高二下学期数学期末考试试卷文科
人教版高二数学下学期文科数学期末考试题及答案
人教版高二数学下学期文科数学期末考试题及答案------------------------------------------作者------------------------------------------日期符合题目要求.命题❽ , ❾的否定是✌. , . ,. , . ,.下列有关命题的说法正确的是✌.命题❽若 ,则 ❾的否命题为❽若 ,则 ❾.命题❽若 ,则 ❾的逆否命题是假命题.命题❽若 ,则 全不为 ❾为真命题.命题❽若 ❾,则 ❾的逆命题为真命题.抛物线 的焦点坐标为✌. . . ..已知正方体 中,点 为上底面 的中心,若 ,则 的值是✌. . . ..如图,在正方体✌✷✌中,☜是 的中点,则异面直线 ☜与✌夹角的余弦值为✌. . .过点 ,且与 有相同渐近线的双曲线方程是✌. . . ..❽方程 表示焦点在⍓轴上的椭圆❾的充分不必要条件是✌. . . ..已知 的顶点 、 分别为双曲线 的左右焦点,顶点 在双曲线 上,则 的值等于✌. . . . .已知抛物线 上的焦点 ,点 在抛物线上,点 ,则要使 的值最小的点 的坐标为✌. . . ..如图,已知正方形 的边长为 , 分别是 的中点, 平面 ,且 ,则点 到平面 的距离为✌. . . ..如图,椭圆 的四个顶点 构成的四边形为菱形,若菱形 的内切圆恰好过焦点,则椭圆✌. . . ..双曲线 的实轴长和焦距分别为✌. . . .第♋卷 共 分二、填空题:本大题有 小题,每小题 分,共 分,把答案填在答卷的相应位置.已知向量 , ,且 与 垂直,则 等于 ✉✉✉✉✉ .设 , 是椭圆 的两个焦点,点 在椭圆上,且 ,则 的面积为✉✉✉✉✉ .已知抛物线 , 为其焦点, 为抛物线上的任意点,则线段 中点的轨迹方程是✉✉✉✉✉ .有一抛物线形拱桥,中午 点时,拱顶离水面 米,桥下的水面宽 米;下午 点,水位下降了 米,桥下的水面宽 ✉✉✉✉✉ 米.如图,甲站在水库底面上的点 处,乙站在水坝斜面上的点 处,已知测得从 到库底与水坝的交线的距离分别为 米、 米, 的长为 米, 的长为 米,则库底与水坝所成的二面角的大小为 ✉✉✉✉✉ 度.已知平面 经过点 ,且 是它的一个法向量 类比曲线方程的定义以及求曲线方程的基本步骤,可求得平面 的方程是 ✉✉✉✉✉ 三、解答题:本大题有 题,共 分,解答应写出文字说明、证明过程或演算步骤.(本小题满分 分)在如图的多面体中, 平面 , , , , , , 是 的中点.☎♊✆ 求证: 平面 ;☎♋✆ 求二面角 的余弦值.(本小题满分 分)已知抛物线 与直线 交于 两点☎♊✆求弦 的长度;☎♋✆若点 在抛物线 上,且 的面积为 ,求点 的坐标.☎本小题满分 分✆已知双曲线 与椭圆 有相同的焦点,实半轴长为 ☎♊✆求双曲线 的方程;☎其中 为原点✆求 的取值范围.☎本小题满分 分✆如图,在平行四边形 中, ,将它们沿对角线 折起,折后的点 变为 ,且 . 学科网☎♊✆求证:平面 平面 ;☎♋✆ 为线段 上的一个动点,当线段 的长为多少时 与平面 所成的角为 ? 学科网.(本小题满分 分)如图,已知椭圆 , 是椭圆 的顶点,若椭圆 的离心率 ,且过点 ☎♊✆求椭圆 的方程;☎♋✆作直线 ,使得 ,且与椭圆 相交于 两点(异于椭圆 的顶点),设直线 和直线 的倾斜角分别是 ,求证: 参考答案一、选择题: - : ✌ ✌✌二、填空题:. . . . 三、解答题:.解 ☎♊✆证法一: , 又 是 的中点, ,四边形 是平行四边形, 平面 , 平面 , 平面 证法二: 平面 , 平面 , 平面 ,, ,又 两两垂直以点☜为坐标原点, 分别为 轴建立如图的空间直角坐标系 由已知得, ( , , ), ( , , ),( , , ), ( , , ), ( , , ), ( , , )设平面 的法向量为则 ,即 ,令 得 ,即 ☎♋✆由已知得 是平面 的法向量设平面 的法向量为 , ,,即 ,令 得 则 , 二面角 的余弦值为.解:☎♊✆设✌(⌧⍓✆、 ☎⌧⍓✆由 得⌧⌧法一:又由韦达定理有⌧⌧⌧⌧ ✌ 法二:解方程得:⌧或 , ✌、 两点的坐标为( ✆、( )✌☎♋✆设点 设点 到✌的距离为♎则✌ ❿ ❿ , ,解得 或点为( , )或( , ).解:☎♊✆设双曲线的方程为 故双曲线方程为 ☎♋✆将 代入 得由 得 且设 则由 得得又 , 即. ☎♊✆又 ,平面 平面(♋)在平面 过点 作直线 分别直线 为⌧,⍓, 建立空间直角坐标系 ⌧⍓则✌☎✆, ☎ ✆, ☎ ✆设 ,则 又 是平面 的一个法向量解得 ,即 时, 与平面 所成的角为 . 解:(♊)由已知得: , 椭圆 的方程为 (♋)由(♊)知: , ,故可设直线 的方程为 ,设 ,由 得,即 异于椭圆 的顶点, 。
高二下学期数学期末考试试卷(文科)第11套真题
高二下学期数学期末考试试卷(文科)一、选择题1. 若复数z的共轭复数,则复数z的模长为()A . 2B . ﹣1C . 5D .2. 下列命题正确的是()A . 命题“∃x∈R,使得x2﹣1<0”的否定是:∀x∈R,均有x2﹣1<0B . 命题“若x=3,则x2﹣2x﹣3=0”的否命题是:若x≠3,则x2﹣2x﹣3≠0C .“ ”是“ ”的必要而不充分条件D . 命题“cosx=cosy,则x=y”的逆否命题是真命题3. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;②设有一个回归方程,变量x增加一个单位时,y平均增加3个单位;③线性回归方程必经过点;④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是()A . 0B . 1C . 2D . 34. 抛物线的准线方程是()A .B .C . y=2D . y=﹣25. 用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是()A . a,b都能被5整除B . a,b都不能被5整除C . a,b不能被5整除D . a,b 有1个不能被5整除6. 过双曲线﹣=1的一个焦点F作一条渐近线的垂线,若垂足是恰在线段OF(O为坐标原点)的垂直平分线上,则双曲线的离心率为()A . 2B .C .D .7. 当复数为纯虚数时,则实数m的值为()A . m=2B . m=﹣3C . m=2或m=﹣3D . m=1或m=﹣38. 关于函数极值的判断,正确的是()A . x=1时,y极大值=0B . x=e时,y极大值=C . x=e时,y极小值=D . 时,y极大值=9. 双曲线(mn≠0)离心率为,其中一个焦点与抛物线y2=12x的焦点重合,则mn的值为()A .B .C . 18D . 2710. 如图,AB∩α=B,直线AB与平面α所成的角为75°,点A是直线AB上一定点,动直线AP与平面α交于点P,且满足∠PAB=45°,则点P在平面α内的轨迹是()A . 双曲线的一支B . 抛物线的一部分C . 圆D . 椭圆11. 设矩形ABCD,以A、B为左右焦点,并且过C、D两点的椭圆和双曲线的离心率之积为()A .B . 2C . 1D . 条件不够,不能确定12. 已知函数f(x)=x3+bx2+cx+d的图象如图,则函数的单调递减区间是()A . (﹣∞,﹣2)B . (﹣∞,1)C . (﹣2,4)D . (1,+∞)二、填空题13. 函数y=x3+x的递增区间是________.14. 已知x,y取值如表,画散点图分析可知y与x线性相关,且求得回归方程为,则m的值为________.x1356y12m3﹣m3.89.215. 若;q:x=﹣3,则命题p是命题q的________条件(填“充分而不必要、必要而不充分、充要、既不充分也不必要”).16. 设椭圆的两个焦点F1,F2都在x轴上,P是第一象限内该椭圆上的一点,且,则正数m的值为________.三、解答题17. 解答下面两个问题:(Ⅰ)已知复数,其共轭复数为,求;(Ⅱ)复数z1=2a+1+(1+a2)i,z2=1﹣a+(3﹣a)i,a∈R,若是实数,求a的值.18. 随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如表.组号年龄访谈人数愿意使用1[18,28)442[28,38)993[38,48)16154[48,58)15125[58,68)62(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?年龄不低于48岁的人数年龄低于48岁的人数合计愿意使用的人数不愿意使用的人数合计参考公式:,其中:n=a+b+c+d.P(k2≥k0)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.82819. 解答题(Ⅰ)某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.设甲、乙两个班所抽取的10名同学成绩方差分别为、,比较、的大小(直接写结果,不必写过程);(Ⅱ)设集合,B={x|m+x2≤1,m<1},命题p:x∈A;命题q:x∈B,若p是q的必要条件,求实数m的取值范围.20. 解答题(Ⅰ)求下列各函数的导数:(i);(ii);21. 设点O为坐标原点,椭圆的右顶点为A,上顶点为B,过点O且斜率为的直线与直线AB相交M,且.(Ⅰ)求证:a=2b;(Ⅱ)PQ是圆C:(x﹣2)2+(y﹣1)2=5的一条直径,若椭圆E经过P,Q两点,求椭圆E的方程.22. 已知函数,.(Ⅰ)当a=2时,求f(x)在x∈[1,e2]时的最值(参考数据:e2≈7.4);(Ⅱ)若∀x∈(0,+∞),有f(x)+g(x)≤0恒成立,求实数a的值.。
(完整版)高二下期末文科数学试题及答案,推荐文档
(Ⅱ)设点 P 在曲线 C 上,求点 P 到直线 l 的距离的最小值 .
19. (本题满分 12 分)一次考试中,5 名学生的数学、物理成绩如下
学生
A1
A2
A3
A4
A5
数学 x (分) 89
91
93
95
97
物理 y (分) 87
89
89
92
93
求 y 关于 x 的线性回归方程.
21.(本题满分 12 分)已知在长方体 ABCD A1B1C1D1 中, AD AA1 1 , AB 2 ,点 F 是
10
5
1
5
A.
B.
C. D.
11 11
6
36
3.已知点
F1,F2
为椭圆
x2 9
y2 25
1的两个焦点,则
F1, F2
的坐标为
A. (4, 0), (4, 0) B. (3, 0), (3, 0) C. (0, 4), (0, 4) D. (0, 3), (0,3)
4.命题 P: x 0, x3 0 ,那么 P 是
(Ⅱ) 在以 O 为极点, x 轴的正半轴为极轴建立极坐标系,设点 P 的极坐标为 2 2, 3 ,
4
求点 P 到线段 AB 中点 M 的距离.
18.(本题满分
12
分ห้องสมุดไป่ตู้已知曲线
C
:
x
3
3 cos ( 为参数),直线 l : (cos
3 sin ) 12 .
y 3 sin
(Ⅰ)求直线 l 的直角坐标方程及曲线 C 的普通方程;
AB 边上动点,点E是棱 B1B 的中点. (Ⅰ)求证: D1F A1D ; (Ⅱ)求多面体 ABCDED1 的体积.
湖北省高二(下)期末数学试卷(文科)(含参考答案)
湖北省高二(下)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四项中,只有一项是符合题目要求的)1.复数z满足z=i2017,则z的共轭复数的虚部是()A.﹣1 B.1 C.0 D.i2.设命题p:?x>0,log2x<2x+3,则¬p为()A.?x>0,log2x≥2x+3 B.?x>0,log2x≥2x+3C.?x>0,log2x<2x+3 D.?x<0,log2x≥2x+33.已知A,B是非空集合,命题甲:A∪B=B,命题乙:A?B,那么()A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件C.甲是乙的充要条件D.甲是乙的既不充分也不必要条件4.双曲线的离心率为,则其渐近线方程为()A. B.y=±2x C.D.5.以下四个命题:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②两个随机变量相关性越强,则相关系数的绝对值越接近于1.③在回归直线方程=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大其中正确的是()A.①④B.②③C.①③D.②④6.设f(x)是定义在(﹣∞,+∞)上的单调递减函数,且f(x)为奇函数.若f(1)=﹣1,则不等式﹣1≤f(x﹣2)≤1的解集为()A.[﹣1,1]B.[0,4]C.[﹣2,2]D.[1,3]7.表中提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中t的值为()x3456y 2.5t4 4.5A.3 B.3.15 C.3.5 D.4.58.四个人站成一排,解散后重新站成一排,恰有一个人位置不变的概率为()A.B.C.D.9.我国古代名著《九章算术》用“辗转相除法”求两个正整数的最大公约数是一个伟大创举.其程序框图如图,当输入a=1995,b=228时,输出的()A.17 B.19 C.27 D.5710.一动圆与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,则动圆圆心轨迹为()A.圆B.椭圆C.双曲线的一支D.抛物线11.已知函数f(x)及其导数f'(x),若存在x0使得f(x0)=f'(x0),则称x0是f(x)的一个“巧值点”.给出下列五个函数:①f(x)=x2,②f(x)=e﹣x,③f(x)=lnx,④f(x)=tanx,其中有“巧值点”的函数的个数是()A.1 B.2 C.3 D.412.设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡上相应位置)13.函数的定义域为.14.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是.15.函数.若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,则f(x)的极小值(其中e为自然对数的底数)等于.16.已知函数y=f(x)恒满足f(x+2)=f(x),且当x∈[﹣1,1]时,f(x)=2|x|﹣1,则函数g (x)=f(x)﹣|lgx|在R上的零点的个数是.三、解答题(本题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知函数f(x)=4x+m?2x+1(x∈(﹣∞,0],m∈R)(Ⅰ)当m=﹣1时,求函数f(x)的值域;(Ⅱ)若f(x)有零点,求m的取值范围.18.设命题p:方程表示双曲线;命题q:斜率为k的直线l过定点P(﹣2,1),且与抛物线y2=4x有两个不同的公共点.若p∧q是真命题,求k的取值范围.19.在某单位的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如图所示.食堂某天购进了90个面包,以x (单位:个,60≤x≤110)表示面包的需求量,T(单位:元)表示利润.(Ⅰ)求T关于x的函数解析式;(Ⅱ)求食堂每天面包需求量的中位数;(Ⅲ)根据直方图估计利润T不少于100元的概率.20.已知函数f(x)=ax﹣1﹣lnx(a∈R).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若函数f(x)在x=1处取得极值,不等式f(x)≥bx﹣2对任意x∈(0,+∞)恒成立,求实数b的取值范围.21.已知椭圆C:=1(a>b>0)上的左、右顶点分别为A,B,F1为左焦点,且|AF1|=2,又椭圆C过点.(Ⅰ)求椭圆C的方程;(Ⅱ)点P和Q分别在椭圆C和圆x2+y2=16上(点A,B除外),设直线PB,QB的斜率分别为k1,k2,若A,P,Q三点共线,求的值.请考生在第22、23二题中任选一题做答,如果多做,则按所做的第一题记分22.已知曲线 C 的极坐标方程为ρ2﹣4(Ⅰ)将极坐标方程化为普通方程;(Ⅱ)若点P(x,y)在该曲线上,求x+y 的取值范围.23.在直角坐标系中,定义P(x1,y1),Q(x2,y2)之间的“直角距离”:d(P,Q)=|x1﹣x2|+|y1﹣y2|.若点A(﹣2,4),M(x,y)为直线x﹣y+8=0上的动点(Ⅰ)解关于x的不等式d(A,M)≤4;(Ⅱ)求d(A,M)的最小值.湖北省高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四项中,只有一项是符合题目要求的)1.复数z满足z=i2017,则z的共轭复数的虚部是()A.﹣1 B.1 C.0 D.i【考点】A1:虚数单位i及其性质.【分析】由已知求得,则答案可求.【解答】解:复数z满足z=i2016?i=i,则z的共轭复数=﹣i,则其虚部是﹣1,故选:A2.设命题p:?x>0,log2x<2x+3,则¬p为()A.?x>0,log2x≥2x+3 B.?x>0,log2x≥2x+3C.?x>0,log2x<2x+3 D.?x<0,log2x≥2x+3【考点】2J:命题的否定.【分析】根据全称命题的否定为特称命题,即可得到答案.【解答】解:根据全称命题的否定为特称命题,则命题p:?x>0,log2x<2x+3,则¬p为?x >0,log2x≥2x+3,故选:B3.已知A,B是非空集合,命题甲:A∪B=B,命题乙:A?B,那么()A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件C.甲是乙的充要条件D.甲是乙的既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】命题甲:A∪B=B,命题乙:A B,A∪B=B?A?B,A B?A∪B=B.由此能求出结果.【解答】解:∵命题甲:A∪B=B,命题乙:A B,A∪B=B?A?B,A B?A∪B=B.∴甲是乙的必要不充分条件.故选B.4.双曲线的离心率为,则其渐近线方程为()A. B.y=±2x C.D.【考点】KC:双曲线的简单性质.【分析】根据题意,由双曲线的方程分析可得其焦点在y轴上,由离心率公式可得e2==5,变形可得=2;由焦点在y轴上的双曲线的渐近线方程为y=±x,即可得答案.【解答】解:根据题意,双曲线的方程为:,其焦点在y轴上,且c=,若其离心率e=,则有e2==5,则有=2;又由双曲线的焦点在y轴上,其渐近线方程为:y=±x,即y=±x;故选:A.5.以下四个命题:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②两个随机变量相关性越强,则相关系数的绝对值越接近于1.③在回归直线方程=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大其中正确的是()A.①④B.②③C.①③D.②④【考点】BL:独立性检验;B3:分层抽样方法;BK:线性回归方程.【分析】第一个命题是一个系统抽样;这个说法不正确,两个随机变量相关性越强,则相关系数的绝对值越接近于1;在回归直线方程中,代入一个x的值,得到的是预报值,对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,【解答】解:从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,故①不正确,两个随机变量相关性越强,则相关系数的绝对值越接近于1.②正确在回归直线方程中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.③正确,对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,④不正确.综上可知②③正确,故选B.6.设f(x)是定义在(﹣∞,+∞)上的单调递减函数,且f(x)为奇函数.若f(1)=﹣1,则不等式﹣1≤f(x﹣2)≤1的解集为()A.[﹣1,1]B.[0,4]C.[﹣2,2]D.[1,3]【考点】3N:奇偶性与单调性的综合.【分析】根据题意,由函数为奇函数可得f(﹣1)=﹣f(1)=1,结合的单调性分析可得﹣1≤f(x﹣2)≤1?f(1)≤f(x﹣2)≤f(﹣1)?﹣1≤x﹣2≤1,解可得x的取值范围,即可得答案.【解答】解:根据题意,若f(x)为奇函数,则f(﹣1)=﹣f(1)=1,则﹣1≤f(x﹣2)≤1?f(1)≤f(x﹣2)≤f(﹣1),又由f(x)是定义在(﹣∞,+∞)上的单调递减函数,则﹣1≤f(x﹣2)≤1?f(1)≤f(x﹣2)≤f(﹣1)?﹣1≤x﹣2≤1,解可得1≤x≤3;即[1,3];故选:D.7.表中提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中t的值为()x3456y 2.5t4 4.5A.3 B.3.15 C.3.5 D.4.5【考点】BQ:回归分析的初步应用.【分析】先求出这组数据的样本中心点,样本中心点是用含有t的代数式表示的,把样本中心点代入变形的线性回归方程,得到关于t的一次方程,解方程,得到结果.【解答】解:∵由回归方程知=,解得t=3,故选A.8.四个人站成一排,解散后重新站成一排,恰有一个人位置不变的概率为()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【分析】首先求得满足题意的排列的种数,然后利用古典概型公式进行计算即可求得概率值.【解答】解:使用乘法原理考查满足题意的排列方法,先从4个人里选3个进行调换,因为每个人都不能坐在原来的位置上,因此第一个人有两种坐法,被坐了自己椅子的那个人只能坐在第三个人的椅子上(一种坐法),才能保证第三个人也不坐在自己的椅子上.因此三个人调换有两种调换方法.故不同的调换方法有种,恰有一个人位置不变的概率为.故选:C.9.我国古代名著《九章算术》用“辗转相除法”求两个正整数的最大公约数是一个伟大创举.其程序框图如图,当输入a=1995,b=228时,输出的()A.17 B.19 C.27 D.57【考点】EF:程序框图.【分析】模拟程序框图的运行过程,该程序执行的是欧几里得辗转相除法,求出运算结果即可.【解答】解:模拟程序框图的运行过程,如下;a=1995,b=228,执行循环体,r=171,a=228,b=171,不满足退出循环的条件,执行循环体,r=57,a=171,b=57,不满足退出循环的条件,执行循环体,r=0,a=57,b=0,满足退出循环的条件r=0,退出循环,输出a的值为57.故选:D.10.一动圆与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,则动圆圆心轨迹为()A.圆B.椭圆C.双曲线的一支D.抛物线【考点】KA:双曲线的定义.【分析】设动圆P的半径为r,然后根据⊙P与⊙O:x2+y2=1,⊙F:x2+y2﹣8x+12=0都外切得|PF|=2+r、|PO|=1+r,再两式相减消去参数r,则满足双曲线的定义,问题解决.【解答】解:设动圆的圆心为P,半径为r,而圆x2+y2=1的圆心为O(0,0),半径为1;圆x2+y2﹣8x+12=0的圆心为F(4,0),半径为2.依题意得|PF|=2+r|,|PO|=1+r,则|PF|﹣|PO|=(2+r)﹣(1+r)=1<|FO|,所以点P的轨迹是双曲线的一支.故选C.11.已知函数f(x)及其导数f'(x),若存在x0使得f(x0)=f'(x0),则称x0是f(x)的一个“巧值点”.给出下列五个函数:①f(x)=x2,②f(x)=e﹣x,③f(x)=lnx,④f(x)=tanx,其中有“巧值点”的函数的个数是()A.1 B.2 C.3 D.4【考点】63:导数的运算.【分析】根据题意,依次分析四个函数,分别求函数的导数,根据条件f(x0)=f′(x0),确实是否有解即可.【解答】解:根据题意,依次分析所给的函数:①、若f(x)=x2;则f′(x)=2x,由x2=2x,得x=0或x=2,这个方程显然有解,故①符合要求;②、若f(x)=e﹣x;则f′(x)=﹣e﹣x,即e﹣x=﹣e﹣x,此方程无解,②不符合要求;③、f(x)=lnx,则f′(x)=,若lnx=,利用数形结合可知该方程存在实数解,③符合要求;④、f(x)=tanx,则f′(x)=﹣,即sinxcosx=﹣1,变形可sin2x=﹣2,无解,④不符合要求;故选:B.12.设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=()A.B.C.D.【考点】K9:抛物线的应用;K8:抛物线的简单性质;KH:直线与圆锥曲线的综合问题.【分析】根据=,进而根据两三角形相似,推断出=,根据抛物线的定义求得=,根据|BF|的值求得B的坐标,进而利用两点式求得直线的方程,把x=代入,即可求得A的坐标,进而求得的值,则三角形的面积之比可得.【解答】解:如图过B作准线l:x=﹣的垂线,垂足分别为A1,B1,∵=,又∵△B1BC∽△A1AC、∴=,由拋物线定义==.由|BF|=|BB1|=2知x B=,y B=﹣,∴AB:y﹣0=(x﹣).把x=代入上式,求得y A=2,x A=2,∴|AF|=|AA1|=.故===.故选A.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡上相应位置)13.函数的定义域为(] .【考点】33:函数的定义域及其求法.【分析】根据二次根式以及对数函数的性质求出函数的定义域即可.【解答】解:由题意得:0<2x﹣1≤1,解得:<x≤1,故答案为:(].14.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是甲.【考点】F4:进行简单的合情推理.【分析】此题可以采用假设法进行讨论推理,即可得出结论.【解答】解:假如甲:我没有偷是真的,乙:丙是小偷、丙:丁是小偷是假的,丁:我没有偷就是真的,与他们四人中只有一人说真话矛盾,假如甲:我没有偷是假的,那么丁:我没有偷就是真的,乙:丙是小偷、丙:丁是小偷是假的,成立,故答案为:甲.15.函数.若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,则f(x)的极小值(其中e为自然对数的底数)等于2.【考点】6H:利用导数研究曲线上某点切线方程.【分析】先利用导数的几何意义求出k的值,然后利用导数求该函数单调区间及其极值.【解答】解:由函数得f′(x)=﹣.∵曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,∴此切线的斜率为0.即f′(e)=0,有﹣=0,解得k=e.∴f′(x)=﹣=,由f′(x)<0得0<x<e,由f′(x)>0得x>e.∴f(x)在(0,e)上单调递减,在(e,+∞)上单调递增,当x=e时f(x)取得极小值f(e)=lne+=2.故答案为:2.16.已知函数y=f(x)恒满足f(x+2)=f(x),且当x∈[﹣1,1]时,f(x)=2|x|﹣1,则函数g (x)=f(x)﹣|lgx|在R上的零点的个数是8.【考点】3P:抽象函数及其应用.【分析】作出f(x)与y=|lgx|的函数图象,根据函数图象的交点个数得出答案.【解答】解:∵f(x+2)=f(x),∴f(x)的周期为2,令g(x)=0得f(x)=|lgx|,作出y=f(x)与y=|lgx|的函数图象如图所示:由图象可知f(x)与y=|lgx|在(0,1)上必有1解,又f(x)的最小值为,f(x)的最大值为1,∵lg2<lg=,lg4>lg=,lg9<1,lg11>1,∴f(x)与y=|lgx|在(10,+∞)上没有交点,结合图象可知f(x)与y=|lgx|共有8个交点,∴g(x)共有8个零点.故答案为:8.三、解答题(本题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知函数f(x)=4x+m?2x+1(x∈(﹣∞,0],m∈R)(Ⅰ)当m=﹣1时,求函数f(x)的值域;(Ⅱ)若f(x)有零点,求m的取值范围.【考点】34:函数的值域.【分析】(Ⅰ)当m=﹣1时,可得f(x)=)=4x﹣2x+1,转化为二次函数问题求解值域即可.(Ⅱ)f(x)有零点,利用分离参数m,讨论单调性即可得m的取值范围.【解答】解:当m=﹣1时,可得f(x)=)=4x﹣2x+1,令t=2x,x≤0,由指数函数的单调性和值域t∈(0,1].(Ⅰ)函数f(x)化为y=t2﹣t+1=,t∈(0,1].当t=时,y取得最小值为;当t=1时,y取得最大值为1;∴函数的值域为[,1];(Ⅱ)f(x)有零点,即4x+m?2x+1=0有解(x∈(﹣∞,0],∴m=.∵t=2x,t∈(0,1].∴m==≤﹣2.(当且仅当t=1时,取等)即m≤﹣2.∴f(x)有零点,m的取值范围是(﹣∞,﹣2].18.设命题p:方程表示双曲线;命题q:斜率为k的直线l过定点P(﹣2,1),且与抛物线y2=4x有两个不同的公共点.若p∧q是真命题,求k的取值范围.【考点】2E:复合命题的真假.【分析】分别求出p,q为真时,k的取值范围,再利用p∧q为真命题,即可求k的取值范围.【解答】解:命题p真,则(2+k)(3k+1)>0,解得k<﹣2或,…命题q为真,由题意,设直线l的方程为y﹣1=k(x+2),即y=kx+2k+1,…联立方程组,整理得ky2﹣4y+4(2k+1)=0,…要使得直线与抛物线有两个公共点,需满足,…解得且k≠0…若p∧q是真命题,则,即所以k的取值范围为…19.在某单位的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如图所示.食堂某天购进了90个面包,以x (单位:个,60≤x≤110)表示面包的需求量,T(单位:元)表示利润.(Ⅰ)求T关于x的函数解析式;(Ⅱ)求食堂每天面包需求量的中位数;(Ⅲ)根据直方图估计利润T不少于100元的概率.【考点】CC:列举法计算基本事件数及事件发生的概率;B8:频率分布直方图.【分析】(Ⅰ)当60≤x≤90时,利润T=5x+1×(90﹣x)﹣3×90,当90<x≤110时,利润T=5×90﹣3×90,由此能求出T关于x的函数解析式.(Ⅱ)设食堂每天面包需求量的中位数为t,利用频率分布直方图能求出食堂每天面包需求量的中位数.(III)由题意,设利润T不少于100元为事件A,当利润T不少于100元时,求出70≤x≤110,由直方图能求出当70≤x≤110时,利润T不少于100元的概率.【解答】解:(Ⅰ)由题意,当60≤x≤90时,利润T=5x+1×(90﹣x)﹣3×90=4x﹣180,当90<x≤110时,利润T=5×90﹣3×90=180,∴T关于x的函数解析式T=.…(Ⅱ)设食堂每天面包需求量的中位数为t,则10×0.025+10×0.015+(t﹣80)×0.020=,解得t=85,故食堂每天面包需求量的中位数为85个.…(III)由题意,设利润T不少于100元为事件A,由(Ⅰ)知,利润T不少于100元时,即4x﹣180≥100,∴x≥70,即70≤x≤110,由直方图可知,当70≤x≤110时,利润T不少于100元的概率:P(A)=1﹣P()=1﹣0.025×(70﹣60)=0.75.…20.已知函数f(x)=ax﹣1﹣lnx(a∈R).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若函数f(x)在x=1处取得极值,不等式f(x)≥bx﹣2对任意x∈(0,+∞)恒成立,求实数b的取值范围.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【分析】(Ⅰ)对函数进行求导,然后令导函数大于0求出x的范围,令导函数小于0求出x 的范围,即可得到答案;(Ⅱ)由函数f(x)在x=1处取得极值求出a的值,再依据不等式恒成立时所取的条件,求出实数b的取值范围即可.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞)..若a≤0,则f'(x)<0,∴f(x)在(0,+∞)上递减;若a>0,则由f'(x)>0得:;由f'(x)<0得:.∴f(x)在上递减,在递增.(Ⅱ)∵函数f(x)在x=1处取得极值,∴f'(1)=0,即a﹣1=0,解得:a=1.∴f(x)=x﹣1﹣lnx.由f(x)≥bx﹣2得:x﹣1﹣lnx≥bx﹣2,∵x>0,∴.令,则由g'(x)>0得:x>e2;由g'(x)<0得:0<x<e2.所以,g(x)在(0,e2)上递减,在(e2,+∞)递增.∴,∴.21.已知椭圆C:=1(a>b>0)上的左、右顶点分别为A,B,F1为左焦点,且|AF1|=2,又椭圆C过点.(Ⅰ)求椭圆C的方程;(Ⅱ)点P和Q分别在椭圆C和圆x2+y2=16上(点A,B除外),设直线PB,QB的斜率分别为k1,k2,若A,P,Q三点共线,求的值.【考点】K4:椭圆的简单性质.【分析】(Ⅰ)由已知可得a﹣c=2,b=,结合隐含条件求得a,则椭圆方程可求;(Ⅱ)由(Ⅰ)知A(﹣4,0),B(4,0).设P(x1,y1),Q(x2,y2),可得,再由已知点Q(x2,y2)在圆x2+y2=16上,AB为圆的直径,可得k QA?k2=﹣1,由A,P,Q三点共线,可得k AP=k QA,k PA?k2=﹣1.进一步求得.【解答】解:(Ⅰ)由已知可得a﹣c=2,b=,又b2=a2﹣c2=12,解得a=4.故所求椭圆C的方程为;(Ⅱ)由(Ⅰ)知A(﹣4,0),B(4,0).设P(x1,y1),Q(x2,y2),∴.∵P(x1,y1)在椭圆C上,∴,即.∴.…①由已知点Q(x2,y2)在圆x2+y2=16上,AB为圆的直径,∴QA⊥QB.∴k QA?k2=﹣1.由A,P,Q三点共线,可得k AP=k QA,∴k PA?k2=﹣1.…②由①、②两式得.请考生在第22、23二题中任选一题做答,如果多做,则按所做的第一题记分22.已知曲线 C 的极坐标方程为ρ2﹣4(Ⅰ)将极坐标方程化为普通方程;(Ⅱ)若点P(x,y)在该曲线上,求x+y 的取值范围.【考点】Q4:简单曲线的极坐标方程.【分析】(Ⅰ)由题意可知即可求得曲线C的普通方程;(Ⅱ)设圆的参数,将P代入圆的方程,即可求得x+y的表达式,根据二次函数的性质,即可求得正弦函数的性质即可求得x+y的取值范围.+6=0,【解答】解:(Ⅰ)原方程变形为ρ2﹣4ρcosθ﹣4ρsinθ化直角坐标方程为x2+y2﹣4x﹣4y+6=0,即(x﹣2)2+(y﹣2)2=2,∴曲线C的普通方程(x﹣2)2+(y﹣2)2=2;…5分(Ⅱ)设圆的参数方程为(α 为参数),点P(x,y)在圆上,则x.所以x+y 的最大值为6,最小值为2,∴x+y 的取值范围[2,6].…10分23.在直角坐标系中,定义P(x1,y1),Q(x2,y2)之间的“直角距离”:d(P,Q)=|x1﹣x2|+|y1﹣y2|.若点A(﹣2,4),M(x,y)为直线x﹣y+8=0上的动点(Ⅰ)解关于x的不等式d(A,M)≤4;(Ⅱ)求d(A,M)的最小值.【考点】7E:其他不等式的解法;IS:两点间距离公式的应用.【分析】(Ⅰ)根据新定义建立关系,利用绝对值不等式的性质,去绝对值求解即可;(Ⅱ)利用绝对值不等式的性质,求解d(A,M)的最小值.【解答】解:(Ⅰ)由题意知d(P,Q)=|x1﹣x2|+|y1﹣y2|.∴d(A,M)≤4;即d(A,M)=|x+2|+|y﹣4|≤4,∵M(x,y)为直线x﹣y+8=0上的动点,∴x+8=y.∴d(A,M)=|x+2|+|x+4|≤4去掉绝对值:或或解得:﹣5≤x≤﹣4或﹣4<x<﹣2或﹣2≤x≤﹣1,∴不等式的解集为{x|﹣5≤x≤﹣1};(Ⅱ)d(A,M)的最小值.即d(A,M)=|x+2|+|y+4|≥|(x+2)﹣(x+4)|=2当且仅当(x+2)(x+4)≤0,即﹣4≤x≤﹣2时取等号.故当﹣4≤x≤﹣2时,d(A,M)的最小值为2.。
高二文科数学第二学期期末考试试题及答案
答案一、选择题1-5 DABCB 6-10 DADDC 11-12 BC二、填空题13.丁 14.充分15.(n +1)(n +2) …(n +n)=2n ×1×3×…×(2n -1) 16.2ΔABC ΔBOC ΔBDC S =S S ⋅ 三、解答题17.证明:由(1tan )(1tan )2A B ++= 可得tan tan 21tan 4tan 1tan()1tan 1tan 41tan tan 4A A B A A A A π--π=-===-π+++…………………5分()4B A k k π=-+π∈Z 即()4A B k k π+=+π∈Z因为A,B 都是钝角,即2A B π<+<π, 所以54A B π+=.…………………………10分 18………………6分 (Ⅱ)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯由2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………………12分19.解:(Ⅰ)…………………2分(Ⅱ)()12456855x =++++=,()13040605070505y =++++=,…………4分213805550 6.514555b -⨯⨯==-⨯,50 6.5517.5a y bx =-=-⨯=,…………………8分 ∴回归直线方程为 6.517.5y x =+.…………………10分(Ⅲ)当10x =时,预报y 的值为10 6.517.582.5y =⨯+=.…………………12分20.(1)几何证明选讲解析:(Ⅰ)证明:连接BE ,则△ABE 为直角三角形,因为∠ABE =∠ADC =90,∠AEB =∠ACB ,所以△ABE ∽△ADC ,则=,即ABAC =ADAE.又AB =BC ,所以ACBC =ADAE. …………………6分(Ⅱ)因为FC 是⊙O 的切线,所以FC 2=AFBF.又AF =4,CF =6,则BF =9,AB =BF -AF =5.因为∠ACF =∠CBF ,又∠CFB =∠AFC ,所以△AFC ∽△CFB ,则=,即AC ==.…………………12分20.(2)坐标系与参数方程解析:(Ⅰ)直线参数方程可以化为根据直线参数方程的意义,这是一条经过点,倾斜角为60的直线.…………………6分 (Ⅱ)直线l 的直角坐标方程为y =x +,即x -y +=0,极坐标方程ρ=2cos 的直角坐标方程为2+2=1,所以圆心到直线l 的距离d ==,所以|AB |=2=.…………………12分20.(3)不等式选讲解:(Ⅰ)由()3f x ≤得,||3x a ≤-,解得33a x a ≤≤-+.又已知不等式()3f x ≤的解集为{|15}x x ≤≤-,所以31,35,a a -=-⎧⎨+=⎩解得2a =.…………………6分(Ⅱ)当2a =时,()|2|f x x =-,设()()(5)g x f x f x =++,于是()21,3,|2||3|5,32,21,2,x x g x x x x x x --<-⎧⎪-≤≤⎨⎪+>⎩=-++=所以当3x <-时,()5g x >;当32x ≤≤-时,()5g x =;当2x >时,()5g x >.综上可得,()g x 的最小值为5.从而若()(5)f x f x m ≥++,即()g x m ≥对一切实数x 恒成立,则m 的取值范围为(-∞,5].…………………12分21.(1)几何证明选讲解析:(Ⅰ)证明:由已知条件,可得∠BAE =∠CAD.因为∠AEB 与∠ACB 是同弧上的圆周角,所以∠AEB =∠ACD.故△ABE ∽△ADC. …………………6分(Ⅱ)因为△ABE ∽△ADC ,所以=,即ABAC =ADAE.又S =ABACsin ∠BAC ,且S =ADAE ,故ABACsin ∠BAC =ADAE.则sin ∠BAC =1,又∠BAC 为三角形内角,所以∠BAC =90. …………………12分21.(2)坐标系与参数方程(Ⅰ)2sin ρθ=可得22sin ρρθ=,即222x y y += 所以曲线C 的直角坐标方程为222x y y +=.…………………6分 (Ⅱ)直线l 的普通方程为4(2)3y x =--,令0y =可得2x =,即(2,0)M ,又曲线C 为圆,圆C 的圆心坐标为(0,1),半径1r =,则MC =1MN MC r ∴≤+=+.…………………12分21.(3)不等式选讲解 (Ⅰ)由|21|1x <-得1211x <<--,解得01x <<. 所以{}M |01x x <<=.…………………6分(Ⅱ)由(Ⅰ)和M a b ∈,可知01a <<,01b <<.所以(1)()(1)(1)0ab a b a b >+-+=--. 故1ab a b >++.…………………12分22.(1)几何证明选讲解析:(Ⅰ)延长BE 交圆E 于点M ,连接CM ,则∠BCM =90,又BM =2BE =4,∠EBC =30,∴ BC =2,又∵ AB =AC ,∴ AB =BC =.由切割线定理知AF 2=ABAC =3=9.∴ AF =3. …………………6分(Ⅱ)证明:过点E 作EH ⊥BC 于点H ,则△EDH 与△ADF 相似,从而有==,因此AD =3ED . …………………12分22.(2)坐标系与参数方程(I )由2cos 2sin x y ϕϕ=⎧⎨=⎩可得224x y +=,由4sin()3πρθ=+得24(sin cos cos sin )33ππρρθθ=+,即222x y y +=+,整理得22((1)4x y +-=.…………………6分 (II )圆1C 表示圆心在原点,半径为2的圆,圆2C表示圆心为,半径为2的圆, 又圆2C的圆心在圆1C 上,由几何性质可知,两圆相交.…………………12分22.(3)不等式选讲解:(I )当2a =时,|2||4|4x x -+-≥,当2x ≤时,得264x -+≥,解得1x ≤;当24x <<时,得24≥,无解;当4x ≥时,得264x -≥,解得5x ≥;故不等式的解集为{| 15}x x x ≤≥或.…………………6分(II )2||x a a -≤可解得22{|}x a a x a a -≤≤+, 因为22{|}{|26}x a a x a a x x -≤≤+⊆-≤≤, 所以2226a a a a ⎧-≤-⎪⎨+≤⎪⎩解得1232a a -≤≤⎧⎨-≤≤⎩即12a -≤≤,又因为1a >,所以12a <≤.…………………12分。
高二下学期期末考试数学(文)试卷 Word版含答案
高二数学试题(文科)试卷说明:(1)命题范围:人教版选修1-2,必修1 (2)试卷共两卷(3)时间:120分钟 总分:150分第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的.1.如果{}5,4,3,2,1=S ,{}3,2,1=M ,{}5,3,2=N ,那么()()N C M C S S 等于( ). A.φ B.{}3,1 C.{}4 D.{}5,2 2.下列函数中,是奇函数,又在定义域内为减函数的是( ).A.xy ⎪⎭⎫⎝⎛=21 B.x y 1= C.)(log 3x y -= D.3x y -=3. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则A .a=2,b=2B .a = 2 ,b=2C .a=2,b=1D .a= 2 ,b= 2 4. 对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaaa111++<④aaaa111++>其中成立的是A .①与③B .①与④C .②与③D .②与④5、若函数的图象经过第二且)10(1)(≠>-+=a a b a x f x、三、四象限,则一定有 A .010><<b a 且 B .01>>b a 且C .010<<<b a 且D .01<>b a 且6、已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若A .21 B .-21 C .2D .-27.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a=A.42 B.22 C.41 D.218、函数1(1)y x =≥的反函数是A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y9.在映射:f A B →中,(){},|,A B x y x y R ==∈,且()():,,f x y x y x y →-+,则与A 中的元素()1,2-对应的B 中的元素为()A .()3.1-B .()1,3C .()1,3--D .()3,110.设复数2121),(2,1z z R b bi z i z 若∈+=+=为实数,则b = ( )A.2B.1C.-1D.-211.函数34x y =的图象是( )A .B .C .D .12、在复平面内,复数1i i++(1+3i )2对应的点位于 ( ) A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题纸中对应横线上. 13.已知复数122,13z i z i =-=-,则复数215z i z + =14.lg25+32lg8+lg5·lg20+lg 22= 15.若关于x 的方程04)73(32=+-+x t tx 的两实根21,x x ,满足21021<<<<x x ,则实数t 的取值范围是16.函数2()ln()f x x x =-的单调递增区间为三、解答题:本大题共6小题,共74分.前五题各12分,最后一题14分. 17.(本小题12分)计算 ()20251002i 1i 1i 1i i 21⎪⎭⎫⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-++18.(本小题12分) 在数列{a n }中,)(22,111++∈+==N n a a a a nnn ,试猜想这个数列的通项公式。
高二下学期文科数学期末复习试题含答案
高二文科数学期末复习一、填空题:1.若复数z 满足()12i 34i z +=-+(i 是虚数单位),则=z . 答案:i 21+.2.设全集=U Z ,集合2{|20=--≥A x x x ,}∈x Z ,则U=A (用列举法表示).答案:{0,1}.3.若复数z 满足i iz 31+-=(i 是虚数单位),则=z .i +4.已知A ,B 均为集合{=U 2,4,6,8,10}的子集,且}4{=⋂B A ,}10{)(=⋂A B C U ,则=A .答案:{4,10}5.已知全集R U =,集合=A {32|≤≤-x x },=B {1|-<x x 或4>x },那么集合⋂A (UB )等于 .答案:{x|-1≤x≤3}解析:主要考查集合运算.由题意可得,UB ={x|-1≤x≤4},A ={x|-2≤x≤3},所以(⋂A U)B ={x|-1≤x≤3}.6.已知集合},3,1{m A =,}4,3{=B ,且}4,3,2,1{=B A ,则实数m = . 答案:27.命题“若b a >,则b a 22>”的否命题为 . 答案:若b a ≤,则ba22≤8.设函数()⎩⎨⎧=x xx f 2log 2 11>≤x x ,则()[]=2f f .答案:2 9.函数)23(log 5.0-=x y 的定义域是 .答案:]1,32(10.已知9.01.17.01.1,7.0log ,9.0log ===c b a ,则c b a ,,按从小到大依次为 .答案:c a b <<11.设函数)(x f 是定义在R 上的奇函数.若当),0(∞+∈x 时,x x f lg )(=,则满足0)(>x f 的x 的取值范围是 .答案:),1()0,1(∞+-12.曲线C :x x y ln =在点M (e ,e )处的切线方程为 . 答案:e x y -=213.已知函数211)(xx f -=的定义域为M ,)1(log )(2x x g -=(1-≤x )的值域为N ,则(RM )N ⋂等于 .答案:{x|x≥1}解析:考查定义域求解.可求得集合M ={x|-1<x<1},集合N ={g (x )|g (x )≥1},则RM ={x|x≤-1或x≥1},∴(RM )N ⋂={x|x≥1}.14.设⎪⎩⎪⎨⎧+--=,11,2|1|)(2x x x f 1||1||>≤x x ,则)]21([f f 等于 .答案:134解析:本题主要考查分段函数运算. ∵232|121|)21(-=--=f ,∴134)23(11)23()]21([2=-+=-=f f f .15.已知函数)1ln()(2++=x x x f ,若实数a ,b 满足0)1()(=-+b f a f ,则b a +等于 .答案:1解析:考查函数奇偶性.观察得)(x f 在定义域内是增函数, 而)1ln()(2++-=-x x x f )(11ln2x f x x -=++=,∴)(x f 是奇函数,则)1()1()(b f b f a f -=--=,∴b a -=1,即1=+b a .16.若函数)(log )(3ax x x f a -=(0>a ,1≠a )在区间(21-,0)上单调递增,则a 的范围是 .答案:143<≤a解析:本题考查复合函数单调性,要注意分类讨论.设ax x x u -=3)(,由复合函数的单调性,可分10<<a 和1>a 两种情况讨论:①当10<<a 时,ax x x u -=3)(在(21-,0)上单调递减,即03)('2≤-=a x x u 在(21-,0)上恒成立,∴43≥a ,∴143<≤a ;②当1>a 时,ax x x u -=3)(在(21-,0)上单调递增,即03)('2≥-=a x x u 在(21-,0)上恒成立,∴0≤a ,∴a 无解.综上,可知143<≤a .17.已知()f x 为偶函数,且)3()1(x f x f -=+,当02≤≤-x 时,xx f 3)(=,则=)2011(f . 答案:3118.函数221x xy =+的值域为 .答案:)1,0(19.已知函数)(x f 的定义域为A ,若其值域也为A ,则称区间A 为)(x f 的保值区间.若()ln g x x m x =++的保值区间是[,)e +∞ ,则实数m 的值为 .答案:1-20.若不等式0122<-+-m x mx 对任意]2,2[-∈m 恒成立,则实数x 的取值范围是 .答案:)213,217(+-21.直线1=y 与曲线a x x y +-=2有四个交点,则实数a 的取值范围是 . 答案:)45,1(22.已知函数0)(3(log 2≠-=a ax y a 且)1±≠a 在]2,0[上是减函数,则实数a 的取值范围是 . 答案:)23,1()0,1( -二、解答题: 1.已知函数132)(++-=x x x f 的定义域为A ,函数)1()]2)(1lg[()(<---=a x a a x x g 的定义域为B . (1)求A ;(2)若A B ⊆,求实数a 的取值范围. 解:(1)由0132≥++-x x ,得011≥+-x x ,∴1-<x 或1≥x , ……4分即),1[)1,(+∞--∞= A ; ……6分 (2)由0)2)(1(>---x a a x ,得0)2)(1(<---a x a x .∵1<a ,∴a a 21>+.∴)1,2(+=a a B . ……8分 ∵A B ⊆,∴12≥a 或11-≤+a ,即21≥a 或2-≤a . ……12分而1<a ,∴121<≤a 或2-≤a .故当A B ⊆时,实数a 的取值范围是)1,21[]2,( --∞. ……14分2.已知命题p :函数)2(log 25.0a x x y ++=的值域为R ,命题q :函数x a y )25(--= 是减函数.若p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.解:对命题p :∵函数)2(log 25.0a x x y ++=的值域为R ,∴1)1(222-++=++a x a x x 可以取到),0(+∞上的每一个值,∴01≤-a ,即1≤a ; ……4分命题q :∵函数xa y )25(--=是减函数,∴125>-a ,即2<a . ……8分 ∵p 或q 为真命题,p 且q 为假命题,∴命题p 与命题q 一真一假,若p 真q 假,则1≤a 且2≥a ,无解, ……10分 若p 假q 真,则21<<a , ……12分 ∴实数a 的取值范围是)2,1( ……14分3.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为2.1万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为x 75.0,同时预计年销售量增加的比例为x 6.0.已知年利润=(出厂价–投入成本)⨯年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内? 解:(1)由题意得)10)(6.01(1000)]1(1)75.01(2.1[<<+⨯⨯+⨯-+⨯=x x x x y ,…5分 整理得 )10( 20020602<<++-=x x x y ;……7分(2)要保证本年度的利润比上年度有所增加,当且仅当⎩⎨⎧<<>⨯--.10,01000)12.1(x y …10分即⎩⎨⎧<<>+-.10,020602x x x 解不等式得 310<<x . ……13分答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足33.00<<x .…14分 4.已知命题p :指数函数xa x f )62()(-=在R 上单调递减,命题Q :关于x 的方程012322=++-a ax x 的两个实根均大于3.若p 或q 为真,p 且q 为假,求实数a 的取值范围.解:若p 真,则f (x )=(2a -6)x在R 上单调递减,∴0<2a -6<1,∴3<a<72,若q 真,令f (x )=x 2-3ax +2a 2+1,则应满足⎩⎪⎨⎪⎧Δ= -3a 2-4 2a 2+1 ≥0--3a2>3f 3 =9-9a +2a 2+1>0,∴⎩⎪⎨⎪⎧a ≥2或a ≤-2a>2a<2或a>52,故a>52,又由题意应有p 真q 假或p 假q 真.①若p 真q 假,则⎩⎪⎨⎪⎧3<a<72a ≤52,a 无解.②若p 假q 真,则⎩⎪⎨⎪⎧a ≤3或a ≥72a>52,∴52<a ≤3或a ≥72.故a 的取值范围是{a|52<a ≤3或a ≥72}.5.已知函数)(x f 满足对任意实数y x ,都有1)()()(+++=+xy y f x f y x f ,且2)2(-=-f .(1)求)1(f 的值;(2)证明:对一切大于1的正整数t ,恒有t t f >)(;(3)试求满足t t f =)(的所有的整数t ,并说明理由.解:(1)令0==y x ,得1)0(-=f ;令1-==y x ,得2)1()1()2(+-+-=-f f f ,又2)2(-=-f ,∴2)1(-=-f ; 令1,1-==y x ,得)1()1()0(-+=f f f ,∴1)1(=f . ……4分 (2)令1=x ,得2)()1(+=-+y y f y f ①∴当N y ∈时,有0)()1(>-+y f y f ,由1)1(),()1(=>+f y f y f 知对*N y ∈有0)(>y f ,∴当*N y ∈时,111)(2)()1(+>+++=++=+y y y f y y f y f ,于是对于一切大于1的正整数t ,恒有t t f >)(. ……9分 (3)由①及(1)可知1)4(,1)3(=--=-f f ; ……11分下面证明当整数4-≤t 时,t t f >)(,∵4-≤t ,∴02)2(>≥+-t 由① 得0)2()1()(>+-=+-t t f t f ,即 0)4()5(>---f f ,同理0)5()6(>---f f , ……,0)2()1(>+-+t f t f ,0)1()(>+-t f t f , 将以上不等式相加得41)4()(->=->f t f ,∴当4-≤t 时,t t f >)(, ……15分 综上,满足条件的整数只有2,1-=t . ……16分6.如下图所示,图1是定义在R 上的二次函数)(x f 的部分图象,图2是函数)(log )(b x x g a +=的部分图象.(1)分别求出函数)(x f 和)(x g 的解析式;(2)如果函数)]([x f g y =在区间[1,m )上单调递减,求实数m 的取值范围. 解:(1)由题图1得,二次函数)(x f 的顶点坐标为(1,2), 故可设函数2)1()(2+-=x a x f ,又函数)(x f 的图象过点(0,0),故2-=a , 整理得x x x f 42)(2+-=.由题图2得,函数)(log )(b x x g a +=的图象过点(0,0)和(1,1),故有⎩⎨⎧=+=1)1(log 0log b b aa ,∴⎩⎨⎧==12b a ,∴)1(log )(2+=x x g (1->x ).(2)由(1)得)142(l og )]([22++-==x x x f g y 是由t y 2log =和1422++-=x x t 复合而成的函数,而t y 2log =在定义域上单调递增,要使函数)]([x f g y =在区间[1,m )上单调递减,必须1422++-=x x t 在区间[1,m )上单调递减,且有0>t 恒成立.由0=t 得262±=x ,又因为t 的图象的对称轴为1=x .所以满足条件的m 的取值范围为2621±<<m .7.已知1212)3(4)(234+-++-=x x m x x x f ,R m ∈.(1)若f 0)1('=,求m 的值,并求)(x f 的单调区间;(2)若对于任意实数x ,0)(≥x f 恒成立,求m 的取值范围.解:(1)由f ′(x )=4x 3-12x 2+2(3+m )x -12,得f ′(1)=4-12+2(3+m )-12=0,解得m =7.………2分所以 f ′(x )=4 x 3-12x 2+20x -12=4(x -1)(x 2-2x +3) .方程x 2-2x +3=0的判别式Δ=22-3×4=-8<0,所以x 2-2x +3>0. 所以f ′(x )=0,解得x =1.……………………………4分由此可得f (x )的单调减区间是(-∞,1),f (x )的单调增区间是(1,+∞).…8分(2)f (x )=x 4-4x 3+(3+m )x 2-12x +12=(x 2+3)(x -2)2+(m -4)x 2. 当m <4时,f (2)=4(m -4)<0,不合题意;……………12分当m≥4时,f (x )=(x 2+3)(x -2)2+(m -4)x 2≥0,对一切实数x 恒成立. 所以,m 的取值范围是[4,+∞).……………16分。
高二下学期数学期末试卷及答案(文科)
下期高中二年级教学质量监测数学试卷(文科)(考试时间120分 满分150分)第Ⅰ卷 选择题(满分60分)一、选择题:本大题共12小题;每小题5分;满分60分;每小题只有一个选项符合题目要求;请将正确答案填在答题栏内。
1. 设集合M ={长方体};N ={正方体};则M ∩N =:A .MB .NC .∅D .以上都不是 2. “sinx =siny ”是“x =y ”的:A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 3. 下列函数是偶函数的是:A .)0()(2≥=x x x fB . )2cos()(π-=x x f C . x e x f =)(D . ||lg )(x x f =4. 从单词“equation ”中选取5个不同的字母排成一排;含有“qu ”(其中“qu ”相连且顺序不变)的不同排法共有()个: A .480 B . 840 C . 120 D . 7205. 72)12(xx +的展开式中倒数第三项的系数是:A .267CB . 6672CC . 2572CD . 5572C 6. 直线a ⊥平面α;直线b ∥平面α;则直线a 、b 的关系是:A .可能平行B . 一定垂直C . 一定异面D . 相交时才垂直7. 已知54cos ),0,2(=-∈x x π;则=x 2tan : A .274B . 274-C .724 D . 724-8. 抛物线的顶点在原点;焦点与椭圆14822=+x y 的一个焦点重合;则抛物线方程是:A .y x 82±=B . x y 82±=C . y x 42±=D . x y 42±=9. 公差不为0的等差数列}{n a 中;632,,a a a 成等比数列;则该等比数列的公比q 等于: A . 4 B . 3 C . 2 D . 110. 正四面体的内切球(与正四面体的四个面都相切的球)与外接球(过正四面体四个顶点的球)的体积比为: A .1:3 B . 1:9 C . 1:27 D . 与正四面体的棱长无关11. 从1;2;3;…;9这九个数中;随机抽取3个不同的数;这3个数的和为偶数的概率是:A .95 B . 94 C . 2111 D . 2110 12. 如图:四边形BECF 、AFED 都是矩形;且平面AFED ⊥平面BCDEF ;∠ACF =α;∠ABF =β;∠BAC =θ;则下列式子中正确的是: A .θβαcos cos cos •= B .θβαcos sin sin •=C .θαβcos cos cos •=D .θαβcos sin sin •=。
高二下期期末考试文科数学
高二学年下学期期末考试数学(文)试题试题说明:1、本试题满分 150分,答题时间 120分钟。
2、请将答案填写在答题卡上,考试结束后只交答题卡。
第Ⅰ卷 选择题部分(共60分)一、选择题(每小题只有一个选项正确,每小题5分,共60分)1.已知集合{}52≤∈=x N x P ,{}1ln ->∈=x R x Q ,则Q P 的真子集个数为 ( )A 2B 3C 4D 72.在ABC ∆中,“B A >”是“B A sin sin >”的 ( )A 充分不必要条件B 必要不充分条件C 充要条件D 非充分也非必要条件 3.已知命题p :()1-=xx f 在其定义域内是减函数;命题q :()x x g tan =的图象关于2π=x 对称。
则下列命题中真命题是( )A q p ∨B q p ∧C ()q p ∧⌝D ()q p ∨⌝4.设方程022=-+x x的根为1x ,方程021log 2=+-x x的根为2x ,则1x +2x = ( )A 1B 2C 3D 45.设23ln =a ,()523ln =b ,075sin =c 则( )A c b a <<B c a b <<C b c a <<D b a c << 6.已知函数()()⎩⎨⎧≥<-=-0,20,1log 122x x x x f x ,则()()()()=+-03f f f f ( )A 7B 3ln 7+C 8D 97.欲得到函数()x x f 2sin 2=的图象,只需将函数()⎪⎭⎫⎝⎛-=42cos 2πx x g 的图象 ( ) A 向右平移8π个单位 B 向右平移4π个单位 C 向左平移8π个单位 D 向左平移4π个单位8.函数()xx xx x f cos sin 2++=在[]ππ,-的图象大致是( )9. 命题“R x ∈∃0,使02≤x ”的否定是( )A 不存在R x ∈0,02>x B 存在R x ∈0,020≥xC R x ∈∀,02≤xD R x ∈∀,02>x10.设b a ,为正数,且bab a2log 142=+--- ,则( )A b a 2<B b a 2>C b a 2=D 12=+b a11.定义在R 上的函数()x f y =是奇函数,()x f y -=2为偶函数,若()11=f ,则()()()=++202120202019f f f ( )A 2-B 0C 2D 312. 函数()x f 是定义在R 上的函数,其导函数记为()x f ',()()b a x f x g +-=的图象关于()b a P ,对称,当0>x 时,()()x x f x f <'恒成立,若()02=f ,则不等式()01>-x x f 的解集为( )A ()()2,10,2 -B ()()2,10,2 -C ()()2,2,1-∞-D ()()+∞-,20,2第II 卷 非选择题部分(共90分)二、填空题(每小题5分,共20分)13.若函数()a ax x x x f ++-=2331在()1,0上不单调,则实数a 的取值范围是______. 14.已知钝角ABC ∆的三边都是正整数,且成等差,公差为偶数,则满足条件的ABC ∆的外接圆的面积的最小值为______.15.设0>a ,()ax x f 22=,()23-=x e x g (e 是自然对数的底),若对⎥⎦⎤⎢⎣⎡∈∀2,211x ,⎥⎦⎤⎢⎣⎡∈∃2,212x ,使得()()()()2121x g x g x f x f =成立,则正数=a ______.16.关于函数xx x f sin 1sin )(+=有如下四个命题: ①)(x f 的图像关于y 轴对称;②)(x f 的图像关于原点对称; ③)(x f 在)2,0(π上单调递减;④)(x f 的最小值为2;⑤)(x f 的最小正周期为π.其中所有真命题的序号是__________.三、解答题(共70分)17.(本题满分10分)已知()x x x f 2sin -=,(1)求()x f y =在0=x 处的切线方程;(2)求()x f y =在⎥⎦⎤⎢⎣⎡2,0π上的最值.18.(本题满分12分)已知βα,为锐角,34tan =α,()55cos -=+βα,(1)求αα2sin 2cos +的值; (2)求()αβ-tan 的值.19.(本题满分12分)已知()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-=4cos 4cos 22sin sin 2ππππx x x x x f(1)求()x f 的最小正周期;(2)若()()a x f x g -=(a 为常数)在⎥⎦⎤⎢⎣⎡2,0π上有两个不同的零点1x 和2x ,求1x +2x .20.(本题满分12分)ABC ∆的三个内角C B A ,,所对的边分别为c b a ,,,三个内角C B A ,,满足1sin sin sin sin sin sin sin 2=-+C B AB C C B , (1)求A ;(2)若2=a ,ABC ∆的内角平分线935=AE ,求ABC ∆的周长.21. (本题满分12分)已知椭圆C :()012222>>=+b a b y a x 的离心率为22,且经过点()2,2.(1)求椭圆C 的方程;(2)不过坐标原点也不平行于坐标轴的直线l 与椭圆C 交于A 、B 两点,设线段AB 的中点为M ,求证:直线OM 的斜率与直线l 的斜率之积为定值.22.(本题满分12分)已知函数1()e ln ln x f x a x a -=-+(e 是自然对数的底). (1)当1=a 时,求函数)(x f y =的单调区间;(2)若1)(≥x f 在),0(+∞上恒成立,求正数a 的取值范围.高二学年下学期期末考试数学(文)试题答案一、1-5 :BCDBC 6-10:DAADC 11-12:BA二、填空题(每小题5分,共20分。
高二(下)期末数学复习试卷三(文科)
高二(下)期末数学复习试卷三(文科)一、选择题(每小题5分,共60.0分)1.设复数z满足(1+i)z=2i,则|z|=()A. 12B. √22C. √2D. 22.用反证法证明“三角形中最多只有一个内角是钝角”的结论的否定是( )A. 有两个内角是钝角B. 有三个内角是钝角C. 至少有两个内角是钝角D. 没有一个内角是钝角3.设函数y=√4−x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A. (1,2)B. (1,2]C. (−2,1)D. [−2,1)4.设i为虚数单位,m∈R,“复数m(m−1)+i是纯虚数”是“m=1”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件5.执行如图所示的程序框图,如果运行结果为720,那么判断框中可以填入( )A. k<6?B. k<7?C. k>6?D. k>7?6.设某中学的高中女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,3,…,n),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是()A. y与x具有正线性相关关系B. 回归直线过样本的中心点(x,y)C. 若该中学某高中女生身高增加1cm,则其体重约增加0.85kgD. 若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg7.函数f(x)=ln|x+1|x+1的大致图象为()A. B.C. D.8.用二分法求方程近似解的过程中,已知在区间[a,b]上,f(a)>0,f(b)<0,并计算得到f(a+b2)<0,那么下一步要计算的函数值为()A. f(3a+b4) B. f(a+3b4) C. f(a+b4) D. f(3a+3b4)9.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,图2是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( )①1月至8月空气合格天数超过20天的月份有5个②第二季度与第一季度相比,空气达标天数的比重下降了 ③8月是空气质量最好的一个月 ④6月份的空气质量最差.A. ①②③B. ①②④C. ①③④D. ②③④10. 下列说法错误的是()A. 在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法B. 在残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好C. 线性回归方程对应的直线y ̂=b ̂x +a ̂至少经过其样本数据点中的一个点D. 在回归分析中,相关指数R 2越大,模拟的效果越好 11. 若函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A. 1<a ≤2B. a ≥4C. a ≤2D. 0<a ≤312. 已知定义在R 上的函数y =f (x )对任意的x 满足f (x +1)=−f (x ),当−1≤x <1,f (x )=x 3.函数g(x)={|log a x|,x >0−1x,x <0,若函数h (x )=f (x )-g (x )在[-6,+∞)上恰有6个零点,实数a 的取值范围是( )A. (0,17)⋃(7,+∞)B. [19,17)⋃(7,9]C. (19,17]⋃[7,9)D. [19,1)⋃(1,9]二、填空题(本大题共4小题,每题5分,共20.0分)13. 函数f (x )=ax 3+3x 2+2,若f ′(-1)=6,则a 的值等于______ . 14. ln1=0,ln (2+3+4)=2ln3,ln (3+4+5+6+7)=2ln5,ln (4+5+6+7+8+9+10)=2ln7,……则根据以上四个等式,猜想第n 个等式是______.(n ∈N *) 15. 已知函数f(x)={3x −1,x >0−2x 2−4x,x ≤0,若方程f(x)=m 有3个不等的实根,则实数m 的取值范围是________.16. 已知函数f (x )的定义域为[-1,5],部分对应值如下表,f (x )的导函数y =f ˈ(x )图象如图所示.下列关于f (x )的命题:X -1 0 4 5 f (x )1221①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a有4个零点.其中正确命题的序号是__________.三、解答题(本大题共7小题,共84.0分)17.已知命题p:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,命题q:函数y=log a(1-2x)在定义域上单调递增,若“p∨q”为真命题且“p∧q”为假命题,求实数a的取值范围.18.已知函数f(x)=(a2-3a+3)a x是指数函数.(1)求f(x)的表达式;(2)判断F(x)=f(x)-f(-x)的奇偶性,并加以证明;(3)解不等式:log a(1-x)>log a(x+2).19.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数91011121314人数10182225205将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.P(K2≥k)0.050.01k 3.841 6.635.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)20. 中国"一带一路"战略构思提出后,某科技企业为抓住"一带一路"带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x台,需另投入成本c (x )(万元),当年产量不足80台时,c (x )=12x 2+40x(万元);当年产量不小于80台时,c (x )=101x +8100x−2180(万元).若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y(万元)关于年产量x(台)的函数关系式;(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?21. 已知函数f (x )=x •ln x .(Ⅰ)求曲线y =f (x )在点(1,f (1))处的切线方程; (Ⅱ)求f (x )的单调区间;(Ⅲ)若对于任意x ∈[1e ,e],都有f (x )≤ax -1,求实数a 的取值范围.四、选考题(本题满分10,请在22题23题任选一题作答,多答则以22题计分,解答应写出文字说明、证明过程或演算步骤.)[选修4-4:坐标系与参数方程]22. 已知曲线C 1在平面直角坐标系中的参数方程为{x =√55ty =2√55t −1(t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,有曲线C 2:ρ=2cosθ-4sinθ (1)将C 1的方程化为普通方程,并求出C 2的平面直角坐标方程 (2)求曲线C 1和C 2两交点之间的距离.23. 已知函数f (x )=|2x +1|-|x -m |(m ∈R ).(1)当m =1时,解不等式f (x )≥2;(2)若关于x 的不等式f (x )≥|x -3|的解集包含[3,4],求m 的取值范围.答案和解析1.【答案】C2.【答案】C3.【答案】D4.【答案】B5.【答案】C6.【答案】D7.【答案】A8.【答案】A9.【答案】A 10.【答案】C 11.【答案】A 12.【答案】B【解析】解:∵对任意的x 满足f (x+1)=-f (x ),∴f (x+2)=-f (x+1)=f (x ),即函数f (x )是以2为周期的函数,画出函数f (x )、g (x )在[-6,+∞)的图象,由图象可知:在y 轴的左侧有2个交点,只要在右侧有4个交点即可,则即有,故7<a≤9或≤a <.13.【答案】4 14.【答案】15.【答案】(0,2) 16.【答案】①②【解析】由导函数的图象可知:当x ∈(-1,0),(2,4)时,f′(x )>0, 函数f (x )增区间为(-1,0),(2,4); 当x ∈(0,2),(4,5)时,f′(x )<0, 函数f (x )减区间为(0,2),(4,5). 由此可知函数f (x )的极大值点为0,4,命题①正确; ∵函数在x=0,2处有意义,∴函数f (x )在[0,2]上是减函数,命题②正确; 当x ∈[-1,t]时,f (x )的最大值是2,那么t 的最大值为5,命题③不正确; 2是函数的极小值点,若f (2)>1,则函数y=f (x )-a 不一定有4个零点,命题④不正确. ∴正确命题的序号是①②. 故答案为:①②.17.【答案】解:不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立.当a =2时不等式等价为-4<0成立,当a ≠2时,可得{a −2<0∆=4(a −2)2+16(a −2)<0,解得-2<a <2,综上-2<a ≤2.即p :-2<a ≤2,函数y =log a (1-2x )在定义域上单调递增,可得0<a <1,即q :0<a <1,若“p ∨q ”为真命题且“p ∧q ”为假命题,则p ,q 为一真一假,若p 真q 假,则{−2<a ≤2a ≥1或a ≤0即1≤a ≤2或-2<a ≤0,若p 假q 真,则{a >2或a ≤−20<a <1,此时无解,故实数a 的取值范围是1≤a ≤2或-2<a ≤0. 18.【答案】解:(1)∵函数f(x)=(a 2−3a +3)a x 是指数函数,a >0且a ≠1, ∴a 2-3a +3=1,可得a =2或a =1(舍去),∴f (x )=2x ;(2)由(1)得F (x )=2x -2-x ,∴F (-x )=2-x -2x ,∴F (-x )=-F (x ), ∴F (x )是奇函数;(3)不等式:log 2(1-x )>log 2(x +2),以2为底单调递增, 即1-x >x +2>0,∴-2<x <-12,解集为{x |-2<x <-12}.19.【答案】解:(Ⅰ)由统计表可知,在抽取的100人中,“歌迷”有25人,从而完2×2…(分)将列联表中的数据代入公式计算,得: K 2=100×(30×10−45×15)275×25×45×55=10033≈3.030 因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…(6分)(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)}其中a i 表示男性,i =1,2,3,b i 表示女性,i =1,2.Ω由10个等可能的基本事件组成.…(9分)用A 表示“任选2人中,至少有1个是女性”这一事件,则A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2) },事件A 由7个基本事件组成.∴P (A )=710 (12)20.【答案】解:(1)∵当0<x <80时,∴y =100x −(12x 2+40x)−500=−12x 2+60x −500,∵当x ≥80时,∴y =100x −(101x +8100x−2180)−500=1680−(x +8100x),∴y ={−12x 2+60x −500,0<x <801680−(x +8100x),x ≥80; (2)∵由(1)可知当0<x <80时,y =−12(x −60)2+1300,∴此时当x =60时y 取得最大值为1300(万元),∵当x ≥80时,y =1680−(x +8100x)≤1680−2√x ·8100x=1500,∴当且仅当x =8100x,即x =90时,y 取最大值为1500(万元),∴综上所述,当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.21.【答案】解:(Ⅰ)因为函数f (x )=x lnx ,所以f′(x)=lnx +x ⋅1x =lnx +1,f '(1)=ln1+1=1.又因为f (1)=0,所以曲线y =f (x )在点(1,f (1))处的切线方程为y =x -1.(Ⅱ)函数f (x )=x lnx 定义域为(0,+∞),由(Ⅰ)可知,f '(x )=ln x +1. 令f ′(x )=0,解得x =1e .所以,f (x )的单调递增区间是(1e ,+∞),f (x )的单调递减区间是(0,1e ). (Ⅲ)当1e ≤x ≤e 时,“f (x )≤ax -1”等价于“a ≥lnx +1x ”.令g(x)=lnx +1x ,x ∈[1e,e],g′(x)=1x−1x 2=x−1x 2,x ∈[1e ,e].当x ∈(1e ,1)时,g '(x )<0,所以以g (x )在区间(1e ,1)单调递减.当x ∈(1,e )时,g '(x )>0,所以g (x )在区间(1,e )单调递增.而g(1e )=−lne +e =e −1>1.5,g(e)=lne +1e =1+1e <1.5.所以g (x )在区间[1e ,e]上的最大值为g(1e )=e −1.所以当a ≥e -1时,对于任意x ∈[1e ,e],都有f (x )≤ax -1.22.【答案】解:(1)曲线C 1在平面直角坐标系中的参数方程为{x =√55ty =2√55t −1(t 为参数),消去参数t 可得普通方程:y =2x -1.由曲线C 2:ρ=2cosθ-4sinθ,即ρ2=ρ(2cosθ-4sinθ),可得直角坐标方程:x 2+y 2=2x -4y .(2)x 2+y 2=2x -4y .化为(x -1)2+(y +2)2=5.可得圆心C 2(1,-2),半径r =√5. 圆心C 2(1,-2)到直线y =2x -1的距离为d =√12+22∴曲线C 1和C 2两交点之间的距离=2√5−(√12+22)2=8√55. 23.【答案】解:(1)当x ≤−12时,f (x )=-2x -1+(x -1)=-x -2,由f (x )≥2解得x ≤-4,综合得x ≤-4;当−12<x <1时,f (x )=(2x +1)+(x -1)=3x ,由f (x )≥2解得x ≥23,综合得23≤x <1;当x ≥1时,f (x )=(2x +1)-(x -1)=x +2,由f (x )≥2解得x ≥0,综合得x ≥1.所以f (x )≥2的解集是(−∞,−4]∪[23,+∞).(2)∵f (x )=|2x +1|-|x -m |≥|x -3|的解集包含[3,4],∴当x ∈[3,4]时,|2x +1|-|x -m |≥|x -3|恒成立原式可变为2x +1-|x -m |≥x -3,即|x -m |≤x +4,∴-x -4≤x -m ≤x +4即-4≤m ≤2x +4在x ∈[3,4]上恒成立,显然当x =3时,2x +4取得最小值10,即m 的取值范围是[-4,10].。
四川省泸州市2022-2023学年高二下学期期末数学(文科)试题(教师版)
泸州市高2021级高二学年末统一考试数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.共150分.考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码枮贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题的答案标号涂黑.3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,作图题可先用铅笔绘出,确认后再用0.5黑米黑色签字笔描清楚,写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷(选择题共60分)一、选择题:本大题共有12个小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合要求的.1.命题“R x ∀∈,e 2xx ≥+”的否定是().A.0R x ∃∈,00e 2xx <+ B.R x ∀∈,2x e x <+C.0R x ∃∈,00e 2xx ≥+ D.0R x ∃∉,00e 2xx <+【答案】A 【解析】【分析】根据全称命题的否定分析判断.【详解】由题意可知:命题“R x ∀∈,e 2x x ≥+”的否定是“0R x ∃∈,00e 2x x <+”.故选:A.2.复数z 满足()1i 2i z +=,则z z +=().A.2-B.2C.2i- D.2i【答案】B 【解析】【分析】根据给定条件,利用复数的除法运算求出复数z ,再结合共轭复数的意义、复数加法求解作答.【详解】依题意,2i (2i)(1i)22i 1i 1i (1i)(1i)2z -+====+++-,则1i z =-,所以(1i)(1i)2z z +=++-=.故选:B3.某保险公司为客户定制了A ,B ,C ,D ,E 共5个险种,并对5个险种参保客户进行抽样调查,得出如下的统计图:用该样本估计总体,以下四个说法错误的是().A.57周岁以上参保人数最少B.18~30周岁人群参保总费用最少C.C 险种更受参保人青睐D.31周岁以上的人群约占参保人群80%【答案】B 【解析】【分析】根据扇形图、散点图、频率图对选项进行分析,从而确定正确答案.【详解】A 选项,57周岁以上参保人数所占比例是10%,是最少的,A 选项正确.B 选项,“18~30周岁人群参保平均费用”比“57周岁以上人群参保平均费用”的一半还多,而18~30周岁人群参保人数所占比例是57周岁以上参保人数所占比例的两倍,所以57周岁以上参保人群参保总费用最少,B 选项错误.C 选项,C 险种参保比例0.358,是最多的,所以C 选项正确.D 选项,31周岁以上的人群约占参保人群30%40%10%80%++=,D 选项正确.故选:B4.在区间[]1,9-上随机选取一个数M ,执行如图所示的程序框图,且输入x 的值为2,然后输出n 的值为N ,则MN ≤的概率为().A.15B.25C.310D.35【答案】C 【解析】【分析】根据程序框图分析可得2N =,再结合几何概型运算求解.【详解】因为2x =,则2242310-⨯+=-≤,可得3,1x n ==;因为3x =,则2343300-⨯+=≤,可得4,2x n ==;因为4x =,则2444330-⨯+=>,输出2n =,即2N =;所以M N ≤的概率()()2139110P --==--.故选:C.5.已知条件p :函数()21f x x mx =++在区间1(,)2+∞上单调递增,条件4:3q m ≥-,则p 是q 的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】求出条件p 的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】函数()21f x x mx =++的单调递增区间是[,)2m -+∞,依题意,1(,)[,)22m+∞⊆-+∞,因此122m -≤,解得1m ≥-,显然[1,)-+∞ 4[,)3-+∞,所以p 是q 的充分不必要条件.故选:A6.某企业为了研究某种产品的销售价格x (元)与销售量y (千件)之间的关系,通过大量市场调研收集得到以下数据:x161284y24a3864其中某一项数据※丢失,只记得这组数据拟合出的线性回归方程为: 3.171y x =-+,则缺失的数据a 是()A.33B.35C.34D.34.8【答案】C 【解析】【分析】由于线性回归直线一定过样本中心点,所以将样本中心点坐标代入可求得结果.【详解】因为点(,)x y 一定在回归方程上,所以将161284104x +++==,24386412644a a y ++++==代入 3.171y x =-+解得34a =.故选:C.7.在样本的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大依次构成等比数列{}n a ,若212a a =,且样本容量为300,则对应小长方形面积最小的一组的频数为()A.20 B.30C.40D.50【答案】A 【解析】【分析】求出等比数列{}n a 公比的值,分析可知,数列{}n a 前四项的和为1,根据等比数列的求和公式求出1a 的值,利用频数、频率与总容量的关系可求得对应小长方形面积最小的一组的频数.【详解】设等比数列{}n a 的公比为q ,则212a q a ==,由题意可知,()()441112341112151112a q a a a a a a q--+++====--,解得1115a =,因此,对应小长方形面积最小的一组的频数为113003002015a =⨯=.故选:A .8.已如函数()()ln 1e xf x x x =+-,则()()232f x f x-<的解集为()A.()(),12,-∞+∞ B.()()0,12,⋃+∞C.()2,12,3⎛⎫+∞⎪⎝⎭D.()1,2【答案】C 【解析】【分析】求出函数()f x 的定义域,利用导数分析函数()f x 的单调性,由()()232f x f x -<可得出关于x的不等式组,由此可解得原不等式的解集.【详解】函数()()ln 1e xf x x x =+-的定义域为()0,∞+,则()1e 0xf x x x'=+>对任意的0x >恒成立,所以,函数()f x 在()0,∞+上为增函数,由()()232f x f x-<可得232320x x x ⎧>-⎨->⎩,解得213x <<或2x >,因此,不等式()()232f x f x -<的解集为()2,12,3⎛⎫+∞⎪⎝⎭.故选:C.9.已知定点()2,0P -和直线()()():131225l x y R λλλλ+++=+∈,则点P 到直线l 的距离的最大值为()A. B.C.D.【答案】B 【解析】【分析】根据直线l 的方程先确定出直线所过的定点Q ,然后判断出点P 到直线l 的距离的最大值为PQ ,结合点的坐标求解出结果.【详解】将()()131225x y λλλ+++=+变形得()()23250x y x y λ+-++-=,所以l 是经过两直线50x y +-=和3250x y +-=的交点的直线系.。
福建省福州八中高二第二学期期末考试(数学文科)
福州八中高中二年级第二学期期末考试数学(文)考试时间:120分钟试卷满分:150分一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题纸的相应位置.1.若集合,则A.B.C.D.2.某物体运动的位移(单位:m)是时间(单位:s)的函数,当 s时,物体的瞬时速度等于A.15m/s B.18m/s C.19m/s D.20m/s3.若,,则=A.B.C.D.4.下列函数中,在区间(0,2)上为增函数的是A.B.C.D.5.一袋中装有大小相同,编号分别为的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为A.B.C.D.6.若为实数,则“”是“关于的方程有实数解”的A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件7.函数的零点必落在区间A.(0,1)B.(1,2)C.(2,3)D.(3,4)8.函数的定义域为A.B.C.D.10.已知二次函数,若,则的值为A.正数B.负数C.0 D.符号与有关11.函数的最小值为A.-3 B.3 C.4 D.-412.如图,圆周上按顺时针方向标有1,2,3,4,5五个点。
一只青蛙按顺时针方向绕圆从一点跳到另一点。
若它停在奇数点上,则下一次只能跳一个点;若停在偶数点上,则下一次跳两个点。
此青蛙从5这点跳起,经2009次跳后..它将停在的点是A.1 B.2C.3 D.4二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题纸的相应位置.13.若平面上三点A(1,1),B(2,-4),C(x,-9)共线,则实数x= 。
14.已知,则实数的大小关系是。
15.函数的值域为。
16.已知中,内角所对的边分别是,若三角成等差数列,三边成等比数列,,则此三角形的面积是_______。
三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.把答案写在答题纸的相应位置.17.(本小题计12分)已知在平面直角坐标系中三个顶点的坐标分别为,,.(1)若,求的值;(2)若,求的值.18.(本小题计12分)设集合,其中R,如果AB=B,求实数a的取值范围.19.(本小题计12分)已知数列其前n项和为,且.(1)求数列的通项公式;(2)若,求数列的前n项和.20.(本小题计12分)二次函数满足,且.(1)求的解析式;(2)在区间[-1,1]上,的图象恒在的图象上方,试确定实数的范围.21.(本小题计13分)若点,是平面上一动点,且满足(1)求点的轨迹C的方程;(2)设直线y=x-4与轨迹C交于M、N两点,且点A(1,0),求△AMN的面积.22.(本小题计13分)设函数(Z)为奇函数,又,且在上单调递增。
高二数学下学期期末考试试卷 文含解析 试题
2021—2021学年第二学期高二期末考试文科数学试题一、选择题:本大题一一共12小题,每一小题5分,一共60分。
在每一小题给出的四个选项里面,选出符合题目要求的一项。
,,那么A. B. C. D.【答案】C【解析】【分析】先化简集合A,再判断选项的正误得解.【详解】由题得集合A=,所以,A∩B={0},故答案为:C【点睛】此题主要考察集合的化简和运算,意在考察学生对这些知识的掌握程度和分析推理才能.2.(为虚数单位) ,那么A. B. C. D.【答案】B【解析】【分析】由题得,再利用复数的除法计算得解.【详解】由题得,故答案为:B【点睛】此题主要考察复数的运算,意在考察学生对该知识的掌握程度和分析推理计算才能.是定义在上的奇函数,当时,,那么A. B. C. D.【答案】D【解析】【分析】利用奇函数的性质求出的值.【详解】由题得,故答案为:D【点睛】(1)此题主要考察奇函数的性质,意在考察学生对该知识的掌握程度和分析推理计算才能.(2)奇函数f(-x)=-f(x).4.以下命题中,真命题是A. 假设,且,那么中至少有一个大于1B.C. 的充要条件是D.【答案】A【解析】【分析】逐一判断每一个选项的真假得解.【详解】对于选项A,假设x≤1,y≤1,所以x+y≤2,与矛盾,所以原命题正确.当x=2时,2x=x2,故B错误.当a=b=0时,满足a+b=0,但=﹣1不成立,故a+b=0的充要条件是=﹣1错误,∀x∈R,e x>0,故∃x0∈R,错误,故正确的命题是A,故答案为:A【点睛】〔1〕此题主要考察命题的真假的判断,考察全称命题和特称命题的真假,考察充要条件和反证法,意在考察学生对这些知识的掌握程度和分析推理才能.〔2〕对于含有“至少〞“至多〞的命题的证明,一般利用反证法.,那么该抛物线的焦点坐标为( )A. B. C. D.【答案】C【解析】【分析】先求出p的值,再写出抛物线的焦点坐标.【详解】由题得2p=4,所以p=2,所以抛物线的焦点坐标为〔1,0〕.故答案为:C【点睛】〔1〕此题主要考察抛物线的简单几何性质,意在考察学生对该知识的掌握程度和分析推理才能.(2)抛物线的焦点坐标为.是增函数,而是对数函数,所以是增函数,上面的推理错误的选项是A. 大前提B. 小前提C. 推理形式D. 以上都是【答案】A【解析】【分析】由于三段论的大前提“对数函数是增函数〞是错误的,所以选A. 【详解】由于三段论的大前提“对数函数是增函数〞是错误的,只有当a>1时,对数函数才是增函数,故答案为:A【点睛】(1)此题主要考察三段论,意在考察学生对该知识的掌握程度和分析推理才能.(2)一个三段论,只有大前提正确,小前提正确和推理形式正确,结论才是正确的.,,,那么A. B. C. D.【答案】C【解析】【分析】先证明c<0,a>0,b>0,再证明b>1,a<1,即得解.【详解】由题得,a>0,b>0.所以.故答案为:C【点睛】(1)此题主要考察指数函数对数函数的单调性,考察实数大小的比拟,意在考察学生对这些知识的掌握程度和分析推理才能.〔2〕实数比拟大小,一般先和“0〞比,再和“±1〞比.,,假设∥,那么A. B. C. D.【答案】D【解析】【分析】根据∥得到,解方程即得x的值.【详解】根据∥得到.故答案为:D【点睛】(1)此题主要考察向量平行的坐标表示,意在考察学生对该知识的掌握程度和分析推理计算才能.(2) 假如=,=,那么||的充要条件是.那么的值是.A. B. C. D.【答案】C【解析】【分析】先计算出f(2)的值,再计算的值.【详解】由题得f(2)=,故答案为:C【点睛】(1)此题主要考察分段函数求值,意在考察学生对该知识的掌握程度和分析推理计算才能.(2)分段函数求值关键是看自变量在哪一段.10.为等比数列,,,那么〔〕A. B. C. D.【答案】D【解析】试题分析:,由等比数列性质可知考点:等比数列性质视频11.某几何体的三视图(单位:cm)如下图,那么该几何体的体积是( )A. 72 cm3B. 90 cm3C. 108 cm3D. 138 cm3【答案】B【解析】由三视图可知:原几何体是由长方体与一个三棱柱组成,长方体的长宽高分别是:6,4,3;三棱柱的底面直角三角形的直角边长是4,3;高是3;其几何体的体积为:V=3×4×6+×3×4×3=90〔cm3〕.故答案选:B.上的奇函数满足,且在区间上是增函数.,假设方程在区间上有四个不同的根,那么A. -8B. -4C. 8D. -16【答案】A【解析】【分析】由条件“f〔x﹣4〕=﹣f〔x〕〞得f〔x+8〕=f〔x〕,说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【详解】f(x-8)=f[(x-4)-4]=-f(x-4)=-·-f(x)=f(x),所以函数是以8为周期的函数,函数是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×〔﹣6〕=-12,另两个交点的横坐标之和为2×2=4,所以x1+x2+x3+x4=﹣8.故答案为:A【点睛】(1)此题主要考察函数的图像和性质〔周期性、奇偶性和单调性〕,考察函数的零点问题,意在考察学生对这些知识的掌握程度和数形结合分析推理才能.(2)解答此题的关键是求出函数的周期,画出函数的草图,利用数形结合分析解答.二、填空题:本大题一一共4小题,每一小题5分,一共20分。
高二文科下学期期末考试数学试题(含答案)
高二文科下学期期末考试数学试题一、单选题1.设集合U={-1,0,1,2,3,4,5}, A={1,2,3}, B={-1,0,1,2},则A∩(C U B)=A. {1,2,3}B. {3}C.D. {2}2.已知iA. 1+iB. 1-iC.D. 3.设:12,:21x p x q <><,则p 是q 成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4.已知抛物线24x y =上一点A 纵坐标为4,则点A 到抛物线焦点的距离为( )A. B. 4 C. 5 D. 5.正项数列{a n }成等比数列,a 1+a 2=3,a 3+a 4=12,则a 4+a 5的值是A. -24B. 21C. 48D. 246 cos (等于A. B. C. D. 7.设f′(x )是函数f (x )的导函数,y=f′(x )的图象如图所示,则y=f (x )的图象最有可能的是( )A. B.C. D.8 A. 有最大值3,最小值-1 B. 有最大值2,最小值-2C. 有最大值2,最小值0D. 有最大值3,最小值029.执行如图程序框图,输出的 为( )A. B. C. D. 10.若函数f(x) = x 3-ax-2在区间(1,+∞)内是增函数,则实数a 的取值范围是 A. (],3-∞ B. (],9-∞ C. (-1, +∞) D. (-∞,3)11.如图,三棱柱A 1B 1C 1 - ABC 中,侧棱AA 1丄底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是A. CC 1与B 1E 是异面直线B. AC 丄平面ABB 1A 1C. A 1C 1∥平面AB 1ED. AE 与B 1C 1为异面直线,且AE 丄B 1C 112.过椭圆A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F 2C 的离心率的取值范围是A.B.C.D.二、填空题13.已知向量a =(1,-1) , b =(6,-4).若a 丄(t a +b ),则实数t 的值为____________.14.若x , y∈ R,且满足1{230 x x y y x≥-+≥≥,则z=2x+3y 的最大值等于_____________.15.已知ABC ∆三内角,,A B C 对应的边长分别为,,a b c,又边长3b c =,那么sin C = __________.16.已知函数()()3,0{ 1,0x x f x ln x x ≤=+>,若()()22f x f x ->,则实数x 的取值范围是____________.三、解答题17.选修44-:坐标系与参数方程选讲 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为 (Ⅰ)求圆C 的圆心到直线l 的距离;(Ⅱ)设圆C 与直线l 交于点A B 、,若点P 的坐标为18.在等差数列{a n }中,a 1 =-2,a 12 =20.(1)求数列{a n }的通项a n ;(2)若b n a n ++,求数列{3n b}的前n 项和.419.如图所示,已知AB 丄平面BCD ,M 、N 分别是AC 、AD 的中点,BC 丄 CD.(1)求证:MN//平面BCD ;(2)若AB=1,AC 与平面BCD 所成的角.20.已知椭圆C 1: ,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆Q 的方程;(2)设0为坐标原点,点A ,B 分别在椭圆C 1和C 2上,,求直线AB 的方程.21.已知函数()()3x f x a bx e =-,()f x 的图象在点()1,e 处的切线与直线210ex y +-=平行.(1)求,a b ;(2)求证:当()0,1x ∈时, ()()2f x g x ->.1参考答案1.B2.B3.A4.C5.D6.D7.C8.D9.A10.A11.D12.B13.-514.151516.(-2,1)17.(1(218.(1)24n a n =-;(219.(1)见解析;(2)30°.20.(1) ;(2) 或 .21.(1)a 2,b 1==;(2)见解析.。
高二下学期(文科)数学期末考试试卷(含答案)
江西省南昌市2021学年高二下学期(文科)数学期末考试试卷一、选择题(本大题共12小题,共60.0分)1.设复数z满足,则A. 1B.C.D. 22.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图两坐标轴单位长度相同,用回归直线近似地刻画其相关关系,根据图形,以下结论最有可能成立的是A. 线性相关关系较强,b的值为B. 线性相关关系较强,b的值为C. 线性相关关系较强,b的值为D. 线性相关关系太弱,无研究价值3.若m,n是两条不同的直线,,,是三个不同的平面,则下列命题中的真命题是A. 若,,则B. 若,,则C. 若,,则D. 若,,,则4.在正方体中,如图,M,N分别是正方形ABCD,的中心.则过点,M,N的截面是()5. A. 正三角形 B. 正方形 C. 梯形 D. 直角三角形6.九章算术是中国古代张苍,耿寿昌所撰写的一部数学专著,成书于公元一世纪左右,内容十分丰富.书中有如下问题:“今有圆堢瑽,周四丈八尺,高一丈一尺,问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一.”这里所说的圆堢瑽就是圆柱体,它的体积底面的圆周长的平方高,则该问题中的体积为估算值,其实际体积单位:立方尺,一丈=10尺应为A. B. C. D.7.从11,12,13,14,15中任取2个不同的数,事件“取到的2个数之和为偶数”,事件“取到的2个数均为偶数”,则等于A. B. C. D.8. 函数的图象大致为A. B.C. D.9. 如图,在正方体中,P ,Q ,M ,N ,H ,R 是各条棱的中点.直线平面MNP ;;,Q ,H ,R 四点共面;平面其中正确的个数为10.A. 1B. 2C. 3D. 411. 已知正三棱锥的四个顶点都在球O 的球面上,且球心O 在三棱锥的内部.若该三棱锥的侧面积为,,则球O 的表面积为 A.B.C.D.10. 如图,四棱锥P ABCD -中,PAB ∆与PBC ∆是正三角形,平面PAB ⊥平面PBC ,AC BD ⊥,则下列结论不一定成立的是A .PB AC ⊥ B .PD ⊥平面ABCD C . AC PD ⊥ D .平面PBD ⊥平面ABCD 11.如图,四棱锥中,底面为直角梯形,,,E 为PC 上靠近点C 的三等分点,则三棱锥与四棱锥的体积比为A. B. C. D.12.已知P为双曲线C:左支上一点,,分别为C的左、右焦点,M为虚轴的一个端点,若的最小值为,则C的离心率为A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知x,y取值如表:x0 1 3 5 6y 1 m3m画散点图分析可知:y与x线性相关,且求得回归方程为,则__________.14.若一个圆台的母线长为l,上、下底面半径,满足,且圆台的侧面积为,则.15.甲乙两人练习射击,命中目标的概率分别为1/2和1/3,甲乙两人各射击一次,目标被命中的概率是__________.16.在平面上,我们如果用一条直线去截正方形的一个角,那么截下一个直角三角形,由勾股定理有:设想将正方形换成正方体,把截线换成截面.这时从正方体上截下一个角,那么截下一个三棱锥如果该三棱锥的三个侧面面积分别为1,2,4,则该三棱锥的底面EFG的面积是________.三、解答题(本大题共6小题,共70.0分)17在直角坐标系xOy中,曲线的参数方程为:为参数,曲线:.Ⅰ在以O为极点,x轴的正半轴为极轴的极坐标系中,求,的极坐标方程;Ⅱ射线与的异于极点的交点为A,与的交点为B,求.18.在直三棱柱中,,,D是AB的中点.求证:平面;若点P在线段上,且,求证:平面.19.BMI指数身体质量指数,英文为BodyMassIndex,简称是衡量人体胖瘦程度的一个标准,体重身高的平方.根据中国肥胖问题工作组标准,当时为肥胖.某地区随机调查了1200名35岁以上成人的身体健康状况,其中有200名高血压患者,被调查者的频率分布直方图如图:Ⅰ求被调查者中肥胖人群的BMI平均值;Ⅱ填写下面列联表,并判断是否有的把握认为35岁以上成人患高血压与肥胖有关.肥胖不肥胖合计高血压非高血压合计k附:,其中.20.四棱锥如图所示,其中四边形ABCD是直角梯形,,,平面ABCD,,AC与BD交于点G,COS,点M线段SA上.若直线平面MBD,求的值;若,求点A到平面SCD的距离.21.如图所示的几何体中,四边形是正方形,四边形是梯形,,且,平面平面ABC.Ⅰ求证:平面平面;Ⅱ若,,求几何体的体积.22.已知函数,.若,恒成立,求实数m的取值范围;设函数,若在上有零点,求实数a的取值范围.参考答案一选择题1-12、ABBAB BDCDB BC二填空题(13)3/2 (14)2 (15)(16)三解答题17.解:Ⅰ曲线为参数可化为普通方程:,由可得曲线的极坐标方程为,曲线的极坐标方程为.Ⅱ射线与曲线的交点A的极径为,射线与曲线的交点B的极径满足,解得,所以.18.证明:连结,设交于点O,连结OD.四边形是矩形是的中点.在中,OD分别是,AB的中点,又平面,平面,平面;,D是AB的中点,又在直三棱柱中,底面侧面,交线为AB,平面ABC,平面平面,.,,,又,∽,从而,所以,.又,平面,平面平面.19.解:Ⅰ被调查者中肥胖人群的BMI平均值;Ⅱ高血压人群中肥胖的人数为:人,不肥胖的人数为:人,非高血压人群中肥胖的人数为:,不肥胖的人数为:人,所以列联表如下:肥胖不肥胖合计高血压70 130 200非高血压230 770 1000合计300 900 1200则K 的观测值:,有的把握认为35岁以上成人患高血压与肥胖有关.20.【答案】解:连接MG.,,且AB,CD在同一平面内,,设,,得,平面MBD,平面平面,平面SAC,,故;在平面SAD内作于点N 平面ABCD ,又,,得平面SAD.平面SAD,.又,平面SCD.角SCA的余弦值为,即,又,,则,而,,求得,,即点A到平面SCD的距离为.21.证明:取BC的中点D,连接AD,D.四边形是正方形,,又平面平面ABC,平面平面.平面ABC,平面ABC .中,,,,又,平面.四边形是梯形,,且.,四边形是平行四边形,,又,,四边形是平行四边形.,平面.又平面,平面平面.Ⅱ解:由可得:三棱柱是直三棱柱,四边形是矩形,底面.直三棱柱的体积,四棱锥的体积.几何体的体积.22.解:由题意得的定义域为,.,、随x的变化情况如下表:x 3单调递减极小值单调递增由表格可知:.在上恒成立,.函数在上有零点,等价于方程在上有解.化简,得.设.则,,、随x的变化情况如下表:x 1 30 0单调递增单调递减单调递增且,,,.作出在上的大致图象如图所示当时,在上有解.故实数a的取值范围是.。
高二文科数学下学期期末考试卷
第二学期高二期末联考数学(文科)测试卷(本试卷满分:150分 完卷时间:120分钟)第I 卷(选择题 共50分)一、选择题1、函数12y x =-的定义域为集合A ,函数()ln 21y x =+的定义域为集合B ,则A .11,22⎛⎤- ⎥⎝⎦ B .11,22⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞- ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭2、已知向量()1,2a =,(),4x b =,若2=b a ,则x 的值为( )A .2B .4C .2±D .4± 3、已知i 为虚数单位, 若复数11z =-i ,22z =+i ,则12z z =( )A .3-i B. 22-i C. 1+i D .22+i4、已知椭圆()222109x y a a+=>与双曲线22143x y -=有相同的焦点, 则a 的值为( )A .2 B. 10 C. 4 D .10 5.按照程序框图(如右图)执行,第3个输出的数是( )A .7B .6C .5D .46.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A. 2B. 1+2C. 221+D. 1+227、某所学校计划招聘男教师x 名,女教师y 名, x 和y 须满足约束条件25,2,6.x y x y x -≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师人数最多是( )A .6B .8C .10D .128、已知ABC ∆的面积2224a b c S +-=,则角C 的大小为( )A. 030 B .045 C. 060 D. 0759.如图是某电视台综艺节目举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( ) A . 84,B . 84,C . 85,4D . 85,10.已知,)(为偶函数x f x x f x x f x f 2)(,02),2()2(=≤≤--=+时当, 若*,(),n n N a f n ∈=则2011a =( )A .1B .21C . 14D .18第II 卷(非选择题 共100分)二、填空题:(本大题共5小题,每小题5分,共25分,把答案填在答题的相应位置)11、已知x 与y 之间的一组数据:x 0 1 2 3 y1357则a bx y+=ˆ的坐标为 12.已知向量a 和b 的夹角为60°,| a | = 3,| b | = 4,则(2a – b )•a 等于________13. 已知,x y R +∈,且41x y +=,则x y ⋅的最大值为_____ 14. 函数()ln (0)f x x x x =>的单调递增区间是____15.对于函数()cos )f x x x =+, 给出下列四个命题:① 存在(,0)2πα∈-, 使()f α=② 存在)2,0(πα∈, 使()()f x f x αα-=+恒成立;③ 存在R ϕ∈, 使函数)(ϕ+x f 的图象关于坐标原点成中心对称; ④ 函数f (x )的图象关于直线34x π=-对称; ⑤ 函数f (x )的图象向左平移4π就能得到2cos y x =-的图象其中正确命题的序号是 . 三.解答题16.(本小题满分12分)有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1、2、3、4.(Ⅰ)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;(Ⅱ)摸球方法与(Ⅰ)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二下学期数学期末考试试卷(文科)(时间:120分钟,分值:150分)一、单选题(每小题5分,共60分)1.把十进制的23化成二进制数是( ) A. 00 110(2)B. 10 111(2)C. 10 110(2)D. 11 101(2)2.从数字1,2,3,4,5中任取2个,组成一个没有重复数字的两位数,则这个两位数大于30的概率是( )A. 15B. 25C. 35D. 453.已知命题p :“1a ∃<-,有260a a +≥成立”,则命题p ⌝为( ) A. 1a ∀<-,有260a a +<成立 B. 1a ∀≥-,有260a a +<成立 C. 1a ∃<-,有260a a +≤成立 D. 1a ∃<-,有260a a +<成立4.如果数据x 1,x 2,…,x n 的平均数为x ,方差为s 2, 则5x 1+2,5x 2+2,…,5x n +2的平均数和方差分别为( )A. x ,s 2B. 5x +2,s 2C. 5x +2,25s 2D. x ,25s 25.某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为( )A. 15B. 18C. 21D. 226.按右图所示的程序框图,若输入81a =,则输出的i =( )A. 14B. 17C. 19D. 21 7.若双曲线22221(,0)y x a b a b -=>的一条渐近线方程为34y x =,则该双曲线的离心率为( )A.43B. 53C. 169D.2598.已知()01,0,a a x >≠∈+∞且,命题P :若11a x >>且,则log 0a x >,在命题P 、P 的逆命题、P 的否命题、P 的逆否命题、P ⌝这5个命题中,真命题的个数为( )A. 1B. 2C. 3D. 49.函数f(x)=ln 2x xx-在点(1,-2)处的切线方程为( ) A. 2x -y -4=0 B. 2x +y =0 C. x -y -3=0 D. x +y +1=010.椭圆221x my +=的离心率是32,则它的长轴长是( ) A. 1B. 1或2C. 4D. 2或411.已知点P 在抛物线24x y =上,则当点P 到点()1,2Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A. ()2,1B. ()2,1-C. 11,4⎛⎫- ⎪⎝⎭D. 11,4⎛⎫⎪⎝⎭12.已知函数()x x x f ln 1+=在区间()032,>⎪⎭⎫ ⎝⎛+a a a 上存在极值,则实数的取值范围是( )A. ⎪⎭⎫ ⎝⎛32,21B. ⎪⎭⎫ ⎝⎛1,32C. ⎪⎭⎫ ⎝⎛21,31D. ⎪⎭⎫ ⎝⎛1,31二、填空题(每小题5分,共20分)13.如图,正方形ABCD 内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是__________.14.已知某校随机抽取了100名学生,将他们某次体育测试成绩制成如图所示的频率分布直方图.若该校有3000名学生,则在本次体育测试中,成绩不低于70分的学生人数约为__________.15.设经过点()2,1M 的等轴双曲线的焦点为12,F F ,此双曲线上一点N 满足12NF NF ⊥u u u v u u u u v,则12NF F ∆的面积___________ 16.已知函数()ln mf x x x=+,若()()2,1f b f a b a b a ->><-时恒成立,则实数m 的取值范围是____________。
三、解答题17.(本小题10分)设p:实数x 满足x 2−4ax +3a 2<0,其中a >0;q:实数x 满足{x 2−x −6≤0x 2+3x −10>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)若q 是p 的充分不必要条件,求实数a 的取值范围. 18.(本小题12分)据统计,目前微信用户已达10亿,2016年,诸多传统企业大佬纷纷尝试进入微商渠道,让这个行业不断地走向正规化、规范化.2017年3月25日,第五届中国微商博览会在山东济南舜耕国际会展中心召开,力争为中国微商产业转型升级,某品牌饮料公司对微商销售情况进行中期调研,从某地区随机抽取6家微商一周的销售金额(单位:百元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)若销售金额(单位:万元)不低于平均值x 的微商定义为优秀微商,其余为非优秀微商,根据茎叶图推断该地区110家微商中有几家优秀?(2)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,求恰有1家是优秀微商的概率.19.(本小题12分)某公司近年来科研费用支出x 万元与公司所获利润y 万元之间有如表的统计数据:参考公式:用最小二乘法求出y 关于x 的线性回归方程为: ˆˆˆybx a =+,其中: 1221ˆni i i n i i x y nx y bx nx==-⋅=-∑∑, ˆˆa y bx=-, 参考数值: 218327432535420⨯+⨯+⨯+⨯=。
(Ⅰ)求出,x y ;(Ⅱ)根据上表提供的数据可知公司所获利润y 万元与科研费用支出x 万元线性相关,请用最小二乘法求出y 关于x 的线性回归方程ˆˆˆybx a =+; (Ⅲ)试根据(Ⅱ)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润。
20.(本小题12分)椭圆13422=+y x 的左、右焦点分别为F 1,F 2,一条直线l 经过点F 1与椭圆交于A ,B 两点.(1)求△ABF 2的周长;(2)若l 的倾斜角为4π,求弦长|AB|.21.(本小题12分)已知抛物线2:2C y x =和直线:1l y kx =+,O 为坐标原点. (1)求证: l 与C 必有两交点;(2)设l 与C 交于,A B 两点,且直线OA 和OB 斜率之和为1,求k 的值.22.(本小题12分)已知函数()()()336x f x e ax x a R =-+∈(e 为自然对数的底数) (Ⅰ)若函数()f x 的图像在1x =处的切线与直线0x y +=垂直,求a 的值; (Ⅱ)对(]0,4x ∈总有()f x ≥0成立,求实数a 的取值范围.参考答案1.B【解析】23÷2=11...1 11÷2=5...1 5÷2=2...1 2÷2=1...0 1÷2=0 (1)故23(10)=10111(2). 故选:B .点睛:利用“除k 取余法”是将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案. 2.C【解析】从数字1,2,3,4,5中任取2个,组成一个没有重复数字的两位数共有A 52=20个,其中这个两位数小于30的个数为C 21C 41=8个(十位1,2中任选1个,个位其余4个数选1个),故所求概率P=1﹣820=35故选:C 3.A 【解析】根据特称命题的否定为全称命题所以命题p :“1a ∃<-,有260a a +≥成立”,则命题p ⌝为1a ∀<-,有260a a +<成立 故选A 4.C【解析】∵数据x 1,x 2,…x n 的平均数为x ,方差为s 2, ∴5x 1+2,5x 2+2,…5x n +2的平均数为5x +2, 方差为25s 2. 故选:C . 5.C 【解析】由已知得间隔数2446k =÷=,则抽取的最大编号为()364121+⨯-=;故选C. 6.A【解析】执行程序,可得程序框图的功能是计算S=1+2+3+ i +L 的值,当S >81时,输出i+1的值.由于S=1+2+3+…+i=()12i i +n ,当i=12时,S=12132⨯=78<81,当i=13时,S=13142⨯=91>81,满足退出循环的条件,故输出i 的值为13+1=14. 故选:A .点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 7.B【解析】∵双曲线22221(,0)y x a b a b-=>(焦点在y 轴)的一条渐近线方程为34y x =,故可将双曲线方程写为:22916y x λ-=,即得离心率53e =, 故选:B点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 8.B【解析】由对数的单调性可知:当11a x >>且时, log 0a x >,故命题p 是真命题;由命题与逆否命题的等价性可知命题p 的逆否命题也是真命题。
其它三个命题中,逆命题不真,否命题也是错误的,命题p ⌝也是不正确的,应选答案B 。
9.C【解析】f ′(x )=21lnxx-,则f ′(1)=1, 故函数f (x )在点(1,-2)处的切线方程为y -(-2)=x -1,即x -y -3=0. 故选:C 10.D【解析】椭圆方程为2211y x m+=。
当1m >时, 101m<<=4m =,此时长轴长为4=;当01m <<时,11m >=解得14m =,此时长轴长为2。
综上椭圆的长轴长为2或4。
选D 。
11.D【解析】根据抛物线的定义P 到焦点的距离等于P 到准线的距离,所以点P 到点()1,2Q 的距离与点P 到抛物线焦点距离之和最小,只需点P 到点()1,2Q 的距离与点P 到准线的距离之和最小,过点()1,2Q 作准线的垂线,交抛物线于点P ,此时距离之和最小,点P 的坐标为11,4⎛⎫⎪⎝⎭.12. D【解析】,令,得x=1,当,,当,,所以2x =是函数的极大值点,又因为函数在区间上存在极值,所以,解得,故选D .考点:导数的应用,极值.13.8π【解析】设正方形的边长为()20a a >,则黑色部分的面积为: 212S a π=⨯⨯阴,结合几何概型的计算公式可得,满足题意的概率值为: 22248a p a ππ==.14.2100【解析】依题意,所求人数为()30000.0300.0250.015102100⨯++⨯=,故答案为2100. 15.3【解析】设双曲线的方程为22x y λ-= ,代入点21M (,),可得3λ= , ∴双曲线的方程为223x y -= ,即22133x y -=,设12,NF m NF n ==u u u r u u u u r ,则2223{ 24m n m n -+== 6mn ∴= ,12NF F ∴V 的面积为132mn =.即答案为3 16.2m ≥-【解析】对任意b >a >2, ()()f b f a b a--<1恒成立,等价于f(b)﹣b <f(a)﹣a 恒成立;设h(x)=f(x)﹣x=lnx+mx﹣x(x >2), 则h(b)<h(a).∴h(x)在(2,+∞)上单调递减;∵h′(x)=2110mx x--≤在(2,+∞)上恒成立,∴m≥﹣x 2+x(x >2), ∴m≥2-;∴m 的取值范围是[-2,+∞). 故答案为: 2m ≥-。