数学:《函数》教学反思

合集下载

函数的教学反思8篇

函数的教学反思8篇

函数的教学反思8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、述职报告、演讲稿、心得体会、合同协议、条据文书、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, job reports, speeches, insights, contract agreements, documents, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!函数的教学反思8篇只有重视起教学反思的写作,我们才能在后续的教学中更好地展示自我,详细地教学反思是需要结合我们的教学过程的,以下是本店铺精心为您推荐的函数的教学反思8篇,供大家参考。

《函数》教学反思(精选8篇)

《函数》教学反思(精选8篇)

《函数》教学反思(精选8篇)《函数》教学反思(精选8篇)《函数》教学反思篇1初中阶段所学的函数包括一次函数,反比例函数,二次函数.他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解.在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好.根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌.我在教学中重点是引导学生怎样去观察图象,从图象得出其性质.如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好.反比例函数,二次函数性质也掌握的较快.总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识.初中阶段所学的函数包括一次函数,反比例函数,二次函数.他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解.在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好.根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌.我在教学中重点是引导学生怎样去观察图象,从图象得出其性质.如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好.反比例函数,二次函数性质也掌握的较快.总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识.《函数》教学反思篇2初中阶段所学的函数包括一次函数,反比例函数,二次函数.他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解.在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好.根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌.我在教学中重点是引导学生怎样去观察图象,从图象得出其性质.如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好.反比例函数,二次函数性质也掌握的较快.总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识.《函数》教学反思篇3范文(一)《指数函数》是人教b版高中数学必修1第三章第二节第1课时,是继第二章函数的概念、函数的性质、一次函数、二次函数之后,学生要认识的一个新的函数。

人教八年级下册数学-函数教案与教学反思

人教八年级下册数学-函数教案与教学反思

第2课时函数1.了解函数的概念,弄清自变量与函数之间的关系;(重点)2.确定函数中自变量的取值范围.(难点)一、情境导入如图,水滴激起的波纹可以看成是一个不断向外扩展的圆,它的面积随着半径的变化而变化,随着半径的确定而确定.在上述例子中,每个变化过程中的两个变量.当其中一个变量变化时,另一个变量也随着发生变化;当一个变量确定时,另一个变量也随着确定.你能举出一些类似的实例吗?从今天开始,我们就研究和此有关的问题——函数.二、合作探究探究点一:函数【类型一】函数的定义下列变量间的关系不是函数关系的是( )A.长方形的宽一定,其长与面积B.正方形的周长与面积C.等腰三角形的底边长与面积D.圆的周长与半径解析:A中,长方形的宽一定.它是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也改变,故A选项是函数关系;B中,面积=(周长4)2,正方形的周长与面积是两个变量,16是常量,故B 选项是函数关系;C 中,面积=12×底边上的高×底边长,底边长与面积虽然是两个变量,但面积公式中还有底边上的高,而这里高也是变量,有三个变量,故C 选项不是函数关系;D 中,周长=2π×半径,圆的周长与其半径是函数关系.故选C.方法总结:判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应关系.【类型二】 确定实际问题中函数解析式以及自变量下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(1)一个弹簧秤最大能称不超过10kg 的物体,它的原长为10cm ,挂上重物后弹簧的长度y (cm)随所挂重物的质量x (kg)的变化而变化,每挂1kg 物体,弹簧伸长0.5cm ;(2)设一长方体盒子高为30cm ,底面是正方形,底面边长a (cm)改变时,这个长方体的体积V (cm3)也改变.解析:(1)根据弹簧的长度等于原长加上伸长的长度,列式即可;(2)根据长方体的体积公式列出函数式.解:(1)y =10+12x (0<x ≤10),其中x 是自变量,y 是自变量的函数; (2)V =30a 2(a >0),其中a 是自变量,V 是自变量的函数.方法总结:函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.探究点二:自变量的值与函数值【类型一】 根据解析式求函数值根据如所程序计算函数值,若输入x 的值为52,则输出的函数值为( )A.32B.25C.425D.254解析:∵x=52时,在2≤x≤4之间,∴将x=52代入函数y=1x,得y=25.故选B方总结:根据所给的自变量的值结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.类型二根据实际问题求函数值小强想给爷爷买双鞋,爷爷说他的脚长25.5cm,若用x(单位:cm)表示脚长,用y(单位:码)表示鞋码,则有2x-y=10,根据上述关系式,小强应给爷爷买________码的鞋解析:用x表示脚,用y表示码,则有2x-y=10,而x=25.5,则51-y =10,解得y=41.方法总结:当已知函数解析式时,求函数值就是求代数式的值;当已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.探究点三:确定自变量的取值范围【类型一】确定函数解析式中自变量的取值范围写出下列函数中自变x的取值范围(1)y=2x-3;(2)y=31-x;(3)y=4-x;(4)y=x-1 x-2.解析:当表达式的分母不含有自变量时,自变量取全体实数;当表达式的分母中含有自变量时,自变量取值要使分母不为零;当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.解:(1)全体实数;(2)分母1-x ≠0,即x ≠1;(3)被开方数4-x ≥0,即x ≤4;(4)由题意得⎩⎨⎧x -1≥0,x -2≠0,解得x ≥1且x ≠2. 方法总结:本题考查了函数自变量的取值范围:有分母的要满足分母不能为0,有根号的要满足被开方数为非负数.【类型二】 确定实际问题中函数解析式的取值范围水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经t 分钟时,水箱内存水y 升.(1)求y 关于t 的函数关系式和自变量的取值范围;(2)7:55时,水箱内还有多少水?(3)几点几分水箱内的水恰好放完?解析:(1)根据水箱内还有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t 的取值范围;(2)当7:55时,t =55-30=25(分钟),将t =25分钟代入(1)中的关系式即可;(3)令y =0,求出t 的值即可.解:(1)∵水箱内存有的水=原有水-放掉的水,∴y =200-2t .∵y ≥0,∴200-2t ≥0,解得t ≤100,∴0≤t ≤100,∴y 关于t 的函数关系式为y =200-2t (0≤t ≤100);(2)∵7:55-7:30=25(分钟),∴当t =25分钟时,y =200-2t =200-50=150(升),∴7:55时,水箱内还有水150升;(3)当y =0时,200-2t =0,解得t =100,而100分钟=1小时40分钟,7点30分+1小时40分钟=9点10分,故9点10分水箱内的水恰好放完.三、板书设计1.函数的概念2.函数自变量的取值范围使函数有意义的自变量取值的全体,叫做函数自变量的取值范围.3.函数值在教学过程中,注意通过对以前学过的“常量与变量”的回顾与思考,提供生动有趣的问题情境,激发学生的学习兴趣;并通过层层深入的问题设计,引导学生进行观察、操作、交流、归纳等数学活动,在活动中归纳、概括出函数的概念;并通过师生交流、生生交流、辨析识别等加深学生对函数概念的理解.【素材积累】1、走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠叠地挤摘水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。

关于《函数的应用》的教学反思

关于《函数的应用》的教学反思

关于《函数的应用》的教学反思关于《函数的应用》的教学反思篇一:函数的应用教学反思在新课程中,教学过程要符合学生学习过程,学生在学习过程中应该以探究、实践、合作学习为重,要善于引导学生积极参与教学过程中的探讨活动,让学生在动手实践、自主探究与合作交流的过程中来学习数学。

教师的教学活动要能激发学生探求新知识的兴趣和欲望,逐步培养他们提问的意识,鼓励学生多思考。

同时还要关注他们在数学学习过程中的变化和发展,关注学习方法与习惯的养成。

在初中一元二次方程和二次函数学习的基础上,教学中通过比较一元二次方程的根与对应的二次函数的图象和x轴的交点的横坐标之间的关系,给出函数的零点的概念,并揭示了方程的根与对应的函数的零点之间的关系.然后,通过探究介绍了判断一个函数在某个给定区间存在零点的方法和二分法.并且,教科书在“用二分法求函数零点的步骤”中渗透了算法的思想,为学生后续学习算法内容埋下伏笔.教学中,对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.分三步来展开这部分的内容.第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形.第二步,在用二分法求方程近似解的过程中,通过函数图象和性质研究方程的解,体现函数与方程的关系.第三步,在函数模型的应用过程中,通过建立函数模型以及模型的求解,更全面地体现函数与方程的关系逐步建立起函数与方程的联系.除了函数模型的应用之外,还要介绍函数的零点与方程的根的关系,用二分法求方程的近似解,以及几种不同增长的函数模型.教科书在处理上,以函数模型的应用这一内容为主线,以几个重要的函数模型为对象或工具,将各部分内容紧密结合起来,使之成为一个系统的整体.教学中应当注意贯彻教科书的这个意图,是学生经历函数模型应用的完整。

篇二:函数的应用教学反思在相当长的时间准确选点进行个别指导,更不能在最后引伸出几个高难题而剥夺部分学生的作业时间。

《函数》教学反思

《函数》教学反思

《函数》教学反思函数教学反思在教学工作中,函数是高中数学中的一个重要内容,也是数学知识体系中的重要组成部分。

函数的概念和应用,对于学生的数学思维能力和问题解决能力的培养具有重要的作用。

然而,在教学过程中,我发现了一些问题,需要及时反思并改进。

一、知识点整合不够在教学函数的过程中,我发现学生对于函数的定义和特性并没有形成一个系统的认识。

他们对函数的定义、自变量和因变量的关系等概念的理解还比较模糊。

这主要是因为我在教学设计中,没有充分整合各个知识点,导致学生只是片面地理解了某个概念,而没有形成知识体系。

针对这个问题,我需要重新梳理函数的知识结构,合理设计教学内容,使学生能够从整体上把握函数的概念和特性。

二、教学方法单一在函数教学中,我主要采用了讲授和题目讲解的方式。

这种教学方法的局限性在于,学生只是被动接受知识,缺乏主动思考和探究的机会。

我应该尝试采用一些启发式教学方法,如情境教学、探究式学习等,激发学生的思维,培养他们的问题解决能力。

例如,我可以设计一些情境问题,让学生通过分析和解决问题来理解函数的概念和特性。

三、缺乏实际应用函数作为数学的一门重要分支,其应用广泛,可以用于解决生活中的实际问题。

然而,在教学中,我没有给学生提供足够的实际应用案例,导致学生对函数的学习缺乏动力和兴趣。

为了解决这个问题,我可以结合日常生活、科学实验等方面的案例,设计一些与学生密切相关的实际问题,让学生通过函数的概念和方法来解决这些问题,增强学生对函数应用的认识。

四、缺乏巩固训练函数的学习需要通过大量的训练来巩固和深化。

然而,在教学过程中,我没有给学生提供足够的练习机会。

只是课堂上简单演示几道例题,就转入了下一个知识点的讲解。

这导致学生对于函数的理解能力和运用能力较弱。

我应该设计一些巩固训练的习题,让学生在课堂上进行练习,并及时给予他们反馈和指导。

总结起来,函数教学反思主要表现在知识点整合不够、教学方法单一、缺乏实际应用和缺乏巩固训练等几个方面。

函数的概念教学反思(3篇)

函数的概念教学反思(3篇)

函数的概念教学反思反思:关于函数的概念教学在教学中,函数作为数学中最基础且重要的概念之一,是学习数学的基础。

然而,我在教学中发现,学生在理解和应用函数概念时存在一些困惑和障碍。

通过对自己的教学经验的反思,我发现了以下几个问题,并提出了相应的改进措施。

第一个问题是概念理解不清晰。

在教学中,我发现有些学生对函数的定义和特性理解不准确。

他们常常将函数和方程混淆,把函数看作是一种运算或者代数式,而不是数学对象。

这导致了他们对函数的性质和应用有所误解。

改进措施:为了帮助学生更好地理解函数的概念,我决定采用多种教学方法。

首先,我将通过示例和比喻来介绍函数的定义,以帮助学生建立直观的认识。

例如,我可以比喻函数为一个机器,它接受一个输入,并且根据规定的规则,产生一个唯一的输出。

其次,我会引入对函数的符号表示法,并与方程进行比较,以帮助学生区分二者之间的区别和联系。

最后,我将使用实际问题来说明函数的应用,使学生能够将概念应用于实际情境中。

第二个问题是概念与应用的脱节。

在教学中,我发现学生普遍存在将函数的概念与其应用相分离的现象。

他们往往只注重函数的定义和性质的学习,而忽略了函数在实际问题中的应用价值。

这导致了他们对函数的兴趣和动力不足。

改进措施:为了提高学生对函数的理解和兴趣,我决定将函数的概念与其应用密切结合起来。

首先,我会选择一些生活中的实际问题,并引导学生找出问题中的变量和函数关系。

然后,我会给学生提供一些解决问题的方法和策略,以及对函数进行建模的思路,以帮助他们将概念与实际问题相结合。

最后,我会鼓励学生自主探究和创造,通过设计和解决自己感兴趣的问题,来体验函数的应用。

第三个问题是技能与思维的不平衡。

在教学中,我发现学生在函数的学习过程中,往往只注重手段和技巧的熟练运用,而缺乏对函数思想和方法的深入理解。

他们倾向于将函数题目看作是一种应试的任务,而不是思维的训练。

改进措施:为了培养学生的思维习惯和学习兴趣,我决定在教学中注重培养学生的数学思维。

函数教学反思(精选5篇)

函数教学反思(精选5篇)

函数教学反思函数教学反思(精选5篇)作为一位刚到岗的教师,教学是重要的工作之一,借助教学反思我们可以拓展自己的教学方式,那么写教学反思需要注意哪些问题呢?下面是小编帮大家整理的函数教学反思(精选5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。

函数是中学教学中非常重要的内容,是学生第一次学习数形结合,正比例函数是一次函数特例,是学生第一次涉及到一个具体的函数的学习和研究,也是初中数学中的一种简单最基本的函数,是后面学习一次函数的基础。

今天的教学重点是正比例函数的定义和特点,学生在完成目标导学时,较好地完成课本中的问题,合作探究讨论也比较热烈,效果较好。

关于发展观察、分析、归纳、概括等数学思维能力的反思。

从课堂教学的现场情况看,本节课有四个环节蕴含着观察、分析、比较、归纳、概括等数学思维的活动。

下面分别加以分析:第一个环节是正比例函数概念的形成过程。

通过对不同的函数解析式的观察、分析,再加上反例的映衬(对比),学生发现了正比例函数解析表达式的基本结构:一个常量与自变量的积(y=kx)。

因此,在这一环节,教师给学生提供了自己发现和解决问题的机会,较好地发展了学生的思维能力。

“自主探究”是当前课程改革积极倡导的学习方式。

但是,在日常教学中,我们发现,面对一个新的问题,学生常常不知道从哪里着手解决问题,特别是新知识的探究过程。

追其根源,主要是缺乏探究问题的基本策略。

如果能够通过本节内容的学习使学生了解函数学习的基本程序和策略,那么,在今后学习一次函数、反比例函数、二次函数等函数的时候,或许无需教师提醒学生就知道如何探究了。

理论上说:“没有教不会的学生,只有不会教的老师。

”但对大面积的小学就已经对学习绝望的孩子我真的心有余而力不足。

我只能尽我最大的努力让更多的孩子能跟的上,不要对数学绝望。

函数一直是初中数学教学的重点,当然也是难点。

本节课作为函数教学的第一节,其重要性不言而喻。

如果上好了这节课,可以说接下来同学们对函数的理解程度就大大加深,对后续教学的帮助将非常大。

数学北师大八年级上册函数教学反思

数学北师大八年级上册函数教学反思

教学反思:
优点:1.三维目标基本都实现了,从学生的课堂作业正确率看,学生掌握得不错;
2. 微课的使用提高了课堂效率,而且对学生的易错点讲解到位;
3. 课堂教学方式多样,有演示,动画,游戏,提高了同学们的学习兴趣;
4. 课堂时间把控很好,对每个环节的时间把控较好
不足:
1.对于课堂突发事件处理得不够到位,在课堂中有位同学突然举手问:老师我可
不可以问个问题?我觉得③y=x
5不是函数,比如x=0时,y 不是有唯一值对应。

这个问题其实很棒,处理好了直接就可以讲本节课的另一个知识点:自变量的取值范围,当时有点慌乱,没有很好的把握这个机会;
2. 板书不够工整;
3. 用手机控制PPT 时,尽量应该看屏幕而不是手机。

一次函数实践教学反思(3篇)

一次函数实践教学反思(3篇)

第1篇摘要:一次函数是中学数学教学中的重要内容,它不仅有助于学生掌握基础的数学知识,还能培养学生的逻辑思维能力和解决问题的能力。

本文通过对一次函数实践教学的反思,总结了教学过程中的成功经验和不足之处,并提出了相应的改进措施,以期为今后的教学提供借鉴。

一、引言一次函数是中学数学教学中的基础内容,它涵盖了函数的定义、性质、图像等内容。

在实践教学过程中,教师需要引导学生通过观察、分析、推理等方法,深入理解一次函数的本质,并能够运用一次函数解决实际问题。

本文通过对一次函数实践教学的反思,总结教学过程中的得失,以期为今后的教学提供参考。

二、实践教学过程中的成功经验1. 注重理论联系实际,提高学生的应用能力在实践教学过程中,我注重将一次函数的理论知识与实际生活相结合,通过举例说明一次函数在生活中的应用,如温度、速度、距离等。

例如,在讲解一次函数的图像时,我以气温变化为例,让学生观察气温与时间之间的关系,从而理解一次函数图像的特点。

这种教学方法有助于提高学生的应用能力,使他们能够将所学知识运用到实际生活中。

2. 采用多样化的教学方法,激发学生的学习兴趣为了激发学生的学习兴趣,我在教学中采用了多种教学方法。

例如,利用多媒体技术展示一次函数的图像,让学生直观地感受函数的变化规律;通过小组合作探究,让学生在交流讨论中共同解决问题;设计有趣的数学游戏,让学生在轻松愉快的氛围中学习。

这些方法有助于提高学生的学习兴趣,使他们在主动探究中掌握知识。

3. 关注学生的个体差异,实施分层教学在实践教学过程中,我关注学生的个体差异,根据学生的不同学习基础,实施分层教学。

对于基础较好的学生,我鼓励他们深入探究一次函数的性质,拓展知识面;对于基础较差的学生,我耐心讲解,帮助他们克服困难,逐步提高。

这种分层教学有助于提高全体学生的学习效果。

三、实践教学过程中的不足之处1. 对一次函数知识的讲解不够深入在实践教学过程中,我发现部分学生对一次函数的性质理解不够深入,对于一些特殊情况的处理不够灵活。

高中数学教学反思5篇

高中数学教学反思5篇

高中数学教学反思5篇我们在教学中始终如一地认真研讨课本,公正建立题目景象,增强头脑训练,并积极探索规律,改进教学要领,优化教学历程。

我以函数教学为例,谈谈这节教学反思:函数是高中数学的重要内容,在学生学习用集合与对应的语言刻画函数之前,学生已经还把函数堪称变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围。

我在进行函数教学之前,首先深入研究初中函数部分教材,从初中学生角度来理解函数的概念,为了充分运用学生已有的认知基础,为了给抽象以足够的实例背景,以有助于学生理解函数概念的本质,从三个背景实例入手,在体会两个变量之间依赖关系的基础上,引导学生运用集合与对应的语言刻画函数概念,继而,通过例题,“思考” “探究” “练习”中的问题从三个层次理解函数概念:函数定义、函数符号、函数三要素,并与初中定义作比较。

在教学中,学生不容易认识到函数概念的整体性,而将函数单一地理解成函数中的对应关系,甚至认为函数就是函数值。

为了帮助学生解决这个问题,列举实例,让学生理解函数有三部分组成:定义域、值域、对应法则。

函数的符号是学生难理解的符号,它的内涵是定义域中的任意x,在对应关系f 的作用下即可得到y。

通过大量例题和练习题来理解函数符号的内涵,函数符号在解题过程中好处及作用。

在教学中,突出函数概念及函数三要素这个重点,并突破这个难点,让学生将更多的精力集中于理解函数的概念,在个过程中体现了特殊到一般的思维过程。

高中数学教学反思篇2在新课程形势下要求一个称职的高中数学教师,决不能“教书匠”式地“照本宣科”,而要在教学中不断反思,不断学习,与时共进。

新课程提倡培养学生独立思考能力、发现问题与解决问题的能力以及探究式学习的习惯。

可是,如果教师对于教学不做任何反思,既不注意及时吸收他们的研究成果,又不对教学做认真的思考,上课时,只是就事论事地将基本的知识传授给学生,下课后要他们死记,而不鼓励他们思考分析,那么,又怎能转变学生被动接受、死记硬背的学习方式,拓展学生学习和探究数学问题的空间呢?所以,教师首先要在教学中不断反思。

函数的概念教师教学反思范文(2篇)

函数的概念教师教学反思范文(2篇)

函数的概念教师教学反思范文函数是研究现实世界变化规律的一个重要模型,对函数的学习一直以来都是中学阶段的一个重要的内容。

函数的概念是学习后续“函数知识”的最重要的基础内容,而函数的概念又是一个比较抽象的,对它的理解一直是一个教学难点,学生对这些问题的探索以及研究思路都是比较陌生的,因此,在教学过程中,注意通过对以前学过的“变量之间的关系”的回顾与思考,力求提供生动有趣的问题情境,激发学生的学习兴趣;并通过层层深入的问题设计,引导学生进行观察、操作、交流、归纳等数学活动,在活动中归纳、概括出函数的概念;并通过师生交流、生生交流、辨析识别等加深学生对函数概念的理解。

函数是初中阶段数学学习的一个重要内容,学生又是第一次接触函数,充分考虑学生的接受能力,从生动有趣的问题情景出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.又通过具有丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,为下一步学习《一次函数图像》奠定基础,并形成用函数观点认识现实世界的能力与意识.学生第一次利用数形结合的思想去研究一次函数的图像,感到陌生是正常的.在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图像是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线”,很快做出一次函数的图像.在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.根据学生状况,教学设计也应做出相应的调整。

如第一环节:创设情境引入课题,固然可以激发学生兴趣,但也可能容易让学生关注与代数表达式的寻求,甚至队部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是y=kx+b,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征—本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中教师应通过问题情境的创设,激发学生的学习兴趣,并注意通过有层次的问题串的精心设计,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识.在师生互动、生生互动的探索实践活动中,促成学生对一次函数知识结构的构建和完善;在巩固议练活动中,提高学生解决问题的能—本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题.本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.探究的过程由浅入深,并利用了丰富的实际情景,既增加了学生学习的兴趣,又让学生深切体会到一次函数就在我们身边,应用非常广泛.教学中注意到利用问题串的形式,层层递进,逐步让学生掌握求一次函数表达式的一般方法.教学中还注意到尊重学生的个体差异,使每个学生都学有所获. 根据本班学生及教学情况可在教学过程中选择下述内容进行补充或拓展,也可留作课后作业.本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题.本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.探究的过程由浅入深,并利用了丰富的实际情本节课的重点是要学生了解正比例函数的确定需要一个探究的过程由浅入深,并利用了丰富的实际情本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题.本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.函数的概念教师教学反思范文(2)在教学实践中,我经常反思自己的教学方法和教学效果,以期不断提升教学质量。

函数教学反思12篇

函数教学反思12篇

函数教学反思12篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!函数教学反思12篇函数教学反思1有感情的朗读课文基础是能正确理解课文内容以及课文所要表达的思想感情,本课是以第一人称的语气来叙述蛇的,那么,在朗读过程中,让学生把自己想象成蛇,被人夸奖时心里会怎样,别人都怕它时它心里又是怎样,它的内心的真正感受又是什么,学生在想象中理解,在想象中感悟。

函数的概念教学反思(12篇)

函数的概念教学反思(12篇)

函数的概念教学反思(12篇)函数的概念教学反思1函数概念的引入一般有两种方法,一种方法是先学习映射,再学习函数;另一种方法是通过具体的实例,体会数集之间的一种特殊的对应关系,即函数。

为了充分运用学生已有的认知基础,为了给抽象概念以足够的实例背景,以有助于学生理解函数概念的本质,我采用后一种方式,即从三个背景实例入手,在体会两个变量之间依赖关系的基础上,引导学生运用集合与对应的语言刻画函数概念。

继而,通过例题,思考、探究、练习中的问题从三个层次理解函数概念:函数定义、函数符号、函数三要素,并与初中定义进行对比。

在学习用集合与对应的语言刻画函数之前,还可以让学生先复习初中学习过的函数概念,并用课件进行模拟实验,画出某一具体函数的图像,在函数的图像上任取一点P,测出点P的坐标,观察点P的坐标横坐标与纵坐标的变化规律。

使学生看到函数描述了变量之间的依赖关系,即无论点P在哪个位置,点P的横坐标总对应唯一的纵坐标。

由此,使学生体会到,函数中的函数值的变化总是依赖于自变量的变化,而且由自变量唯一确定。

函数的概念教学反思2“对数函数”的教学共分两个部分完成。

第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。

“对数函数”第一部分是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

在讲解对数函数的定义前,复习有关指数函数知识及简单运算,然后由实例引入对数函数的概念,然后,让学生亲自动手画两个图象,我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出对数函数的性质,提高学生的形数结合的能力。

大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。

针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。

函数的概念教学反思

函数的概念教学反思

函数的概念教学反思函数是数学中非常重要的概念之一,对于初中学生来说,理解和掌握函数的概念是非常重要的。

在本节课中,我尝试通过引导学生自主探究、合作交流的方式,让他们逐步理解函数的概念,并掌握函数的表示方法。

以下是我对这节课的教学反思:一、联系实际,引入概念为了让学生更好地理解函数的概念,我通过实际问题引入。

我举了一个简单的例子:一辆汽车每小时行驶60公里,那么行驶了多少时间?行驶的距离是多少?在这个例子中,时间t是自变量,距离s是因变量,它们之间存在一个对应关系。

通过这个例子,学生可以初步认识到函数的概念。

二、自主探究,理解概念在引入函数的概念之后,我让学生通过自主探究的方式,进一步理解函数的概念。

我给出了一些实际问题,让学生用函数的表示方法进行描述。

例如:一个圆的内接正多边形的边数n与这个圆的半径r之间的关系是什么?在这个问题中,边数n是自变量,半径r是因变量,它们之间也存在一个对应关系。

通过这个例子,学生可以进一步理解函数的概念。

三、合作交流,掌握概念通过自主探究的方式,学生已经对函数的概念有了初步的认识和理解。

为了让学生更好地掌握函数的概念,我组织学生进行合作交流。

我让学生分组讨论,让他们互相交流对函数的理解和认识。

在讨论中,学生可以互相启发、互相学习,进一步加深对函数概念的理解和掌握。

四、课堂互动,应用概念为了让学生更好地应用函数的概念解决实际问题,我组织学生进行课堂互动。

我给出了一些实际问题,让学生用函数的表示方法进行描述并求解。

例如:一个矩形的长是x厘米,宽是y厘米,它的面积是多大?在这个问题中,长x是自变量,宽y是因变量,它们的乘积就是面积。

通过这个例子,学生可以进一步应用函数的概念解决实际问题。

五、教学不足与改进措施在教学过程中,我发现有些学生对函数的概念理解不够深入,不能很好地掌握函数的表示方法。

主要原因是我在教学过程中没有足够重视学生的个体差异和认知水平,没有做到因材施教。

在今后的教学中,我将更加关注学生的个体差异和认知水平,采用多种教学方法和手段,帮助学生更好地理解和掌握函数的概念。

函数与方程的教学反思7篇

函数与方程的教学反思7篇

函数与方程的教学反思7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、培训计划、调查报告、述职报告、合同协议、演讲致辞、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, training plans, survey reports, job reports, contract agreements, speeches, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!函数与方程的教学反思7篇如果没有教学反思的加持,我们是无法在教学中更好地展示个人能力的,只有将教学反思写好,我们才能找出教学过程中存在的问题,以下是本店铺精心为您推荐的函数与方程的教学反思7篇,供大家参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学新课程标准教材
数学教案( 2019 — 2020学年度第二学期 )
学校:
年级:
任课教师:
教学反思 / 数学教学反思
编订:XX文讯教育机构
《函数》教学反思
教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学反思资料适用于数学科目, 学习后学生能得到全面的发展和提高。

本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。

初中阶段所学的函数包括一次函数,反比例函数,二次函数.他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解.
在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好.根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌.我在教学中重点是引导学生怎样去观察图象,从图象得出其性质.如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好.反比例函数,二次函数性质也掌握的较快.
总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识.
初中阶段所学的函数包括一次函数,反比例函数,二次函数.他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解.
在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好.根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌.我在教学中重点是引导学生怎样去观察图象,从图象得出其性质.如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好.反比例函数,二次函数性质也掌握的较快.
总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识.
XX文讯教育机构
WenXun Educational Institution。

相关文档
最新文档