层序地层学标准化

合集下载

层序地层学的标准化

层序地层学的标准化

图16 海进、正常海退和强制海 退的概念是由岸线基准面变化 和沉积作用相互作用定义的 (from Catuneanu,2006)
13
测井曲线剖面
2 数据资料及其客观性
2.4 资料的客观性和原有解释
图9所示,利用测井资料,根据进积朵叶相互关联的
概念模式,建立沿沉积倾向的三角洲系统。图9A为 未解释的横剖面,说明在每个井剖面都发育两个或 三个准层序。在没有时间序列控制情况下,准层序 间的相互关系可能以不同的方式展示(图9B)这是 在高频层序井间对比的普遍现象,最理想解释方案 则是完全依据三角洲进积模式进行解释。在这个实 例中,图9C解释的倾斜沉积遵循这样一个模式,这 个模式在向盆地方向倾斜沉积下超在最大海泛面上。 这种依据模式解释的正确性,只能通过独立资料和 地下储层生产数据来检验。
层序地层学
沉积序列11
Haq et al.(1987)
沉积序列111
Van Wagoner et al.(1988,1990) Christie-Blick(1991)
沉积序列1V
Hunt & Tucker(1992,1995) Helland-Hansen & Gjelberg(1994)
Posamentier et al.(1988)
成因序列
Frazier(1974) Galloway(1989)
T-R 层序
Johnson & Murphy(1984) Embry & Johannessen(1992)
图3 层序地层学模式(据 Catuneanu, 2006; 根据 Donovan, 2001修改)
Fig.3. 层序地层学模式(from Catuneanu,2006;modified afer Donovan,2001)

层序地层学概念和原理2

层序地层学概念和原理2

HST


TST LST
层序地层单元基本展布特征示意图
层序地层学概念和原理——层序和体系域
二、层序界面类型 1、不整合定义
不整合(Unconformity):一个分开新老地 层的界面,沿着这个面存在陆上侵蚀削截(在 某些地区为可与之对比的海底侵蚀面)的证据, 或者存在明确重要沉积间断的陆上暴露的证据, 并具有的明确的沉积间断。
层序地层学概念和原理
层序和体系域
层序地层学概念和原理——层序和体系域
一、层序定义
Mitchum(1977,1979a)的定义——由一组相对整合、连 续且具有成因联系的地层单元组成的一个地层单元,其顶底 界面均由不整合面或其相应的整合面
概念的缺陷
没有指定层序的规模和持续时间,也没有指出产生不整合面的任 何特定机理。
三、层序类型
依据层序底部的界面(不整合)类型,层序可分为两种 类型:
Ⅰ型层序 Ⅱ型层序。
Ⅰ型层序是指那些海面相对下降超过退覆坡折 点后形成的层序,其相对海面下降较大,使 层序的早期顶积层上超在早先层序的坡积层 上
Ⅱ型层序指那些海面相对下降没有超过退覆坡折 点后形成的层序,最低部位体系域称为陆架边缘 体系域(Posamentier等,1988)。该体系域可沉积 于陆架的任何位置。陆架边缘体系域的底界为Ⅱ 型层序边界,而顶界是陆架的首次大的泛滥面
一个层序沉积于一个由非海相侵蚀面为界的沉积旋回,沉积于一个“重要” 的基准面升降旋回中。
在大多数盆地中,基准面受海平面控制,因此一个层序是一个相对海平 面上升-下降周期的产物。
一个基准面旋回形成的理想层序
陆盆坡折边缘I型层序的地层几何形态,表现出5个分开的沉积组合,传统 的划分是三个体系域——低位、海侵和高位体系域

层序地层学-第3章 层序地层学基本概念与原理-中国地质大学(北京)

层序地层学-第3章 层序地层学基本概念与原理-中国地质大学(北京)

4 陆架边缘体系域(SMST)
5 强制海退体系域(FRST) 6 海退体系域(RST)
7 密集段(CS)
最大海泛面:以退积到加积式准层序
组的转变为特征,常为HST的下超面
密集段
高水位体系域
上超、海岸上 超向下转移、 没有削蚀和下 陆架边缘体系域 切谷。微弱的加
海平面相对静止或 稍有上升期间形成
积或进积准层序。
LST
2 海侵体系域
海侵体系域 (Transgressive system tract,TST): Ⅰ型和Ⅱ型层 序的海侵体系域,在海平面 迅速上升和构造沉降共同产 生的海平面相对上升时期形 成的,以沉积作用缓慢的、 低砂泥比的、一个或多个退 积型准层序组为特征,主要 沉积体系是:陆架沉积、三 角洲沉积、海岸平原沉积、 以及障壁岛、泻湖沉积为主
海平面相对下降期间形成
初始海泛面:以从低
水位进积到海侵的退 积为特征
第二节 层序地层学基本原理
一 可容纳空间
二 层序的主控因素
1 海平面的变化
2 构造沉降
3 气候
4 物源供应
一 可容纳空间
可容纳空间 (Accommoda tion):可供沉积
物堆积的潜在空间 (Jerry, 1988), 可容空间受控于沉 积背景的基准面变 化,或者是海平面 升降和构造沉降的 函数
三 层序内部的关键界面
初次海泛面(first flooding surface):是Ⅰ 型层序内部初次跨越陆架坡折的海泛面,即 相应于首次越过陆棚坡折带的第一个滨岸上 超对应的界面 最大海泛面(maximum flooding surface): 最大海侵时形成的界面,它是海侵体系域的 定界面被高位体系域下超,它从以退积式准 层序组变为进积式准层序组为特征,常与凝 缩层伴生。在地震剖面上,最大海泛面对应 于最远滨岸上超点所对应的反射同相轴

朝向层序地层学标准化:层序地层学研究的一个重要科学命题

朝向层序地层学标准化:层序地层学研究的一个重要科学命题

朝向层序地层学标准化:层序地层学研究的一个重要科学命题吴和源【期刊名称】《沉积学报》【年(卷),期】2017(035)003【摘要】层序地层学后Exxon时代,层序模式的多样化代表了科学家们对复杂地层记录及其响应机制的深入认识,在赋予各种层序地层模式较强针对性的同时,也引起了许多概念体系的不协调.因此,以寻求概念术语一致性为目的的层序地层学标准化,就成为当今层序地层学所面临的一个重要科学命题.层序地层学的发展历程中,正常海退与强迫型海退的识别与区分为层序形成过程的系统描述奠定了重要基础,由于这些过程可以独立于层序地层模式,所以成为迈向标准化成功的第一步;河流相层序模式中非常规体系域概念的引入,即低和高可容纳空间体系域,同样因其独立于层序模式存在的特性,代表了层序地层学标准化又一次成功的尝试.鉴于地层堆积作用过程的旋回性和复杂性,以及地层记录的非渐变性和不完整性,追逐层序地层模式多样性所表征的变化性,以及蕴含着变化性的标准化本质,将为层序地层学的进一步发展提供更多的思考线索和途径.%In the Post-Exxon times of sequence stratigraphy, scientists came up with various sequence models of the complex stratigraphic records as well as its response mechanism, and endowed all models with strong pertinence, which aroused inconsistencies in conceptual system.Therefore, the standardization of sequence stratigraphy aiming at seeking the consistency of terminology has become an important scientific proposition of today's sequence stratigraphy.During the development process of sequence stratigraphy, the identification anddistinguishing between normal regression and forced regression has laid an important groundwork for the system description of the sequence development, and has become the first step towards the standardization as these processes are model-independent.The introduction of unconventional system tracts in fluvial sequence models, namely, low and high-accommodation system tract, turned to be another successful attempt of the standardization of sequence stratigraphy because of its model-independent feature.Considering the four particularities of the stratigraphic records-the complexity and the cyclicity in the stratigraphic accumulating process, the non-gradual change and the non-integrity of the stratigraphic records, chasing the variability represented by the diversity of sequence models and the nature of standardization containing variability will provide more clues and approaches for further development of sequence stratigraphy.【总页数】11页(P425-435)【作者】吴和源【作者单位】中国石油新疆油田公司博士后工作站,新疆克拉玛依 834000;中国石油勘探开发科学研究院博士后流动站,北京 100083【正文语种】中文【中图分类】P539.2【相关文献】1.对国外层序地层学研究进展的几点思考及L-H-T层序地层学 [J], 李绍虎2.层序地层学研究进展:国际层序地层学研讨会综述 [J], 姜在兴3.陆相层序的"非常规"体系域构成:层序地层学的一个重要进展 [J], 姚尧;梅朝佳4.层序地层学基础(3):露头层序地层学研究 [J], 李文汉5.古老地层学研究的新领域层序地层学的发展与展望——访层序地层学研究专家朱筱敏教授 [J], 王大锐因版权原因,仅展示原文概要,查看原文内容请购买。

层序地层学

层序地层学

一.名词解释1. 层序地层学:(Sequence Stratigraphy)研究以不整和面或与之相对应的整和面为边界的年代地层格架中具有成因联系的、旋回岩性序列间相互关联的地层学分支学科。

2. 层序:(Sequence)一套相对整一的、成因上存在联系的、顶底以不整和面或与之相对应的整和面为界的地层单元。

3. I型层序边界面:一个区域型不整合界面,是全球海平面下降速度大于沉积滨线坡折带处盆地沉降速度时产生的。

即I型层序界面是在沉积滨线坡折带处,由海平面相对下降产生。

4. II型层序边界面:全球海平面下降速度小于沉积滨线坡折带处盆地沉降速度时产生的,在沉积滨线坡折带处未发生海平面的相对下降。

5. I型层序:底部以I型层序界面为界,顶部以I型层序或II型层序界面为界的层序。

6. II型层序:底部以II型层序界面为界,顶部以I型层序或II型层序界面为界的层序。

7. 沉积滨线坡折带:(Depositional shoreline break)陆架剖面上的一个位置,是沉积作用活动的地形坡折,在此坡折向陆方向,沉积表面接近基准面,而向海方向沉积表面低于基准面。

8.陆棚坡折带:(Shelf-break)大陆架与大陆斜坡之间的过渡地带。

9. 体系域:(Systems tract)一系列同期沉积体系的集合体。

10. 低位体系域: (Lowstand systems tract,简称LST) I型层序中位置最低、沉积最老的体系域,是在相对海平面下降到最低点并且开始缓慢上升时期形成的。

在具陆棚坡折的深水盆地的沉积背景中,低位体系域是由海平面相对下降时形成的盆底扇、斜坡扇和海平面相对上升时形成的低位前积楔状体以及河流深切谷充填物组成的。

低位体系域以初次海泛面为顶界,其上为海进体系域。

11. 海进体系域:(Transgressive systems tract,简称TST):是I型和II型层序中部的体系域,是在全球海平面迅速上升与构造沉降共同产生的海平面相对上升时期形成的,由一系列向陆推进的退积准层序组成,沉积作用缓慢。

层序 地层学

层序 地层学

地层结构stratigraphic texture地层结构(stratigraphic texture)是地层序列内岩层的叠覆与堆积型式。

通常所说的旋回性、韵律性、加积型、退积型、进积型沉积等,都属于地层结构的概念范畴。

地层结构概念主要是用于研究和描述相当于或略小于一个体系域的地层间隔内岩层的纵、横向总体(或优势)堆积方式,并可根据其成因或形态,将总体退积、加积、进积,或超覆、叠覆、退覆堆积的地层,分别称为退积、加积、进积,或超覆、叠覆、退覆结构的地层。

对于地层分析、预测来说,地层结构概念是非常重要的。

为有利于研究坝区渗漏边界条件,结合河谷地貌特征,可将河流松散堆积物的地层结构划分为三种模型:1.单一结构型主要由卵砾(漂)石组成,透水性强而均一,但厚度一般不大。

下伏基岩可作为相对隔水底板,渗漏边界条件较简单,易于确定。

上游河段多此型式,由于谷坡高陡,松散堆积物多分布于谷底,所以渗漏主要发生于坝基。

此种型式可引起严重的渗漏,但易于处理。

2.多厚层结构型由多层厚度较大的粗、细粒物质组成,可分为两种情况:(1)自上而下颗粒组成逐层变粗的多层结构。

透水性自上而下逐渐变强,故可把它简化为上弱下强(透水)的双层结构。

显然,上部弱水层的透水性和完整程度对于控制坝区渗漏有重要作用。

(2)粗、细粒互层结构。

透水层强弱相间,因此对渗漏条件的控制取决于细粒弱透水层的延续性和完整性。

若弱透水层能有效地阻隔上下粗粒强透水层之间的水力联系,则有利于坝基的防渗。

上述两种情况均以基岩作为相对隔水底板。

若在岩溶地区,则下部边界需移到岩溶漏水带以下。

3.多薄层结构型常由透水性较弱的中、细砂或极细砂组成,并与厚度不大的粘性土层交互相间,属于平原河流的沉积模式。

粘性土层往往呈透镜体状,延续性差,因而各透水层之间具有一定的水力在系,当其叠加厚度较大时,同样可构成严重的防漏条件。

其下部常以早期沉积的地层作为不透水边界。

体系域system tract与海平面升降有关的同期沉积体系钻井资料层序、体系域地震资料层序、体系域露头资料层序、体系域层序地层学提供了地层岩性预测的最好模式SB 层序界面HST 高位体系域Highstand system tractTST 海侵体系域Transgression system trackLST 低水位体系域Lowstand system tractSMST 陆架(棚)边缘体系域Shelf margin system tractTS 初始海泛面Transgres-sion surfaceMFS 最大海泛面Maximum flooding surfaceCS 密集段(缓慢沉积段)condensed section凝缩段(缓慢沉积段)由在极缓慢的速度下沉积的半远洋或远洋沉积物的薄层岩层组成,主要产于海进体系域内部或高位体系域的远端。

层序地层学

层序地层学

层序地层学层序地层学是一门关于地球历史和地质结构的学科,也被称为地层学。

它研究地球表面各个层次的形成、演变、叠置、形态、性质性质和含矿条件等问题。

层序地层学是地质学中的一支重要学科,通过对地质历史进行层序分析,揭示出地球历史的演化过程和构造变化规律,对于理解地球演化史、指导矿产资源勘探开发、支持地质工程和环境保护等具有重要的意义。

下面是层序地层学的详细介绍。

一、层序地层学的概述层序地层学的研究对象是地球表层及其下部岩石的垂直柱状截面(地层柱)、水平展布面(地层露头)、空间分布(地层相)和时空演化过程。

它研究的目的是根据岩性、结构、古生物化石、古地理和特征地质事件等方面的特征,建立地层序列和地层层位,随着研究范围的不同,可以分为区域层序分析、盆地地层学、海相地层学、非海相地层学、构造地层学等。

层序地层学的研究方法主要包括岩石与古生物学、构造地层学、地震地层学、地球化学等方面的技术手段,通过对各种地质现象进行分析和比较,以正确的地图解读和理解,建立真实的地质模型。

二、层序地层学的研究目的和意义1. 研究地球历史和地质构造演化层序地层学的一个主要目的是了解地球历史和地质构造演化。

地球历史是地层学的主要内容之一,通过层次系统对地球历史进行分段和分类,对过去地球环境的演化和特征进行研究,可以推断出古环境、古地理、古气候和地球演化史的重要信息。

2. 指导矿产资源的勘探和开发层序地层学还可以指导矿产资源的勘探和开发。

通过对地层中各种矿产赋存环境、古地理环境和矿床类型的研究,可以确定矿床的分布规律和含矿性质的特征,从而提高矿床的勘探效果和开采利用效率。

3. 支持地质工程和环境保护层序地层学还可以支持地质工程和环境保护。

地层信息可以为工程地质勘察、工程建设和水文地质调查等提供有力的支持,帮助工程师设计科学合理的工程方案,为环境保护、资源可持续性利用和人类生存提供保障。

三、层序地层学的基本概念1. 地层地层是以一定标志为界限所划分出来的,具有一定厚度和广泛垂直分布的自然地质单元。

层序地层学的标准化课件

层序地层学的标准化课件
案例二
建立国际通用的层序地层学术语体系,统一术语的用法和定义,避免因语言差异造成的误解和混 淆。
案例三
制定统一的层序地层学数据格式,如数据采集、存储、处理等,以便在全球范围内共享和利用数 据资源。
06
未来展望与研究方向
层序地层学的发展趋势与挑战
要点一
层序地层学的发展趋势
要点二
层序地层学面临的挑战
04
层序地层学的应用领域
石油与天然气勘探
石油与天然气勘探是层序地层学应用 的重要领域之一。通过研究地层层序 、沉积环境、古水流等特征,可以预 测油气藏的位置和分布规律,提高勘 探成功率。
层序地层学在石油与天然气勘探中主 要应用于盆地分析、烃源岩评价、储 层预测和油气成藏规律研究等方面。
矿产资源调查
层序地层学的标准化课件
$number {01}
目录
• 层序地层学概述 • 层序地层学的基本原理 • 层序地层学的研究方法 • 层序地层学的应用领域 • 标准化在层序地层学中的应用 • 未来展望与研究方向
01
层序地层学概述
定义与特点
总结词
层序地层学是一门研究地层有序性及其成因、演化和应用的学科。
地球化学分析
测定岩石中的元素含量、同位素组成等,了解地球化学演化 过程。
古生物分析
鉴定古生物化石,了解古生物群落和生态系统的演变。
数值模拟与预测
数值模拟
利用计算机模型模拟地层形成、演化 过程,预测未来地质变化趋势。
预测
基于数值模拟结果,对地层分布、资 源储量、地质灾害等做出预测,为地 质勘查和资源开发提供科学依据。
层序地层学的发展历程
总结词
层序地层学经历了从传统地层的分类和对比,而现代层序地层学则引入了沉积学、构造地质学和地球物理 学等多学科的理论和方法,更深入地揭示了地层的形成机制和演化过程。随着技术的进步和应用领域 的拓展,层序地层学将继续发展并广泛应用于各个领域。

陆相层序地层学的研究现状及发展趋势

陆相层序地层学的研究现状及发展趋势

陆相层序地层学的研究现状及发展趋势1 层序地层学的发展简史层序地层学是在地震地层学的基础上发展起来的,它凝聚了半个世纪的研究成果,是“莱依尔以来在地层、沉积领域的最大贡献”(Brown等),其发展历史大体经历了以下4个阶段:1.1 层序地层学的初期阶段自从Sloss于1948年正式提出层序的概念后,层序地层学便诞生了。

Sloss认为层序是“比群和超群更高一级的岩石地层学单位”,而没有现代层序地层学的概念。

其观点在20世纪50——70年代没有受到足够的重视而长期进展不大。

所以该时期可称为层序地层学的初期阶段。

1.2 地震层序地层学阶段P.R.Vail等1977年在第26集AAPG杂志上发表了地震地层学论文集,这算是层序地层学的萌芽阶段。

在论文集中,作者们提出并强调了海平面升降的概念,并认为“层序地层的形成基本上或完全受全球性海平面升降变化的控制”,这为层序地层学的诞生播下了种子。

尽管地震地层学理论代表了层序应用发展历史过程中的重大一步,但此阶段层序的划分主要是用地震资料,测井、岩心和露头一般不能单独用来分析层序。

1.3 层序地层学的形成阶段地震地层学使人们开始利用地震速度来提取岩性信息,并能够在盆地规模上对地层结构、沉积相的展布及其变化进行分析研究和预测,并在此基础上产生了层序地层学。

1987年,P.R.Vail及J.C.Wagoner在AAPG杂志上发表的论文中明确使用了“层序地层学”这一新的概念。

1988年J.C.Wagoner主编了SEPM层序地层学特刊(中译本名为“层序地层学原理(海平面综合分析));它系统全面地讨论了层序地层学的理论、方法,厘定了名次和术语的定义。

从此掀起了全球性的层序地层学热潮。

1.4 层序地层学发展阶段从1988年至今,层序地层学得到不断发展和广泛应用,特别是陆相层序地层学研究又有了新的进展,在发展过程中还产生了层序生物地层学、细碎屑岩层序地层学、成岩层序地层学、高频层序地层学、层序充填动力学、高分辨率层序地层学等分支学科。

层序地层学标准化

层序地层学标准化

SU of HST
T
HNR
顶置
退覆
SU of FSST
前积
LNR FR
海平面(高) 海平面(低)
底为突变界面
沉积趋势→堆砌方式 →沉积成因类型→体系域
SB2
FR底为渐变界面
海进沉积:向上变细,退积,上超于SB的SU之上;海岸位于上超点附近; T 滨岸相含砂或底砾岩;外陆棚,底常为洪泛泥岩;常见钟型、圣诞树型GR曲线
TST 高位正常海退沉积:向上变粗(可有多个半旋回),前积,下超于MFS;
内陆架,河流相为主;中陆架,外陆棚泥→前三角洲泥粉砂→滨浅海砂泥
HNR →河流(块砂),呈漏斗渐变曲线;外陆棚;席状中高频弱振幅连续(泥+粉砂)
HST
斜坡-盆地:楔状内收敛弱振幅泥岩,下部有下超,顶部在陆棚边缘上部常见削截 (海底侵蚀),低幅漏斗状GR曲线
Vail-Haq模式(Ⅱ)
顶超 上超前积
上超 顶置 离超
退覆 上超 前积
海平面(高)
T
上超 退积
HNR
调整沉积
海平面(低)
FR
LNR
上超
下超 削截
SB2
持续前积的最远点为海平面下降最低点,并非快降起点
1)海退无沉积?肯定有,FR已公认,与深水扇密切相关。 2)持续前积坡折点为快降起点?否!为最低点。 3)快降后先发育盆底扇? 否!阶段模糊,不能适应深水扇研究需要。
从而,4分体系域, 界面统一。
三角洲平原
三角洲平原
离超

口 湾
三角洲平原

正常 制海
海退
退
正常 海
退
河流
河 口 湾
滨 海
陆 棚

03层序地层学-准层序和准层序组

03层序地层学-准层序和准层序组

Rate of Deposition
Rate of Accommodation
1
4)准层序组实例分析
5)准层序组类型与体系域之间的对应关系
R
FS - SB
R R
TST
LST
P
OFFSHORE
A P P
HST
N.B. - PRESENCE/POSITION OF LST ONLAP & UNCONFORMABLE/CONFORMABLE RELATIONSHIP DEPENDENT ON TOTAL ACCOM., PROFILE, SEDIMENT SUPPLY - LST MAY SHOW LOCAL PROGADATIONAL PATTERN AS CONTROLLED BY MORPHOLOGY OF SHELF, SED. SUPPLY.
Carbonate Sand
Carbonate Mud
第三章 准层序和准层序组
2、准层序沉积特征 根据准层序的定义,准层序的边界是 能够分隔新老地层的海泛面。这就意味 着所有的准层序都必须是一个向上沉积 水体不断变浅的序列,否则我们就不能 根据海泛面来划分确定准层序 。 所有的准层序都是向上变浅的沉积序列 大多数准层序都是向上粒度变粗的序列
沉积速率大于该地区可容空间增大 速率时形成的,后来,可容空间突 然增大,沉积岸线迅速向陆后退, 形成了准层序的顶界
三步曲:海平面下降、上升、再下降
准层序的形成过程
进积
海泛
再进积
准层序边界可与层序顶底边界一致
海侵后海平面下降
第三章 准层序和准层序组
第二节 准层序组特征 一、准层序组类型
一、准层序组类型
准层序组类型

1层序是层序地层学的基本单位

1层序是层序地层学的基本单位

1层序是层‎序地层学的‎基本单位;是一套相对‎整合的、在成因上有‎联系的、以不整合和‎与不整合相‎当的整合为‎界的地层。

它由一系列‎的沉积体系‎域组成。

2副层序(准层序)(paras‎e quen‎ce)是以海泛面‎(marin‎e-flood‎i ng surfa‎ce)和可与海泛‎面对比的界‎面为界的成‎因上有联系‎的、相对整合的‎一套岩层(beds)或岩层组(bedse‎t s)。

3在加积副‎层序组中,副层序愈靠‎上,时代愈新,彼此之间没‎有明显的侧‎向移动。

总的来说,可容纳空间‎的增长速度‎接近沉积速‎度,海平面相对‎升降不明显‎。

在加积副层‎序中,各副层序的‎沉积相、厚度和砂岩‎/泥岩比没有‎重大变化。

4在进积副‎层序组中,愈朝盆地方‎向前进,沉积下来的‎副层序时代‎愈新。

总的来说,沉积速度大‎于可容纳空‎间的增长的‎速度,海平面相对‎下降,表现的序列‎是一个海退‎序列。

时代较新的‎副层序的厚‎度一般比时‎代较老的副‎层序的厚度‎大。

5在退积副‎层序组中越‎朝陆地方向‎,沉积下来的‎副层序的时‎代愈新,呈后退型式‎。

总的来说,沉积速度小‎于容纳空间‎增加的速度‎,海平面相对‎上升,表现的序列‎是一个海进‎序列。

6低位体系‎域(lowst‎a nd syste‎m s tract‎,简称LST‎) 是在F和R‎点之间最大‎海平面下降‎及其后缓慢‎上升时期形‎成的沉积序‎列,直接处于I 型层序界面‎之上。

低位体系域‎的下界是层‎序界面(seque‎n ce bound‎a ry),上界是初始‎海泛面(the first‎flood‎i ng surfa‎c e)。

即低水位体‎系域由海底‎扇、斜坡扇和低‎水位楔组成‎。

7陆架边缘‎体系域(SMST)是与II型‎层序边界相‎伴生的最低‎的体系域。

这个体系域‎是以一个或‎多个微弱进‎积到加积的‎副层序组为‎特征。

这些副层序‎组在朝陆地‎方向上超到‎层序界面之‎上,在朝盆地方‎向下超到层‎序界面之上‎。

层序地层学标准化研究现状

层序地层学标准化研究现状

科学管理2016年第12期层序地层学标准化研究现状徐慧子西安石油大学地球科学与工程学院陕西西安710065摘要:经过几十年的探索,基本可以认为在被提出的条件下层序地层学中的每种方法均具有其合理性,而且是该环境下的最优方法,因而我们认为层序地层学将来的重点研究方向即为层序地层学标准化。

关键词:层序地层学标准化层序地层格架由于层序地层学能综合许多地层学及非地层学科的认识,故可称之为是一种应用于综合分析地层的有效方法。

1层序地层学的发展通常认为层序地层学是基于20世纪70年代的地震地层学而出现的。

但事实上,地震地层学是晚于大多数与层序地层学有关联的研究的。

早在18世纪,H u tto n就认识到侵蚀作用、沉积搬运和沉积作用随时间的周期性重复,并且创建了现在被称为“地质旋回”的基础。

Sloss等(1949)提出“层序”的意思是指界线为地表之上不整合的地层单元。

地层学中“层序”概念发展的同时,在随后的二十年间其他沉积学家们也再次提出“层序”是一种能够被人们预测并且拥有某种内在关联的垂向的沉积序列(P e ttijo h n,1975 ),同时它也能够指出沉积相的天然变迁。

现代层序的优势在于其层序界面具有一致性,全盆地范围分布,因此盆地边缘的层序数量等于盆地中心发现的层序数量。

由于相对应的整合面与基准面变化的参考曲线不一致,这种由不整合或其相对应的整合面为边界的新层序保留使用,但被认为不规范。

2层序地层学二十一■世纪初,O.Catuneanu等一■些国外知名的学者相继刊发了几篇关于层序地层学的发展及其标准化研究的必要性的论文,在文章中,几位学者及专家指出层序地层学的标准化将会作为重点内容在层序地层学将来几十年的发展中占据重要地位(朱如凯,2011)。

在这之后,我国的一些专家与学者由是也纷纷对层序地层学的标准化研究展开了探索与学习。

在这以前的层序地层学的研究中,能够被较为准确的区别其地层层序的通常都是野外踏勘取得的露头的资料或者一些单井的钻井资料;而如果要求的是对整个盆地研究其层序地层格架,那么对于地震剖面的质量以及地震测量相关人员的工作水平和职业素质就有着较髙的要求,也会直接影响层序划分的最终成果。

地层学——层序地层概念简介

地层学——层序地层概念简介

地层学——层序地层概念简介译者:王立群层序地层学是试尝关联相对海平面转变到沉积层的一门地质学方面的相对较新的分支。

该方式的基础是依照等时界面的识别进行地层作图(例如:地下不整合面、最大洪泛面),因此其大体点是放在年代地层框架上。

层序地层学是校正只强调岩性特点相似性而没有时刻意义的岩性地层学方式的最好选择。

名称中的“层序”涉及旋回沉积,而术语中的“地层学”涉及如下地质进程:一、沉积物形成的地质进程。

二、透过地球表面的时空,这些沉积物如何转变的进程。

目录:1、重要的界面1—1、层序界面1—2、准层序界面2、准层序和准层序组的类型3、地质时期的海平面4、经济意义5、参考文献1、重要的界面1—1、层序界面层序边界被以为是最重要的界面。

层序边界被概念为不整合面或与其相关的整合面。

多期河流砂岩体常常充填与层序边界相关联的海平面下降形成的深切河谷。

层序边界上的深切河谷在侧向上可与河间地域,形成于深切河谷边缘的古土壤相对照。

河谷充填在成因上与先期形成的下覆沉积系统无关。

依照多期砂岩沉积的其它类型有四种区别深切河谷充填的标准:一、比河谷内单河道侵蚀面散布更普遍的高侵面,在区域上可普遍对照。

二、在与下覆地层单元相对照时,相组合反映出盆地在岩相上向前移动。

3、河谷侵蚀面侵蚀掉前期形成的体系域而且在海岸产生时刻距离。

4、增加的河道充填和向上变细的剖面或反映增加可容空间的河流系统特点的转变。

和深切河谷相关的砂岩体是良好的储集层。

目前在这些岩体的对照和散布研究上还存在问题。

层序地层学原理和重要界面的识别有助于解决这些问题。

1—2、准层序界面次要的界面是准层序界面,只是也有人建议描述准层序边界的洪泛面与层序边界相较在侧向上散布更为普遍。

这是因为海岸平原与内陆架相较其倾斜度低的缘故。

准层序边界能够用界面上的物理和化学属性的不同相区别,它们是:地层水的含盐度、碳氢化合物的性质、孔隙度、紧缩速度和矿物学特点。

准层序边界不阻止油气的聚集,可是它能够抑制储层垂向上的联系。

鄂尔多斯盆地奥陶系马家沟组标准化层序地层学研究

鄂尔多斯盆地奥陶系马家沟组标准化层序地层学研究

鄂尔多斯盆地奥陶系马家沟组标准化层序地层学研究杨伟利;王起琮;刘佳玮;石堃;魏巍【摘要】应用标准化层序地层理论开展鄂尔多斯盆地奥陶系马家沟组层序地层研究.主要采用了露头观察和岩心描述、岩石薄片鉴定、地球化学分析及测井岩性解释方法,确定地层岩石类型、岩相组合特征、层序地层界面特征及其位置,结合绝对地质年龄及天文周期时限作为层序划分主要依据.文中将马家沟组划分为平均时限为3.65 Ma的3个海平面变化层序,根据岩相组合及地层界面将各层序划分为低位、海侵、高位及强制海退体系域,层序界面位于强制海退体系域顶界,形成于最低海平面开始上升时期,以石盐岩到硬石膏岩或硬石膏岩到准同生泥晶白云岩的岩性转换面为特征.研究结果表明,随着海平面升降运动,碳酸盐岩台地上的岩性组合及变化具有明显的规律性,突显了应用标准化层序地层理论建立的层序划分方案的合理性和实用性.%The standardized sequence stratigraphy theory is applied to investigate Ordovician Majiagou formation.According to kinds of data,such as outcrop,core and logs,the lithologic characteristics and litho facies assemblage characteristics combine with absolute geological ages and astronomical period,rejiggering the division plan about standardization of sequence stratigraphy in Ordovician Majiagou formation.The Majiagou formation can be divided into three sea-level change sequence,and according to the method of system tract four-division,the inside of each sequence is classified as Lowstand System Tract (LST),Transgressive System Tract (TST),Highstand System Tract (HST) and Regressive System Tract (RST).The sequence boundary is located on the top boundary of RST,and formed when sea-level rise from the lowest level.The lithology conversionsurface is from halilith to anhydrite,or from anhydrite to penecon temporaneous micritic dolomitein.Research results show that with sea level rise and drop,the rock compositions on the carbonate rock tableland and their change are of regularity.The Standardized Sequence Stratigraphy Theory provides these kinds of formations with the most reasonable and suitable division method,and it also has practical value.【期刊名称】《西安科技大学学报》【年(卷),期】2017(037)002【总页数】8页(P234-241)【关键词】层序地层标准化;强制海退体系域;奥陶系马家沟组;鄂尔多斯盆地【作者】杨伟利;王起琮;刘佳玮;石堃;魏巍【作者单位】中国石化石油勘探开发研究院,北京100083;西安石油大学地球科学与工程学院,陕西西安710065;西安石油大学地球科学与工程学院,陕西西安710065;西安石油大学地球科学与工程学院,陕西西安710065;西安石油大学地球科学与工程学院,陕西西安710065【正文语种】中文【中图分类】P618.13有关鄂尔多斯盆地奥陶系马家沟组层序地层问题,前人开展过大量研究,提出了多套层序地层划分方案(表1)。

朝向层序地层学的标准化

朝向层序地层学的标准化

Towards the standardization of sequence stratigraphyO.Catuneanu a ,⁎,V.Abreu b ,J.P.Bhattacharya c ,M.D.Blum d ,R.W.Dalrymple e ,P.G.Eriksson f ,C.R.Fielding g ,W.L.Fisher h ,W.E.Galloway i ,M.R.Gibling j ,K.A.Giles k ,J.M.Holbrook l ,R.Jordan m ,C.G.St.C.Kendall n ,B.Macurda o ,O.J.Martinsen p ,A.D.Miall q ,J.E.Neal b ,D.Nummedal r ,L.Pomar s ,H.W.Posamentier t ,B.R.Pratt u ,J.F.Sarg v ,K.W.Shanley w ,R.J.Steel h ,A.Strasser x ,M.E.Tucker y ,C.Winker zaDepartment of Earth and Atmospheric Sciences,University of Alberta,1-26Earth Sciences Building,Edmonton,Alberta,T6G 2E3,Canada bExxonMobil Exploration Company,Houston,Texas 77060,USA cGeosciences Department,University of Houston,Houston,Texas 77204-5007,USA dDepartment of Geology and Geophysics,Louisiana State University,Baton Rouge,Louisiana 70803,USA eDepartment of Geological Sciences and Geological Engineering,Queen's University,Kingston,Ontario K7L 3N6,Canada fDepartment of Geology,University of Pretoria,0002Pretoria,South Africa gDepartment of Geosciences,University of Nebraska-Lincoln,Nebraska 68588-0340,USA hDepartment of Geological Sciences,The University of Texas at Austin,Austin,Texas 78712,USA iInstitute for Geophysics,The University of Texas at Austin,Austin,Texas 78758-4445,USA jDepartment of Earth Sciences,Dalhousie University,Halifax,Nova Scotia,B3H 4J1,Canada kInstitute of Tectonic Studies,New Mexico State University,P.O.Box 30001,Las Cruces,New Mexico 88003,USA lDepartment of Geology,The University of Texas at Arlington,Texas 76019-0049,USA mJordan Geology,Centreville,Delaware,USA nDepartment of Geological Sciences,University of South Carolina,Columbia,South Carolina 29208,USA oThe Energists,10260Westheimer,Suite 300,Houston,Texas 77042,USA pStatoilHydro Technology and New Energy,PO Box 7200,5020Bergen,Norway qDepartment of Geology,University of Toronto,Toronto,Ontario,M5S 3B1,Canada rColorado Energy Research Institute,Colorado School of Mines,Golden,Colorado 80401,USA sDepartment of Earth Sciences,Universitat de les Illes Balears,E-07071Palma de Mallorca,Spain tChevron Energy Technology Company,Houston,Texas,USA uDepartment of Geological Sciences,University of Saskatchewan,Saskatoon,Saskatchewan S7N 5E2,Canada vColorado Energy Research Institute,Colorado School of Mines,Golden,Colorado 80401,USA wStone Energy LLC,1801Broadway,Denver,Colorado 80202,USA xDepartment of Geosciences,University of Fribourg,CH-1700Fribourg,Switzerland yDepartment of Earth Sciences,Durham University,Durham DH13LE,UK zShell International E&P Inc,3737Bellaire Blvd,P.O.Box 481,Houston,Texas 77001-0481,USAa b s t r a c ta r t i c l e i n f o Article history:Received 13April 2008Accepted 13October 2008Available online 21October 2008Keywords:sequence stratigraphy stratal stacking patterns accommodation sediment supply shoreline trajectory methodology nomenclatureSequence stratigraphy emphasizes facies relationships and stratal architecture within a chronological framework.Despite its wide use,sequence stratigraphy has yet to be included in any stratigraphic code or guide.This lack of standardization re flects the existence of competing approaches (or models)and confusing or even con flicting terminology.Standardization of sequence stratigraphy requires the de finition of the fundamental model-independent concepts,units,bounding surfaces and work flow that outline the foundation of the method.A standardized scheme needs to be suf ficiently broad to encompass all possible choices of approach,rather than being limited to a single approach or model.A sequence stratigraphic framework includes genetic units that result from the interplay of accommodation and sedimentation (i.e.,forced regressive,lowstand and highstand normal regressive,and transgressive),which are bounded by ‘sequence stratigraphic ’surfaces.Each genetic unit is de fined by speci fic stratal stacking patterns and bounding surfaces,and consists of a tract of correlatable depositional systems (i.e.,a ‘systems tract ’).The mappability of systems tracts and sequence stratigraphic surfaces depends on depositional setting and the types of data available for analysis.It is this high degree of variability in the precise expression of sequence stratigraphic units and bounding surfaces that requires the adoption of a methodology that is suf ficiently flexible that it can accommodate the range of likely expressions.TheEarth-Science Reviews 92(2009)1–33⁎Corresponding author.E-mail address:octavian@ualberta.ca (O.Catuneanu).0012-8252/$–see front matter ©2009Elsevier B.V.All rights reserved.doi:10.1016/j.earscirev.2008.10.003Contents lists available at ScienceDirectEarth-Science Reviewsj ou r n a l h o m e pa g e :ww w.e l s e v i e r.c o m/l o c a t e /e a r s c i r e vintegration of outcrop,core,well-log and seismic data affords the optimal approach to the application ofsequence stratigraphy.Missing insights from one set of data or another may limit the‘resolution’of thesequence stratigraphic interpretation.A standardized workflow of sequence stratigraphic analysis requires the identification of all genetic units andbounding surfaces that can be delineated objectively,at the selected scale of observation,within astratigraphic section.Construction of this model-independent framework of genetic units and boundingsurfaces ensures the success of the sequence stratigraphic method.Beyond this,the interpreter may makemodel-dependent choices with respect to which set of sequence stratigraphic surfaces should be elevated inimportance and be selected as sequence boundaries.In practice,the succession often dictates which set ofsurfaces are best expressed and hold the greatest utility at defining sequence boundaries and quasi-chronostratigraphic units.The nomenclature of systems tracts and sequence stratigraphic surfaces is alsomodel-dependent to some extent,but a standard set of terms is recommended to facilitate communicationbetween all practitioners.©2009Elsevier B.V.All rights reserved.Contents1.Introduction:background and rationale (2)2.Data sets and objectivity of data (5)2.1.Data integration (5)2.2.Limitations of seismic data (6)2.3.Limitations of outcrop,core,and well-log data (7)2.4.Objectivity of data and inherent interpretations (8)3.Model-independent platform of sequence stratigraphy (9)3.1.Methodology (9)3.2.Base level and accommodation (10)3.3.Reference curve of base-level changes (11)3.4.Events of the base-level cycle (12)3.5.Genetic types of deposit:normal regressive,forced regressive,transgressive (14)4.Model-dependent aspects of sequence stratigraphy (15)4.1.Depositional sequences (17)4.2.Genetic stratigraphic sequences (17)4.3.Transgressive–regressive sequences (18)5.Recommendations (18)5.1.Standard workflow (18)5.2.Definition of sequence stratigraphy (19)5.3.Definition of a‘sequence’ (19)5.4.Parasequences (19)5.5.Genetic types of deposit:systems tracts (19)5.6.Sequence stratigraphic surfaces (20)5.7.Concept of hierarchy (21)6.Discussion:variability of the sequence stratigraphic model (22)6.1.Nonmarine settings (22)6.2.Coastal to shallow-water siliciclastic settings (24)6.3.Deep-water settings (26)6.4.Carbonate settings (26)7.Conclusions (29)Acknowledgements (29)References (29)1.Introduction:background and rationaleSequence stratigraphy is considered by many as one of the latest conceptual revolutions in the broadfield of sedimentary geology (Miall,1995),revamping the methodology of stratigraphic analysis. Applications of sequence stratigraphy cover a tremendous range,from deciphering the Earth's geological record of local to global changes in paleogeography and the controls governing sedimentary processes, to improving the success of petroleum exploration and production. Multiple data sets are integrated for this purpose,and insights from several disciplines are required(Fig.1).Sequence stratigraphy is uniquely focused on analyzing changes in facies and geometric character of strata and identification of key surfaces to determine the chronological order of basinfilling and erosional events.Stratal stacking patterns respond to the interplay of changes in rates of sedimentation and base level,and reflect combinations of depositional trends that include progradation,retrogradation,aggrada-tion and downcutting.Each stratal stacking pattern defines a particu-lar genetic type of deposit(i.e.,‘transgressive’,‘normal regressive’and ‘forced regressive’;Hunt and Tucker,1992;Posamentier and Morris, 2000;Fig.2),with a distinct geometry and facies preservation style. These deposits are generic from an environmental perspective(i.e., they can be identified in different depositional settings),and may in-clude tracts of several age-equivalent depositional systems(i.e.,systems tracts).Sequence stratigraphy can be an effective tool for correlation on both local and regional scales.The method is now commonly utilized as the modern approach to integrated stratigraphic analysis,com-bining insights from all other types of stratigraphic as well as several non-stratigraphic disciplines(Fig.1).However,it remains the only2O.Catuneanu et al./Earth-Science Reviews92(2009)1–33stratigraphic method that has no standardized stratigraphic code.Efforts have been made by both the North American Commission on Stratigraphic Nomenclature (NACSN)and the International Subcom-mission on Stratigraphic Classi fication (ISSC)with respect to standar-dizing the method of sequence stratigraphy in the North American Stratigraphic Code (herein referred to as the Code)and the International Stratigraphic Guide (herein referred to as the Guide)respectively.The ISSC Working Group on Sequence Stratigraphy submitted its final report in 1999,without reaching a consensus regarding sequence stratigraphic nomenclature and methodology.At the same time,the long-standing NACSN committee on allostratigraphy and sequence stratigraphy tabled its efforts in 2002,concluding that it was premature to recognize formal sequence stratigraphic units in the Code.The process of standardization is hampered mainly because consensus needs to be reached between ‘schools ’that promote rather different approaches (or models)with respect to how the sequence stratigraphic method should be applied to the rock record (Figs.3and 4).The need for standardization,however,is evident from the present state of procedural and nomenclatural confusion within sequence stratigraphy (Figs.3and 4).Despite numerous debates that have promoted one model overothers,Fig.1.Sequence stratigraphy in the context of interdisciplinaryresearch.Fig.2.Genetic types of deposits:normal regressive,forced regressive,transgressive.Zigzag lines indicate lateral changes of facies within the same sedimentary bodies (e.g.,individual prograding lobes).The diagram shows the possible types of shoreline trajectory during changes (rise or fall)in base level.During a stillstand of base level (not shown),the shoreline may undergo sediment-driven progradation (normal regression,where the topset is replaced by toplap),erosional transgression,or no movement at all.However,due to the complexity of independent variables that interplay to control base-level changes,it is unlikely to maintain stillstand conditions for any extended period of time.3O.Catuneanu et al./Earth-Science Reviews 92(2009)1–33there has been no general acceptance of any single approach to sequence stratigraphic analysis.Here,we do not intend to reopen the debate about the relative merits of different approaches.Instead,we examine the points of agreement and difference between existing models,evaluate the reasons for this diversity of opinion,and conclude by identifying common ground.We then use this common ground as the basis for the de finition of a process-based work flow that transcends the boundaries between individual models.After over 30years of sequence stratigraphic research and de-velopments,it is fair to conclude that each model is justi fiableinFig.4.Nomenclature of systems tracts and timing of sequence boundaries for the existing sequence stratigraphic models (from Catuneanu,2006).Abbreviations:LST —lowstand systems tract;TST —transgressive systems tract;HST —highstand systems tract;FSST —falling-stage systems tract;RST —regressive systems tract;T –R —transgressive –regressive;CC ⁎—correlative conformity sensu Posamentier and Allen (1999);CC ⁎⁎—correlative conformity sensu Hunt and Tucker (1992);MFS —maximum flooding surface;MRS —maximum regressive surface.References for the proponents of the various sequence models are provided in Fig.3.Fig.3.Sequence stratigraphic models (from Catuneanu,2006;modi fied after Donovan,2001).4O.Catuneanu et al./Earth-Science Reviews 92(2009)1–33the context in which it was proposed and may provide the optimum approach under the right circumstances.One reason for the co-existence of contrasting approaches is that each sequence strati-graphic ‘school ’is validated by the working experience of its pro-ponents on the basis of different case studies or data sets that support their methodology.Consequently,the best approach to undertaking a sequence-stratigraphic analysis of a succession (i.e.,which model is ‘best ’)may vary with the tectonic setting,depositional setting,se-diment types (siliciclastics,carbonates,evaporites),the data set available for analysis (e.g.,seismic data versus well logs or outcrop observations),and even the scale of observation.This paper aims to provide guidelines for a standard work flow of sequence stratigraphic analysis.For this purpose,it is necessary to de fine and separate the model-independent from the model-depen-dent aspects of sequence stratigraphy.The approach proposed herein recognizes that,beyond a standard work flow,flexibility needs to be retained for applying sequence stratigraphy on a case-by-case basis.For example,depending on the depositional system and the types of data available,each model-dependent set of sequence-bounding surfaces may be present or absent,mappable or cryptic,thus forcing the selection of an optimum model for the final conceptual packaging of the strata under study into sequences.Finding the right balancebetween a model-independent work flow,which can be standardized,and flexibility is at the forefront of what a revised Code or Guide needs to provide to the geological community.2.Data sets and objectivity of data 2.1.Data integrationThe sequence stratigraphic method yields optimum results when information derived from multiple data sets,including seismic,outcrop,core,well log,biostratigraphic and geochemical,are integrated (Fig.1).Not all these types of data may be available in every case study,a factor which may limit the ‘resolution ’of the sequence stratigraphic model.For example,onshore ‘mature ’petroleum basins may offer the entire range of data sets,whereas offshore ‘frontier ’basins may initially be in-terpreted in stratigraphic terms only through the analysis of seismic data.Working models are re fined as more data become available,as,for example,when well logs and cores are added to the subsurface seismic data base following the initial seismic stratigraphic survey.Integration of data is important because each data set contributes different insights regarding the recognition of depositional trends and stratal stacking patterns (Figs.5and 6).Notably,seismic dataprovideFig.6.Contributions of different data sets to the sequence stratigraphic interpretation (from Catuneanu,2006).Integration of insights afforded by various data sets is the key to a reliable and complete sequence stratigraphicmodel.Fig.5.Utility of different data sets for building a sequence stratigraphic framework (from Catuneanu,2006).The seismic and large-scale outcrop data provide continuous subsurface and surface information respectively.In contrast,small-scale outcrops,core,and well logs provide sparse data collected from discrete locations within the basin.5O.Catuneanu et al./Earth-Science Reviews 92(2009)1–33continuous coverage of relatively large areas at the expense of ver-tical resolution,whereas outcrops,core and well logs may provide the opportunity for more detailed studies in particular locations but within the context of a sparse and discontinuous data base.Therefore,the types of data presented in Figs.5and 6complement each other and may be calibrated against each other.Mutual calibration is im-portant because the interpretation of any type of data may involve some subjectivity.The limitations involved in interpreting any types of data need to be understood and acknowledged.2.2.Limitations of seismic dataA number of fundamental applications of sequence stratigraphy are subject to uncertainty if seismic data are not used,since lapout relationships,best observed on seismic pro files,are a key to the physical recognition of sequence stratigraphic surfaces.Systems tracts were first de fined on the basis of stratal stacking patterns interpreted from the architecture and lapout terminations of seismic re flections (Vail et al.,1977;Brown and Fisher,1977).Traditionally,seismic data have not been used to de fine stratigraphic units in codes or guides because the establishment of earlier formal guiding documents pre-ceded the availability of such data.Stratigraphic codes and guides need to adapt to the now widespread application of seismic stra-tigraphy and to recognize the importance of seismic data in sequence stratigraphic analyses.Seismic data afford the observation of stratal terminations (lap-outs),stratal stacking patterns on 2D pro files,and 3D visualization of stratigraphic surfaces and depositional elements in the subsurface (Posamentier,2000).However,the information provided by con-ventional exploration data (i.e.,20–40Hz)is limited by the vertical seismic resolution,which filters out the ‘details ’(i.e.,the higher fre-quency cycles)that may be present in the subsurface.The ability to resolve cycles that may be amalgamated within one single re flection is improving continuously as techniques of seismic data acquisition and processing progress.The fact that seismic re flection architec-ture increases in complexity as resolution improves has always been recognized (Cartwright et al.,1993).In the early days of seismic stratigraphy,the vertical seismic resolution was 20–30m or more,whereas more recent multichannel seismic data have 5m of vertical resolution or less,depending on the depth of investigation.Features such as lateral-accretion surfaces within fluvial point bars,scroll bars,or tidal channels can now be seen on 2D lines,horizon slices or 3D visualization maps.The latest 3D visualization techniques allow us totake virtual tours through seismic volumes,to ‘walk ’along interpreted unconformities.Conventional seismic stratigraphy has given way to the more sedimentological insights of seismic geomorphology,which allows examination of channels or other depositional or erosional elements,or analysis of the type of sediment gravity-flow deposits that fill submarine canyons and other deep-water channelized or lobate systems.Despite this innovation in technology and science of stratigraphic imaging,seismic stratigraphic concepts have yet to be incorporated into stratigraphic codes or guides.Vertical seismic resolution limits the scale of observation and may constrain what can be deduced from any particular case study.In regional petroleum exploration,where the focus is on mappinghigherFig.7.Seismic line in the Gulf of Mexico showing different genetic types of deposits (forced regressive,normal regressive,transgressive)and stratigraphic surfaces that may serve as sequence boundaries according to different sequence stratigraphic models (modi fied from Posamentier and Kolla,2003).Abbreviations:FR —forced regressive;LNR —lowstand normal regressive;T —transgressive;SU —subaerial unconformity;CC ⁎—correlative conformity sensu Posamentier and Allen,1999(=basal surface of forced regression);CC ⁎⁎—correlative conformity sensu Hunt and Tucker,1992;MRS —maximum regressive surface;MFS —maximum flooding surface.The line displays the typical stacking patterns and stratal terminations associated with forced regression (of flap,downlap,toplap,truncation),normal regression (downlap,topset),and transgression(onlap).Fig.8.Spontaneous potential (SP)log from a dominantly shallow-water succession in the Gulf of Mexico.The log illustrates the uncertainty that can affect the placement of the maximum regressive and maximum flooding surfaces in the case of monotonous lithological successions that lack obvious grading trends.The same problem affects the interpretation of outcrops which expose ‘massive ’beds (no grading).In this example,the uncertainty is in the range of tens of meters.Abbreviations:FS —flooding surface;MRS —maximum regressive surface;MFS —maximum flooding surface.6O.Catuneanu et al./Earth-Science Reviews 92(2009)1–33rank(i.e.,larger scale)sequences and systems tracts,vertical seismic resolution is no longer an important limitation.Correlative confor-mities(Fig.4)can be mapped on the basis of observable changes in stratal stacking patterns,within the few-meter interval that corre-sponds to an individual seismic reflection(Fig.7).Although higher frequency units may be missed because they are amalgamated within a single reflection,sequence stratigraphic surfaces of higher rank can be mapped and used to construct a sequence stratigraphic framework at that particular hierarchical level.The amalgamation of high-frequency cycles within single reflections,as the wavelength of the cycles approaches the resolution limit of the data,is a contributing factor to the dominance of the‘third-order’frameworks in many seismic stratigraphic interpretations(Nummedal,2004).In local reservoir studies where interpretation is commonly required below the vertical seismic resolution,the higher frequency sequence stratigraphic framework may be resolved by using core and/or well logs.Such an increase in stratigraphic resolution is the norm where the focus changes from exploration to production and more data become available as a result of drilling activity.2.3.Limitations of outcrop,core,and well-log dataThe interpretation of outcrops,cores and well logs in terms of the position of various sequence stratigraphic surfaces may be affected by uncertainties that rival the vertical resolution of seismic data.For example,pinpointing the surface that is interpreted to mark the time of maximum shoreline transgression along a depositional-dip transect (i.e.,a‘maximumflooding surface’)within a condensed section of meters or tens of meters of shale may involve a margin of error equivalent to the thickness of the condensed section.Similarly, pinpointing the surface that is interpreted to mark the time of maxi-mum shoreline regression along a depositional-dip transect(i.e.,a ‘maximum regressive surface’)within thick and massive(‘blocky’on well logs)shallow-water sandstones is equally challenging and po-tentially subject to significant uncertainty(Fig.8).With the exception of monotonous lithological successions that show minimal changes in grain size,outcrops,cores and well logs present the opportunity to observe vertical textural(grading)trends. Such trends can then be used to interpret the position of sequence stratigraphic surfaces whose timing depends on sediment supply. Examples include maximumflooding and maximum regressive surfaces in siliciclastic shallow-water settings,interpreted at the top offining-upward and coarsening-upward trends respectively.Similar textural trends may be observed on carbonate platforms,where transgressions and regressions modify the shale-to-carbonate ratio, resulting in the accumulation of‘dirtier’or‘cleaner’limestones respectively.However,this ratio may also be affected by the relative ‘health’of the carbonate factory(i.e.,the production rate of carbonate sediment),which may depend on factors other than terrigenous sediment supply.The exclusive usage of grain size for the identifica-tion of maximumflooding and maximum regressive surfaces is, therefore,simplistic,and may involve a significant uncertainty.In a deltaic setting,for example,autocyclic shifting of prograding lobes may cause the top-of-coarsening-upward surface(interpreted as the ‘maximum regressive surface’)to be a diachronous facies contact,with components that are much older than the end of regression.In this case,the‘maximum regressive surface’is a composite surface,which consists of multiple individual segments of different ages.Notwithstanding the potential for error in the interpretation of shallow-water successions,textural trends offining-or coarsening-upward,in this particular depositional setting,can be used to map those surfaces the timing of which depends on sediment supply.As sediment supply may vary significantly along a coastline,such surfaces,which correspond to the end-of-regression and end-of-transgression‘events’,may be highly diachronous along strike,even within the limits of biostratigraphic resolution(Gill and Cobban,1973;Martinsen and Helland-Hansen,1995;Catuneanu et al.,1998; Posamentier and Allen,1999;Catuneanu,2006).In contrast,sequence stratigraphic surfaces that form in relation to changes in the direction of base-level shift at the coastline,and so in essence independently of sediment supply(e.g.,‘correlative conformities’in Fig.4),are more suitable for building a chronostratigraphic framework.Thesesurfaces Fig.9.Workflow in the correlation of well logs in a transitional marine to nonmarine setting(Upper Cretaceous,central Alberta).A.Well-log cross-section:arrows indicate coarsening-upward trends,interpreted as prograding lobes(or‘parasequences’),on the gamma-ray(GR)logs.The solid line of correlation is a transgressive wave-ravinement surface(base of transgressive marine deposits).The dotted correlation line is a facies contact at the top of delta front facies.B.Options for the correlation of the prograding lobes.The selection of the option that makes most geological sense is based on a facies model of deltaic progradation which indicates that clinoforms downlap the maximum flooding surface in a basinward(i.e.,easterly)direction(C).The maximumflooding surface(MFS)is interpreted at the top of thefining-upward trends that overlie the transgressive wave-ravinement surface.C.Interpreted cross-section:the steps involved in the interpretation include(1)the identification of prograding lobes on individual well logs(A),and(2)the correlation of these lobes between isolated data control points(well logs in this case)based on the predictions of a facies model of deltaic progradation(C).7O.Catuneanu et al./Earth-Science Reviews92(2009)1–33are potentially synchronous over larger areas than the sediment-supply-controlled surfaces,although neither of them are truly chronostratigraphic (see Catuneanu,2006,for a comprehensive discussion of the time attributes of stratigraphic surfaces).Because their timing is independent of sediment supply,the criteria employed for mapping ‘correlative conformities ’are not based on changes from coarsening-to fining-upward or vice versa but rather on changes in stratal stacking patterns that are best observed on seismic lines.It is also important to note that the two ‘correlative conformities ’in Figure 4mark the start and end of forced regression (Fig.2),and therefore they bracket the period of time when there is minimal or no fluvial accommodation.This means that the sediment delivered to the shoreline is coarser during forced regression than it is during normal regression (Posamentier and Morris,2000;Catuneanu,2006).Thus,the correlative conformity at the base of forced regressive deposits may be marked by an increase in average grain size,whereas the correlative conformity at the top of forced regressive deposits may correspond to a decrease in average grain size during continuedprogradation (Morris et al.,1995;Posamentier et al.,1995;Posamen-tier and Morris,2000;Catuneanu,2006).Such textural changes may provide criteria to infer the position of the two types of correlative conformities in outcrop and core studies.Additional field criteria for the distinction between ‘normal ’and ‘forced ’regressive deposits,and implicitly for the identi fication of the ‘correlative conformities ’that separate them,have been provided by Eberli et al.,(1994),Spence and Tucker (1997),Posamentier and Morris (2000),Playton and Kerans (2002),MacNeil and Jones (2006),Bover-Arnal et al.(2008),for both carbonate and siliciclastic systems.The distinction between ‘normal ’and ‘forced ’regression is important because they are fundamentally different in terms of processes active at the time of sedimentation,as well as in terms of associated petroleum plays (e.g.,Posamentier and Morris,2000;Catuneanu,2006).2.4.Objectivity of data and inherent interpretationsAll sequence stratigraphic methodologies in Figs.3and 4are based on the study of data,whether seismic,outcrop,core,well-log or any combination thereof.At the same time,interpretations are inherent in the observation and processing of any type of data.In fact,there is an intimate relationship between observations afforded by data and interpretations.A case can be made that there is no such thing as pure ‘observation ’in geology (Rudwick,1996;Miall and Miall,2001).Practically all observations carry with them some form of interpretation,otherwise they lack context and become essentially meaningless.This is true for the observations of any kind of data,from outcrop to seismic.In the case of a sparse and discontinuous data base,such as one built by isolated outcrops,core or well logs,detailed correlationbetweenFig.10.Model-independent versus model-dependent aspects of sequence stratigraphy.The model-independent aspects form the core platform of the method that is validated by all ‘schools ’.The model-dependent aspects can be left to the discretion of the practitioner;such flexibility allows one to adapt more easily to the particularities of each case study.Depending on situation,any one of the models may provide the optimum approach to the sequence stratigraphic analysis.For example,the selection of sequence boundaries may depend on depositional setting or the type of data available foranalysis.Fig.11.Basic observations and interpretations involved in the sequence stratigraphic methodology.8O.Catuneanu et al./Earth-Science Reviews 92(2009)1–33。

层序地层学简析

层序地层学简析

层序地层学简析万建华【摘要】层序地层学是我国众多科学家探寻的一门科学,其多样化的层序模式表明了科学家的劳动成果,复杂的底层记录暗示着其响应机制研究的不断深入.在寻求强针对性层序底层模式的时代,其研究也影响了相关概念体系的一致和协调发展,因而寻求相关概念体系一致的层序地层学标准化成为重要课题,也是层序地层学研究的重要命题.在层序地层学研究过程中,对海退的两种类型的区分和识别成为其发展的重要基础,这个过程与层序地层模式不同,因而成为其走向标准化的关键一步.对层序地层学基本概念及发展历程进行介绍,阐述了层序地层学的标准化发展和相关应用.【期刊名称】《黑龙江科学》【年(卷),期】2018(009)002【总页数】2页(P160-161)【关键词】层序地层学;简析;发展历程;应用【作者】万建华【作者单位】黑龙江省煤田地质物测队,哈尔滨150036【正文语种】中文【中图分类】P539.2自20世纪70年代,相关地层学专著的发表标志着层序地层学概念的提出,随着时代的不断发展,该学科也逐步完善,走向系统化发展。

层序地层学发展的历程十分艰辛,从不被接受到众多科学家认同,是从无到有的过程。

近年来,层序边界等新兴的层序地层学理念的提出,促进了层序地层学的进一步发展,是科学家不辞辛苦地对全球复杂地层进行调查和记录而取得的重大突破,表明了层序地层学在当代社会的最新进展,同时探究层序地层学的标准化也成为研究层序地层学的最新命题,是众多科学家不断努力的方向和前进动力。

1 层序地层学简介及发展历程1.1 层序地层学简介普遍认为层序地层学是从20世纪70年代的地震学中发展起来的,不过研究人员对于地震地层学的研究要远远晚于对层序地层学的研究。

在18世纪前后,国外学者就提出了沉积搬运和侵蚀作用等随时间变动而发生周期性变化,也就是当今著名的地质旋回理论的根本。

地层在最初被提出来时是在1949年,指地表上面不完整的单元,伴随近年来的深入研究,其他研究人员也提出了更为先进的层序概念,指能被人们进行预测和具有内在联系的垂向沉积序列,能够表明沉积相的变迁过程。

层序地层学标准化

层序地层学标准化
海侵 风化壳
MFS
HST
Coal
TST
MRS & MRS
MFS
21
PY33-1-1
HNR
T
23.8
HNR T
25.5
MRHSNR
T 26.5
HNR
MRS-MFS重叠, TST几乎缺失
MFS & TRS
T
MRS
向 上 坡变 度细 变 化 不向 连上 续变 粗
SU of FSST
HNR
FR
LNR
T HNR
FR LNR
圣诞树型(组合)
PY33-1-1井
突变界面
渐变界面
SB2 SB1
HNR:粗粒沉积物总体向盆地迁移; T:粗粒沉积物快速向陆地迁移
LNR:粗粒沉积物总体向陆地迁移
BY6-1-1-1
LW3-1-1
FR:粗粒沉积向盆地迁移;
HST向上变粗 渐变漏斗状GR曲线
浊积或风暴
浊积
或风 暴
HST→FSST,突变;斜坡半深水(深 灰色泥岩夹浊积或风暴沉积砂岩)→滨 海(薄层浅灰色砂泥岩)
FR 强制海退
CC*-由Posamentier及Allen(1999_定义;CC**--由Hunt和Tucker(1992)定义
SU(subaerial unconformity) ----陆表不整合
河流
间断7Ma
滨海
SU
侵蚀谷河流充填砂体
浅海
河流
突变
河流
河流
突变
河流
根土岩
海进侵蚀面(TRS)
向上变 细的沉 积趋势
河流相
河口湾
河流相
滨海
陆棚
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T HNR LNR
海平面(低)
FR
底为突变界面
SB2
FR底为渐变界面
突变
25.5 FR
HNR
26.5
突变
SU of HST
海平面(高)
FR: LW3-1-1
23.8
SU of FSST
T HNR LNR
海平面(低)
FR
底为突变界面
SB2
FR底为渐变界面
LNR
25.5
FR
HNR T
5.4 沉积趋势
T LNR 23.8
FR沉积(河控)
河 控 三 角 洲
如:珠海组,SB26.5,SB25.5,SB23.8等
河控FR沉积
TST砂岩
SB 5-15°
三角洲前缘
CC*
前三角洲
突变
河控三角洲:高倾角倾斜反射为特征; 浪控或潮控:倾角<0.3°
SU of HST
海平面(高)
PY35-2-5
LNR T
SU of FSST
T HNR FR LNR
海平面(高)
海平面(低)
上超
上超
退积
下超
削截
SB2
南海样式(模式Ⅳ) 持续前积的最远点为海平面下降最低点,并非快降起点
1)海退无沉积?肯定有,FR已公认,与深水扇密切相关。 2)持续前积坡折点为快降起点?否!为最低点。 3)快降后先发育盆底扇? 否!阶段模糊,不能适应深水扇研究需要。
据O. Catuneanu等,2002,2009
准层序
4. 层序界面
SU of HST
SU of FSST
T HNR LNR
海平面(低) 海平面(高)
FR
底为突变界面
SB2
FR底为渐变界面
基准面
时 间
地质事件
体系域
层序界面
沉积成因类型
强制海退开始 海进结束 完 整 旋 回 海进开始 强制海退结束
FR FSST LNR LST
5.1
TST: 海进沉积(T)
T
SU
浪控河口湾
HNR
S
MFS
CC*
TST:
海侵 沉积 ( T)
MRS 河流相 河流相 河口湾 滨海 陆棚 陆棚
曲流河相 阶状后退的 三角洲头部 及海湾相沉积 MRS
向上变 细的沉 积趋势
辫状河相 辫状河相 MRS
海相 海相
河流相
陆表不整合面 相对应的整合面 海相侵蚀的海退面 海陆分界面
FR底为渐变界面
坡 度 变 化 不 连 续
向 上 变 细
向 上 变 粗
5. 体系域
沉积趋势→堆砌方式 →沉积成因类型→体系域
SU of HST
顶置
SU of FSST
退覆
前积
海平面(高)
T
HNR
FR
LNR
海平面(低)
沉积趋势→堆砌方式 →沉积成因类型→体系域
底为突变界面
SB2
FR底为渐变界面
T TST HNR HST
最大海退面
浅海
最大海泛面 体系域内正常海退面 海岸上超(修补相沉积)
5.2 HST&LST:
正常海退沉积 (HNR,LNR) Py33-1-1, HNR
T
SU of HST
SU of FSST
HNR LNR
海平面(高)
海平面(低)
FR
底为突变界面
SB2
FR底为渐变界面
岩相 渐变
LW3-1-1: LNR
海进侵蚀面(TRS)
海侵
风化壳
MFS
HST
Coal
TST
21
MRS & MRS
PY33-1-1
HNR
T
HNR
23.8
T
25.5
MFS
MRS
HNR
T
HNR
26.5
MRS-MFS重叠, TST几乎缺失
MFS & TRS
SU of FSST
T HNR LNR
海平面(低)
MRS
FR
底为突变界面
SB2
HST TST LST FSST 或
E-LST E-HST FRST
SU及CC* 与HST顶不整合 对应的整合界面 MFS 最大海泛面 MRS 最大海退面 CC** 与FSST顶不整合 对应的整合界面
HNR 高位正常海退 T 海侵 LNR 低位正常海退
SU 海退中的 陆表不整合面
与HST顶不整合 SU&CC* 对应的整合界面
层序均由海进,低位、高位正常海退, 强制海退沉积4个成因单元构成
时间
R
下降 基准面变化率
R
退积准层序组
盆地方向
沉积速率 时间
加积准层序组
R
海退 事件
海进
海岸平原砂与泥岩 陆棚泥岩 浅海砂体 单个准层序
R=
沉积速率 可容空间增加速率
由岸线基准面变化和沉积作用相互作用定义: 1)当基准面上升速率>沉积速率时,发生海进; 2)当基准面上升速率<沉积速率时,发生海退。
三角洲平原 (河流,煤)
LNR HNR FR
滨岸
25.5
三角洲前缘
前三角洲
陆棚
连续相变为特征
HST(河流沉积 ,三角洲平原)
河口湾 河流相
浅海相 陆棚相 陆棚相
HST:
HNR 沉积: 连续相变 为 特征
河流沉积 (三角洲平原)
浅海沉积 (三角洲前缘)
陆棚相沉积
浅海和非海相
底冲刷界面 最大海退面 最大海泛面 体系域内正常海退面 相的横向迁移 海岸上超(修补相沉积)
箱型 漏斗型
海平面(高) 海平面(低)
LST TST HST FSST LST
T HNR FR LNR
圣诞树型(组合) 突变界面
渐变界面
SB2
SB1
HNR:向盆地迁移;
砂体 砂体
LNR:总体向陆地迁移
砂体 砂体
T:快速向陆地迁移
FR:持续向盆地迁移;
箱型
漏斗型
海平面(高)
LST TST HST FSST LST
要求:露头、岩心、测井、地震资料综合运用

3.1 统一体系域 界面
1)层序地层向高分辩层序地层 学发展;基准面变化周期替代
河 流
三角洲平原 三角洲平原 离 超
正 常 强 制 海 海
海退 退 退
河 口 湾
正 常
三角洲平原
河 口 湾 滨 海 陆 棚
海平面变化,术语和内涵发生 转变,因为基准面变化曲线更 能准确描述时间段与体系域的 沉积成因关系。 2)在基准面变化曲线中,Vail 的海平面快速下降起点成为基 准面下降起点。
层序地层学“标准化”理 论
(简要介绍)
1、发展过程
层序地层学
(P.R.Vail)
地震构造解释→地震地层解释
层序
沉积层序 (地震地层学) 层序地层学
沉积层序
沉积层序
沉积层序
成因层序
T-R 层序 (海进-海退层序)
据O. Catuneanu等,2002,2009
高分辨层序地层学 (Cross,1988)
基准面变 化曲线 海进-海退 变化曲线
成因层序
界面统一。
向上变粗 向上变细 GS-成 因 层 序 ; DS-沉 积 层 序 ; TR-海 进 海 退 层 序 升 海 进
冰川消融很快而结冰很慢:海平面升快而降慢
降 海 退
海 进 相 海 退 相
3.2
基准面变化
取共同点
上升
井剖面位置 前积准层序组 井剖面 测井响应
强制海退底面 海退期的海底侵蚀面 体系域内部的正常海退界面
FR:离超(或退覆)
分离的阶梯, 陆架上的滨岸沉积
Amplitude extraction map along a seismic horizon, showing detached and downstepping forced regressive shoreface deposits on the continental shelf (from Catuneanu et al., 2003a; image courtesy of PEMEX). The color code uses blue for sand and orange for shale.
从而,4分体系域,
三 角 洲 前 缘 相 顶 强 制 海 退 底 面
滨 海 到 陆 棚 相 变 化 面 海 退 期 海 底 侵 蚀 面
据O. Catuneanu等,2002,2009
非 海 相 环 境 海 相 环 境
HST
沉 积 层 序
时间间断
LST
海 进 海 退 层 序
TST
HST
沉 积 层 序
时间间断
海退结束
水位下降 结束 水位开始 下降
水位下 降结束 层序界面 体系域界面 体系域内部界面 水位开始 下降 海进结束
时间
结束海退
据O. Catuneanu等,2002,2009
2.1
Vail-Haq模式
2.2 Vail-Haq模式: 应用中的主要问题
Vail-Haq模式(Ⅱ)
顶超 前积 上超 上超 顶置 离超 退覆 上超 前积 调整沉积
河流/海湾相
浅海
最大海退面 最大海泛面 横向相变 海岸上超(修补相沉积)
河流HST(三角洲平原)
滨海 陆棚
MFS → 所指
河流
河口湾
河流 LST
滨海
陆棚 陆棚
淡咸水混 合趋势增加
相关文档
最新文档