导电高分子材料的研究进展及应用

合集下载

导电高分子材料的研究和应用

导电高分子材料的研究和应用

导电高分子材料的研究和应用近年来,导电高分子材料得到了越来越多的关注。

这种材料能够将电能转化为热能,具有较高的电导率和良好的机械性能,因此在可穿戴电子设备、柔性电子、智能材料等领域具有广泛的应用前景。

本文将就导电高分子材料的研究进展和应用领域进行探讨。

一、导电高分子材料的分类和制备方法导电高分子材料的分类多种多样,包括导电聚合物和导电复合材料等。

其中导电聚合物主要包括导电聚苯胺、导电聚丙烯酰胺和聚电解质等。

这些聚合物具有较高的导电性能和良好的稳定性,可以在应力、温度和化学环境等多种条件下均能保持稳定的电导率。

导电复合材料是指将导电材料与聚合物基体复合而成的材料。

导电材料可以是金属、碳纳米管、石墨烯等等,具有较高的导电性能。

而聚合物基体则可以提供良好的机械性能和稳定性。

导电复合材料的制备方法包括化学合成、物理混合和化学还原等。

二、导电高分子的应用领域1. 可穿戴设备随着移动互联网和物联网技术的不断发展,可穿戴设备逐渐得到人们的关注。

作为这一领域的重要材料之一,导电高分子可以用于制作柔性传感器、智能手表、智能眼镜等设备中的电子元件。

相比于传统的刚性电子元件,导电高分子材料可以更好地贴合皮肤,不影响使用者的日常生活。

2. 柔性电子柔性电子作为一种颠覆性的技术,将改变现有的电子产品设计理念。

导电高分子材料可以在这一领域中扮演重要的角色。

制备柔性电子的关键在于材料的柔软性和可弯折性。

而导电高分子材料具有较好的柔软性和可弯折性,因此可以作为柔性电子的重要材料之一。

3. 智能材料智能材料是指能够对外界刺激做出相应反应的材料。

导电高分子材料可以通过改变电流、温度等条件来实现形变、液滴运动等智能性能。

此外,导电高分子材料还可以应用于电磁屏蔽、光电和声音传感器等领域。

三、导电高分子材料未来的发展方向随着科技的不断发展和人们对高性能、高稳定性的需求不断增加,导电高分子材料未来的发展方向也越来越多样。

以下是未来导电高分子材料的几个发展趋势:1. 提高导电性目前导电高分子材料的电导率还有一定的提升空间。

导电高分子材料的研究进展及其应用

导电高分子材料的研究进展及其应用

导电高分子材料的研究进展及其应用摘要:本文讲述了导电高分子材料的起源、分类以及特点。

综述了导电高分子材料的研究进展及其在各个领域的应用。

关键词导电高分子研究进展应用一、引言1958 年Natta 等人合成了聚乙炔,但是当时并没有引起其他科学家的足够重视。

自从1977年美国科学家黑格(A.J.Heeger)和麦克迪尔米德(A.G.MacDiarmid)和日本科学家白川英树(H.Shirakawa)发现掺杂聚乙炔(Polyacetylene,PA)具有金属导电特性以来[1],有机高分子不能作为电解质的概念被彻底改变。

现在研究的有聚乙炔(Polyacetylene, PAC)、聚吡咯(Polypyrroles,PPY)、聚噻吩(Polythiophenes, PTH)、聚苯胺(Polyaniline,PAN)、聚对苯(Polyparaphenylene, PPP)、聚并苯(Polyacenes,PAS)等,具有许多特殊的电、光、磁和电化学性能。

也因此诞生了一门新型的交叉学科-导电高分子。

这个新领域的出现不仅打破了高分子仅为绝缘体的传统观念,而且它的发现和发展为低维固体电子学,乃至分子电子学的建立和完善作出重要的贡献,进而为分子电子学的建立打下基础,而具有重要的科学意义。

所谓导电高分子是由具有共轭∏键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。

它完全不同于由金属或碳粉末与高分子共混而制成的导电塑料。

导电高分子具有特殊的结构和优异的物理化学性能使它在能源、光电子器件、信息、传感器、分子导线和分子器件, 以及电磁屏蔽、金属防腐和隐身技术上有着广泛、诱人的应用前景。

因此, 导电高分子自发现之日起就成为材料科学的研究热点。

经过近30多年的发展,导电高分子已取得了重要的研究进展。

二、导电高分子材料的分类按照材料结构和制备方法的不同可将导电高分子材料分为两大类:一类是结构型(或本征型) 导电高分子材料,另一类是复合型导电高分子材料。

导电高分子材料的应用与性能优化

导电高分子材料的应用与性能优化

导电高分子材料的应用与性能优化近年来,导电高分子材料在科技领域的应用越来越广泛。

这种材料不仅具备传统高分子材料的优点,如轻质、透明、可塑性强等,还具有导电性能,能够在电子器件、储能设备和柔性电子等领域发挥重要作用。

本文将介绍导电高分子材料的一些应用领域,并探讨如何优化其性能。

一、导电高分子材料在电子器件领域的应用导电高分子材料在电子器件领域的应用已经取得了显著的进展。

例如,在有机太阳能电池中,导电高分子材料可以作为光伏层的主要材料,用于吸收光能并将其转化为电能。

相较于传统的无机太阳能电池,有机太阳能电池具有柔性、轻薄等特点,并且制造过程更加简便。

通过优化导电高分子材料的特性,我们可以提高有机太阳能电池的转换效率,推动其在可再生能源领域的应用。

此外,导电高分子材料还广泛应用于传感器领域。

例如,纳米尺度的导电高分子材料可以制造成高灵敏度的压力传感器,用于测量压力变化。

这种传感器可以广泛应用于医疗设备、人体健康监测等领域,帮助人们监测身体健康状况。

通过对导电高分子材料的控制和改良,可以提高传感器的灵敏度和稳定性,使其更具实用性和可靠性。

二、导电高分子材料在储能领域的应用随着可再生能源的快速发展,储能技术也变得越来越重要。

而导电高分子材料在储能领域的应用正受到广泛关注。

由于其良好的电导率和可塑性,导电高分子材料被用作储能设备的电极材料。

例如,锂离子电池中的正负极材料可以采用导电高分子材料进行改进,以提高其电化学性能和循环寿命。

此外,导电高分子材料还可以用于柔性超级电容器。

与传统电容器相比,柔性超级电容器在能量密度和功率密度等方面具有明显优势,因此在电动车、消费电子等领域有着广阔的应用前景。

为了优化导电高分子材料在储能领域的性能,研究人员进行了大量工作。

他们通过调控导电高分子材料的结构和界面特性,改善电化学性能和储能效率。

同时,通过合理设计电极结构和电解液体系,也能进一步提高导电高分子材料储能器件的性能。

导电高分子材料的研究进展

导电高分子材料的研究进展

导电高分子材料的研究进展导电高分子材料是一种能够传导电流的高分子材料,具有优异的导电性能和灵活的可塑性。

它们广泛应用于电子器件、柔性电子器件、能源存储和传输等领域。

随着科技的不断发展,导电高分子材料的研究也在不断取得进展。

本文将就导电高分子材料的研究进展进行探讨。

近年来,导电高分子材料的研究主要集中在三个方面:一是发展新型的导电高分子材料,二是研究导电机理,三是提高导电性能。

1.发展新型的导电高分子材料石墨烯是一种具有高导电性能的二维材料,其单层厚度仅为一个原子。

由于其优异的导电性能和独特的二维结构,石墨烯被广泛应用于导电高分子材料的开发。

例如,石墨烯可以添加到传统的高分子材料中,以提高其导电性能。

此外,石墨烯的制备方法也在不断改进,例如化学气相沉积和机械剥离技术,以提高石墨烯的制备效率和质量。

除了石墨烯,碳纳米管也是一种具有很高导电性能的材料。

碳纳米管的直径仅为几个纳米,但长度可以达到几个微米甚至更长。

碳纳米管可以在高分子基体中分散,形成导电网络,从而提高高分子材料的导电性能。

此外,一些研究人员还提出了利用纳米粒子和聚合物共同制备导电高分子材料的方法,以获得更好的导电性能。

2.研究导电机理研究导电机理是导电高分子材料研究的重要方向。

目前,导电高分子材料的导电机理主要包括两种:一种是有机导电材料的分子导电机理,即通过有机分子的电荷迁移来实现导电;另一种是金属/高分子复合材料的载流子传输机理,即通过金属粒子或纳米线来传输载流子。

研究导电机理有助于深入理解导电高分子材料的性质,并为其应用提供指导。

3.提高导电性能提高导电性能是导电高分子材料研究的重要目标之一、目前,提高导电性能的方法主要包括以下几个方面:一是通过改变高分子材料的结构和组分来调控导电性能,例如改变共聚物的比例和合成导电高分子材料的共轭结构。

二是通过添加导电剂来提高高分子材料的导电性能,例如添加金属粒子、碳纳米管等。

三是通过改变导电高分子材料的处理方法来提高其导电性能,例如通过拉伸、压印等方法调控高分子链的排列和导电网络的形成。

导电高分子材料的应用研究状况及发展趋势

导电高分子材料的应用研究状况及发展趋势

导电高分子材料的应用研究状况及发展趋势导电高分子材料的应用非常广泛。

首先,导电高分子材料在电子器件领域具有重要应用。

它们可以作为导电层、电极材料或者作为接触材料应用于OLED、OPV、OFET等器件中,改善器件的性能和稳定性。

其次,导电高分子材料在光电器件方面也有广泛应用。

例如,导电高分子材料可以用作透明电极在柔性有机太阳能电池中,提高电池的可弯曲性和稳定性。

此外,导电高分子材料还可以应用于能源存储领域,例如作为超级电容器的电极材料,提高超级电容器的能量密度和功率密度。

另外,导电高分子材料还可以用于生物传感领域,通过改变电荷转移性质来检测生物分子的存在。

在导电高分子材料的研究领域,目前主要集中在材料合成和性能改进方面。

为了实现导电性能,研究人员通常引入导电性的官能团或者直接制备掺杂型高分子材料。

例如,通过掺杂含有高度共轭结构的杂化分子到高分子材料中,如对苯二甲酸二甲酯(PTCDI)或者卟吩类分子,来提高导电性能。

此外,研究人员还通过优化高分子材料内部的相结构,改善材料的导电性能。

导电高分子材料的发展趋势主要包括以下几个方面。

首先,对于导电高分子材料的研究将趋向于合成方法和材料设计的精确化。

研究人员将继续探索不同的化学合成方法和材料设计策略,以获得具有高导电性能和稳定性的导电高分子材料。

其次,导电高分子材料在柔性电子领域的应用将得到进一步拓展。

随着柔性电子器件的发展,导电高分子材料将成为一个重要的研究和应用领域。

此外,为了提高导电高分子材料的性能和稳定性,研究人员也将继续通过掺杂、界面改性等手段来改进材料性能。

最后,值得注意的是,导电高分子材料仍然存在一些挑战。

首先,导电高分子材料的导电性能相对较差,需要进一步提高。

其次,导电高分子材料的稳定性也需要改进,特别是在长时间使用和极端环境下的应用中。

另外,导电高分子材料的成本也需要进一步降低,以促进其在大规模应用中的普及。

综上所述,导电高分子材料具有广泛的应用前景,在电子器件、光电器件、能源存储、生物传感等领域都有重要作用。

导电高分子材料的进展及应用

导电高分子材料的进展及应用

导电高分子材料的进展及应用近年来,随着电子信息技术的迅猛发展,导电高分子材料越来越受到人们的关注。

导电高分子材料不仅具有普通高分子材料的优良性能,还具有良好的导电性、导热性、光学特性和机械性能。

在传感器、聚合物太阳能电池、有机发光二极管、导电墨水等领域具有广泛的应用前景。

目前,导电高分子材料的研究热点主要包括三大方面:第一,寻求新型导电高分子材料,如类金属、碳基高分子材料等,以提高材料的导电性和稳定性;第二,研究合成导电高分子材料的新方法,如单体共聚合法、离子液体法等,以提高材料的性能和制备效率;第三,开发导电高分子材料的新应用,如导电隔热材料、柔性电子器件等,以拓宽其应用范围。

其中,类金属和碳基高分子材料是当前研究的重点。

类金属高分子材料由于具有良好的导电性和机械性能,已被广泛应用于传感器、聚合物太阳能电池等领域。

碳基高分子材料因其具有嵌入式的碳元素,不仅具有好的导电性和机械性能,还具有优异的化学稳定性和生物兼容性,因此也具有广泛的应用前景。

另外,导电高分子材料的制备方法也得到了不断的改进。

单体共聚合法是当前研究的热点之一。

该方法可以将不同单体进行共聚合,以得到具有多种性质的高分子材料;离子液体法则可制备无机-有机复合材料,以提高材料的导电性和稳定性。

最后,导电高分子材料的应用前景也十分广阔。

导电隔热材料是目前研究的热点之一,其可以用于隔热材料和导热材料。

同时,柔性电子器件也是导电高分子材料的研究热点。

相较于传统的硅基材料,导电高分子材料更加轻薄柔软,可以制成柔性电子器件,应用于可穿戴电子、智能家居等领域。

总之,导电高分子材料具有广泛的应用前景,并且其研究重点逐渐向新材料、新方法、新应用领域发展。

相信在不久的将来,导电高分子材料将会得到更广泛的应用。

导电高分子材料的研究进展

导电高分子材料的研究进展

导电高分子材料的研究进展一、本文概述导电高分子材料作为一种新兴的功能材料,因其独特的导电性能和可加工性,在电子、能源、生物医学等领域展现出广阔的应用前景。

本文旨在综述导电高分子材料的研究进展,重点关注其导电机制、性能优化以及实际应用等方面。

我们将简要介绍导电高分子材料的基本概念、分类和导电原理,为后续讨论奠定基础。

接着,我们将重点回顾近年来导电高分子材料在合成方法、性能调控以及导电性能提升等方面的研究成果。

本文还将探讨导电高分子材料在电子器件、能源存储与转换、生物传感器等领域的应用进展,并展望未来的发展趋势和挑战。

通过本文的综述,希望能够为相关领域的研究人员提供有价值的参考信息,推动导电高分子材料的进一步发展。

二、导电高分子材料的分类导电高分子材料可以按照其导电机制、化学结构、应用方式等多种维度进行分类。

从导电机制来看,导电高分子材料主要分为电子导电高分子和离子导电高分子两大类。

电子导电高分子主要依靠其共轭结构中的π电子进行导电,如聚乙炔、聚吡咯、聚噻吩等;而离子导电高分子则通过离子在固态中移动实现导电,如聚电解质、离子液体等。

从化学结构上看,导电高分子材料主要包括共轭聚合物、金属络合物高分子、复合型导电高分子等。

共轭聚合物由于具有大的共轭体系和离域π电子,表现出优异的电子导电性;金属络合物高分子则通过金属离子与高分子链的配位作用,形成导电通道;复合型导电高分子则是通过在绝缘高分子基体中添加导电填料(如碳黑、金属粒子、导电聚合物等),实现导电性能的提升。

在应用方式上,导电高分子材料可以分为结构型导电高分子和复合型导电高分子。

结构型导电高分子本身即具有导电性,可以直接用于电子器件的制备;而复合型导电高分子则需要通过添加导电填料等方式实现导电性能的调控,其导电性能受填料种类、含量、分散状态等多种因素影响。

根据导电高分子材料的导电性能,还可以分为导电高分子、抗静电高分子和高分子电解质等。

导电高分子具有高的导电性,可以作为电极材料、电磁屏蔽材料等;抗静电高分子则主要用于防止静电积累,如抗静电包装材料、抗静电涂层等;高分子电解质则具有离子导电性,可应用于电池、传感器等领域。

导电高分子材料在光电应用中的研究

导电高分子材料在光电应用中的研究

导电高分子材料在光电应用中的研究随着科技的不断进步,光电子技术在我们的生活中扮演着日益重要的角色。

而导电高分子材料作为一种新型的材料,在光电应用中展现出了巨大的潜力。

本文将探讨导电高分子材料在光电应用中的研究进展和应用前景。

首先,我们来了解一下导电高分子材料的基本性质。

导电高分子材料是一种能够传导电流的聚合物材料。

相比于传统的导电材料如金属和半导体,导电高分子材料具有重量轻、柔韧性好以及可塑性强等特点。

这使得导电高分子材料在光电应用领域中具备了独特的优势。

导电高分子材料在光电器件中的应用是研究的热点之一。

目前,已有许多导电高分子材料被应用于有机太阳能电池、有机发光二极管(OLED)以及柔性电子设备等。

以有机太阳能电池为例,导电高分子材料作为太阳能电池的光电转换层,能够将太阳能有效转化为电能。

同时,导电高分子材料的柔性特性使得太阳能电池具备了更大范围的应用空间,可以被应用于建筑外墙、交通工具以及可穿戴设备等。

另外,导电高分子材料在光电储能领域也有广阔的应用前景。

光电储能技术是未来能源领域的重要方向之一。

通过将能量转化为电能并存储起来,实现高效利用。

导电高分子材料由于其导电性,可以被应用于光电储能设备中的电池、超级电容器等。

这不仅能够提高储能设备的性能,还可以大大提高储能设备的可靠性和寿命。

然而,导电高分子材料在光电应用中仍面临一些挑战。

首先是导电性能的稳定性问题。

由于导电高分子材料易于因光照、湿度以及温度等环境条件的变化而导致性能的衰减,因此需要通过合理的结构设计和材料改性来提高导电性能的稳定性。

此外,导电高分子材料的制备成本也是一个挑战。

目前,导电高分子材料的制备方法相对复杂且成本较高,需要进一步的研究和发展来降低成本,提高制备效率。

综上所述,导电高分子材料在光电应用中具有巨大的发展潜力。

随着科技的进步和人们对绿色能源的需求增加,导电高分子材料将在太阳能电池、发光二极管、电池等光电器件中发挥重要作用。

导电高分子材料制备及应用研究进展

导电高分子材料制备及应用研究进展

导电高分子材料制备及应用研究进展摘要:在介绍导电高分子材料导电机理的基础上,对目前最常见的两种导电高分子材料的制备方法进行综述;重点讨论了含大型离域π键导电高分子材料、化学掺杂型共轭结构导电高分子材料和新型本征导电高分子材料等本征型导电高分子材料的制备方法,并研究了金属及其氧化物、碳系纳米材料、有机组分以及新型导电填料等对填充型导电高分子材料导电性能的影响;同时对其在电子电器材料、生物医学以及环境保护等方面的应用进行了总结,展望了新型导电高分子材料未来的应用研究方向。

关键词:导电高分子材料;导电机理;电子电器;纳米粒子随着电子信息技术的不断发展,新型电子电器材料的开发成为目前材料研究领域中的一个热点。

传统的金属类材料成本较高、耐化学腐蚀性不足且加工过程复杂,在使用时有一定的局限性[1–2]。

高分子材料具有质量轻、化学结构灵活、耐湿热性能优异等特点[3],尤其在其改性之后能够具备良好的导电性能,因此导电高分子材料正在初步取代传统的电子材料[4]。

目前常见的导电高分子材料主要分为两种,一是本征型导电高分子材料,即通过分子设计的方法,使其材料结构内的π共轭结构能够提供一定数量导电载流子,由原来的绝缘材料转化为导电材料[5],二是填充型导电高分子材料,即在高分子基体中加入一定的导电填料,使其在分子内部形成能够传递电子的粒子链[6]。

笔者在对不同导电高分子材料制备方法进行总结的基础上,讨论了其在电子电器、生物医学以及环境保护领域的相关应用,并展望了导电高分子材料未来的研究发展方向。

1 导电高分子材料的制备二十世纪七十年代,C. K. Chiang等[7]首次制备出了具有导电性能的聚乙炔,导电高分子材料的概念开始兴起,经过四十年的深入研究和发展,各种新型导电高分子材料不断被开发出来,并在电子设备、航天航空以及工业材料领域中展现出广阔的应用潜力。

本征型导电高分子材料和填充型导电高分子材料虽然都具有良好的导电性能,但是合成方法及综合性能有一定的区别,在实际生产中,应当根据高分子材料的使用范围即技术要求选择适当的制备方法。

导电高分子材料的最新进展及应用领域

导电高分子材料的最新进展及应用领域

导电高分子材料是一种具有导电性的聚合物材料,它在近年来取得了巨大的进展,并在许多领域中得到广泛应用。

本文将深入探讨导电高分子材料的最新进展和应用领域,以帮助读者更好地理解这一领域的前沿技术。

首先,让我们先了解一下导电高分子材料的基本概念。

导电高分子材料是一种具有电导性能的聚合物材料,它能够传导电流,并具有一定的导电性能。

相比传统的非导电聚合物材料,导电高分子材料具有多种独特的性能和应用优势。

它们既能发挥聚合物材料的机械柔性和化学稳定性,又能提供导电性能,因此受到了广泛的关注。

在过去的几年里,导电高分子材料领域发生了许多重要的进展。

其中一个重要的进展是新型导电高分子材料的开发。

传统的导电高分子材料通常是通过掺杂导电添加剂或导电材料来实现导电性能,但这种方法会导致材料的导电性能不稳定或导电性能低下。

因此,研究人员开始开发新型的导电高分子材料,旨在提高材料的导电性能和稳定性。

最近的研究表明,通过将导电材料纳米颗粒均匀分散于聚合物基体中,可以有效地提高导电高分子材料的导电性能。

同时,研究人员还开发了一种独特的自组装方法来制备导电高分子材料,这种方法不仅能够提高材料的导电性能,还能够控制材料的结构和性能。

除了新型导电高分子材料的开发,导电高分子材料在许多应用领域中也取得了重要的进展。

其中一个应用领域是柔性电子学。

导电高分子材料具有良好的柔性和可塑性,因此非常适合用于制备柔性电子器件。

例如,导电高分子材料可以用于制备柔性显示屏、可穿戴设备和柔性太阳能电池等。

这些器件具有轻薄、可弯曲和可卷曲的特点,能够适应各种复杂的曲面和环境,因此在电子产品的设计和制造中有着广泛的应用前景。

此外,导电高分子材料还可以应用于能量存储和传输领域。

由于其良好的导电性能,导电高分子材料可以用于制备高性能的超级电容器和锂离子电池等能量存储设备。

相比传统的能量存储材料,导电高分子材料具有高能量密度、高功率密度和长循环寿命等优势,因此在新能源领域具有巨大的应用潜力。

导电高分子材料的制备与应用研究

导电高分子材料的制备与应用研究

导电高分子材料的制备与应用研究第一章导电高分子材料的概述导电高分子材料是一种具有良好电导性能的高分子材料,其在电子学、能源存储、催化反应等领域具有广泛应用。

本章将介绍导电高分子材料的特点及其在各领域的应用。

第二章导电高分子材料的制备方法2.1 化学合成法化学合成法是导电高分子材料制备的常用方法之一。

通过合成不同结构的共轭聚合物,使其具有良好的导电性能。

这种方法的关键是选择合适的单体和合成条件。

2.2 电化学合成法电化学合成法是一种简单有效的制备导电高分子材料的方法。

通过在电极上进行电化学聚合反应,使聚合物拥有导电性。

这种方法具有操作简便、反应条件温和等优点。

2.3 机械混合法机械混合法是一种常用的导电高分子材料制备方法。

通过混合共轭聚合物和导电填料,如碳纳米管、石墨烯等,实现导电高分子材料的制备。

这种方法简单易行,且可以调控导电性能。

第三章导电高分子材料的应用3.1 电子学领域导电高分子材料在电子学领域具有重要应用。

它们可以作为柔性电子器件和有机发光二极管的材料,用于制备柔性显示屏、柔性电池等。

3.2 能源存储领域导电高分子材料在能源存储领域具有广泛应用。

通过修饰导电聚合物的结构,可以制备高效的超级电容器和锂离子电池,实现能量的高效存储和释放。

3.3 催化反应领域导电高分子材料在催化反应领域也具有重要应用。

通过合成具有导电性的催化剂,可以实现电催化反应,提高催化反应的效率和选择性。

第四章导电高分子材料的未来发展趋势导电高分子材料的研究与应用仍处于不断发展的阶段。

随着科技的进步和需求的增加,导电高分子材料将在更多领域展现其应用价值。

未来,需要进一步研究材料的导电机理、制备方法和性能优化,推动导电高分子材料的发展。

结论导电高分子材料作为一种具有良好导电性能的材料,正在广泛应用于电子学、能源存储、催化反应等领域。

通过不同的制备方法,可以获得具有不同导电性能的导电高分子材料。

未来的研究应着重于进一步优化材料的性能,推动导电高分子材料的应用发展。

新型导电高分子材料的制备及应用研究

新型导电高分子材料的制备及应用研究

新型导电高分子材料的制备及应用研究一、绪论随着人们生活水平的不断提高,电子、通讯、领域成为了人们生活中不可或缺的一部分。

导电高分子材料,作为一种新型的功能材料,近年来吸引了越来越多的研究者的关注,因其在电子和通讯领域的广泛应用。

本文将从新型导电高分子材料的制备及应用两个方面进行探讨。

二、新型导电高分子材料的制备A.导电高分子材料的定义导电高分子是指具有导电性能的高分子材料,其不只是单纯的高分子材料,而也具备金属、半导体和非晶体等多种材料的特性。

导电高分子材料本身具有优异的电学和机械性质,是近年来备受关注的重要研究领域之一。

B.导电高分子材料的分类根据不同的导电机理,可以将导电高分子材料划分为两类:1.掺杂型导电高分子材料:在合成或后处理过程中添加能够提供电子的小分子或高分子。

2.共轭聚合物:是指由共轭单元重复单元组成的高分子,由于周边单元间电子共享而实现高分子材料的导电。

C.导电高分子材料的制备导电高分子材料的制备包括掺杂型导电高分子材料和共轭聚合物两种类型。

具体方法有:1.化学合成在化学合成中,通过化学反应或者高分子化学反应将掺杂剂或共轭单元与高分子主链引入到一起。

化学合成过程中,需要考虑反应条件、合成质量、掺杂剂的选择等多种因素。

2.物理掺杂物理掺杂是将掺杂剂分散在高分子分子链之间的方法。

该方法分为高分子反应法和物理混合法。

物理混合法通常采用简单的干燥法、滴加法、溶液浸渍法等方法,将高分子颗粒与掺杂剂共存于同一体系中。

3.自组装法自组装法是将掺杂剂与高分子相互作用形成有序多层结构,以提高导电性。

自组装方法的优点是能够直接控制纳米尺度的层和空隙,从而精确控制掺杂剂的形成与导电性质。

3.离子注入法离子注入法是将高能的离子注入材料,以改变高分子链的电子结构,影响导电性能的方法。

三、新型导电高分子材料的应用A.导电高分子材料在电子领域中的应用1.防静电材料导电高分子材料的导电性能可以达到电阻率在10^-4~10^-7Ω.cm之间,这种导电性能可以被广泛用于防静电行业中。

关于导电高分子材料发展历程的综述及其生活应用的探究

关于导电高分子材料发展历程的综述及其生活应用的探究

关于导电高分子材料发展历程的综述及其生活应用的探究关于导电高分子材料发展历程的综述及其生活应用的探究导电高分子材料是一类具有导电性能的聚合物材料,它们具备了一般高分子材料的优点,同时又结合了导电材料的特性。

随着科技的不断进步和应用领域的拓宽,导电高分子材料在各个领域都发挥着重要作用。

本文将对导电高分子材料的发展历程进行综述,并探讨其在生活中的应用。

一、导电高分子材料的发展历程1. 早期阶段早期的导电高分子材料是基于导电高分子聚苯胺的研究而开始的。

上世纪六十年代,美国科学家作为首次合成了导电高分子聚苯胺,这一发现极大地推动了导电高分子材料的发展。

其后,人们开始对导电高分子材料的导电机理进行深入研究,这为后续的研究工作奠定了基础。

2. 过渡期经过对导电高分子材料导电机理的研究,人们发现导电高分子材料的导电性是由其分子间或分子内电荷转移所产生的。

七十年代,人们开始研究控制导电高分子材料导电性的方法,并提出了掺杂和修饰等手段。

通过掺杂一些具有较强氧化还原能力的离子或分子,可以增强导电高分子材料的导电性能。

人们还发现通过修饰高分子材料表面,可以有效地提高导电性能。

这些发现使得导电高分子材料的性能得到了极大的提升。

3. 成熟期随着对导电高分子材料的研究不断深入,人们开始开发更多种类的导电高分子材料。

除了聚苯胺之外,聚噻吩、聚吡咯等导电高分子材料也相继问世。

这些材料不仅能够实现导电性能,还具备了其他优异的性能,如可调控的电子性能、优异的光电特性等。

人们还发现将导电高分子材料与其他材料相结合可以进一步拓展其应用领域,如导电高分子复合材料、导电高分子纳米材料等。

目前,导电高分子材料已经在电子器件、能源存储、传感器等领域取得了广泛应用。

二、导电高分子材料在生活中的应用探究1. 电子器件领域导电高分子材料在电子器件领域起到了重要的作用。

其导电性能和可调控性使得它们成为灵活电子器件的重要组成部分。

导电高分子薄膜可以用来制作柔性显示器、柔性电子纸等,这些器件可以弯曲和拉伸而不破裂,为电子产品的设计提供了更大的自由度。

论文资料:导电高分子材料及其应用

论文资料:导电高分子材料及其应用

导电高分子材料及其应用学生姓名:指导老师:1.前言长期以来,高分子材料由于具有良好的机械性能,作为结构材料得到了广泛的应用。

关于电性能,人们一直只利用高分子材料的介电性,将其作为电绝缘材料使用,而它的导电性的发现,研究及开发则比较晚,直到1977年才发现了第一个导电有机聚合物———掺杂型聚乙炔(用电子受体掺杂) ,电导率可提高约12个数量级,最高可接近103S/cm,达到金属Bi的电导率。

导电高分子材料以其易于成型加工、耐腐蚀、质量轻等优点,越来越受到重视。

2.导电高分子材料的分类及性能80年代以来,作为高分子材料发展的一个新领域,导电高分子材料的研究与开发已成为功能材料研究的一个重要方面。

按导电本质的不同,导电高分子材料分复合型和结构型两种。

前者是利用向高分子材料中加入各种导电填料来实现其导电能力,而后者是从改变高分子结构来实现其导电能力。

2.1 复合型导电高分子材料复合型导电高分子材料是指经物理改性后具有导电性的材料。

一般是指将导电性填料经改性后掺混于树脂中制成的。

根据导电填料的不同,又可分为碳黑填充型及金属填充型。

复合型材料是目前用途最广用量最大的一种复合型导电材料。

2.1.1 碳黑填充型碳黑填充型导电材料是目前复合型导电材料中应用最广泛的一种。

一是因为碳黑价格低廉、实用性强。

二是因为碳黑能根据不同的导电要求有较大的选择余地。

聚合物碳黑体系电阻率可在10~108W之间调整,不仅可以消除和防止静电,还可以用作面装发热体,电磁波屏蔽以及高导体电极材料等。

三是导电持久稳定。

其缺点是产品颜色只能是黑色而影响外观。

碳黑填充型导电机理可用导电能带、隧道效应和场致发射发射来解释。

2.1.2 金属填充型导电材料金属填充型导电高分子材料起始于70 年代初期,开始仅限于金属粉末填充用于消除静电的场合或用于金、铁、铜粉配制导电粘合剂。

目前已使用的方法有表面金属化和填充金属型两种。

表面金属化即采用电镀、喷涂、粘贴等方法使塑料制品表面形成一层高导电金属。

导电高分子材料的研究进展

导电高分子材料的研究进展

导电高分子材料的研究进展摘要:导电高分子材料的发现为众多领域的发展引领了全新的方向。

导电高分子材料因其易加工、导电性能可调节、重量轻等优点而被世界所关注。

同时也因其独特的性能、优势以及应用价值,决定了其广阔的发展空间。

本文介绍了导电高分子材料的分类并分析了导电高分子材料在各领域中的应用。

[关键词] 导电高分子材料分类应用导电物质的研发与应用是每个国家发展、关注的重要领域。

根据导电性能对材料进行划分,可以分为绝缘体、半导体、导体和超导体四种类型。

在20世纪九十年代两位科学家发现高分子材料具有导电性能,从此便定义为导电高分子材料。

通过长期的科学研究和发展,人们对导电高分子的使用范畴逐步扩大,充分利用它独特的优势、特点开辟了导电高分子材料使用的新领域。

比如,已在隐身技术、显示器、电池、光电子器件、生物医学、传感器等领域获得了广泛的应用。

而由于导电高分子材料为全世界发展所提供的价值及其巨大的应用前景,已引发了各界科研人员对其进行深入研究。

一、导电高分子材料的分类由于制备工艺的不同与结构差异,导电高分子材料目前主要有复合型导电高分子材料与结构型导电高分子材料两大类。

1、复合型导电高分子材料世界上使用最广泛的复合型导电高分子材料的生产技术简便,这是其优势所在,也是它使用广泛的原因所在。

组成复合型导电高分子产品的主要原材料为基础性高分子材料和导电性物质,将原材料通过一定而又特殊的物理化学加工方式充填在聚合物基体内,进而形成复合型导电高分子材料产品。

复合型导电高分子材料领域中广泛使用的产品有导电橡胶、导电树脂、导电纤维织物、半透明导电膜、导电材料和导电胶黏剂等。

由基础性高分子材料与导电性物质构成的填充物一般为石墨、碳纤维、金属粉等物质,其是导电性能的根源。

其中的基础性高分子材料决定着复合型导电高分子材料的强度、抗老化性能与耐热性,所以基础性高分子材料的选择很重要,应该结合材料的实际使用需求进行综合分析。

常用的基础性高分子材料有聚乙烯、聚丙烯、聚苯乙烯、环氧树脂、酚醛树脂等。

导电高分子复合材料的制备与应用研究

导电高分子复合材料的制备与应用研究

导电高分子复合材料的制备与应用研究引言:导电高分子复合材料是将导电性能与高分子材料相结合的新型材料,具有导电性能和高分子材料的优势。

其制备和应用研究已经成为材料科学领域的热门课题之一。

本文将主要探讨导电高分子复合材料的制备方法、特性以及广泛应用的领域。

一、导电高分子复合材料的制备方法1. 浸渍法:浸渍法是一种常见的制备导电高分子复合材料的方法。

首先,将导电填料浸泡在溶解高分子的溶液中,使其充分吸收高分子材料。

然后,在干燥过程中,通过高温烘烤使高分子材料凝聚并结合导电填料,形成复合材料。

2. 敲击法:敲击法是制备导电高分子复合材料的一种新方法。

该方法通过在高分子材料表面敲击金属纳米颗粒,将纳米颗粒引入高分子材料中。

这种方法不仅可以实现纳米颗粒的导电功能,还可以增强高分子材料的强度和韧性。

3. 拉伸法:拉伸法是一种利用拉伸过程中材料断裂产生的空隙来引入导电填料的方法。

首先,在高分子材料中添加导电填料,然后进行拉伸过程。

在拉伸过程中,高分子材料会断裂,并在断裂中形成空隙,导电填料会填充到这些空隙中。

通过这种方法制备的导电高分子复合材料具有优异的导电性能。

二、导电高分子复合材料的特性1. 导电性能:由于导电填料的添加,导电高分子复合材料具有优异的导电性能。

导电填料可以是金属纳米颗粒、碳纳米管或导电聚合物,这些材料能够形成导电网络并传导电流。

2. 机械性能:导电高分子复合材料不仅具有导电性能,还保持了高分子材料的机械性能。

高分子材料具有轻质、高强度和韧性的特点,将其与导电填料相结合可以有效增强复合材料的机械性能。

3. 热稳定性:部分导电填料具有优异的热稳定性,因此导电高分子复合材料也具有较好的热稳定性。

这种特性使得导电高分子复合材料在高温环境中能够保持稳定的导电性能。

三、导电高分子复合材料的应用研究1. 电子器件:导电高分子复合材料在电子器件中有着广泛的应用。

例如,导电高分子材料可以用于制备导电电路板、柔性显示屏和聚合物太阳能电池。

导电高分子聚苯胺及其应用

导电高分子聚苯胺及其应用

3、传感器领域
3、传感器领域
聚苯胺作为一种敏感材料,在传感器领域有着广泛的应用。通过化学或电化 学掺杂,聚苯胺的导电性能发生变化,利用这种特性可以制造出各种传感器。例 如,基于聚苯胺的酸碱传感器可以用来检测溶液的酸碱度,而聚苯胺基的压力传 感器则可以用于监测压力变化。
Байду номын сангаас
三、研究方法
1、化学反应机理
导电高分子聚苯胺的合成
3、聚合反应:将苯胺单体、氧化剂和催化剂混合在一起,在适当的温度和压 力条件下进行聚合反应。
导电高分子聚苯胺的合成
4、后处理:通过后处理步骤,如脱色、干燥等,得到纯净的导电高分子聚苯 胺。
4、后处理:通过后处理步骤, 如脱色、干燥等,得到纯净的导 电高分子聚苯胺。
4、后处理:通过后处理步骤,如脱色、干燥等,得到纯净的导电高 分子聚苯胺。
导电高分子聚苯胺及其应用
01 引言
目录
02 一、研究现状
03 二、应用领域
04 三、研究方法
05 参考内容
引言
引言
导电高分子材料在当代科技领域具有广泛的应用前景,其中聚苯胺作为一种 新型的高分子导电材料备受。聚苯胺具有优异的导电性能、良好的化学稳定性和 易于制备等优点,成为一种极具潜力的导电高分子材料。本次演示将详细介绍聚 苯胺的研究现状、应用领域及研究方法,并展望其未来发展方向。
4、后处理:通过后处理步骤,如脱色、干燥等,得到纯净的导电高 分子聚苯胺。
3、功能性应用研究:除了传统的电子、航天、建筑等领域,探索聚苯胺在新 能源、生物医学等领域的应用,如作为电池材料、生物传感器等。
4、后处理:通过后处理步骤,如脱色、干燥等,得到纯净的导电高 分子聚苯胺。
4、理论计算模拟:通过理论计算和模拟,深入了解聚苯胺的分子结构和性能 之间的关系,为材料的设计和优化提供指导。

新型高分子导电材料的开发和应用

新型高分子导电材料的开发和应用

新型高分子导电材料的开发和应用随着现代科技的不断发展,电子产品已经成为我们生活中不可或缺的一部分。

而在这些电子产品中,大多数都需要运用到导电材料。

传统的导电材料形态单一、稳定性差,已经难以满足现代电子设备对高效、高质的导电材料的需求。

因此,新型高分子导电材料的开发和应用成为近年来研究的热点之一,这种材料因其良好的导电性能和可塑性被广泛应用在新型电子设备、柔性电子学、太阳能电池等领域。

一、新型高分子导电材料的概念新型高分子导电材料是指将传统的有机物与导电性较强的无机物结合起来,形成具有良好导电性的高分子材料。

这种新型高分子体系通过在高分子分子链中引入共轭单元,再加上外加电子供体的掺杂,使导电性获得极大提高。

因为这种材料既具有无机物导电材料的良好导电性,又具有高分子材料的可塑性、可加工性和稳定性,所以具有很大的应用前景。

二、新型高分子导电材料的特点1.导电性好新型高分子导电材料的导电性能很好,其电导率可达到非常高的数值(10^1-10^5 S/cm)。

将其应用到电子设备中,可以提高设备的使用效率和信号传输速度。

2.可塑性好新型高分子导电材料的可塑性很好,可以制成各种形状,满足不同设备的使用需求。

这样在电子产品的设计方面,增加了更多的可能性。

3.稳定性好在新型高分子导电材料的合成过程中,往往会引入一些稳定性更强的基团,使得材料的稳定性得到改善,耐光、耐热、抗氧化等性能得到提升。

这样材料的使用寿命会更加长久。

三、新型高分子导电材料的应用1.新型电子设备近年来,人们对电子设备的尺寸越来越小,功耗也越来越低。

而新型高分子导电材料的出现,可以满足电子设备对导电材料小尺寸、高效率的需求,使得电子设备在性能上得到更大的提升。

2.柔性电子学新型高分子导电材料具有优异的可塑性和稳定性,可以被制成各种形状,因此可以满足柔性电子学的需求。

这种材料可被制成柔性电子纸、电子薄膜等形式,适用于各种特殊要求的场合。

3.太阳能电池新型高分子导电材料可以应用于制造太阳能电池。

导电高分子材料的应用研究状况及发展趋势

导电高分子材料的应用研究状况及发展趋势

导电高分子材料的应用研究状况及发展趋势导电高分子材料是一种具有导电性能和高分子特性的材料,在各种应用领域具有广泛的应用前景。

导电高分子材料的研究始于20世纪60年代,随着科技的快速发展,导电高分子材料的研究逐渐取得了突破性进展,已经在电子存储器、显示器、光电子器件、电池等领域得到了广泛应用。

未来,导电高分子材料的研究和应用将继续向以下几个方向发展。

首先,导电高分子材料的应用领域将进一步扩大。

目前,导电高分子材料主要应用于电子器件、传感器和光电设备等领域,但随着人们对新能源和环保技术的需求增加,导电高分子材料将在能源存储、能源转换和环境保护等领域得到更广泛的应用。

例如,导电高分子材料可以应用于太阳能电池和燃料电池中,提高能量转换效率;在环境保护领域,导电高分子材料可以用于制备高效的电极材料,用于污水处理和气体分离等环保技术。

其次,导电高分子材料的性能将持续提升。

目前,导电高分子材料的导电性能已经相对成熟,但其导电性能仍然不及金属和半导体材料。

因此,未来的研究将致力于提高导电高分子材料的导电性能,使其能够达到或接近金属和半导体材料的水平。

例如,研究人员可以通过合成新的高分子材料、优化材料结构和调控材料表面等方法提高导电高分子材料的导电性能。

第三,导电高分子材料的组装和加工技术将进一步完善。

导电高分子材料的组装和加工技术是实现其应用的重要环节。

目前,导电高分子材料的组装和加工技术还比较简单和原始,制备的导电高分子材料通常具有较低的导电性能和机械强度。

因此,未来的研究将致力于开发新的组装和加工技术,以提高导电高分子材料的性能和可加工性。

例如,研究人员可以通过纳米级操控技术、刻蚀技术和纺丝技术等方法制备具有高导电性和优异力学性能的导电高分子材料。

最后,导电高分子材料的环境适应性将得到提高。

由于导电高分子材料通常具有较低的稳定性和耐用性,限制了其在实际应用中的推广和应用。

因此,未来的研究将致力于提高导电高分子材料的环境适应性,使其能够在恶劣的环境条件下稳定工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导电高分子材料的研究进展及其应用谢恺20100701012710化工(1)班一、导电高分子材料的研究进展按照材料结构和制备方法的不同可将导电高分子材料分为两大类:一类是结构型(或本征型) 导电高分子材料,另一类是复合型导电高分子材料。

1.1 结构型导电高分子结构型导电高分子材料是指本身具有导电性或经掺杂后具有导电性的聚合物材料,也称作本征型导电高分子材料,是由具有共轭∏键或部分共轭∏键的高分子经化学或电化学“掺杂”,使其由绝缘体转变为导体的一类高分子材料,如聚吡咯(PPy)、聚苯胺(PAn)、聚乙炔(PA)等。

不需掺杂的结构型导电高分子材料至今只有聚氮化硫一类,而大多数均需采用一定的手段进行掺杂才能具有较好的导电性。

在众多导电高分子中,聚苯胺由于原料易得、合成简便、耐高温及抗氧化性能良好1.2 复合型导电高分子复合型导电高分子材料是以高分子聚合物作基体,加入相当数量的导电物质组合而成的,兼有高分子材料的加工性和金属导电性。

根据在基体聚合物中所加入导电物质的种类不同又分为两类:填充复合型导电高分子材料和共混复合型导电高分子材料.填充复合型导电高分子材料通常是在基体聚合物中加入导电填料复合而成。

根据导电填料的不同,填充型导电聚合物复合材料可分为炭黑填充型、金属填充型、纤维填充型等。

由炭黑填充制成的复合导电高分子材料是目前用途最广、用量最大的一种导电材料。

复合材料导电性与填充炭黑的填充量、种类、粒度、结构及空隙率等因素有关,一般来说粒度越小,孔隙越多,结构度越高,导电值就越高。

乙炔炭黑是人们常用的一种导电炭黑。

焦冬生等研究了乙炔炭黑填充量对硅橡胶导电性能的影响。

结果表明:试样体积电阻率随乙炔炭黑用量的增加呈现降低趋势,用量超过30份时,橡胶的体积电阻率迅速减小;当乙炔炭黑用量大于40份时,橡胶的体积电阻率下降趋缓,体积电阻率最小值不大于4.5Ω·cm。

1.3 离子液体在导电高分子中的应用室温离子液体是由特定阳离子和阴离子构成的在室温或近于室温下呈液态的物质,它具有非挥发性、低熔点、宽液程、强的静电场、宽的电化学窗口、良好的导电与导热性、高热容、高稳定性、选择性溶解力与可设计性。

这些特点促使对离子液体的研究和使用从最初的化学化工领域,迅速拓展到包括功能材料、能源、资源环境、生命科学在内的众多领域。

二、导电高分子材料的应用2.1 导电高分子材料在医学工程中应用塑料等高分子聚合物可以像金属一样导电,而且可以制作成各种特殊性能的新材料。

目前导电高分子材料已悄然走进生物医学领域,是生物材料和组织工程学家关注的焦点。

聚吡咯(Polypyrrole,Ppy)是一种生物相容性较好的高分子。

细胞外基质蛋白和生长因子不但可以通过侧链、配基以共价键结合Ppy的表面高分子基团上,而且通过离子键合掺杂的药物和生物活性分子还可通过电化学控制释放,实现生物分子定量释放表达,作用于细胞,以获得预期的细胞贴壁、增殖、分化性质,实现表面功能化、可控化。

利用Ppy构建生物电活性涂层,可以通过掺杂分子和控制加电方式、电刺激强度以及作用时间提供局域定向电刺激,获得不同的表面特性。

2.2 导电液晶材料液晶高聚物材料具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率以及良好的介电性和耐化学腐蚀性等一系列优异的综合性能。

具有与π电子结构相关联的线性聚烯烃和芳杂环等的共轭聚合物通过分子改性可以获得导电液晶聚合物,并且这些材料具有可溶性和可加工性。

M1Uoda等研究发现,在PPP 聚合物分子链上引入对称的侧基烷氧基得到的聚2,5-二烷氧基苯可以溶于四氢呋喃中,且该聚合物仍然具有很好的导电性。

崔峻等根据这一研究成果,合成出带有液晶基元的二烷氧基苯单体。

该单体在催化剂FeCl3作用下和惰性气体N2气保护下,反应得到侧链导电液晶聚合物聚1,4-(2-甲氧基-5-正己酸联苯酯醚)苯。

2.3 透明导电膜的应用导电高分子可制成彩色或无色透明的质轻的导电薄膜,在一些特殊的环境中使用。

透明导电膜,是在透明的高分子膜表面上形成的对可见光透明的导电性薄膜,除了在历来的透明导电膜玻璃的应用范围内得到应用外,还可用作电子材料的基材,如在电致发光面板、液晶和透明面板、开关等电板材料、指示计检测仪器窗口的防静电和电磁屏蔽材料等方面已经应用,目前正集中精力进行开发薄型液晶显示的透明电极,透明开关面板,太阳能电池的透明电板等,估计在不久也将得到应用。

结语导电材料出现以后,人们开发了一系列的具有优异性能的导电聚合物,对这类物质的导电行为有了进一步的了解。

近年来,科研工作者又在高强度导电高分子、可加工导电高分子领域开展大量研究工作,并取得了很大的进展。

今后导电高分子的发展趋势为:(1)合成具有高导电率及在空气中长期稳定的导电聚合物,其中特别值得重视的是可加工的非电荷转移(单组分)结构型导电聚合物的研究。

(2)有机聚合物超导体的研究。

(3)对有机材料电子性能的研究,另一重要目标是开发出具有无机材料不可代替的新一代功能材料。

导电聚合物的研究使人们对有机固体的电子过程了解更加深入。

今后,人们将在此基础上向有机导电材料的各个领域开展新的研究,为在本世纪末或下世纪初实现更高密度的信息处理材料,更高效率的能量转换和传递材料而努力。

1. Preparation and Application of Nanoscale Conducting Polymers Composites【作者英文名】GAO Lan-ling; SHANG Xiu-li; ZHOU Cui-wen; BAI Xiao-chun(Department of Petrochemical; Lanzhou Petrochemical College of Vocational Technology; Lanzhou 730060; China);【文献出处】化工技术与开发, Technology & Development of Chemical Industry, 编辑部邮箱2010年09期2. The Application of Conductive Polymer Materials in the Field of Smart Stealth Technonogy【作者英文名】YU Hai-tao1; 2 (1.State Key Laboratory for Marine Corrosion and Protection; Qingdao 266071; China; 2.Xiamen Branch of Luoyang Ship Material Research Institute; Xiamen 361002; China);【文献出处】上海涂料, Shanghai Coatings, 编辑部邮箱2010年02期3. Structural Conductive Polymer Status and Development Trend【作者英文名】Yang Hongchang1; Li Zhigang2 (1.Technology Department; Cyg Tefa Co.; Ltd.; Shenzhen 518107; 2.Engineering Department; CygG Tefa Co.; China);【文献出处】广东化工, Guangdong Chemical Industry, 编辑部邮箱2010年05期期刊荣誉:ASPT来源刊CJFD收录刊4. Research Status and Developing Trend of Conductive Fiber Filled Polymer Composites【作者中文名】贾治勇; 白树林; 张杨飞; 李曼;【作者单位】北京大学工学院先进材料与纳米技术系;【文献出处】安全与电磁兼容, Safety & EMC, 编辑部邮箱2010年05期期刊荣誉:ASPT来源刊CJFD收录刊5. Progress of study on polymer/graphite conductive nanocomposites【作者英文名】Chen Xingyun1; 2 He Jiangping1 Shu Yuanjie1(1.Institute of Chemical Materials; China Academy of Engineering Physics; Mianyang 621900; 2.School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang 621010);【作者单位】中国工程物理研究院化工材料研究所; 西南科技大学材料科学与工程学院; 【文献出处】化工新型材料, New Chemical Materials, 编辑部邮箱2010年10期6. Study on electric conductivity behavior of carbon black/epoxy resin composite【作者英文名】SONG Wen-chao; JI Tie-zheng; LI Bo; MO Xiang-you; LI Hong-yan(Department of Applied Chemistry; School of Science; Northwestern Polytechnical University; Xi’an 710072; China);【作者单位】西北工业大学理学院应用化学系;【文献出处】中国胶粘剂, China Adhesives, 编辑部邮箱2010年10期7. 中国化学化工文摘第19卷第六期导电塑料200105096炭黑填充型导电塑料的研究与应用[刊]/黄兴(广西塑料研究所)//塑料科技。

—2001,(3)—4~7,108. 邵阳,王翔,蔡绍皙.《导电高分子材料在医学工程中应用》[J]. 医疗卫生装备,2004年第6期,30-319. 李文铎,曹凤霞,康惠宝.聚苯胺与丙烯酸树脂相容性的研究及导电涂膜的制备. [J] 涂料工业10. 周志华,金安定,赵波,朱小蕾. 《材料化学》.化学工业出版。

相关文档
最新文档