42−2×3=9+1,52−2×4= 16+1,…,第n个等式是.16.在如图所示的运算程序中,若开始输入的x的值为36,我们发现第1次输出的结果为18,第2次输出的结果为9,……,则第2023次输出的结果为.三、解答题17.当=−2,=3时,求下列代数式的值:(1)3(−p;;(3)(−p2;(4)(B)2;(5)2+2.18.回答下列问题:(1)小明每季度有零花钱a元,拿出b元捐给爱心基金,平均每月剩余的零花钱是多少?(2)七年级(1)班共有a名学生,其中有b名男生,男生的三分之一去参加篮球比赛了,班级剩余多少人?(3)某种汽车油箱装满后有油Y,每小时耗油Y,行驶了3h,油箱剩余油量是多少?(4)某商品原价每件a元,商场打折,现价每件b元,现买3件可以省多少元?19.已知,如图,某长方形广场的四角都有一块边长为米的正方形草地,若长方形的长为米,宽为米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.20.如图,两摞规格完全相同的课本整齐叠放在讲台上.请根据图中所给出的数据信息,回答下列问题:(1)每本课本的厚度为cm ;(2)若有一摞上述规格的课本x 本,整齐叠放在讲台上,请用含x 的代数式表示出这一摞数学课本的顶部距离地面的高度;(3)当=55时,若从中取走13本,求余下的课本的顶部距离地面的高度.21.11×2=1−12,12×3=12−13,13×4=13−14,14×5=14−15=⋯(1)第5个式子是_______;第个式子是_______.(2)从计算结果中找规律,利用规律计算:11×2+12×3+13×4+14×5+⋯+12020×2021=_______;(3)计算:(由此拓展写出具体过程):①11×3+13×5+15×7+⋯+199×101;②1−12−16−112−⋯−19900.22.【实践与应用】学校举办诗歌颂祖国活动,需要定制一批奖品颁发给表现突出的同学,每份奖品包含纪念徽章与纪念品各一个,现有两家供应商可以提供纪念徽章设计、制作和纪念品制作业务,报价如下:纪念徽章设计费纪念徽章制作费纪念品费用甲供应商300元3元/个18元/个乙供应商免设计费6元/个不超过100个时,20元/个;超过100个时,其中100个单价仍是20元/个,超出部分打九折(1)若学校需要定制20份奖品,则选甲供应商需要支付____________元,选乙供应商需要支付____________元;(2)现学校需要定制>100份奖品.若选择甲供应商,需要支付的费用为元;(用含的代数式表示,结果需化简)若选择乙供应商,需要支付的费用为元;(用含的代数式表示,结果需化简)(3)如果学校需要定制150份奖品,请你通过计算说明选择哪家供应商比较省钱.参考答案:题号12345678答案A B B D A D A D1.解:A、2符合代数式书写格式,故此选项符合题意;B、的系数应该为假分数,故此选项不符合题意;C、数字7应该在字母的前面,乘号省略,故此选项不符合题意;D、+应该加上括号,故此选项不符合题意;故选:A.2.解:、2−2=0不是代数式,不符合题意;B、6为代数式,符合题意;C、4>3不是代数式,不符合题意D、5−2≠0不是代数式,不符合题意.故选:B.3.解:的平方可以写成2,再与4的积,可以写成42,故选:B.4.解:一本笔记本原价元,降价后比原来便宜了元,则三本便宜了3元,故选:D.5.解:∵=5,=2,∴=±5,=±2,∵B<0,∴、异号,∴=5,=−2或=−5,=2,①当=5,=−2时,−=5−−2=5+2=7;②当=−5,=2时,−=−5−2=−7=7,综上所述,−的值为7.故选:A.6.解:10×+1×6=10+6;故选:D.7.解:∵式子−3的值是3,∴−3=3,∴1−3+9=1−3−3=1−3×3=1−9=−8.故选:A.8.解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4−1个(>1时),则第⑦个图中三角形的个数是4×7−1=24个,故选:D.9.解:依题意,满足题意的代数式可以是−8,故答案为:−8(答案不唯一).10.解:∵s互为相反数,是最大的负整数,∴+=0,=−1,∴3+3−4=3+−4=3×0−4×−1=4,故答案为:4.11.解:6+58表示买来6个足球和个篮球一共花多少钱,故答案为:买来6个足球和个篮球一共花多少钱.12.解:∵当=2时,整式B3+B−1的值为−19,∴8+2−1=−19,即8+2=−18,则当=−2时,原式=−8−2−1=18−1=17,故答案为:1713.解:∵绿色珠子每个2元,橙色珠子每个5元,∴小强购买珠子共需花费2+5元.故答案为:2+5.14.解:∵当n为奇数时,−1r1=1;当n为偶数时,−1r1=−1,∴第n个式子是:+−1r1⋅22K1.当=10时,代数式为:10−219故答案为:10−21915.解:∵22−2×1=1+1=12+1,32−2×2=4+1=22+142−2×3=9+1=32+1,52−2×4=16+1=42+1,…,∴第n个等式为:(+1)2−2=2+1.故答案为:(+1)2−2=2+1.16.解:第1次输出的结果为18,第2次输出的结果为12×18=9,第3次输出的结果为9+3=12,第4次输出的结果为12×12=6,第5次输出的结果为12×6=3,第6次输出的结果为3+3=6,第7次输出的结果为12×6=3,…,如此循环,从第4次开始第偶次输出的是6,第奇次输出的是3.第2023次输出的结果为3.故答案为:3.17.解:(1)3−=3×−2−3=−15(2=−3=49(3)−2=−2−32=25(4)B2=−2×32=36(5)2+2=−22+32=4+9=1318.(1)解:小明每季度有零花钱a元,拿出b元捐给希望工程,一个季度有3个月,则平均每月剩余零花钱K3元;(2)解:七年级(1)班共有a名学生,其中有b名男同学,男生的三分之一去参加篮球比赛,则班里还有−13人;(3)解:某种汽车油箱装满后有油Y,每小时耗油Y,行驶了3h,油箱剩余油量−3L;(4)解:某商品原价每件a元,商场打折,现价每件b元,现买3件可以省3−元.19.(1)解:∵某长方形广场的四角都有一块边长为米的正方形草地,若长方形的长为米,宽为米.∴由图可得,阴影部分的面积是(B−42)平方米;(2)解:当=20,=10,=1时,B−42=20×10−4×12=200−4=196(平方米),即阴影部分的面积是196平方米.20.(1)解:根据题意,得三本书的高度为88−86.5=1.5cm,故每本课本的厚度为1.5÷3=0.5cm,故答案为:0.5.(2)解:∵三本书的高度为88−86.5=1.5cm,∴桌子距离地面的高度为86.5−1.5=85cm,∵每本课本的厚度为0.5cm,∴x本的高度为0.5vm,∴距离地面的高度为0.5+85cm.(3)解:根据题意,得x本书顶部距离地面的高度为0.5+85cm,故当=55−13=42时,0.5+85=106cm.21.(1)解:∵11×2=1−12,12×3=12−13,13×4=13−14,14×5=14−15,∴第5个式子是:15×6=15−16;=11r1;第故答案为:15×6=15−16;=1−1r1;(2)解:1111+⋯1=1−2+23++ (2020)=1−12+12−13+13−14+…+12020−12021=1−12021=20202021;(3)解:①11×3+13×5+15×7+1=1313−15+…+199=2=50101.②1−12−16−112−⋯−19900=1−11×212×3−13×4−⋯−199×100=1−212×3+13×4+⋯+99=1−1−1212−13+13−14+⋯+199=1−1−100=1−1+1100=1100.22.(1)解:学校需要定制20份奖品,则选甲供应商需要支付:300+20×3+20×18=720(元),学校需要定制20份奖品,则选乙供应商需要支付:20×6+20×20=520(元).故答案为:720,520.(2)解:选择甲需要支付费用:300+3+18=21+300元;选择乙需要支付费用:当不超过100个时,4.5+20=24.5(元),当超过100个时,6+20×100+20×90%−100=24+200元.故答案为:21+300,24+200.(3)解:当=150时,甲供应商:21+300=21×150+300=3450(元)乙供应商:24+200=24×150+200=3800(元)∵3450<3800∴选择甲供应商比较省钱.。
新初中数学代数式技巧及练习题附答案解析
新初中数学代数式技巧及练习题附答案解析一、选择题1.若(x +1)(x +n )=x 2+mx ﹣2,则m 的值为( ) A .﹣1 B .1C .﹣2D .2【答案】A 【解析】 【分析】先将(x+1)(x+n)展开得出一个关于x 的多项式,再将它与x 2+mx-2作比较,即可分别求得m ,n 的值. 【详解】解:∵(x+1)(x+n)=x 2+(1+n)x+n , ∴x 2+(1+n)x+n=x 2+mx-2,∴12n m n +=⎧⎨=-⎩,∴m=-1,n=-2. 故选A . 【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.2.下列运算正确的是( ). A .()2222x y x xy y -=-- B .224a a a += C .226a a a ⋅= D .()2224xyx y =【答案】D 【解析】 【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案. 【详解】解:A.、()2222x y x xy y -=-+,故本选项错误; B.、2222a a a +=,故本选项错误; C.、224a a a ⋅=,故本选项错误; D 、 ()2224xy x y =,故本选项正确;故选:D . 【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.3.一种微生物的直径约为0.0000027米,用科学计数法表示为( ) A .62.710-⨯ B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A 【解析】 【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定. 【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯. 故选A. 【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.4.下列运算错误的是( ) A .()326m m = B .109a a a ÷= C .358⋅=x x x D .437a a a +=【答案】D 【解析】 【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可. 【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误; 故选:D . 【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.5.下列运算正确的是( ) A .a 5﹣a 3=a 2 B .6x 3y 2÷(﹣3x )2=2xy 2 C .2212a2a-=D .(﹣2a )3=﹣8a 3【答案】D 【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案. 【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确. 故选D . 【点睛】此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.6.下列运算正确的是( ) A .2235a a a += B .22224a b a b +=+() C .236a a a ⋅=D .2336()ab a b -=-【答案】D 【解析】 【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得. 【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确, 故选D. 【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.7.通过计算大正方形的面积,可以验证的公式是( )A .B .C .D .【答案】C 【解析】 【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案. 【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积, ∴(a+b+c)2=a 2+b 2+c 2+2ab+2bc+2ac , 故选C. 【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( ) A .23b B .26bC .29bD .236b【答案】C 【解析】 【分析】根据完全平方公式的形式(a±b )2=a 2±2ab+b 2可得出缺失平方项. 【详解】根据完全平方的形式可得,缺失的平方项为9b 2 故选C . 【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.9.下列计算正确的是( )A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【答案】C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.10.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C【答案】A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2014÷8=251……6,所以当电子甲虫爬行2014cm时停下,它停的位置是F点.故选A.点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( ) A .2017 B .2016C .191D .190【答案】D 【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2; (a+b )4的第三项系数为6=1+2+3; (a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1), ∴(a+b )20第三项系数为1+2+3+…+20=190, 故选 D .考点:完全平方公式.12.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( )A .5,3B .5,−3C .−5,3D .−5, −3【答案】D 【解析】 【分析】此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值. 【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++,则p=-5,q=-3, 故答案选D. 【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.13.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B 【解析】 【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可. 【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆=2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π,故选:B 【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.14.多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( ) A .2,3 B .2,2C .3,3D .3,2【答案】C 【解析】 【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定. 【详解】2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3. 故选:C. 【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.15.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:例如,购买A 类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为( ) A .购买A 类会员年卡 B .购买B 类会员年卡 C .购买C 类会员年卡 D .不购买会员年卡【答案】C 【解析】 【分析】设一年内在该健身俱乐部健身x 次,分别用含x 的代数式表示出购买各类卡所需消费,然后将x=50和x=60分别代入各个代数式中比较大小即可得出结论. 【详解】解:设一年内在该健身俱乐部健身x 次,由题意可知:50≤x≤60 则购买A 类会员年卡,需要消费(1500+100x )元; 购买B 类会员年卡,需要消费(3000+60x )元; 购买C 类会员年卡,需要消费(4000+40x )元; 不购买会员卡年卡,需要消费180x 元;当x=50时,购买A 类会员年卡,需要消费1500+100×50=6500元;购买B 类会员年卡,需要消费3000+60×50=6000元;购买C 类会员年卡,需要消费4000+40×50=6000;不购买会员卡年卡,需要消费180×50=9000元;6000<6500<9000当x=60时,购买A 类会员年卡,需要消费1500+100×60=7500元;购买B 类会员年卡,需要消费3000+60×60=6600元;购买C 类会员年卡,需要消费4000+40×60=6400;不购买会员卡年卡,需要消费180×60=10800元;6400<6600<7500<10800 综上所述:最省钱的方式为购买C 类会员年卡 故选C . 【点睛】此题考查的是用代数式表示实际意义,掌握实际问题中各个量之间的关系是解决此题的关键.16.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D 【解析】【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a2+8a+16)-(a2+2a+1)=a2+8a+16-a2-2a-1=6a+15.故选D.17.按如图所示的运算程序,能使输出y的值为1的是()A.a=3,b=2 B.a=﹣3,b=﹣1 C.a=1,b=3 D.a=4,b=2【答案】A【解析】【分析】根据题意,每个选项进行计算,即可判断.【详解】解:A、当a=3,b=2时,y=12a-=132-=1,符合题意;B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y=12a-=142-=12,不符合题意.故选:A.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.18.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【答案】B【解析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.19.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B.20.下列命题正确的个数有()①若 x2+kx+25 是一个完全平方式,则 k 的值等于 10;②一组对边平行,一组对角相等的四边形是平行四边形;③顺次连接平行四边形的各边中点,构成的四边形是菱形;④黄金分割比的值为≈0.618.A.0 个B.1 个C.2 个D.3 个【答案】C【解析】【分析】根据完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定即可一一判断;【详解】①错误.x2+kx+25是一个完全平方式,则 k 的值等于±10 ②正确.一组对边平行,一组对角相等,可以推出两组对角分别相等,即可判断是平行四边形;③错误.顺次连接平行四边形的各边中点,构成的四边形是平行四边形;④正确.黄金分割比的值为≈0.618;故选C.【点睛】本题考查完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定等知识,解题的关键是熟练掌握基本知识.。
代数式练习题及答案
代数式练习题及答案代数式练习题及答案代数是数学中的一个重要分支,它研究数和运算的关系。
代数式是代数中的基本概念之一,它由数、字母和运算符号组成。
通过解答代数式练习题,我们可以提高我们的代数运算能力,培养我们的逻辑思维和解决问题的能力。
下面我将给大家提供一些代数式练习题及答案,希望能对大家的学习有所帮助。
一、简单代数式练习题1. 计算下列代数式的值:(1) 2x + 3y,当x = 4,y = 5时;(2) 3a - 2b,当a = 7,b = 2时;(3) 5m^2 + 2mn,当m = 3,n = 2时。
答案:(1) 2x + 3y = 2 * 4 + 3 * 5 = 8 + 15 = 23;(2) 3a - 2b = 3 * 7 - 2 * 2 = 21 - 4 = 17;(3) 5m^2 + 2mn = 5 * 3^2 + 2 * 3 * 2 = 5 * 9 + 12 = 45 + 12 = 57。
2. 化简下列代数式:(1) 2x + 3x;(2) 4y - 2y;(3) 5a^2 - 3a^2。
答案:(1) 2x + 3x = 5x;(2) 4y - 2y = 2y;(3) 5a^2 - 3a^2 = 2a^2。
二、复杂代数式练习题1. 计算下列代数式的值:(1) 3(x + 2) - 2(3x - 4),当x = 2时;(2) 2(3a + 4b) - 5(2a - 3b),当a = 1,b = 2时;(3) 4(2m^2 + 3mn) - 3(4m^2 - 5mn),当m = 2,n = 1时。
答案:(1) 3(x + 2) - 2(3x - 4) = 3(2 + 2) - 2(3 * 2 - 4) = 3 * 4 - 2(6 - 4) = 12 - 2(2) = 12 - 4 = 8;(2) 2(3a + 4b) - 5(2a - 3b) = 2(3 * 1 + 4 * 2) - 5(2 * 1 - 3 * 2) = 2(3 + 8) - 5(2 - 6) = 2 * 11 - 5(-4) = 22 + 20 = 42;(3) 4(2m^2 + 3mn) - 3(4m^2 - 5mn) = 4(2 * 2^2 + 3 * 2 * 1) - 3(4 * 2^2 - 5 * 2 * 1) = 4(2 * 4 + 6) - 3(4 * 4 - 10) = 4(8 + 6) - 3(16 - 10) = 4 * 14 - 3 * 6 = 56 - 18 = 38。
代数式技巧及练习题附答案解析
代数式技巧及练习题附答案解析1 )个图形中面积为1的正方形有2个,1的图象有2+3=5个,1的正方形有2+3+4=9个,按此规律,的正方形有2+3+4+--+ (n+1)= —3)个,2则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.一、选择题1.已知单项式3a2b m 1与7a n b互为同类项,则m n为(A. 1【答案】D【解析】B. C. 3 D. 4【分析】根据同类项的概念求解.【详解】解:Q单项式3a2b m 1与7a n b互为同类项,n 2, 则m n 故选D.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个的指数相同.相同”相同字母2.如图,面积为1面积为1下列图形都是由面积为1的正方形按一定的规律组成,其中,第(的正方形有的正方形有2个,第(2)个图形中面积为1的正方形有5个,9个,…,按此规律.则第(6)个图形中面积为1个图形中个图形中1)第(3)的正方形的个数为【答案】B【解析】试题解析:第(第(2)个图形中面积为第(3)个图形中面积为第n个图形中面积为1考点:规律型:图形变化类3.下列命题正确的个数有( )①若x2+kx+25是一个完全平方式,则k的值等于10;②一组对边平行,一组对角相等的四边形是平行四边形;③ 顺次连接平行四边形的各边中点,构成的四边形是菱形;④黄金分割比的值为逻二■- 0.618.2B. 1个A. 0个【答案】C【解析】【分析】根据完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定即可一一判断;【详解】①错误.x2+kx+25是一个完全平方式,则k的值等于± 10 正确.一组对边平行,一组对角相等,可以推出两组对角分别相等,即可判断是平行四边形;③错误.顺次连接平行四边形的各边中点,构成的四边形是平行四边形;^5十1④正确.黄金分割比的值为一3~ 0.618故选C.C. 2个D. 3个【点睛】本题考查完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定等知识, 解题的关键是熟练掌握基本知识.4.下列运算正确的是( )A. x3+x5=x8B. (y+1)(y-1)=y2-1 C a10+a=a5 D. (-a2b)3=a6b3 【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A、x3+x5, 无B、(y+1)C、a10^2=aD、(-a2b) 故选:B.【点睛】匸法计算,故此选项错误; (y-1) =y2-l,正确;8,故此选项错误;3=-a6b3,故此选项错误.本题考查了合并同类项以及积的乘方运算、整式的乘除运算, 题的关键. 正确掌握相关运算法则是解5.若(x+1)( x+n )= x 2+mx - 2,贝U m 的值为( A . - 1 B . 1 C - 2 【答案】A 【解析】 【分析】 先将(x+1)(x+ n)展开得出一个关于 x 的多项式,再将它与 m , n 的值. 【详解】 解:••• (x+1)(x+n)=x 2+(1+ n) x+n , •-x 2+(1+ n)x+n=x 2+mx-2, 1 n D . 2x 2+mx-2作比较,即可分别求得n=-2. /. m=-1 , 故选A . 【点睛】 本题考查了多项式乘多项式的法则以及类比法在解题中的运用. 6.如果(x 2 +px + q)(x 2 — 5x + 7)的展开式中不含 x 2与x 3叽那么p 与q 的值是( )A . p = 5, q = 18B . C. p =— 5, q =一 18【答案】A D . P =— 5, q = 18 p = 5, q = 一 18【解析】 试题解析:•••( x 2+ px+q )(x 2-5x+7) =x 4+ (p-5) 又•••展开式中不含x 2与x 3项, ••• p -5=0, 7-5p+q=0 , 解得 p=5, q=18. 故选A . x 3+ (7-5 p+q ) x 2+ (7-5q ) x+7q ,A . 5.某企业今年3月份产值为d 万元, 15%,贝y 5月份的产值是()(4 — 10%)( d +15%)万元 (d — 10 % +15%)万元 4月份比 B . 月份减少了10%, 5月份比4月份增加(1+15 %)万元 C. 【答案】B 【解析】 列代数式.据3月份的产值是a 万元, 得出5月份产值列出式子a 1 — 10%)D .(1 — 10 %) (1 — 10% + 15%)万元a 把4月份的产值表示出来 a ( 1— 10%),从而 (1+15%).故选 B .【解析】 本题考查幕的运算. 点拨:根据幕的运算法则. 3a故选B .【解析】【分析】 根据幕的乘方和同底数幕除法的运算法则求解. 【详解】...2m = 5, 4n= 3,• 43n 飞=41 =心=£ =空 4m(2m)25225故选B. 【点睛】10.下列计算,正确的是()【答案】D【解析】A. a 2和a,和不能合并,故本选项错误;D 2 3B. a aC 93C. a aD. a 328.下列计算正确的是( A . a?a 2= a 2 【答案】B B .()a 2) 2= a 4C. 3a+2a = 5a 2D . (a 2b ) 3= a 2?b 3A . a 2a a D 2 3B . a aC. a 9a 3a 3D .a 3 2解答:a a2a 1 2 a 22a 2 2a 43a 2a a 2b ‘5a6. 3a b9.若 2m = 5, 4n= 3,则43nm的值是(9A.—1027B.——25C. 2 D .本题考查幕的乘方和同底数幕除法,熟练掌握运算法则是解题关键a 5 a 6,故本选项错误;a 6 a 3 和不能合并,故本选项错误;a 6,故本选项正确;故选D.11.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这 则个等式是(75a7!A .( a+b )( a - b )C.( a - b ) 2【答案】A =a 2-b2=a 2- 2ab+b 2B .( a+b ) 2= a 2+2ab+b 2D . a ( a — b ) = a 2— ab【解析】 【分析】分别计算出两个图形中阴影部分的面积即可. 【详解】图1阴影部分面积:a 2- b 2,图2阴影部分面积:(a+b ) ( a - b ), 由此验证了等式(a+b )( a - b ) = a 2-b 2,故选:A .此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过 程,通过几何图形之间的数量关系对平方差公式做出几何解释.计算(0.5 X 50 3x (4X 10 2的结果是(2 1013B . 0.5 1014【答案】C 12. A . )C. 2 1021D . 8 1021【解析】根据同底数幕的乘法的性质,幕的乘方的性质,积的乘方的性质进行计算. 解:(0.5 X 10 3X ( 4 X故选C.本题考查同底数幕的乘法,10 2=0.125 X 10< 16 X 6=2 X 10.幕的乘方,积的乘方,理清指数的变化是解题的关键.13.图(1)是一个长为开,把它分成四块形状和大小都一样的小长方形,然后按图( 中间空的部分的面积是()2a ,宽为2b (a b )的长方形,用剪刀沿图中虚线(对称轴)剪2)那样拼成一个正方形,则【答案】C 【解析】 【分析】图(2)的中间部分是正方形,边长为 【详解】中间部分的四边形是正方形,边长为: •••面积是(a b )2, 故选:C.【点睛】此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键15.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第① 个图形有1颗棋子,第②个图形有6颗棋子,第 ③个图形有15颗棋子,第 ④ 个图中有28颗棋子,…, 则第6个图形中棋子的颗数为( )A . abB . (a b)22C. (a b)D . a 2b 2a-b ,根据图形列面积关系式子即可得到答案a+b-2b=a-b .A . ( 2x 2)38x 6B . 2x x 1 2x 2 c , 、222C. (x y) x yD .x 2yx 2y2x x 2 4y 2【解析】解: A . B .C. D . 故选A . (-2x 2)3=- 8x 6,正确;—2x(x + 1)=- 2x 2- 2x ,故 B 错误; (X + y)2= X 2 + 2xy+y 2,故 C 错误;(-X + 2y)(- x -2y) = x 2-4y 2,故 D 错误;巧I下列运算正确的是( 14. )【答案】 A【解析】 【分析】解:•••通过观察可以发现: 第1个图形中棋子的个数为 第2个图形中棋子的个数为故选:D 【点睛】16. 如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角 形中y 与n 之间的关系是()【解析】 【详解】•• •观察可知:左边三角形的数字规律为:■« « ・ • • • * • • • • •« + 4 * • ■• •• ««• • • • « « • • ••4•• • • ■•• • ▼ ■ ■ ■* * 4图①图②15③■圏④A . 63B . 64C. 65D . 66根据图形中棋子的个数找到规律, 【详解】从而利用规律解题.第3个图形中棋子的个数为 15 第4个图形中棋子的个数为28第n 个图形中棋子的个数为 n 2n•••第6个图形中棋子的个数为66.本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.A . y=2n+1【答案】B D . y=2n+n+11 , 2, …,n ,【答案】D B . y=2n+nC. y=2n+1+n右边三角形的数字规律为: 下边三角形的数字规律为: •••最后一个三角形中 y 与n 之间的关系式是y=2n+n. 故选B .【点睛】考点:规律型:数字的变化类.17. 若 x+y = 3+2^2,X -y = 3 - 2 迈,则庁【分析】根据二次根式的性质解答.【详解】 解:••• x+y = 3+2 屈,X - y = 3- 2血,•7X 2 y 2J (Q y)(x y) J (3 272)(3 近=「故选:B . 【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差 公式进行解题.【解析】C 正确;19.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉著的《详解九章算术》一书中,用如图的三角形解释二项和( a+b ) n的展开式的各项系数,此三角形称为 杨辉三角”.2, 2?,…,2",1+2, 2 + 2$ …,^+2"|,y2的值为(A . 4©【答案】B 【解析】B . 1 C. D . 3 - 24218.下列运算正确的是( A . X 4【答案】 )B . X 2X 3X 6c . 2,3 6 C. (X ) X r 2 2 . , 2D . X y (X y )试题分析:X 4与X 2不是同类项,不能合并, X 5 A 错误;B 错误;/ 2\3(X2 2X y故选C.考点:幕的乘方与积的乘方;合并同类项;同底数幕的乘法;因式分解(X y )(x y ) , D 错误.-运用公式法.13世纪)所(约(2to+勺 Q ......... Zzr 际1 ... ®id a/ ■① ② G 坍 ............ ,①③® ra+6/ ..... ① ® ⑥ ⑤ @ @ 根据杨辉三角”请计算(a+b ) 20 A . 2017 B . 2016【答案】D【解析】① ① ④①的展开式中第三项的系数为(C. 191 D . 190试题解析:找规律发现( (a+b ) 4的第三项系数为 (a+b ) 5的第三项系数为10=1+2+3+4; 不难发现(a+b ) n的第三项系数为1+2+3+-+ •••( a+b ) 20 第三项系数为 1+2+3+- +20=190, 故选D . a+b ) 3的第三项系数为 3=1+2;6=1+2+3; (n - 2) + (n - 1), 考点:完全平方公式. 20.如图,是一块直径为 2a + 2b 的圆形钢板, 剩下的钢板的面积为( ) 从中挖去直径分别为 2a 、2b 的两个圆,则【答案】B 【解析】 【分析】 B . 2ab C. 3ab D . 4ab剩下钢板的面积等于大圆的面积减去两个小圆的面积 ,利用圆的面积公式列出关系式 ,化简即【详解】 解:S 剩下=S 大圆-S 小圆1 - S 小圆2 2a+2b 2 / 2a 2 / 2b 2)-(T)- (7)a+b22 2-a -b =2 ab ,故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、合并同类项法则,熟练掌握公式及法则是解本题的关键.。
代数式技巧及练习题含答案
运算的时候很多同学容易用错,例如: amn am an 等等.
10.已知 a+b+c=1, a2 b2 c2 2c 3 ,则 ab 的值为( ).
A.1
B.-1
C.2
【答案】B
【解析】
D.-2
【分析】
将 a+b+c=1 变形为 a+b=1- c,将 a2 b2 c2 2c 3 变形为 a2 b2 2 c2 2c 1,然
12.下列说法正确的是()
A.若 A、B 表示两个不同的整式,则 A 一定是分式 B
B. a4 2 a4 a2
xy C.若将分式 x y 中,x、y 都扩大 3 倍,那么分式的值也扩大 3 倍
D.若 3m 5, 3n 4 则 32mn 5 2
【答案】C 【解析】 【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可. 【详解】
故选 C.
D.178
2.下列计算正确的是( )
A.a2+a3=a5
B.a2•a3=a6
C.(a2)3=a6
【答案】C
【解析】
试题解析:A.a2 与 a3 不是同类项,故 A 错误;
B.原式=a5,故 B 错误;
D.原式=a2b2,故 D 错误;
故选 C.
考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.
A. 若 A、B 表示两个不同的整式,如果 B 中含有字母,那么称 A 是分式.故此选项错误. B
B. a4 2 a4 a8 a4 a4 ,故故此选项错误.
xy
C. 若将分式
中,x、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确.
x y
D. 若 3m 5,3n 4 则 32mn 3m 2 3n 25 4 25 ,故此选项错误. 4
代数式练习题及答案
代数式练习题及答案代数式练习题及答案代数是数学中的一个重要分支,它研究的是数的运算和代数式的性质。
代数式是由数、字母和运算符号组成的表达式,它可以用来表示数的关系和运算。
在学习代数的过程中,练习题是必不可少的一环,通过解答练习题,可以帮助我们巩固知识,提高解题能力。
本文将介绍一些常见的代数式练习题及其答案。
一、简单的代数式求值题1. 求代数式a + b + c,其中a = 2,b = 3,c = 4。
答案:a + b + c = 2 + 3 + 4 = 9。
2. 求代数式3a - 2b,其中a = 5,b = 7。
答案:3a - 2b = 3 × 5 - 2 × 7 = 15 - 14 = 1。
3. 求代数式(a + b) × c,其中a = 2,b = 3,c = 4。
答案:(a + b) × c = (2 + 3) × 4 = 5 × 4 = 20。
二、代数式的展开和化简题1. 展开代数式(x + y)^2。
答案:(x + y)^2 = x^2 + 2xy + y^2。
2. 化简代数式2x + 3x - 4x。
答案:2x + 3x - 4x = x。
3. 展开代数式(a - b)^2。
答案:(a - b)^2 = a^2 - 2ab + b^2。
三、代数式的因式分解题1. 将代数式x^2 - 4x + 4分解因式。
答案:x^2 - 4x + 4 = (x - 2)^2。
2. 将代数式x^2 - 9分解因式。
答案:x^2 - 9 = (x - 3)(x + 3)。
3. 将代数式x^2 + 4x + 4分解因式。
答案:x^2 + 4x + 4 = (x + 2)^2。
四、代数式的方程求解题1. 解方程2x + 3 = 7。
答案:2x + 3 = 7,化简得2x = 4,再除以2得x = 2。
2. 解方程3(x - 4) = 15。
答案:3(x - 4) = 15,化简得3x - 12 = 15,再加上12得3x = 27,最后除以3得x = 9。
初中数学代数式求值精选练习题及答案
初中数学代数式求值精选练习题及答案1、已知3a-b+2c=7,5a+4b-3c=6,求代数式a+11b-12c的值;2、已知2m6+ m4= 3,求m的值;3、已知x2 −3x−27=0,求代数式1(x+4)2+(x+4)2的值;4、已知x,y,z为正数,且xy=28,yz=48,xz=84,求代数式x+2y+3z值;5、已知a= 2b−3,求代数式6ab+3a(2-3b)+3a+7的值;6、已知m a=2,m a+b=14,求代数式√m a + m b的值;7、已知x,y,z为整数,若x+y+z=3,x2+ y2+z2=5,求代数式x3+y3+ z3-10的值;8、已知m2-n2=12,(m+n)2= 16,求代数式8mn+9的值;9、已知x=√2+√3,求代数式x2−2√3x-4的值;10、已知m +n =-5,求代数式m2- 10n- n2的值。
参考答案1、已知3a-b+2c=7,5a+4b-3c=6,求代数式a+11b-12c的值;解:已知3a-b+2c=7将上式变换一下,得b=3a+2c-7---------------①将①代入5a+4b-3c=6,得5a+4(3a+2c-7)-3c =6整理,得17a+5c=34---------------②代数式a+11b-12c将①代入=a+11(3a+2c-7)-12c=34a+10c-77=2(17a+5c)-77将②代入=2×34-77=-92、已知2m6+ m4= 3,求m的值;解:2m6+ m4= 32(m2)3+ (m2)2= 3令m2=t,原式则为2t3 + t2 =32t3 + t2 -3 =02t3 + t2 -2-1 =0(2t3 - 2)+(t2 -1)=02(t3 -1)+(t2 -1)=02(t-1)(t2 +t+1)+(t+1)(t-1)=0 (t-1)〔2(t2 +t+1)+(t+1)〕=0(t-1)(2t2 +3t+3)=0因为2t2 +3t+3 =2(t+34)2+ 158>0所以2t2 +3t+3≠0故:只有t-1=0即t=1又m2=t所以m2=1,得m=±1故:m的值为±13、已知x2 −3x−27=0,求代数式1(x+4)2+(x+4)2解:x2 −3x−27=0x2 −3x−27−1= -1x2 −3x−28= -1(x+4)(x-7)= -1等号两边同时除以(x+4),得X -7= −1x+4等号两边同时乘以-1,得7-x = 1x+4-----------------①代数式1(x+4)2+(x+4)2=(1x+4)2+2×1x+4×(x+4)+(x+4)2-2=〔1x+4+(x+4)〕2-2将①带入,用7-x替换1x+4=〔(7−x)+(x+4)〕2-2 =(11)2-2=1094、已知x,y,z为正数,且xy=28,yz=48,xz=84,求代数式x+2y+3z值;解:xy=28-------------------①yz=48-------------------②xz=84-------------------③三个等式相乘,得(xyz)2= 28*48*84=(4*7)*(4*12)*(7*12)(xyz)2=(4∗7∗12)2因为x,y,z为正数所以xyz =4∗7∗12 -----④④÷①,得:z=12④÷②,得:x=7④÷③,得:y=4代数式x+2y+3z将x=7,y=4,z=12代入=7+2*4+3*12=515、已知a= 2b−3,求代数式6ab+3a(2-3b)+3a+7的值;解:a= 2b−3等式两边同时乘以b-3,得ab-3a=2上式变换一下,得ab=3a+2--------------①代数式6ab+3a(2-3b)+3a+7=6ab+6a-9ab+3a+7=-3ab+9a+7将①代入=-3(3a+2)+9a+7=-9a-6+9a+7=16、已知m a=2,m a+b=14,求代数式√m a + m b的值;解:m a+b=14m a×m b=14已知m a=2--------------①即:2 ×m b=14m b= 7-------------②代数式√m a + m b将①②代入=√2+7=37、已知x,y,z为整数,若x+y+z=3,x2+ y2+z2=5,求代数式x3+y3+ z3-10的值;解:因为x,y,z为整数且x2+ y2+z2=5若其中一个数为±3,它的平方为9,显然大于5所以:x,y,z只能取±2,±1, 0 -------------------①(A)设x= -2,因为x+y+z=3,所以y+z=5,这时y或z必定有一个取±3或±4或±5,不符合①,所以舍去;(B)设x= 2因为x+y+z=3,所以y+z=1即:y=1-z--------------------------②又x2+ y2+z2=5,所以y2+z2=1-------③将②代入③(1−z)2+z2=12z2-2z=0解得:z=0,或z=1对应的y=1或0整理得:{x=2y=0x=1或{x=2y=1z=0求代数式(x3+y3+ z3)-10=(23+03+ 13)-10=-1(C)设x= -1因为x+y+z=3,所以y+z=4,因为x,y,z只能取±2,±1, 0所以,这时只能是:y=z=2整理得:{x=−1 y=2 x=2求代数式(x3+y3+ z3)-10=(−13+23+ 23)-10=5(D)设x= 1因为x+y+z=3,所以y+z=2,即y=2- z又x2+ y2+z2=5,所以y2+z2=4将y=2- z代入(2−z)2+z2=4化简,得2z2-4z=0解得:z=0,或z=2对应y=2或y=0整理得:{x=1y=0x=2或{x=1y=2z=0求代数式(x3+y3+ z3)-10=(13+23+ 03)-10= -1(E)设x= 0因为x+y+z=3,所以y+z=3,即y=3- z又x2+ y2+z2=5,所以y2+z2=5将y=3- z代入(3−z)2+z2=5化简,得2z2-6z+4=0,即z2-3z+2=0即(z-2)(z-1)=0解得:z=2或z=1对应:y=1或y=2整理得:{x=0y=2x=1或{x=0y=1z=2求代数式(x3+y3+ z3)-10=(03+23+ 13)-10= -18、已知m2-n2=12,(m+n)2= 16,求代数式8mn+9的值;解:m2-n2=12(m +n)(m -n)=12两边同时平方,得(m + n)2(m−n)2=144将(m+n)2= 16代入16*(m−n)2=144(m−n)2=9等号左边展开:m2-2mn + n2=9------------①又(m+n)2= 16等号左边展开:m2+2mn + n2=16-----------②②-①,得4mn=7代数式8mn+9=2*4mn+9=2*7+9=239、已知x=√2+√3,求代数式x2−2√3x-4的值;解:x=√2+√3x= √2−√3(√2+√3)(√2−√3)= √2−√32−3=√2−√3−1=√3-√2--------------①x2 = (√3 − √2)2 =3+2-2√6=5-2√6---------------------②代数式x2−2√3x−4将①②代入=(5-2√6)-2√3(√3-√2)+4=5-2√6-6+2√6+4=310、已知m +n =-5,求代数式m2- 10n- n2的值。
2023-2024年初一年级数学求解代数式的值,例题、习题附加答案
求代数式的值练习目的:能用具体的数值代替代数式中的字母,求出代数式的值。
什么是代数式的值:通常我们将代数式中的字母用具体指代的数字代替,并按照代数式的运算法则运算出具体的数值结果,就成作为代数式的值。
例1学校为了开展校体育活动,需要购进一批篮球,要求每班能分配2个,学校后备余留15个。
那么学校需要购进多少个篮球?解:设前学校共有n个班级,那么学校需要购进的篮球总数为:n.2+15假设,现在学校有20个班级(即20n),那么篮球总数=就是:2=+20⨯.2+15n=5515进一步假设,现在学校有班级25个(即25n),那么篮=球总数就是:+⨯+2==n.651515225由例题可以看出,当n取值不同是,代数式15n的计算2+结果也不同。
当20=n时,n的值是55;当25=n时,代数式152+代数式15n的值是65.2+例2当375===,z ,y x 时,求代数式z)y x x(462-+的值. 解:z)y x x(462-+=)(3476525⨯-⨯+⨯⨯=12)42(105-+⨯=405⨯=200.例3根据下面a,b 的值,求代数式ab a -2的值: (1)205==,b a ;(2)24==,b a .解:(1)当205==,b a 时,代数式ab a -2的值为: a b a -2=52052-=425-=21. (2)当24==,b a 时,代数式ab a -2的值为: a b a -2=4242-=2116-=2115. 练一练:1、求下列代数式的值.(1)当2=x 时,求代数式12-x 的值. 解:当2=x 时,求代数式12-x 的值为:12-x =122-=3.(2)当3143==,y x 时,求代数式y)x(x -的值. 解:当3143==,y x 时,求代数式y)x(x -的值为: y)x(x -=)(314343-⨯=12543⨯=165. 2、当213==,b a 时,求下列代数式的值.(1)(b a +)2;(2)(b a -)2. 解:(1)当213==,b a 时,代数式(b a +)2的值为: (b a +)2=(3+21)2=2)27(=449. (2)当213==,b a 时,代数式(b a -)2的值为: (b a -)2=(213-)2=2)25(=425. 3、当25==,y x 时,求代数式yx y x 4354--的值. 解:当25==,y x 时,求代数式y x y x 4354--的值为: y x y x 4354--=24532554⨯-⨯⨯-⨯=8151020--=710. 4、当2085===c ,b a ,时,求下列代数式的值:(1)b )a)(c (c c --+;(2)b a a c +-.解:(1)当2085===c ,b a ,时,代数式b )a)(c (c c --+的值为:b )a)(c (c c --+=)820()520(20-⨯-+=20+1215⨯=20+180=200. (2)当2085===c ,b a ,时,代数式ba a c +-的值为:b a ac +-=85520+-=1315.。
八年级数学代数式的运算练习题及答案
八年级数学代数式的运算练习题及答案一、简答题1. 请列举并解释三种基本的数学运算。
答:三种基本的数学运算是加法、减法和乘法。
加法是将两个或多个数合并在一起,得到它们的总和;减法是从一个数中减去另一个数,得到它们的差;乘法是将两个或多个数相乘,得到它们的积。
2. 什么是代数式?请举一个例子说明。
答:代数式是由数、字母和运算符号组成的符号表达式,可以用来表示数学关系和进行各种计算。
例如,2x + 3y 是一个代数式,其中的字母 x 和 y 代表未知数,常数 2 和 3 分别与字母相乘,并通过加号进行连接。
二、选择题从以下选项中选择正确答案:1. 下列哪个是完全展开的代数式?A. (x + y)²B. x² + 2xy + y²C. (x + y)³D. x³ + y³答:B. x² + 2xy + y²2. 下列哪个代数式与 3(x + 4) 等价?A. 3x + 4B. 3x - 4C. 3x + 12D. 3x - 12答:C. 3x + 12三、计算题请计算以下代数式的值:1. 如果 x = 3,y = 4,求解 2x² - 3y的值。
答:代入 x = 3 和 y = 4 到代数式中:2(3)² - 3(4)= 2(9) - 12= 18 - 12= 6所以,2x² - 3y 的值为 6。
2. 已知 a = 5,b = 2,求解 a² + 3ab + b²的值。
答:代入 a = 5 和 b = 2 到代数式中:5² + 3(5)(2) + 2²= 25 + 30 + 4= 59所以,a² + 3ab + b²的值为 59。
四、解答题请写出以下代数式的展开式:1. (x + 2)^2 的展开式为?答:(x + 2)^2 = x^2 + 2x + 2x + 4= x^2 + 4x + 42. (2x + 3y)^2 的展开式为?答:(2x + 3y)^2 = (2x)^2 + 2(2x)(3y) + (3y)^2 = 4x^2 + 12xy + 9y^2五、解答题请将下列代数式简化到最简形式:1. 2x + 3x - 5x + 4x答:2x + 3x - 5x + 4x = (2 + 3 - 5 + 4)x= 4x所以,2x + 3x - 5x + 4x 的最简形式为 4x。
代数式计算题及答案
代数式计算题及答案题一:计算代数式的值1. 当x=3时,求2x+5的值。
解:将x=3代入2x+5,得:2(3)+5=6+5=11。
故当x=3时,2x+5的值为11。
2. 当a=-2,b=4时,求3a-b的值。
解:将a=-2,b=4代入3a-b,得:3(-2)-4=-6-4=-10。
故当a=-2,b=4时,3a-b的值为-10。
题二:多项式的运算1. 计算(x+2)(x-3)的结果。
解:根据乘法公式,展开(x+2)(x-3)得:x^2 - 3x + 2x - 6 = x^2 - x - 6。
故(x+2)(x-3)的结果为x^2 - x - 6。
2. 计算(2x^2 + 3x - 5) + (4x^2 - x + 1)的结果。
解:按照相同项的系数相加,得:(2x^2 + 4x^2) + (3x - x) + (-5 + 1)= 6x^2 + 2x - 4。
故(2x^2 + 3x - 5) + (4x^2 - x + 1)的结果为6x^2 + 2x - 4。
题三:分式的简化和运算1. 简化分式(4x^2 - 9) / (2x^2 - 5x -3)。
解:对分子和分母进行因式分解,得到:(2x + 3)(2x - 3) / (2x + 1)(x - 3)。
相同因式化简后,可得简化分式:(2x - 3) / (x - 3)。
2. 计算(3/x) * (2x/5)的结果。
解:将分式相乘,得:(3*2x) / (x*5) = 6x / 5x = 6/5。
题四:根式的运算1. 化简根式√8。
解:利用乘法法则,√8 = √(4*2) = √4 * √2 = 2√2。
故根式√8的简化结果为2√2。
2. 计算√18 + √32的结果。
解:分别化简根式,得√18 = √(9*2) = 3√2,√32 = √(16*2) = 4√2。
相加后,结果为3√2 + 4√2 = 7√2。
题五:方程的解1. 解方程2x + 5 = 17。
初中《代数式求值》精选练习题及答案
初中《代数式求值》精选练习题及答案根据已知,求代数式的值:1、已知:x=√3 + √3 ,求代数式(x+1)(x-1)的值;2、已知x 2 +1= x ,求代数式x 1001 -x 1000的值;3、已知m =√493 +√563 +√643,求代数式 m - 1m 2 的值;4、已知a 2 = √2 √1+a 2 -1,求代数式a 2024 + a −2024的值;5、已知t ≠0,且 1t - t =1,求代数式t 3 +2t 2 +3003的值;6、已知9x2 +30x+23=0,求代数式(3x +4)2 + 1(3x+4)2 的值;7、已知m 2 -13m =n ,n 2 -13n =m ,求代数式√m 2+n 2+1 的值;8、已知2t +√2 =√3 ,求代数式t 6 -2t 4的值;9、已知3m 2 +5m -11=0,求代数式(4m+7)(2m-5)+m (m+21)+3 的值;10、已知x+√3 =2,求代数式4x 2-〔6x-(5x-8)-x 2〕+3x-〔5x-2(2x-1)〕的值。
参考答案1、已知:x=√3+√3,求代数式(x+1)(x-1)的值;解:已知x=√3+√3=√3+ √33=4√33那么x2=(4√33)2= 163----------①代数式(x+1)(x-1)=x2 -1将①代入= 163-1= 1332、已知x2 +1=x,求代数式x1001 -x1000的值;解:已知x2 +1=x变换一下,得x2-x= -1----------①再变换,得x2 =x -1------------②又x3=x2·x将②代入x3=(x -1)·x=x2-x将①代入故:x3= -1------------③代数式x1001 -x1000=x999+2 -x999+1=x999·x2 -x999·x=x 999(x 2 -x )将①代入=x 999·(-1)= -x 999= -(x 3)333将③代入= -(−1)333 = -(-1)= 13、已知m =√493 +√563 +√643,求代数式 m - 1m 2 的值; 解:m =√493 +√563 +√643m=(√73)2 +√73 √83 + (√83)2-------------------① 将①等号两边同时取分母为1,得 m 1 =(√73)2 +√73 √83 + (√83)21等号右边分子分母同时乘以√83 -√73,得m 1 =[(√73)2 +√73 √83 + (√83)2](√83 −√73)√83 −√73m 1 = √83)3√73)3√83 −√73 = √83 −√73 = √83 −√73 等号两边同时取倒数所以:1m = √83 -√73故: 1m 2 = (√73)2 -2√73 √83 + (√83)2-----------② 由① -②,得m - 1m 2 = 3√73 √833·2= 3√73=6√74、已知a2=√2√1+a2 -1,求代数式a2024+ a−2024的值;解:已知a2=√2√1+a2 -1变换一下,得a2+1=√2√1+a2等号两边同时平方,得a4+2a2+1= 2(1+a2)a4+2a2+1= 2+2a2化简,得a4=1代数式a2024+ a−2024=a4×506+ a4×(−506)=(a4)506+(a4)−506将a4=1代入= 1506+ 1−506=1+1=25、已知t≠0,且1- t =1,求代数式t3 +2t2 +3003的值;t解:已知t≠01- t =1t等号两边同时乘以t,得1 -t2=t变换一下,得t2=1 - t---------------------①代数式t3 +2t2 +3003=t2·t +2t2 +3003将①待入=(1 - t)·t +2(1 - t)+3003 =t -t2 +2-2t +3003再将①待入=t -(1- t) +2-2t +3003= t -1 +t +2 -2t +3003=(t +t -2t)+(-1 +2 +3003)=30046、已知9x2+30x+23=0,求代数式(3x+4)2+1(3x+4)2的值;解:设3x+4 =t则x= 13(t -4)---------------①已知9x2+30x+23=0将①代入9×[13(t−4)]2+30×[ 13(t−4)]+23=0(t−4)2+10(t -4)+23=0t2 -8t +16 +10t -40 +23=0 t2 +2t -1=0等号两边同时除以t,得t +2 - 1t=0变化一下,得1t- t =2等号两边同时平方,得1t2-2 + t2=4整理,得1t2+ t2= 6因为3x+4 =t故:(3x+4)2+1(3x+4)2=67、已知m2 -13m =n,n2 -13n =m,求代数式√m2+n2+1的值;解:m2 -13m=n,n2 -13n=m则变换一下,得m2 =13m +n----------------①n2 =m +13n----------------②① -②,得m2 -n2 =12(m-n)(m +n)(m -n)=12(m-n)(m +n)(m -n)-12(m-n)=0(m -n)〔(m +n)-12〕=0则有:m -n =0,或(m +n)-12=0即:m = n 或m +n =12(1)当m = n时已知m2 =13m +nm2 =13m +m=14m解得m=0,或m=14第一种情况:m=n=0代数式√m2+n2+1将m=n=0代入=√1=1第二种情况:m=n=14代数式√m2+n2+1将m=n=0代入=√142+142+1=√393(2)当m +n =12时① +②,得m2 +n2 =14(m+n)=14×12代数式√m2+n2+1=√14×12+1=√(13+1)(13−1)+1= √132−1+1=138、已知2t +√2=√3,求代数式t6 -2t4的值;解:2t +√2=√3t = √3−√22所以:t2= 5−2√64----------------①①两边同时平方,得t4= 49−20√616------------------------②代数式t6 -2t4=t4(t2 -2)将①,②代入= 49−20√616(5−2√64-2)= 49−20√616×−3−2√64=−3×49+(−20√6)×(−2√6)+(60√6−98√6)64= 93−38√6649、已知3m2 +5m -11=0,求代数式(4m+7)(2m-5)+m(m+21)+3 的值;解:3m2 +5m -11=0变换一下,得3m2 +5m =11------------①代数式(4m+7)(2m-5)+m(m+21)+3=8m2 -20m+14m -35 +m2 +21m+3=9m2 +15m -32=3(3m2 +5m)-32将①代入=3×11-32=110、已知x+√3=2,求代数式4x2-〔6x-(5x-8)-x2〕+3x-〔5x-2(2x-1)〕的值。
代数式知识点及专项训练(含答案解析)
代数式知识点及分类训练(含答案解析)知识点一:代数式的定义1. 用基本的运算符号把数或表示数的字母连接而成的式子叫做代数式。
如:16n ,2a+3b ,34 ,n,(a+b)2等式子;代数式不含有等号或不等号,单独的2一个数或一个字母也是代数式。
知识点二:代数式的规范书写1. 数字与数字相乘用“×”;数字与字母、字母与字母相乘乘号, 通常用“·”表示或省略不写;2. 字母与数字相乘,数字因式应放在字母因式之前(之前/之后),带分数与字母相乘,带分数要化为假分数3. 代数式中的除号一般用“分数线”表示;4. 几个字母相乘时,一般按字母顺序排列。
5. 如果字母前面的数字是1,通常省略不写.知识点三:列代数式在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来,即列出代数式,使问题变得简洁,更具一般性.1.重点:用字母表示数与数之间的关系;2.比谁的几倍多(少)几的问题;3.比谁的几分之几多(少)几的问题;4.折扣问题:例:八折是乘0.8,八五折是乘0.855.提价与降价问题:例:一个商品原价a,先提价20%,在降价20%,即a(1+20%)(1-20%)6.路程问题:掌握公式:s=vt7.出租车计费问题:分类讨论思想,将总路程切割成不同的段(例:前三公里收费7元,之后每公里1.6元,公里数x,总费用y)y={7 x≤3 1.6(x−3)+7 x>38.已知各数位上的数字,表示数的问题:字母乘10表示在十位上,乘100表示在百位上。
9.特定字母的意义:C:周长 S:面积 V:体积 r:半径 d:直径s:路程 t:时间 v:速度n:正整数知识点三:代数式的值1. 用数值代表代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。
2. 代数式的值的求解步骤:一是代入,二是计算。
在过程中一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.3. 求代数式的值的方法3.1 直接代入法:将字母的值直接代入代数式中求值3.2 转换代入法:按指定的程序代入计算3.3 整体代入法:即整体思想:把“整体”看作一个新字母代入计算【知识点1:代数式的概念】1. 下列式子中,符合代数式书写格式的是( )A .813a 2b 3B .−y xC .xy ·5D .−1c【答案】B【解析】选项A 正确的书写格式是253a 2b 3,选项B 的书写格式是正确的,选项C 正确的书写格式是5xy ,选项D 正确的书写格式是-c.故选:B .2. 下列式子中,不属于代数式的是( )A .a+3B .mn 2C .√6D .x >y 【答案】D .【解析】A 、是代数式,故本选项错误;B 、是代数式,故本选项错误;C 、是代数式,故本选项错误;D 、不是代数式,故本选项正确;故选D .3. 下列各式符合代数式书写规范的是( )A .a bB . a×3C . 2m ﹣1个D . 125m 【答案】A .【解析】A 、符合代数式的书写,故A 选项正确;B 、a×3中乘号应省略,数字放前面,故B 选项错误;C 、2m ﹣1个中后面有单位的应加括号,故C 选项错误;D 、125m 中的带分数应写成假分数,故D 选项错误.4. 判断下列各式中哪些是代数式,哪些不是代数式?0,10x−1,F =ma ,m+2>m ,2x 2﹣3x+11,112,13≠12,6x 2+y 23,﹣y ,6π. 【答案】代数式的有:0,10x−1,2x2﹣3x+11,112,6x 2+y 23,﹣y ,6π.不是代数式的有:F =ma ,m+2>m ,13≠12.【解析】根据代数式的概念选择5. 指出下列各式哪些是代数式,哪些不是代数式?①0;②a+b=3;③b;④x+2>4;⑤1x ;⑥2mn;⑦1+x;⑧x 3.【答案】①、③、⑤、⑥、⑦、⑧是代数式,②、④不是代数式【解析】②a+b=3,④x+2>4中的“=”“>” 它们不是运算符号,因此②④都不是代数式;①0,③b,都是代数式,因为单个数字和字母是代数式;⑤1x ,⑦1+x,⑧x3,都是除、加、乘方等运算符号连接起来的,因此是代数式;综上,①、③、⑤、⑥、⑦、⑧是代数式,②、④不是代数式.6. 下列哪些是代数式?哪些不是代数式?(1)3x+y ;(2)a ≠0;(3)s=πr 2;(4)ab a+b ;(5)-1>-2;(6)65;(7)m.【答案】代数式有(1),(4),(6),(7);不是代数式的有(2),(3),(5).【解析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.代数式有:3x+y ,ab a+b ,65,m.不是代数式的有:a ≠0,s=πr 2,-1>-2.7. 指出下列各式中,哪些是代数式,哪些不是代数式?(1)2x-1;(2)a=1;(3)S=πR 2;(4)π;(5)72;(6)12>13.【答案】(2)(3)是等式不是代数式;(6)不是等式不是代数式;(1)(4)(5)是代数式.【解析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.解:(2)(3)是等式不是代数式;(6)不是等式不是代数式;(1)(4)(5)是代数式.【知识点2:列代数式】1.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.3(a+b)元C.(3a+b)元D.(a+3b)元【答案】D.【解析】求购买1个面包和2瓶饮料所用的钱数,我们需要用一个面包的价钱加上3瓶饮料的价钱即可,即(a+3b)元,故选D.2.x减去y的平方的差,用代数式表示正确的是().A.(x-y)2B.x2-y2C.x2-yD.x-y2【答案】D【解析】本题主要考查了列代数式,关键是正确理解文字语言中的关键词;y的平方为y2,所以x减去y的平方的差为x-y2,故选D.3.根据题意列式:(1)x的平方的3倍与5的差,用代数式表示为 .(2)操作电脑时,甲4小时打x个字,乙3小时打y个字,甲乙两人每小时共打个字.【答案】(1)3x2-5 (2)(x4+y3)【解析】(1)本题主要考查了列代数式,关键是正确理解文字语言中的关键词;x的平方为x2,它的3倍为3x2,所以再与5的差为3x2-5;(2)已知甲4小时打x个字,则甲每小时打x4个字;乙3小时打y个字,则乙每小时打y3个字,所以甲、乙两人每小时共同打(x4+y3)个字4.校园里刚栽下1.8m高的小树苗,以后每年长0.3m,则n年后是 m.【答案】(0.3n+1.8);【解析】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系。
最新七年级数学代数式单元复习练习(Word版 含答案)
一、初一数学代数式解答题压轴题精选(难)1.根据数轴和绝对值的知识回答下列问题(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。
例如,数轴上4和1两点之间的距离是________.数轴上-3和2两点之间的距离是________.(2)数轴上表示数a的点位于-4与2之间,则│a+4│+│a-2│的值为________.(3)当a为何值时,│a+5│+│a-1│+│a-4│有最小值?最小值为多少?【答案】(1)3;5(2)6(3)解:①a≤1时,原式=1-a+2-a+3-a+4-a=10-4a,则a=1时有最小值6;②1≤a≤2时,原式=a-1+2-a+3-a+4-a=8-2a,则a=2时有最小值4③2≤a≤3时,原式=a-1+a-2+3-a+4-a=4④3≤a≤4时,原式=a-1+a-2+a-3+4-a=2a-2;则a=3时有最小值4⑤a≥4时,原式=a-1+a-2+a-3+a-4=4a-10;则a=4时有最小值6综上所述,当a=2或3时,原式有最小值4.故答案为:(1)3;5;(2)6;(3)当a=2或3时,原式有最小值4.【解析】【解答】(1)解:数轴上表示1和4的两点之间的距离是3;表示-3和2的两点之间的距离是5( 2 )解:根据题意得:-4<a<2,即a+4>0,a-2<0则原式=a+4+2-a=6.【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可直接算出答案;(2)根据数轴上所表示的数的特点得出-4<a<2,进而根据有理数的加减法法则得出a+4>0,a-2<0,然后根据绝对值的意义去绝对值符号,再合并同类项即可;(3)分①a≤1时,②1≤a≤2时,③2≤a≤3时,④3≤a≤4时,⑤a≥4时,五种情况,根据绝对值的意义分别取绝对值符号,再合并同类项得出答案,再比大小即可.2.糖业是我省重要的生物资源产业.我省某糖业集团今年4月收购甘蔗后入榨甘蔗250万吨,榨糖率为12%.经市场调查知5月份糖的销售价为2940/吨,若糖业集团在5月销售4月生产的糖,产销率为60%;又知糖业集团若在6月、7月两个月内销售4月生产的糖,销售价将在5月的基础上每月比上月降低6%、糖销量将在5月的基础上每月比上月增加9%.(1)问2005年4月糖业集团生产了多少吨糖?(2)若糖业集团计划只在7月销售4月生产的糖,请求出该糖业集团7月销售4月生产的糖的销售额是多少?(精确到万元)(注:榨糖率=(产糖量/入榨甘蔗量)×100%,产销率=(糖销量/产糖量)×100%,销售额=销售单价×销售数量).【答案】(1)解:2005年4月糖业集团产糖250×12%=30(万吨)=300000(吨)(2)解:设7月份的糖价为x元/吨,则据已知条件有x=2597.784(元/吨);设7月份的糖销量为y吨,则据已知条件得:y=30×0.60×(1+9%)2=21.3858(万吨)设7月份销售4月份产糖的销售额为w元,则据题意得:w=2597.784×21.3858≈55556(万元).答:糖业集团7月份销售4月份产糖的销售额约为55556万元.【解析】【分析】(1)根据产糖量等于入搾甘蔗量乘以搾糖率即可求解;(2)由题意先求出7月份的糖价=2940(1-6%)2=2597.784元/吨,再求出7月份的糖销量=30×0.60×(1+9%)2=21.3858(万吨),最后根据销售额等于销售单价乘以销售量即可解答。
代数式知识点、经典例题、习题及标准答案
1.2代数式【考纲说明】1、理解字母表示数的意义及用代数式表示规律。
2、用代数式表示实际问题中的数量关系,求代数式的值。
【知识梳理】1、代数式:指含有字母的数学表达式。
2、一个代数式由数、表示数的字母、运算符号组成。
单个字母或数字也是代数式。
3、代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。
4、用字母表示数的规范格式:(1 )、数和表示数的字母相乘,或字母和字母相乘时,乘号可以省略不写,或用“•来代替。
(2)、当数和字母相乘,省略乘号时,要把数字写到前面,字母写后面。
如如:100a或100?a,na或n?住(3)、后面接单位的相加式子要用括号括起来。
如:(5s )时(4 )、除法运算写成分数形式。
(5 )、带分数与字母相乘时,带分数要写成假分数的形式。
5、列代数式时要注意:(1)语言叙述中关键词的意义,如“大”“小” “增加” “减少”。
“倍” “几分之几”等词语与代数式中的运算符号之间的关系。
(2)要理清运算顺序和正确使用括号,以防出现颠倒等错误,例如“积的和”与“和的积”“平方差” “差的平方”等等。
(3)在同一问题中,不同的数量必须用不同的字母表示。
【经典例题】【例1】(2012重庆,9,4分)下列图形都是由同样大小的五角星按一定的规律组成。
其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五【例4】已知:a_2ab一13的值为()2a —2b 7abB . --6C .1 1 【解析】由已知丄-1=4,a b15b 〜a得—=4,ab角星,,,则第⑥个图形中的五角星的个数为(【解析】仔细观察图形的特点,它们都是轴对称图形,每一行的个数都是偶数,分别是2,4, 6,,, 6,4,2,故第⑥个图形中五角星的个数为2+4+6+8+10+12+10+8+6+4+2=72。
答案:D【例2】(2011甘肃兰州,20, 4分)如图,依次连接第一个矩形各边的中点得到一个菱形, 再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去, 已知第一个矩形的面积为1,则第n 个矩形的面积为 _________________【解析】由中点四边形的性质可知,每次所得新中点四边形的面积是前一个图形的1答案:—50★★**★★★¥¥③★★★平¥图后一个矩形的面积是前一个矩形的1,所以第 n 个矩形的面积是第一个矩形面积的4,已知第一个矩形面积为 1,则第n 个矩形的面积为12n -2【例3】按一定规律排列的一列数依次为 -2 11111,,,按此规律,第 7个数3 10 15 26 35【解析】先观察分子:都是 1 ;再观察分母:2,3,10,15,26,,与一些平方数 1,4,9,16,,都2差 1,2=123=2 -210=3+1, 215=4-1,26=5+1,,,这样第7个数为厂一 50。
初一代数式测试题及答案
初一代数式测试题及答案
一、选择题
1. 下列代数式中,不是同类项的是()
A. 3x^2y 和 2xy^2
B. 5x^2 和 3x^2
C. 4xy 和 2xy
D. 7xy 和 5x^2y
答案:A
2. 合并同类项 3x^2 - 5x^2 + 2x^2 的结果是()
A. 0
B. -2x^2
C. -x^2
D. x^2
答案:D
二、填空题
1. 代数式 4x - 2y + 3x - 5y 合并同类项后为____。
答案:7x - 7y
2. 代数式 3a^2 - 2ab + 4b^2 - 3a^2 + 2ab - 4b^2 的值是____。
答案:0
三、解答题
1. 计算代数式 2x^2 - 3xy + 5y^2 - 2x^2 + 3xy - 5y^2 的值。
答案:0
2. 若 2x + 3y = 5,求 4x + 6y 的值。
答案:10
四、应用题
1. 某商店进行促销活动,规定购买商品满100元减10元,满200元减20元,以此类推。
小华购买了150元的商品,小李购买了300元的商品,请计算他们各自实际支付的金额。
答案:小华实际支付140元,小李实际支付260元。
2. 一个长方形的长是宽的两倍,若长方形的周长为24厘米,求长方形的长和宽。
答案:长为8厘米,宽为4厘米。
代数式的练习题及答案
代数式的练习题及答案相关热词搜索:代数式练习题答案七年级代数式练习题代数式简化代数式的定义篇一:中考复习代数式练习题及答案中考复习代数式练习题(试卷满分120 分,考试时间120 分钟)董义刚134****9712一、选择题(本题共10 小题,每小题3 分,满分30分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得3分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1.一个代数式减去x2?y2等于x2?2y2,则这个代数式是()。
A.?3y2B.2x2?y2 C.3y2?2x2 D.3y22.下列各组代数式中,属于同类项的是()。
A.121ab 与ab2 B.a2b 与a2c 222C.2与3D.p与q3.下列计算正确的是()。
A.3x?x?3235224 B.3a?2a?1 D.3a?a?2a3322C.3x?5x?8x 55442224.a = 2 , b = 3, c = 4 , 则a、b 、c 的大小关系是()。
A.acbB.bac C.bcaD.cba解:a = 2=(2)=32 b = 3=(3)=81c = 4=(2)=83331111 555111144411115.一个两位数,十位数字是x,个位数字是y,如果把它们的位置颠倒一下,得到的数是()。
A.y?x B.yx C.10y?x D.10x?y6.若x2?kx?6?(x?3)(x?2),则k的值为()。
A.2 B.-2 C.1D.–17.若x+mx+25 是一个完全平方式,则m的值是()。
A.20 B.10 C.± 20 D.±108.若代数式2y2?3y?1,那么代数式4y2?6y?9的值是()。
2A.22 B.17 2C.?7 D.7 9(2-x) +(x-3) =(x-2)+(3-x),那么x的取值范围是()。
初中数学代数式求值专题训练及答案
初中数学代数式求值专题训练及答案1、若2x+3y+z=1,2x+y+3z=3,求代数式x+2y 的值。
2、已知:2023(1+3x)=1,求代数式7+6x 的值。
3、已知a a =3243,求代数式2 +3 +4 的值。
4、若x 2+xy +y 2=2xy +y 2=3,求代数式(x+1)(y-2)+3的值。
5、已知(x+13)2=2023,求代数式(x -27)(x+53)的值。
6、已知x +2y=12,求代数式x 2-4y 2+48y 的值。
7、已知x 2-3x +1=0,求代数式x 2+1 2的值。
8、已知x 2-4x +1=0,求代数式x 4-56x +2024的值。
9、已知x+1 =3,y+1 =1,z+1 ==3,求代数式x yz 的值。
10、已知x 4+x 2+1=0,求代数式x 3+1的值。
11、已知x=1,求代数式(x+2)(2x+1)-x 2+6的值。
12、若x>y>0,x 2+y 2=5xy,求代数式2− 2 的值。
13、已知2x 2+10=(x+2)(x+3),求代数式3x+6的值。
14、已知x=8−215,求代数式x+1 的值。
15、已知x=2,求代数式7x 2+(2x+3)(x-2)+12的值。
参考答案1、若2x+3y+z=1,2x+y+3z=3,求代数式x+2y 的值解:因为2x+3y+z=1------①2x+y+3z=3-------②①+②,得4x+4y+4z=4即:x+y+z=1-----------③①-③,得x+2y=0故:代数式x+2y 的值是02、已知:2023(1+3x)=1,求代数式7+6x 的值。
因为,要使得2023(1+3x)=1成立,所以1+3x=0,即:x=-13所以:7+3x =7+6×(-13)=5故:代数式7+6x 的值是53、已知a a =3243,求代数式2+3 +4 的值。
解:a a =3243=34*81=(34)81=8181所以:a=812 +3 +4 =281+381+484=9+333+3=12+333故:代数式2 +3 +4 的值是12+3334、若x2+xy+y2=2xy+y2=3,求代数式(x+1)(y-2)+3的值。
最新初中数学代数式技巧及练习题含答案
最新初中数学代数式技巧及练习题含答案一、选择题1.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m =12×14−10=158.故选C.2.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.3.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.4.如果多项式4x 4+ 4x 2+ A 是一个完全平方式,那么A 不可能是( ).A .1B .4C .x 6D .8x 3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x 4+ 4x 2+1=(2x+1)2,∴A=1,不符合题意,∵4x 4+ 4x 2+ 4不是完全平方式,∴A=4,符合题意,∵4x 4+ 4x 2+ x 6=(2x+x 3)2,∴A= x 6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.5.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.6.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .7.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.8.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 3【答案】B【解析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A 、x 3+x 5,无法计算,故此选项错误;B 、(y+1)(y-1)=y 2-1,正确;C 、a 10÷a 2=a 8,故此选项错误;D 、(-a 2b )3=-a 6b 3,故此选项错误.故选:B .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.9.计算3x 2﹣x 2的结果是( )A .2B .2x 2C .2xD .4x 2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x 2﹣x 2=(3-1)x 2=2x 2,故选B .【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.10.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20 【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.11.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是( )(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A .食指B .中指C .小指D .大拇指【答案】B【解析】【分析】 根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.又∵2019是奇数,201925283=⨯+,∴数到2019时对应的指头是中指.故选:B .【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.12.下列计算正确的是( )A .2571a a a -÷=B .()222a b a b +=+C .2222+=D .()235a a =【答案】A【解析】 分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a -÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、2,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误;故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.13.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-【答案】A【解析】【分析】 根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c )c=ac+bc-c 2,故选项B 、D 正确,或“L”型钢材的截面的面积为:bc+(a-c )c=bc+ac-c 2,故选项C 正确,选项A 错误, 故选:A .【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.14.下列运算中正确的是( )A .2235a a a +=B .222(2)4a b a b +=+C .236236a a a ⋅=D .()()22224a b a b a b -+=- 【答案】D【解析】【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确.故选D .【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.15.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+-g g =1()()2x y x y -+g =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.16.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .17.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.18.已知112x y +=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+=∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.19.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( ) A .45 B .1625 C .1 D .-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2 =(1.25×45)2012×(45)2 =1625. 故选B .【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.20.下列计算正确的是( )A .2x 2•2xy =4x 3y 4B .3x 2y ﹣5xy 2=﹣2x 2yC .x ﹣1÷x ﹣2=x ﹣1D .(﹣3a ﹣2)(﹣3a +2)=9a 2﹣4【答案】D【解析】A 选项:2x 2·2xy =4x 3y ,故是错误的;B 选项:3x 2y 和5xy 2不是同类项,不可直接相加减,故是错误的;C.选项:x -1÷x -2=x ,故是错误的;D选项:(-3a-2)(-3a+2)=9a2-4,计算正确,故是正确的.故选D.。
新初中数学代数式技巧及练习题附解析(2)
新初中数学代数式技巧及练习题附解析(2)一、选择题1.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.2.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40【答案】B【解析】 试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B .考点:规律型:图形变化类.3.下列计算正确的是( )A .235x x x +=B .236x x x =gC .633x x x ÷=D .()239x x = 【答案】C【解析】【分析】根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判断即可得解.【详解】A. 2x 与3x 不能合并,故该选项错误;B. 235x x x =g ,故该选项错误;C. 633x x x ÷=,计算正确,故该选项符合题意;D. ()236x x =,故该选项错误.故选C.【点睛】此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是解决此题的关键.4.下列运算或变形正确的是( )A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.5.将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示9,则表示58的有序数对是( )A .(11,3)B .(3,11)C .(11,9)D .(9,11) 【答案】A【解析】 试题分析:根据排列规律可知从1开始,第N 排排N 个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.故选A .考点:坐标确定位置.6.计算 2017201817(5)()736-⨯ 的结果是( ) A .736- B .736 C .- 1 D .367【答案】A【解析】【分析】根据积的乘方的逆用进行化简运算即可.【详解】2017201817(5)()736-⨯ 20172018367()()736=-⨯20173677()73636=-⨯⨯ 20177(1)36=-⨯736=- 故答案为:A .【点睛】本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.7.观察下列图形:( )它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为( ) A .20B .21C .22D .23【答案】C【解析】【分析】设第n 个图形共有a n (n 为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n =3n +1(n 为正整数)”,再代入n =7即可得出结论.【详解】解:设第n 个图形共有a n (n 为正整数)个五角星,∵a 1=4=3×1+1,a 2=7=3×2+1,a 3=10=3×3+1,a 4=13=3×4+1,…,∴a n =3n +1(n 为正整数),∴a 7=3×7+1=22.故选:C .【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n =3n +1(n 为正整数)”是解题的关键.8.通过计算大正方形的面积,可以验证的公式是( )A.B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是()A.B.C.D.无法确定【答案】A【解析】【分析】利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.【详解】=(AB-a)·a+(CD-b)(AD-a)=(AB-a)·a+(AD-a)(AB-b)=(AB-a)(AD-b)+(CD-b)(AD-a)=(AB-a)(AD-b)+(AB-b)(AD-a)∴-=(AB-a)(AD-b)+(AB-b)(AD-a)-(AB-a)·a-(AD-a)(AB-b)=(AB-a)(AD-a-b)∵AD<a+b,∴-<0,故选A.【点睛】此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.10.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( )A .2017B .2016C .191D .190【答案】D【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a+b )20第三项系数为1+2+3+…+20=190,故选 D .考点:完全平方公式.12.下列计算正确的是( )A .23a a a ⋅=B .23a a a +=C .()325a a =D .23(1)1a a a +=+【答案】A【解析】【分析】根据合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识求解即可求得答案.【详解】A 、a•a 2=a 3,故A 选项正确;B 、a 和2a 不是同类项不能合并,故B 选项错误;C 、(a 2)3=a 6,故C 选项错误;D 、a 2(a+1)=a 3+a 2,故D 选项错误.故答案为:A .【点睛】本题主要考查了合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识,解题的关键是熟记法则.13.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】 A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.14.若3,2x y xy +==, 则()()5235x xy y +--的值为( ) A .12B .11C .10D .9 【答案】B【解析】【分析】项将多项式去括号化简,再将3,2x y xy +==代入计算.【详解】 ()()5235x xy y +--=235()xy x y -++,∵3,2x y xy +==,∴原式=2-6+15=11,故选:B.【点睛】此题考查整式的化简求值,正确去括号、合并同类项是解题的关键.15.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .16.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .17.下列计算正确的是( )A .236a a a ⋅=B .22a a a -=C .632a a a ÷=D .236()a a =【答案】D【解析】【分析】根据同底数幂的乘除法公式,合并同类项,以及幂的乘方公式逐项计算得到结果,即可作出判断.【详解】A 、235a a a ⋅=,不符合题意;B 、22a 和a 不是同类项,不能合并,不符合题意;C 、633a a a ÷=,不符合题意;D 、236()a a =,符合题意,故选:D .【点睛】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方,熟练掌握运算法则是解本题的关键.18.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.20.如图,两个连接在一起的菱形的边长都是1cm ,一只电子甲虫从点A 开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm 时停下,则它停的位置是( )A.点F B.点E C.点A D.点C【答案】A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2014÷8=251……6,所以当电子甲虫爬行2014cm时停下,它停的位置是F点.故选A.点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.无法确定
【答案】A
【解析】
【分析】
利用面积的和差分别表示出 , ,利用整式的混合运算计算他们的差即可比较.
【详解】
=(AB-a)·a+(CD-b)(AD-a)
=(AB-a)·a+(AD-a)(AB-b)
=(AB-a)(AD-b)+(CD-b)(AD-a)=(AB-a)(AD-b)+(AB-b)(AD-a)
B.3x2y﹣5xy2=﹣2x2y D.(﹣3a﹣2)(﹣3a+2)=9a2﹣4
B 选项:3x2y 和 5xy2 不是同类项,不可直接相加减,故是错误的; C.选项:x-1÷x-2=x ,故是错误的; D 选项:(-3a-2)(-3a+2)=9a2-4,计算正确,故是正确的. 故选 D.
11.下列运算中,正确的是( )
A.2a•3a=6a
B.(3a2)3=27a6
C.a4÷a2=2a
D.(a+b)2=a2+ab+b2
【答案】B
【解析】
试题解析:A、2a•3a=6a2,故此选项错误;
B、(3a2)3=27a6,正确;
C、a4÷a2=a2,故此选项错误;
D、(a+b)2=a2+2ab+b2,故此选项错误; 故选 B. 【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式 乘以单项式等知识,正确化简各式是解题关键.
B. b2 9
C. a2 9
D. a2 b2
根据图 1 可得出 3a 5b ,即 a 5 b ,图 1 长方形的面积为 8ab ,图 2 正方形的面积为 3
(a 2b)2 ,阴影部分的面积即为正方形的面积与长方形面积的差.
【详解】
解:由图可知,图 1 长方形的面积为 8ab ,图 2 正方形的面积为 (a 2b)2
4.下列计算正确的是( )
A. x2 x3 x5
B. x2 x3 x6
C. x6 x3 x3
D. x3 2 x9
【答案】C 【解析】 【分析】 根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判 断即可得解. 【详解】
A. x2 与 x3 不能合并,故该选项错误;
7 36
故答案为:A. 【点睛】
本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.
6.观察下列图形:( )
它们是按一定规律排列的,依照此规律,那么第 7 个图形中共有五角星的个数为( )
A. 20
B. 21
C. 22
D. 23
【答案】C
【解析】
【分析】
设第 n 个图形共有 an(n 为正整数)个五角星,根据各图形中五角星个数的变化可找出变
∴面积是 (a b)2 ,
故选:C. 【点睛】
此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键.
17.已知 1 1 2 ,则 2xy 的值为( )
xy
x y 3xy
A. 1 2
【答案】D 【解析】 【分析】
B.2
C. 1 2
D. 2
先将已知条件变形为 x y 2xy ,再将其整体代入所求式子求值即可得解.
1.252
017×
4 5
2
?019
的值是(
)
A. 4 5
【答案】B 【解析】
B. 16 25
C.1
D.-1
【分析】
根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可
化规律“an=3n+1(n 为正整数)”,再代入 n=7 即可得出结论. 【详解】 解:设第 n 个图形共有 an(n 为正整数)个五角星, ∵a1=4=3×1+1,a2=7=3×2+1,a3=10=3×3+1,a4=13=3×4+1,…, ∴an=3n+1(n 为正整数), ∴a7=3×7+1=22. 故选:C. 【点睛】 本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“an= 3n+1(n 为正整数)”是解题的关键.
B. 2ab
C. 3ab
D. 4ab
【分析】
剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即 可. 【详解】
解: S剩下 = S大圆 - S小圆1 - S小圆2
= ( 2a+2b)2 -( 2a )2 -( 2b)2
2
2
2
=
a+b2
-a 2
-b2
=
2
ab
,
故选:B
最新初中数学代数式技巧及练习题附答案
一、选择题
1.如图 1 所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的 8 个长为
a ,宽为 b 的小长方形,用这 8 个小长方形不重叠地拼成图 2 所示的大正方形,则大正方
形中间的阴影部分面积可以表示为( )
A. (a b)2
【答案】B 【解析】 【分析】
∴ - =(AB-a)(AD-b)+(AB-b)(AD-a)-(AB-a)·a-(AD-a)(AB-b)
=(AB-a)(AD-a-b)
∵AD<a+b,
∴ - <0,
故
选 A.
【点睛】
此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.
10.下列计算正确的是( ) A.2x2•2xy=4x3y4 C.x﹣1÷x﹣2=x﹣1 【答案】D 【解析】 A 选项:2x2·2xy=4x3y,故是错误的;
B. x2 x3 x5 ,故该选项错误;
C. x6 x3 x3 ,计算正确,故该选项符合题意;
D. x3 2 x6 ,故该选项错误.
ห้องสมุดไป่ตู้
故选 C.
【点睛】 此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是 解决此题的关键.
5.计算 (5 1)2017 ( 7 )2018 的结果是( )
7.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑
了,得到正确的结果变为 4a2 12ab ( ),你觉得这一项应是( )
A. 3b2
B. 6b2
C. 9b2
D. 36b2
【答案】C
【解析】
【分析】
根据完全平方公式的形式(a±b)2=a2±2ab+b2 可得出缺失平方项.
【答案】A 【解析】 【分析】 根据合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识求解即可 求得答案. 【详解】 A、a•a2=a3,故 A 选项正确;
B、a 和 a2 不是同类项不能合并,故 B 选项错误;
C、(a2)3=a6,故 C 选项错误; D、a2(a+1)=a3+a2,故 D 选项错误. 故答案为:A. 【点睛】 本题主要考查了合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知
3.下列运算正确的是( )
A. 2ab ab 1 B. 9 3
C. (a b)2 a2 b2 D. (a3)2 a6
【答案】D
【解析】
【分析】
主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.
【详解】
解:
A 项, 2ab ab ab ,故 A 项错误;
B 项, 9 3 ,故 B 项错误;
9.在长方形
内,若两张边长分别为 和 ( )的正方形纸片按图 1,图 2 两种
方式放置(图 1,图 2 中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸
片覆盖的部分用阴影表示,若图 1 中阴影部分的面积为 ,图 2 中阴影部分的面积和为
,则关于 , 的大小关系表述正确的是( )
A.
B.
C.
n 2 , m11, n 2 , m 2. 则mn 4.
故选 D.
【点睛】
本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母
的指数相同.
14.下列计算正确的是( )
A. a a2 a3
B. a a2 a3
C. a2 3 a5
D. a2 (a 1) a3 1
∴阴影部分的面积为: (a 2b)2 8ab (a 2b)2
∵ 3a 5b ,即 a 5 b 3
∴阴影部分的面积为: (a 2b)2 ( b)2 b2 39
故选:B. 【点睛】 本题考查的知识点是完全平方公式,根据图 1 得出 a,b 的关系是解此题的关键.
2.下列各运算中,计算正确的是( )
识,解题的关键是熟记法则.
15.已知多项式 x-a 与 x2+2x-1 的乘积中不含 x2 项,则常数 a 的值是( )
A.-1
B.1
C.2
D.-2
【答案】C
【解析】
分析:先计算(x﹣a)(x2+2x﹣1),然后将含 x2 的项进行合并,最后令其系数为 0 即可
求出 a 的值.
详解:(x﹣a)(x2+2x﹣1)
【详解】
根据完全平方的形式可得,缺失的平方项为 9b2
故选 C.
【点睛】
本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.
8.下列运算正确的是( ) A.x3+x5=x8 B.(y+1)(y-1)=y2-1 C.a10÷a2=a5 D.(-a2b)3=a6b3 【答案】B 【解析】 【分析】 直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案. 【详解】 A、x3+x5,无法计算,故此选项错误; B、(y+1)(y-1)=y2-1,正确; C、a10÷a2=a8,故此选项错误; D、(-a2b)3=-a6b3,故此选项错误. 故选:B. 【点睛】 本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解 题的关键.