巧用算术平方根的非负性求值

合集下载

走进中考-----巧用“非负性解题”

走进中考-----巧用“非负性解题”

走进中考--------巧用“非负性解题”非负性的含义是指大于或等于零。

在初中阶段,我们主要学习了绝对值的非负性;平方的非负性;二次根式的双重非负性,即它的被开方数和它的值都是非负的;一元二次方程有实根的条件,即根的判别式为非负;以及方差的非负性。

下面从六个方面举例说明它们的运用:一、利用绝对值的非负性解题【例1】的值。

求已知32,012y x y x -=+++解析 由绝对值的非负性知,.01,02≥+≥+y x 要这两个非负数之和为0,只有每一个非负数都为0,即,.01,02=+=+y x 从而01,02=+=+y x ,所以1,2-=-=y x ,所以()().514123232=+=---=-y x 练习1: ()的值。

求已知2017,0201712017ab b a =+++ 二、利用平方的非负性解题【例2】若()0542=-++-y x x ,计算:=++4322y xy y x ________________。

解析 根据绝对值和平方的非负性质,得⎩⎨⎧=-+=-0504y x x ,解得⎩⎨⎧==14y x , 所以294114144322322=+⨯+⨯=++y xy y x 。

练习2:已知(),012,2=++-y x y x 满足则=-y x三、利用二次方根的被开方数的非负性解题【例3】已知2133+-+-x x y ,化简144122+---y y y 。

解析 因为2133+-+-x x y ,由二次根式的被开方数为非负性知:0-303≥≥-x x 且,从而x=3,所以21 y 。

故有()()021211212144122=---=---=+---y y y y y y y 。

练习3:若a,b 为实数,且()2015,011ab b a 求=-++的值。

四、利用算术平方根的非负性解题【例4】设x 、y 为实数,且0742=++-y x ,求y x -的值。

解析 根据算术平方根的非负性知,07,042≥+≥-y x ,又因为它们的和为0。

利用算术平方根的双重非负数性巧解题

利用算术平方根的双重非负数性巧解题

双重非负数性 利用二次根式中的算术平方根的双重非负数性[)a 0≥有a 00≥]巧解题例1.x y 、6y =-,求1x y -的值?分析:根据式子有13x 03x 10-≥⎧⎨-≥⎩,从中可求得x 的值,进一步求得y 的值,使问题得以解决. 略解:根据题意可知:13x 03x 10-≥⎧⎨-≥⎩解得:1x 3=;把1x 3=6y -有:6y -,解得:y 6= 所以111x y 636183--⎛⎫=⨯=⨯= ⎪⎝⎭.例2.已知:2a 12a =,求20151ab 2⎛⎫ ⎪⎝⎭的值?分析:2a 2a 10-+=()2a 10-=,利用非负数的性质可求得a b 、的值.略解:2a 2a 10-+= ,进一步可得()2a 10-=0,()2a 10-≥ ∴ ()2a 100⎧-=⎪= ∴a 10a b 10-=⎧⎨++=⎩ 解得:a 1b 2=⎧⎨=-⎩ ∴()()20152015201511ab 121122⎛⎫⎡⎤=⨯⨯-=-=- ⎪⎢⎥⎝⎭⎣⎦.例3.分析:本题显得比较抽象,似乎难以找到突破口,但题中有二次根式这一重要特点,所以抓23a 0-≥,可求得a 0=.略解:23a 0-≥,可得a 0≤ ;又∵a 0≥ ∴a 0=∴原式32106=+++=.点评:二次根式的算术平方根的双重非负数性是属于考试中的高频考点,这个知识点容易与其它知识点联姻构成有一定含金量的综合题,而双重非负数性在其中扮演的往往是关键角色,上面的几道例题就是要抓住算术平方根及其被开方数都是非负数的破题;比如很多同学对于例3这类题不知从何入手,但只要抓住本题是二次根式构建的,从被开方数是非负数这点入手,就可以隐藏在其中的a 的值挖出来,从而使问题得以解决.追踪练习:1.已知y= 2.已知a 40-=,化简并求22222a ab a ab b a b +-+-的值? 3.若2m 6m 9-+xy 的值?4.5.已知2014a a -=,试求2a 2014-的值?郑宗平 2015/3/16。

算术平方根的非负性运用

算术平方根的非负性运用
初中数学七年级下册
算术平方根的非负性运用
旧知链接 a 被1. 开a可方以数取a是任非何负数数吗,?即 a 0 .
2a. 是a非是负什 数,么即数a? 0 .
也就是说,非负数的“算术平方根”是非负数.
负数不存在算术平方根,即当 a 0 时,a 无意义.
如: 6 无意义 ; 8是64的算术平方根 或 64 8 .
所以 3 m 0 m n 1 0
所以 m 3 n 4 所以 1 m 1 n 7
9 23
强调:几个非负数的和为0,则 这几个数都为0.
巩固练习 1.若 5-x 有意义,则x的取值范围是_x____5___.
2.若 m 2 化简 m 22 =_m_____2.
追问:若m<-2呢? 结果(-m-2).
3. 是算术平方根的运算符号.
运用新知
例1 2-x 有意义,则实数x应满足条件为________.
解:要使 2-x有意义,需有2 x 0,即x 2.
变式:若m>0,则 m2 __m__ . 变式:若m<0,则 m2 __-_m_ .
强调: a2 a
当a 0时,a2 a 当a 0时,a2 a 当a 0时,a2 0
3.已知 y x 3 3 x 2,则 y x =___8___.
4.已知 3 m (1 n)2 0 ,则 m+n=_4_____.
a
总结反思
运用算术平方根的双重非负性解决问题:
1.求算术平方根被开方数的取值范围.
2.化简简单的二次根式.
3.解决几个非负数和为2m 1 1 2m 1 ,求 y 2m .
4
解:由题意知 : 2m10 12m0
所以
把m
所以

部编数学七年级下册专题07算术平方根的非负性(解析版)含答案

部编数学七年级下册专题07算术平方根的非负性(解析版)含答案

专题07 算术平方根的非负性【例题讲解】例1.已知a 、b 、c2+=c a b c ++的平方根为_________.例2.2|1|(1)0b c +++=,求a b c +-的平方根.【综合解答】1.设,A B 均为实数,且A B ==,A B 的大小关系是( )A .A B>B .A B =C .A B <D .A B³【答案】D【解析】【分析】根据算术平方根的定义得出A 是一个非负数,且m-3≥0,推出3-m≤0,得出B≤0,即可得出答案,【详解】解:∵A =∴A 是一个非负数,且m-3≥0,∴m≥3,∵B =,∵3-m≤0,即B≤0,∴A≥B ,故选:D .【点睛】本题考查了算术平方根的定义,平方根和立方根,实数的大小比较等知识点,题目比较好,但有一定的难度.2()240y -=,则22x y +的平方根是______.【答案】【解析】【分析】根据算术平方根以及完全平方式的非负性得出,x y 的值,然后求出22xy +的值,最后求出平方根即可.【详解】解:()240y +-=,∴50,40x y +=-=,∴5,4x y =-=,∴2222(5)4251641x y =-=+=++,∴22x y +的平方根是故答案为:【点睛】本题考查了算术平方根以及完全平方式的非负性、平方根,解题的关键是掌握非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.3.若()230x +=,则()2021x y +=______________.【答案】-1【解析】【分析】由平方与算术平方根的非负性解得x =-3,y =2,再代入计算即可.【详解】解:由题意得,3020,x y +=-=3,2x y \=-=()()20212021-32=-1x y \+=+故答案为:-1.【点睛】本题考查平方与算术平方根的非负性、有理数的乘方等知识,是基础考点,掌握相关知识是解题关键.4.若a __.【答案】2【解析】【分析】利用算术平方根的非负性,计算求值即可;【详解】解:,20a -£,∴a =0,∴=0+2,=2,故答案为:2;【点睛】此题主要考查了算术平方根:如果一个非负数b 的平方等于a ,那么b 叫做a 的算术平方根;非负数a a 叫做被开方数.5.若3y =,则xy =_________.【答案】18【解析】【分析】直接利用二次根式有意义的条件得出x ,y 的值进而得出答案.【详解】解:∴2﹣x ≥0,且x ﹣2≥0,解得:x =2,∴y =-3,∴31=2=8y x -.故答案为:18.【点睛】此题主要考查了二次根式有意义的条件和负指数幂法则,正确得出x 的值是解题关键.6.已知实数a 在数轴上的位置如图,则化简|1﹣_____.【答案】1-2a【解析】【详解】由图可知:10a -<<,∴10a ->,∴11()12a a a -=-+-=-.故答案为12a -.7.当x =______时,式子2018【答案】2017【解析】【分析】0³,然后求解即可.【详解】解:∵2018∴的值最小时,式子20180³,∴20170x -³,∴2017x ³,∴当2017x =时式子2018有最大值.故答案为:2017.【点睛】此题考查了算术平方根的非负性,当被减数为固定值时,要使差最大,则需使减数的值最小,解题的关键是熟练掌握算术平方根的非负性.8.已知a ,b ,c 满足2|(0a c +=.求a 、b 、c 的值【答案】a =5b ,c 【解析】【分析】利用绝对值非负性,算术平方根非负性,平方非负性可求得结果.【详解】解:∵|0a ³0³,2(0c ³且2|(0a c =,∴|=0a ,2(=0c ,即:a ,5=0b -,c ,解得:a =5b ,c 【点睛】本题主要考查的是非负性求值的应用,此类型题较为固定,同时也是常考点,掌握其解题步骤是解题关键.9.已知3y =,求(x +y )2022的值【答案】1【解析】【分析】根据二次根式的性质得到2x =,计算出1x y +=-,从而计算出最终的答案.【详解】∵3y +-∴2020x x -³ìí-³î得22x x ³ìí£î∴2x =∴33y +=-∴202220222022()(23)(1)1x y +=-=-=∴2022()1x y +=.【点睛】本题考查二次根式、幂运算的性质,解题的关键是熟练掌握二次根式、幂运算的相关知识.10.已知实数a 、b 、c |1|a +=(1)求证:b c =;(2)求a b c -++的平方根.【答案】(1)见解析(2)3±【解析】【分析】根据算术平方根的非负性,即可得证;(2)根据(1)的结论,以及非负数之和为0,求得,,a b c 的值,进而求得a b c -++的平方根.(1)证明:0³0,0,0b c c b -³-³,b c \=;(2)解:Q |1|a +=b c =,,1,4a b \=-=,4c b \==,1449a b c \-++=++=,9的平方根是3±.【点睛】本题考查了算术平方根的非负性,非负数之和为0,掌握非负数的性质以及算术平方根的非负性是解题的关键.115的最小值,并求出此时a 的值.【答案】3a =【解析】【分析】根据非负数的性质即可得到结论.【详解】解:0³55³5的最小值是5.此时30a -=,即3a =.【点睛】12.若a ,b 为实数,且b =【答案】-3【解析】【分析】根据二次根式的被开方数为非负数,得到相应的关系式求出a 、b 的值,然后代入求解.【详解】因为a ,b 为实数,且a 2-1≥0,1-a 2≥0,所以a 2-1=1-a 2=0.所以a =±1.又因为a +1≠0,所以a =1.代入原式,得b =12.所以3.【点睛】此题主要考查了二次根式的性质和意义,关键是利用被开方数为非负数的性质求出a 、b 的值.13.已知数a 满足2016a =,求22016a -.【答案】2017.【解析】【详解】试题分析:由二次根式的意义可得20170a -³,即2017a ³,由此可得20162016a a -=-,从而原等式化为:2016a a -=,由此可得220172016a -=,即220162017a -=;试题解析:由二次根式的意义可得20170a -³,即2017a ³,∴20162016a a -=-,∴原等式可化为:2016a a -=,2016=,∴220172016a -=,∴220162017a -=.14.已知a,b (0b -=,求a2005-b2006的值.【答案】-2【解析】【详解】试题分析:根据被开方数大于等于0,求出b 的取值范围,再根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.试题解析:解:由题意得:1﹣b ≥0,∴b ≤1,∴(10b +-=,由非负数的性质得:1+a =0,1﹣b =0,解得a =﹣1,b =1,∴a 2005﹣b 2006=(﹣1)2005﹣12006=﹣1﹣1=﹣2.15.已知实数,b ,c 满足a +=(2a b +的值.【答案】4【解析】【分析】根据二次根式的非负性求得b 的值,然后根据非负数的性质求得,a c 的值,最后代入代数式求解即可.【详解】解:∵a +=∴5050b b -³ìí-³î,5b \=,\a +=0,3,2a c \=-=,\(2a b +()23504=-+-=.【点睛】本题考查了二次根式的非负性,非负数的性质,掌握二次根式的非负性是解题的关键.。

巧用算术平方根的非负性解题

巧用算术平方根的非负性解题

巧用算术平方根的非负性解题
我们知道,当a≥0时,式子叫做a的算术平方根,由此可知,在式子中就有两个非负整数:①a≥0;②这两个非负性有着极为广泛的应用。

一、单独得用中a≥0解题
例1:要使式子有意义,字母x的取值范围必须满足()
(A)、(B)、(C)、(D)、
解:根据算术平方根的被开方数的非负性,有2x+3≥0, ;故选(A)。

例2:已知a,b是有理数,且则a·b的值是()
(A)、0 (B)、1‘(C)、-1 (D)、12
解:由算术平方根的被开方数的非负性,等式成立的条件是:
即:所以a=4把a=4代入已知等式得:
b=3故a·b=4×3=12应选(D)
二、单独应用≥0解题
例3:已知,则x-y的值为。

解:根据算术平方根的非负性及任何数和式子的平方的非负性有;又结合已知条件得所以x=-3,y=1所以x-y=-3-1=-4
三、同时利用a≥0和≥0解题
例4:若m·n≠0,则式子成立的条件是:
(A)、m>0,n>0(B)、m0 (C)、m0,n0故选(B)
“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文”。

第三章 实数 考点3 非负数的性质:算术平方根(解析版)

第三章 实数 考点3 非负数的性质:算术平方根(解析版)

第三章实数(解析板)3、非负数的性质:算术平方根知识点梳理1.非负数的性质:绝对值在实数范围内,任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.2.非负数的性质:偶次方偶次方具有非负性.任意一个数的偶次方都是非负数,当几个数或式的偶次方相加和为0时,则其中的每一项都必须等于0.3.非负数的性质:算术平方根(1)非负数的性质:算术平方根具有非负性.(2)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0利用此性质列方程解决求值问题.同步练习一.选择题(共19小题)1.若+|y+3|=0,则的值为()A.B.﹣C.D.﹣【考点】非负数的性质:绝对值;算术平方根;非负数的性质:算术平方根.【分析】先根据非负数的性质求出x、y的值,再代入代数式进行计算即可.【解答】解:∵+|y+3|=0,∴2x+1=0,y+3=0,解得x=﹣,y=﹣3,∴原式==.故选:C.【点评】本题考查的是非负数的性质,熟知几个非负数的和为0时,其中每一项必为0是解答此题的关键.2.已知实数x,y,m满足,且y为负数,则m的取值范围是()A.m>6B.m<6C.m>﹣6D.m<﹣6【考点】非负数的性质:绝对值;非负数的性质:算术平方根;解二元一次方程组;解一元一次不等式.【分析】根据非负数的性质列出方程求出x、y的值,然后根据y是负数即可得到一个关于m的不等式,从而求得m的范围.【解答】解:根据题意得:,解得:,则6﹣m<0,解得:m>6.故选:A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.3.若+|b+2|=0,那么a﹣b=()A.1B.﹣1C.3D.0【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出a、b的值,然后求出a﹣b的值.【解答】解:∵,|b+2|≥0,∵+|b+2|=0,∴a+1=0,b+2=0,解得:a=﹣1,b=﹣2,把a=﹣1,b=﹣2代入a﹣b=﹣1+2=1,故选:A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选:A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.若|x+2|+,则xy的值为()A.﹣8B.﹣6C.5D.6【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】已知任何数的绝对值一定是非负数,二次根式的值一定是一个非负数,由于已知的两个非负数的和是0,根据非负数的性质得到这两个非负数一定都是0,从而得到一个关于x、y的方程组,解方程组就可以得到x、y的值,进而求出xy的值.【解答】解:∵|x+2|≥0,≥0,而|x+2|+=0,∴x+2=0且y﹣3=0,∴x=﹣2,y=3,∴xy=(﹣2)×3=﹣6.故选:B.【点评】本题考查的是非负数的性质,一元一次方程的解法及代数式的求值.题目注重基础,比较简单.6.已知|x﹣3|+=0,则(x+y)2的值为()A.4B.16C.25D.64【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:由题意得,x﹣3=0,x+2y﹣7=0,解得x=3,y=2,则(x+y)2=(3+2)2=25,故选:C.【点评】本题考查了非负数的性质,关键是掌握几个非负数的和为0时,这几个非负数都为0.7.已知实数x,y满足,则y的值是()A.2B.﹣2C.0D.3【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负性即可求出x与y的值.【解答】解:由题意可知:x+2=0,3x+y+8=0,∴x=﹣2,y=﹣2,故选:B.【点评】本题考查绝对值与二次根式,解题的关键是熟练运用绝对值与二次根式的性质,本题属于基础题型.8.已知x,y为实数且|x+1|+=0,则()2012的值为()A.0B.1C.﹣1D.2012【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】直接利用非负数的性质得出x,y的值,进而求出答案.【解答】解:∵|x+1|+=0,∴x+1=0,y﹣1=0,解得:x=﹣1,y=1,∴()2012=1.故选:B.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.9.已知,则a+b的值是()A.1B.﹣1C.3D.﹣3【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得a﹣2=0,b+1=0,解得a=2,b=﹣1,则a+b=2﹣1=1.故选:A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.已知|7+b|+=0,则a+b为()A.8B.﹣6C.6D.8【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据绝对值和算术平方根的非负性得出7+b=0,a﹣1=0,求出a、b的值即可.【解答】解:|7+b|+=0,7+b=0,a﹣1=0,b=﹣7,a=1,所以a+b=1+(﹣7)=﹣6,故选:B.【点评】本题考查了绝对值和算术平方根的非负性,能根据绝对值和算术平方根的非负性得出7+b=0和a﹣1=0是解此题的关键.11.已知△ABC的三边长a、b、c满足+|b﹣1|+(c)2=0,则△ABC一定是()三角形.A.锐角B.钝角C.直角D.一般【考点】非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】先根据非负数的性质求出a、b、c的值,再根据勾股定理逆定理进行判断即可.【解答】解:∵+|b﹣1|+(c)2=0,∴a=1,b=1,c=,∵a2+b2=1+1=2,c2=()2=2,∴a2+b2=c2,∴△ABC是直角三角形,故选:C.【点评】本题考查非负数的性质,解题的关键是掌握一个数的算术平方根与某个数的绝对值以及另一数的平方的和等于0,那么算术平方根的被开方数为0,绝对值里面的代数式的值为0,平方数的底数为0及勾股定理的逆定理.12.已知,则y的值为()A.1B.﹣2.C.﹣1D.﹣4【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列式计算求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得x﹣y+2=0,x+y=0,解得x=﹣1,y=1.故选:A.【点评】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.13.若x,y为实数,且,则的值为()A.1B.2011C.﹣1D.﹣2011【考点】非负数的性质:绝对值;非负数的性质:算术平方根;代数式求值.【分析】由于|x+2|和都是非负数,而它们的和为0,根据非负数的性质即可求出x、y的值,接着可以求出题目的结果.【解答】解:∵若x,y为实数,且,而|x+2|和都是非负数,∴x+2=0且y﹣2=0,∴x=﹣2,y=2,∴=(﹣1)2011=﹣1.故选:C.【点评】此题主要考查了非负数的性质和代数式的求值,解题的关键是根据非负数的性质得到x+2=0且y﹣2=0,由此求出x、y的值解决问题.14.若+(y+2)2=0,则(x+y)2020等于()A.﹣1B.1C.32020D.﹣32020【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵+(y+2)2=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2,∴(x+y)2020=(1﹣2)2020=1,故选:B.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.若|x﹣2|+=0,则xy的值为()A.﹣8B.﹣6C.5D.6【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则xy=﹣6.故选:B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.已知实数x,y满足,则x﹣y等于()A.3B.﹣3C.1D.﹣1【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选:A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.17.如果|x﹣3|+=0,则=()A.2B.C.﹣2D.3【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】先根据非负数的性质得出x和y的值,再代入化简即可得.【解答】解:∵|x﹣3|+=0,∴x﹣3=0,y﹣2=0,则x=3,y=2,∴==2,故选:A.【点评】本题主要考查非负数的性质,解题的关键是掌握非负数之和等于0时,各项都等于0利用此性质列方程解决求值问题.18.已知+(b+3)2=0,则(a+b)2020的值为()A.0B.1C.﹣1D.2020【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】直接利用互为相反数的定义结合绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵+(b+3)2=0,∴a﹣2=0,b+3=0,解得:a=2,b=﹣3,∴(a+b)2020=(2﹣3)2020=1.故选:B.【点评】此题主要考查了非负数的性质,正确应用算术平方根和绝对值的性质是解题关键.19.已知实数x,y满足+|y+2|=0,则x+y的值为()A.﹣2B.2C.4D.﹣4【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质即可求出答案.【解答】解:由题意可知:x=0,y+2=0,∴x=0,y=﹣2,∴x+y=﹣2故选:A.【点评】本题考查非负数的性质,解题的关键是熟练运用非负数的性质,本题属于基础题型.二.填空题(共17小题)20.已知a、b满足(a﹣1)2+=0,则a+b=﹣1.【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】直接利用非负数的性质得出a,b的值,进而得出答案.【解答】解:∵(a﹣1)2+=0,∴a=1,b=﹣2,∴a+b=﹣1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.21.当x取﹣5时,的值最小,最小值是0;当x取5时,2﹣的值最大,最大值是2.【考点】非负数的性质:算术平方根.【分析】依据算术平方根的非负性可知当10+2x=0时,的值最小,当5﹣x=0时,2﹣的值最大.【解答】解:当10+2x=0时,的值最小,解得x=﹣5,此时的最小值为0.当5﹣x=0时,即x=5时,=0,此时2﹣的值最大,最大值是2.故答案为:﹣5;0;5;2.【点评】本题主要考查的是非负数的性质,掌握算术平方根的非负性是解题的关键.22.已知+|x2﹣3y﹣13|=0,则x+y=﹣1.【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣2=0,x2﹣3y﹣13=0,解得x=2,y=﹣3,所以,x+y=2+(﹣3)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.23.如果与(2x﹣4)2互为相反数,那么2x﹣y的平方根是±1.【考点】非负数的性质:偶次方;平方根;非负数的性质:算术平方根.【分析】直接利用算术平方根以及偶次方的性质得出2x﹣y的值,进而得出答案.【解答】解:∵与(2x﹣4)2互为相反数,∴y﹣3=0,2x﹣4=0,解得:y=3,x=2,∴2x﹣y=1,∴2x﹣y的平方根是:±1.故答案为:±1.【点评】此题主要考查了平方根以及算术平方根和偶次方的性质,正确得出x,y的值是解题关键.24.已知+=0,则+=.【考点】非负数的性质:算术平方根.【分析】根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.25.若,则m﹣n的值为4.【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据任何非负数的平方根以及偶次方都是非负数,两个非负数的和等于0,则这两个非负数一定都是0,即可得到关于m.n的方程,从而求得m,n的值,进而求解.【解答】解:根据题意得:,解得:.则m﹣n=3=(﹣1)=4.故答案是:4.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.26.如果=0,那么xy的值为﹣6.【考点】非负数的性质:算术平方根.【分析】根据非负数的性质列式求出x、y的值,然后相乘即可得解.【解答】解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,所以,xy=3×(﹣2)=﹣6.故答案为:﹣6.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.27.当x取5时,代数式2﹣取值最大,并求出这个最大值2.【考点】非负数的性质:算术平方根.【分析】根据二次根式的性质解答.【解答】解:当5﹣x=0,即x=5时,代数式2﹣取值最大,此时这个最大值2.故答案为:5,2.【点评】本题考查二次根式的性质,解决本题的关键是能够正确运用二次根式的性质.28.已知+|3x+2y﹣15|=0,则的算术平方根为.【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据算术平方根的定义解答.【解答】解:由题意得,x+3=0,3x+2y﹣15=0,解得x=﹣3,y=12,所以,==3,所以,的算术平方根为.故答案为:.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.29.已知实数x,y满足+(y+1)2=0,则x﹣y等于3.【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故答案为:3.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.30.如果+=0,那么xy的值为﹣6.【考点】非负数的性质:算术平方根.【分析】根据非负数的性质求出x、y,计算即可.【解答】解:由题意得,x﹣3=0,y+2=0,解得,x=3,y=﹣2,则xy=﹣6,故答案为:﹣6.【点评】本题考查的是非负数的性质,掌握非负数之和等于0时,各项都等于0是解题的关键.31.已知与(x+y﹣4)2互为相反数,则y﹣x=8.【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】由与(x+y﹣4)2互为相反数,得出+(x+y﹣4)2=0,根据非负数的性质得出x、y的值,进一步代入求得答案即可.【解答】解:∵与(x+y﹣4)2互为相反数,∴+(x+y﹣4)2=0,∴x+2=0,x+y﹣4=0,∴x=﹣2,y=6,∴y﹣x=6﹣(﹣2)=6+2=8.故答案为:8.【点评】本题考查了代数式求值,非负数的性质,能够正确利用非负数的性质求得字母的数值是解决问题的关键.32.若+|b2﹣9|=0,则ab=±6.【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:+|b2﹣9|=0,∴a﹣2=0,b=±3,因此ab=2×(±3)=±6.故结果为:±6.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.33.已知,则a b=1.【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出a、b,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a﹣1=0,a+b+1=0,解得a=1,b=﹣2,所以,a b=1﹣2=1.故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.34.若=3﹣x,则x的取值范围是x≤3.【考点】非负数的性质:算术平方根.【分析】根据非负数的性质列出关于x的不等式,求出x的值即可.【解答】解:∵=3﹣x,∴3﹣x≥0,解得x≤3.故答案为:x≤3.【点评】本题考查的是非负数的性质,熟知算术平方根具有非负性是解答此题的关键.35.若a、b为实数,且(a+)2+=0,则a b的值3.【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据偶次方、算术平方根的非负性分别求出a、b,根据乘方法则计算即可.【解答】解:∵(a+)2+=0,∴(a+)2=0,=0,解得,a=﹣,b=2,则a b=(﹣)2=3,故答案为:3.【点评】本题考查的是非负数的性质,掌握偶次方、算术平方根的非负性是解题的关键.36.已知非零实数a,b满足,则a+b等于1.【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】由题设知a≥3,化简原式得,根据非负数的性质先求出a,b的值,从而求得a+b的值.【解答】解:∵a≥3,∴原等式可化为,∴b+2=0且(a﹣3)b2=0,∴a=3,b=﹣2,∴a+b=1.故答案为1.【点评】本题考查了非负数的性质,一个数的算术平方根、偶次方都是非负数.三.解答题(共9小题)37.已知|2a+b|与互为相反数.(1)求2a﹣3b的平方根;(2)解关于x的方程ax2+4b﹣2=0.【考点】非负数的性质:绝对值;平方根;非负数的性质:算术平方根.【分析】(1)依据非负数的性质可求得a、b的值,然后再求得2a﹣3b的值,最后依据平方根的定义求解即可;(2)将a、b的值代入得到关于x的方程,然后解方程即可.【解答】解:由题意,得2a+b=0,3b+12=0,解得b=﹣4,a=2.(1)∵2a﹣3b=2×2﹣3×(﹣4)=16,∴2a﹣3b的平方根为±4.(2)把b=﹣4,a=2代入方程,得2x2+4×(﹣4)﹣2=0,即x2=9,解得x=±3.【点评】本题主要考查的是平方根的定义、非负数的性质,熟练掌握平方根的定义、非负数的性质是解题的关键.38.已知+|x﹣1|=0.(1)求x与y的值;(2)求x+y的平方根.【考点】非负数的性质:绝对值;平方根;非负数的性质:算术平方根.【分析】(1)先依据非负数的性质得到x﹣1=0,x+2y﹣7=0,然后解方程组即可;(2)先求得x+y的值,然后再求其平方根即可.【解答】解:(1)∵+|x﹣1|=0,∴x﹣1=0,x+2y﹣7=0,解得:x=1,y=3.(2)x+y=1+3=4.∵4的平方根为±2,∴x+y的平方根为±2.【点评】本题主要考查的是非负数的性质,依据非负数的性质求得x、y的值是解题的关键.39.若+(3x+y﹣1)2=0,求的平方根.【考点】非负数的性质:偶次方;平方根;非负数的性质:算术平方根.【分析】先根据非负数的性质求出x,y的值,代入代数式即可得出结论.【解答】解:∵+(3x+y﹣1)2=0,∴,解得,∴原式==3.∴的平方根为±.【点评】本题考查的是非负数的性质,熟知非负数之和等于0时,各项都等于0是解答此题的关键.40.已知a、b、c满足.(1)求a、b、c的值;(2)判断以a、b、c为边的三角形的形状.【考点】非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】(1)根据非负数的性质可求出a、b、c的值;(2)利用勾股定理的逆定理证明三角形是直角三角形.【解答】解:(1)根据题意得:a﹣=0,b﹣5=0,c﹣4=0,解得:a=,b=5,c=4;(2)∵()2+52=(4)2,∴a2+b2=c2,∴以a、b、c为边的三角形是直角三角形.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.41.已知+|y3+1|=0,求4x﹣3y的平方根.【考点】非负数的性质:绝对值;平方根;非负数的性质:算术平方根.【分析】首先根据绝对值和被开方数的非负性可以求x、y的值,再根据平方根的定义即可求解.【解答】解:根据题意知2x﹣3=0,y3+1=0∴x=,y=﹣1,∴4x﹣3y=9,∴4x﹣3y的平方根为±3.【点评】此题主要考查了立方根、平方根定义和非负数的性质,其中求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.注意:(1)一个数的立方根与原数的性质符号相同.(2)一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.42.已知x、y满足+|y+1|=0,求x2﹣4y的平方根.【考点】非负数的性质:绝对值;平方根;非负数的性质:算术平方根.【分析】直接利用绝对值以及算术平方根的定义得出x,y的值,进而得出答案.【解答】解:∵+|y+1|=0,∴,解得:,∴x2﹣4y=1+4=5,故x2﹣4y的平方根为:±.【点评】此题主要考查了非负数的性质以及平方根,正确得出x,y的值是解题关键.43.已知|a+b﹣3|++(a+2)2=0,求(a+c)b的值.【考点】非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】首先根据题意及非负数的性质求出a、b、c的值,然后代入所求代数式求值.【解答】解:∵|a+b﹣3|++(a+2)2=0,∴a+b﹣3=0,c﹣4=0,a+2=0,∴a=﹣2,b=5,c=4,∴(a+c)b=(﹣2+4)5=25=32,即(a+c)b的值是32.【点评】本题主要考查非负数的性质,解题的关键是先根据题意及非负数的性质求出a、b、c的值.44.已知(3x﹣1)2+=0,求18xy的平方根.【考点】非负数的性质:偶次方;平方根;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据平方根的定义解答.【解答】解:由题意得,3x﹣1=0,3﹣2y=0,解得x=,y=,所以,18xy=18××=9,所以,18xy的平方根±3.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.45.已知实数x,y满足(x﹣4)2+=0,求﹣xy的平方根.【考点】非负数的性质:偶次方;平方根;非负数的性质:算术平方根.【分析】因为(x﹣4)2和都是非负数,当几个非负数的和为0时,几个非负数都为0,可得关于x和y的方程,求出x,y的值,再根据平方根的定义求解.【解答】解:∵(x﹣4)2 +=0∴(x﹣4)2=0,=0∴x﹣4=0,y+16=0,∴x=4,y=﹣16∴﹣xy=﹣4×(﹣16)=64∴﹣xy的平方根是±8【点评】本题考查了偶次方和算术平方根的性质以及开平方运算,明确非负数的性质及开平方的方法,是解题的关键。

利用算术平方根的非负性进行计算

利用算术平方根的非负性进行计算

利用算术平方根的非负性进行计算算术平方根的非负性是指一个非负实数的算术平方根也是非负的。

在数学中,利用算术平方根的非负性可以进行各种计算,包括求解方程、简化公式、推导关系等。

本文将对如何利用算术平方根的非负性进行计算进行详细的阐述。

首先,让我们来了解一下算术平方根的定义。

给定一个非负实数x,我们称一个非负实数y满足y²=x为x的算术平方根。

符号上,我们用√x表示x的算术平方根。

根据定义,我们有√x≥0,即算术平方根是非负数。

基于算术平方根的非负性,我们可以进行几种常见的计算。

首先,我们可以利用算术平方根的非负性求解方程。

考虑一个方程x²=a,其中a是已知的非负实数。

根据算术平方根的非负性,我们知道方程的解必然是非负实数。

因此,我们可以得出x=√a。

例如,对于方程x²=4,根据算术平方根的非负性,我们得出x=±√4=±2,即x可以是2或者-2、取非负解,我们得到x=2其次,我们可以利用算术平方根的非负性简化公式。

例如,我们考虑计算下列表达式:√(a²+b²)根据算术平方根的非负性,我们知道√(a²+b²)≥0。

因此,无需进行进一步计算,可以直接得出结果为非负实数0。

此外,我们也可以利用算术平方根的非负性推导关系。

例如,考虑两个非负实数a和b,满足a>b。

我们可以利用算术平方根的非负性证明以下关系:√a>√b首先,我们可以用反证法来证明上述关系。

假设√a≤√b,根据算术平方根的非负性,我们可以得到a≤b。

然而,这与假设a>b矛盾,因此原假设不成立。

所以我们可以得到√a>√b。

这个结论表明,对于两个非负实数,如果一个大于另一个,则它们的算术平方根之间的大小关系也是相同的。

综上所述,利用算术平方根的非负性进行计算可以大大简化问题。

我们可以利用算术平方根的非负性求解方程、简化公式以及推导关系。

根式的运算技巧

根式的运算技巧

根式的运算技巧根式的运算平方根与立方根一、知识要点1、平方根:⑴、定义:如果$x^2=a$,则$x$叫做$a$的平方根,记作“$\pm\sqrt{a}$”($a$称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;$0$的平方根是$0$;负数没有平方根。

⑶、算术平方根:正数$a$的正的平方根叫做$a$的算术平方根,记作“$\sqrt{a}$”。

2、立方根:⑴、定义:如果$x^3=a$,则$x$叫做$a$的立方根,记作“$\sqrt[3]{a}$”($a$称为被开方数)。

⑵、性质:正数有一个正的立方根;$0$的立方根是$0$;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:1、平方根是其本身的数是$\pm1$;算术平方根是其本身的数是正数;立方根是其本身的数是$1$或$-1$。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3、$a$本身为非负数,即$a\geq0$;$a$有意义的条件是$a\geq0$。

4、公式:⑴$(\pm\sqrt{a})^2=a$($a\geq0$);⑵$(\sqrt[3]{a})^3=a$($a$取任何数)。

5、非负数的重要性质:若几个非负数之和等于$a$,则每一个非负数都为$\leq a$(此性质应用很广,务必掌握)。

例1:求下列各数的平方根和算术平方根1)$64$;(2)$-3$;(3)$1$例2:求下列各式的值1)$\pm81$;(2)$-16$;(3)$\dfrac{2}{3}$;(4)$-4$;(5)$1.2$;(6)$-36$;(7)$\pm7$例3:求下列各数的立方根:⑴$343$;⑵$-2$三、巧用被开方数的非负性求值.我们知道,当$a\geq0$时,$a$的平方根是$\pm a$,即$a$是非负数。

例4:若$2-x-\sqrt{x-1}=6$,求$-\sqrt[3]{y}$,其中$y=x-2-\sqrt{x-1}$。

初中数学巧用算术平方根的“非负性”

初中数学巧用算术平方根的“非负性”

巧用算术平方根的“非负性”
众所周知,算术平方根具有双重非负性:1.被开方数具有非负性,即≥0;2.具有非负性,即≥0.这两个非负性形象、全面地反映了算术平方根的本质属性.在解决与此相关的问题时,如果能仔细观察、认真地分析题目中的已知条件,挖掘出题目中隐含的算术平方根的这两个非负性,并在解题过程中做到有机地配合,则可避免用常规方法造成的繁杂运算或误解,从而收到事半功倍的效果.
【例1】实数满足,化简.
【分析】由算术平方根被开方数的非负性知,因此,只有
,所以.有了的取值范围,便可以化简了.
【解】由题可知,
∴,∴,
∴,
∴= .
【例2 】如果成立,求的值.
【分析】由算术平方根被开方数的非负性知,因此,只有,即;又,即,所以,于是得解.
【解】由题可知,
∴,即.
又∵,即,
∴,∴,
∴.
【例3】若与互为相反数,求的值.
【分析】由题可知+=0.因为一个数的绝对值、算术平方根是两种非负数,利用非负数的性质“若干个非负数的和为零,则其中每个非负数均为零”即可求解.
【解】由题可得+=0.
∵,
∴由非负数的性质,得
解这个方程组,得
∴。

算术平方根非负性的应用教学设计

算术平方根非负性的应用教学设计

课题算术平方根非负性的
应用
课时 1 主备
授课时间授课类型复习【学习目标】应用算术平方根的非负性求字母的取值
【重点】理解非负性并灵活运用
【难点】各种题型中正确运用非负性
【学习过程】一复习归纳:
什么是算术平方根?怎样表示?任何数都有算术平
方根吗?
答:如果一个正数x的平方等于a,那么这个正数x
叫做a的算术平方根.
a的算术平方根表示为:
()
a a≥
0的算术平方根是0
负数没有算术平方根
二、热身练习
三、例题讲解
(1)若.
_________
2
3=
+
=
-
+
+b
a
b
a,则
(2).
________
1
2015
)
1(2=
-
=
-
+
+y
x
y
x,则
四、巩固练习
(1).
_________
)
(
4
52=
+
=
+
+
-y
x
y
x,则

(2).
________
3
4
)1
(2=
-
=
-
+
+b
a
b
a,则
引领学生复习知
识点,为本节内
容做好铺垫
归纳概括,引导
学生完成解题方
法的探索。

本环
节根据实际情况
可组织学生采取
互问互答的方式
进行巩固深化。

根式的运算技巧

根式的运算技巧

平方根与立方根一、知识要点1、平方根:⑴、定义:如果x2=a,则x叫做a的平方根,记作“a称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

⑶、算术平方根:正数a的正的平方根叫做a”。

2、立方根:⑴、定义:如果x3=a,则x叫做a”(a称为被开方数)。

⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3≥0有意义的条件是a≥0。

4、公式:⑴2=a(a≥0(a取任何数)。

5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

例1求下列各数的平方根和算术平方根(1)64;(2)2)3(-; (3)49151; ⑷ 21(3)-例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-.(5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:⑴ 343; ⑵ 10227-; ⑶二、巧用被开方数的非负性求值. 大家知道,当a ≥0时,a 的平方根是±a ,即a 是非负数.例4、若,622=----y x x 求y x 的立方根.练习:已知,21221+-+-=x x y 求y x 的值.三、巧用正数的两平方根是互为相反数求值.我们知道,当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值. 我们已经知道0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a的非算术平方根.练习:1、若一个数的平方根是8±,则这个数的立方根是( ).A .2B .±2C .4D .±42、144的算术平方根是 ,16的平方根是 ;3、若m 的平方根是51a +和19a -,则m = .4、327= , 64-的立方根是 ;5、7的平方根为 ,21.1= ;6、一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ;7、平方数是它本身的数是 ;平方数是它的相反数的数是 ;8、当x= 时,13-x 有意义;当x= 时,325+x 有意义;9、若164=x ,则x= ;若813=n ,则n= ;10、若3x x =,则x= ;若x x -=2,则x ;11、15的整数部分为a,小数部分为b,则a=____, b=____12、解方程:0324)1(2=--x (2) 3125(2)343x -=-(3 ) 264(3)90x --= (4)31(1)802x -+=1323(2)0y z -++=,求xyz 的值。

七年级下册数学期末考复习专题01平方根及立方根(知识点串讲)【含答案】

七年级下册数学期末考复习专题01平方根及立方根(知识点串讲)【含答案】

专题01 平方根及立方根知识框架重难突破一. 平方根1.平方根(1)平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.备注:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“-”.(3)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2. 算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.a≥0,a≥0.备注:20 ||00a aa a aa a >⎧⎪===⎨⎪-<⎩(3)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.例1.(·安徽初一期中)下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根练习1.(安徽四十二中中铁国际城校区初一期中)计算16的平方根为()A.4±B.2±C.4 D.2±练习2.(·辽宁初二期中)9的平方根是( )A.3B.81C.3±D.81±例2.(2017·阜阳市第九中学初一期中)14的算术平方根是( )A.12±B.12-C.12D.116练习1.(六安市裕安中学初一期中)16的算术平方根是_____.练习2.(·北京初二期中)16的算术平方根是。

例3.(·安徽初一期中)81的平方根是_________;364的算术平方根是_________.练习1.(·安徽初一月考)若2a-1和5-a是一个正数m的两个平方根,则m=_______练习2.(郑州市初二期中)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.二. 立方根1.立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3x a=,那么x叫做a的立方根.记作:.2.立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.3.求一个数a的立方根的运算叫开立方,其中a叫做被开方数.备注:①符号中的根指数“3”不能省略;②对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根.例1.(·安徽初一期中)64的立方根是()A .4B .±4C .8D .±8练习1.(·淮南初一期中)下列说法中,不正确的是( ) A .8的立方根是2 B .﹣8的立方根是﹣2 C .0的立方根是0D .64的立方根是±4练习2.(·北京市昌平区阳坊中学初二期中)8-的立方根是__________.例2.(合肥市第四十五中学初一期中)已知a +3和2a ﹣15是某正数的两个平方根,b 的立方根是﹣2,c 算术平方根是其本身,求2a +b ﹣3c 的值.练习1.(·淮南初一期中)已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c (1) 求a ,b ,c 的值;(2)求3a b c -+的平方根.练习2.(郑州市初二期中)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n 的值.例3.(安徽初一期中)求下列各式中x 的值:(1)2x 2=4; (2)64x 3 + 27=0专题01 平方根及立方根知识框架重难突破一. 平方根1.平方根(1)平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.备注:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“-”.(3)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2. 算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.a≥0,a≥0.备注:||00a aa aa a>⎧⎪===⎨⎪-<⎩(3)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.例1.(·安徽初一期中)下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根A试题分析:A、B、C、D都可以根据平方根和算术平方根的定义判断即可.解:A、﹣5是25的平方根,故选项正确;B、25的平方根是±5,故选项错误;C、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误;D、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误.故选A.练习1的平方根为()A.4±B.2±C.4 D.B,又∵(±2)2=4,∴4的平方根是±2±2,故选B.练习2.(·辽宁初二期中)9的平方根是( )A.3B.81C.3±D.81±C解:9的平方根是3±.故选:C.例2.(2017·阜阳市第九中学初一期中)14的算术平方根是( )A .12± B .12-C .12D .116C本题解析: ∵211()24=, ∴14的算术平方根为12+,故选C.练习1 _____. 2,4的算术平方根是2,2.练习2.(·北京初二期中)16的算术平方根是 。

典例精析类题典例_巧用算术平方根的两个“非负性”

典例精析类题典例_巧用算术平方根的两个“非负性”

【例2-3】 如果y= x2 4 4 x2 +2 013成立, x2
求x²+y-3的值. 分析:由算术平方根被开方数的非负性知, x²-4≥0,4-x²≥0, 因此,x²-4=0,即x=±2; 又x+2≠0,即x≠-2, 所以x=2,y=2 013,于是得解.
解:由题可知x²-4≥0,且4-x²≥0, ∴x²-4=0,即x=±2. 又∵x+2≠0, 即x≠-2, ∴x=2.
【例2-1】 若 x2 +y=6,则x=____0______, y=_____6_____.
解析:由 x2有意义得x=0,故y=6. 【例2-2】 若|m-1|+ n 5 =0,则m=_____1_____, n=____5______. 解析:根据题意,得m-1=0,n-5=0, 所以m=1,n=5. 注:若几个非负数的和为0,则每个数都为0.
将x=2代入y= x2 4 4 x2 +2 013, x2
可得y=2 013. ∴x²+y-3=2²+2 013-3=2 014.
【小结】由于初中阶段学习的非负数有三类,即一 个数的绝对值,一个数的平方(偶次方)和非负数的算术平 方根.关于算术平方根和平方数的非负性相关的求值问 题,一般情况下都是它们的和等于0的形式.
2.巧用算术平方根的两个“非负性” 众所周知,算术平方根 a 具有双重非负性: (1)被开方数具有非负性,即a≥0. (2) a 本身具有非负性,即 a ≥0.这两个非负性形象、 全面地反映了算术平方根的本质属性.在解决与此相关的问 题时,若能仔细观察、认真地分析题目中的已知条件,并挖 掘出题目中隐含的这两个非负性,就可避免用常规方法造成 的繁杂运算或误解,从而收到事半功倍的效果.
此类问题可以分成以下几种形式: (1)算术平方根、平方数、绝对值三种中的任意两 种组成一题〔| |时出现这三个内容〔| | + ( ) ²+ =0〕. (2)题目中没有直接给出平方数,而是需要先利用 完全平方公式把题目中的某些内容进行变形,然后再利 用非负数的性质进行计算.

初中数学《平方根》解题技巧

初中数学《平方根》解题技巧

《平方根》解题技巧平方根在解题中有着重要的应用.今天我们一起来学习平方根概念的几个巧妙应用.一、巧用被开方数的非负性求值.【知识点】当a ≥0时;a 的算术平方根是;即是非负数.【例1】若622=----y x x 求y x 的算术平方根【分析】认真观察此题可以发现被开方数为非负数,即2-x ≥0,得x ≤2;x -2≥0,得x ≥2;进一步可得x =2.从而可求出y =-6.【解】∵2020x x -≥⎧⎨-≥⎩,∴22x x ≤⎧⎨≥⎩,即x =2;当x =2时,y =-6.y x =(-6)2=36. 所以y x 的算术平方根为6.二、巧用正数的两平方根是互为相反数求值.【知识点】当a ≥0时;a 的平方根是±;而0)(=-++a a【例2】已知:一个正数的平方根是2a -1与2-a ;求a 的相反数的平方根.【分析】由正数的两平方根互为相反数得:(2a -1)+(2-a )=0,从而可求出a =-1,问题就解决了.【解】∵2a -1与2-a 是一正数的平方根,∴(2a -1)+(2-a )=0,a =-1. 故a 的相反数的平方根为11±=±三、巧用算术平方根的最小值求值. 【知识点】0≥a ,即a =0时其值最小,换句话说的最小值是零.【例3】已知:y =)1(32++-b a ,当a 、b 取不同的值时;y 也有不同的值.当y 最小时,求a +b 的非算术平方根.(即负的平方根)【分析】y =)1(32++-b a ,要y 最小;就是要2-a 和)1(3+b 最小; 而2-a ≥0;)1(3+b ≥0;显然是2-a =0和)1(3+b =0;可得a =2,b =-1.【解】∵2-a ≥0;)1(3+b ≥0;y =)1(32++-b a ;∴2-a =0和)1(3+b =0时;y 最小.由2-a =0和)1(3+b =0;可得a =2,b =-1.所以a +b 的非算术平方根是11-=-四、巧用平方根定义解方程.【知识点】已经定义:如果x =a (a ≥0)那么x 就叫a 的平方根.若从方程的角度观察,这里的x 实际是方程x =a (a ≥0)的根.【例4】解方程(x +1)=36.【分析】把x +1看着是36的平方根即可.【解】∵(x+1)=36∴x+1看作是36的平方根.x+1=±6.∴x1=5,x2=-7.例4 实际上用平方根的定义解一元二次方程(后来要学的方程).你能否解27(x+1)=64这个方程呢?不妨试一试.。

湘教版八上数学-巧用二次根式的非负性解题

湘教版八上数学-巧用二次根式的非负性解题

巧用二次根式的非负性解题
曹经富 二次根式a 表示非负数a 的算术平方根,它具有双重非负性:(1)a ≥0;(2)a ≥0.这两个“非负性”是二次根式的隐含条件,经常从以下角度来命题考查.
一、求解字母的取值范围
例1 使式子211
x x +-有意义的x 取值范围是( ) A. 12x ≥-,且1x ≠ B. 1x ≠ C. 12x ≥- D. 12
x >-,且1x ≠ 解析:由题意知210,10,
x x +≥⎧⎨-≠⎩解得12x ≥-,且1x ≠.故选A . 点评:本题考查了二次根式、分式有意义的理解与运用.一是分式的分母不能为0,二是二次根式的被开方数必须是非负数,进而构建不等式(组)求解.
二、求解相关字母的值 例2 已知实数x ,y ,m 满足 2x ++|3x+y+m|=0,且y 为负数,则m 的取值范围是( )
A .m >6
B .m <6
C .m >-6
D .m <-6
解析:根据题意,结合非负数的性质,得2x +=0,|3x+y+m|=0.
所以x 203x y m 0.+=⎧⎨++=⎩,解得26.x y m =-⎧⎨=-⎩
, 所以6-m <0,解得m >6.故选A. 点评:两个或多个非负数之和等于0,则每个非负数都等于0,本质上是解方程(不等式)与代数式求值. 这类题型一般有如下形式:,0||,0=+=+b a b a 0||,022=++=+c b a b a 等.。

巧用算术平方根的非负性解题

巧用算术平方根的非负性解题

巧用算术平方根的非负性解题算术平方根a (a ≥0)有双重非负性,其一是被开方数是非负数;其二是算术平方根本身是非负数,即:①被开方数a 是非负数;②a 是非负数.正确理解并灵活运用算术平方根的这两个非负性,是解一些相关的问题的关键.一、巧用被开方数a 是非负数解题例1 已知x 满足︳2008-x ︳+2009-x =x ,那么x -20082的值为( )A .2007B .2008C .2009D .2010析解:由算术平方根被开方数的非负性可知x -2009≥0,即x ≥2009,∴x >2008, ∴x -2008=x -2008.∵︳2008-x ︳+2009-x =x ,∴x -2008+2009-x =x , ∴2009-x =2008,∴x -2009=20082,∴x -20082=2009.故选C.点评:应充分认识到算术平方根有意义的条件,即被开方数的非负性.例2 已知a 、b 都为实数,且满足b -3-a =a -3+2,求a b +ba 的值. 析解:∵a -3≥0,3-a ≥0,∴a =3,b =2,故a b +b a =23 +32=136 . 点评:若a 与a -同时有意义,则0a =,且0a a =-=. 二、巧用a 是非负数解题 例3 当x =_____时,3-x -2有最 值=____ _. 析解:由x -2≥0,∴x -2有最小值为0,∴当x =2时,3-x -2有最大值为3. 点评:利用a ≥0,即x -2≥0是解决此题的关键.例4 若y 2+4y +4与1-+y x 互为相反数,则xy =_____.析解:∵y 2+4y +4与1-+y x 互为相反数,∴y 2+4y +4+1-+y x =0,即(y +2)2+1-+y x =0.又∵(y +2)2≥0,z y x -+≥0,∴⎩⎨⎧=-+=+0102y x y ,解之得:⎩⎨⎧-==23y x .∴xy =-6.点评:若几个非负数的和为零,则它们分别为零.非负数及它的性质,是重要的解题方法之一,务必要熟练掌握,才能灵活应用.自我评价:1.已知y =2-x +x -2-3,则y x = .2.已知(x -1)2+x y 5-+1++-z y x =0,求x +y +z 的平方根.答案:1.18 ;2.±3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧用算术平方根的非负性求值
数学中的求值题类型颇多,下面例谈巧用算术平方根的非负性求值。

例1 已知:(1-2a )2+2-b =0,求(ab )b 的值。

分析:清楚完全平方数和算术平方根的非负性是解这类题的关键。

解:∵(1-2a )2≥0,2-b ≥0且(1-2a )2+2-b =0
∴1-2a=0,b-2=0
∴a=21
,b=2
∴(ab )b =(21
×2)2=1
点评:若干个非负数的和为零,则它们分别为零
例2 已知3+-b a 与5-+b a 互为相反数,求a 2+b 2的值。

分析:利用绝对值的非负性和算术平方根的非负性解题 解:∵3+-b a 与5-+b a 互为相反数 ∴3+-b a +5-+b a =0 又3+-b a ≥0,5-+b a ≥0
∴a-b+3=0且a+b-5=0,解方程即可求得:a=1,b=4
∴a 2+b 2=12+42=17
点评:如果两个非负数互为相反数,则这两个非负数分别为零
例3 若m <0,n <0,求2)1(m -+(n -)2的值 分析:运用公式2a =a 解题
解:∵m <0 ∴2)1(m -=-m ;
∵n <0,∴(n -)2=-n ∴2)1(m -+(n -)2=-m+(-n )=-m-n 点评:2a =a 中,注意a 的取值范围。

例4 △ABC 的三边长分别为a 、b 、c ,且a 、b 满足1-a +b 2-4b+4=0,求
c 的取值范围。

分析:要清楚完全平方数和算术平方根的非负性及三角形的性质。

解:由1-a +b 2-4b+4=0,可得1-a +(b-2)2=0 ∵1-a ≥0,(b-2)2≥0 ∴1-a =0,(b-2)2=0
∴a=1,b=2
由三角形三边关系定理有:b-a <c <b+a
即1<c <3
点评:此处除用到算术平方根和完全平方数的非负性外,还利用了三角形边的关系。

例5 已知实数,满足等式132--y x +(x-2y+2)4
=0,求2x-53y 的平方根。

分析:利用算术平方根的非负性及完全平方数的非负性解题。

解:∵132--y x ≥0,(x-2y+2)4≥0且132--y x +(x-2y+2)4=0 ∴2x-3y-1=0,x-2y+2=0
解上二方程组成的方程组,得⎩
⎨⎧==58y x ∴2x-53y=2×8-53×5=13
∴2x-53y 的平方根为±13
点评:已知等式中含有偶次根式要考滤被开方数大于等于零;含有偶次方幂 要考滤偶次方幂大于等于零。

相关文档
最新文档