摩擦学

合集下载

摩擦学知识点总结

摩擦学知识点总结

摩擦学知识点总结摩擦是指两个表面之间的相对运动受到的阻力。

摩擦学是研究摩擦现象的科学,涉及到力学、材料学、表面科学、润滑学等多个学科的知识。

摩擦学的研究对于工程和日常生活都有着重要的意义。

本文将就摩擦学的一些重要知识点进行总结,包括摩擦力的产生机制、摩擦系数、摩擦的影响因素、摩擦的应用以及摩擦的减小等内容。

一、摩擦力的产生机制摩擦力的产生是由于两个表面之间的微观不平整的凸起和凹陷之间发生了相互作用。

当两个表面接触时,由于其不光滑的表面,导致表面之间存在着局部的微小接触点。

在这些接触点处,由于原子和分子之间的相互吸引力和斥力,产生了摩擦力。

这种微观不平整的表面结构导致了摩擦力的产生,这也是为什么光滑的表面摩擦力更小的原因。

二、摩擦系数摩擦系数是用来描述两个表面之间摩擦性质的参数。

通常用符号μ来表示。

摩擦系数的大小取决于两个表面之间的物理性质以及表面之间的状态。

通常来说,摩擦系数分为静摩擦系数和动摩擦系数。

静摩擦系数是指在两个表面相对静止的情况下,需要克服的摩擦力与正压力之比。

而动摩擦系数是指在两个表面相对运动的情况下,需要克服的摩擦力与正压力之比。

摩擦力与正压力之比就是静摩擦系数或者动摩擦系数。

摩擦系数是一个重要的物理量,不同材料之间的摩擦系数差异很大,所以在工程设计和实际应用中需要根据具体情况来选择合适的摩擦系数。

三、摩擦的影响因素影响摩擦的因素有很多,主要包括:1. 表面形状和粗糙度:表面的形状和粗糙度对摩擦力的大小影响很大。

通常来说,表面越光滑,摩擦力就越小。

2. 正压力大小:正压力越大,摩擦力也就越大。

正压力是指两个表面之间的垂直于接触面的力。

3. 材料的性质:不同材料之间的摩擦系数是不同的,材料的硬度、弹性模量、表面粗糙度都会影响摩擦力的大小。

4. 温度:温度的变化也会对摩擦力产生影响。

一般来说,温度升高会使摩擦力减小。

5. 润滑情况:润滑剂的使用会减小摩擦力,从而减小磨损和能量损失。

四、摩擦的应用摩擦力是一种普遍存在的力,它在我们的日常生活和工程实践中都有着广泛的应用。

摩擦学原理知识点总结

摩擦学原理知识点总结

摩擦学原理知识点总结摩擦学是研究物体之间相对运动时所产生的摩擦现象和规律的科学。

摩擦学原理包括摩擦的定义、摩擦力的产生原因,摩擦力的类型、摩擦力的计算方法等内容。

通过了解摩擦学原理,可以更好地理解摩擦力的作用和影响,从而在工程、物理学和机械设计等领域得到应用。

一、摩擦的定义摩擦,是指两个物体相对运动时,在它们接触表面上由于微观不平整而发生的阻力,这种阻力叫做摩擦力。

摩擦力是一种非常微小的力,通常在我们的日常生活中会忽略它的存在。

摩擦力的大小取决于物体表面的光滑程度、压力大小以及接触面积等因素。

二、摩擦力的产生原因摩擦力的产生是由于物体表面的不规则微观结构,当两个物体表面接触时,这些微不足道的不规则结构会相互干涩地牵引、压迫、撞击对方而产生的一种相对运动阻力。

三、摩擦力的类型1、静摩擦力当两个物体相对运动时,接触面会产生一个阻碍相对滑动的摩擦力,这就是静摩擦力。

静摩擦力的大小与物体之间的正压力成正比,即F_s = μ_sN,其中F_s为静摩擦力大小,μ_s为静摩擦系数,N为正压力的大小。

静摩擦力通常比动摩擦力大,当施加在物体上的力小于静摩擦力时,物体不会发生相对滑动。

一旦施加的力达到或超过了静摩擦力,物体就会开始发生相对滑动。

2、动摩擦力当物体产生相对滑动时,接触面会产生一个与相对滑动方向相反的摩擦力,即动摩擦力。

动摩擦力的大小与静摩擦力相关,通常小于静摩擦力,通常F_k = μ_kN。

其中F_k为动摩擦力大小,μ_k为动摩擦系数,N为正压力的大小。

动摩擦力通常比静摩擦力小,所以一旦物体开始运动,需要施加的力就变小了。

四、摩擦力的计算方法1、静摩擦力的计算静摩擦力的大小与物体间的正压力成正比,即F_s = μ_sN。

其中F_s为静摩擦力大小,μ_s为静摩擦系数,N为正压力的大小。

静摩擦系数是一个无量纲的常数,它取决于物体表面的光滑程度。

静摩擦系数的大小可以通过实验测定或者查找资料获得。

2、动摩擦力的计算动摩擦力的大小与正压力成正比,即F_k = μ_kN。

摩擦学的古典四大定律

摩擦学的古典四大定律

摩擦学的古典四大定律
一、摩擦力与法向载荷成正比
定律表述:摩擦力F与两接触体之间的法向载荷P成正比,即F=uP(其中u为摩擦系数,但需注意,此公式在重载情况下可能不成立,因为此时摩擦力与法向压力可能呈非线性关系,法向载荷愈大,摩擦力增加得愈快)。

解释:这一定律说明了摩擦力的大小与接触面之间的正压力有关,正压力越大,摩擦力也越大。

二、摩擦因数与接触面积无关
定律表述:摩擦系数与表观接触面积无关。

但这一定律的适用性有限,它一般适用于具有屈服极限的材料(如金属),而不适用于弹性及黏弹性材料。

对于黏弹性材料,摩擦力与接触面积是有关的。

解释:这一定律表明,在接触面积改变的情况下,只要接触面的材料和粗糙度不变,摩擦系数就不会改变。

三、摩擦因数与滑动速度无关
定律表述:两个相对运动物体之间的摩擦系数与它们的滑动速度无关。

但这一定律也并非绝对,它对于金属来说基本符合,但对于黏弹性显著的弹性体来说,摩擦系数明显与滑动速度有关。

解释:这一定律说明,在滑动速度改变的情况下,只要接触面的材料和粗糙度不变,摩擦系数就不会改变。

但实际上,在高速滑动时,由于摩擦热和表面变形等因素的影响,摩擦系数可能会发生变化。

四、静摩擦因数大于动摩擦因数
定律表述:静摩擦系数通常大于动摩擦系数。

但这一定律同样不适用于黏弹性材料,因为黏弹性材料的静摩擦因数可能不大于动摩擦因数。

解释:静摩擦力是使物体开始滑动所需要的力,而动摩擦力则是维持物体滑动持续进行所需要的力。

由于静摩擦时接触面之间的分子间作用力更大,因此静摩擦力通常大于动摩擦力。

摩擦学的理论研究及其应用

摩擦学的理论研究及其应用

摩擦学的理论研究及其应用摩擦学作为一门交叉学科,研究了摩擦、磨损以及表面物理化学等基本问题。

目前,摩擦学已被广泛应用于飞机、汽车、列车、医疗器械、机械化农业、工厂等领域,成为现代工业生产的重要组成部分。

一、摩擦学的基本概念摩擦学是研究摩擦、磨损和润滑等现象的力学学科,在力学、材料学、化学、表面物理学等学科的交叉领域中深入探讨了摩擦学原理、机理和应用。

摩擦是指两个接触表面相对运动时的阻力,它是产生于两个表面之间的接触力。

磨损是物体表面由于与物质相互作用而发生的形态变化和质量损失。

磨损现象的产生是由于两个相对运动的表面之间的微观接触,导致这些表面在一些局部的地方发生结合和断裂。

润滑是在两个表面相对运动的情况下,通过在表面之间引入润滑剂,使两个表面之间的摩擦系数降低的现象。

摩擦学的分支学科有干摩擦学、润滑摩擦学以及磨损学等。

二、摩擦学的研究意义摩擦学的研究意义主要体现在以下几个方面:1. 提高工程设计水平。

摩擦学的研究成果可以为工程设计人员提供思路和设计指导方案,达到规避机械性能下降、磨损加剧、寿命缩短等弊端的结果。

2. 进行润滑设计。

润滑剂、润滑油脂等润滑剂厂家可以进行润滑设计,为机械设备的正常运转提供保障。

3. 开拓新材料需求领域。

目前,涂层、纳米材料等新型材料的研究及应用已经成为摩擦学研究的热点领域。

这些新型材料可以增加润滑能力、降低磨损程度,从而提高机械设备寿命。

三、摩擦学的应用现状摩擦学理论已被广泛应用于汽车、航空、机械制造、医疗器械、化妆品等多个领域。

1. 汽车工业。

摩擦学理论的应用在汽车行业中表现尤为突出。

现代汽车工业是材料和摩擦学领域不断发展、不断创新的产物。

摩擦学技术在汽车上的应用范围非常广泛,从发动机、变速器和轮胎到制动系统、转向系统,都需要基于摩擦学原理的设计和研究。

2. 航空制造业。

航空材料的研究和使用一直是大家关注的热门话题。

摩擦学技术也在航空工业中应用。

涂层材料、传感器、及精密丝锥这些领域都获得了摩擦学的应用,从而提高了飞机的性能,增加了安全和舒适性。

摩擦学基础知识

摩擦学基础知识

(1)表面被污染,摩擦系数主要取决于材料 组合、表面特征和环境条件。
(2)粘着起作用,摩擦系数开始上升,假如 微凸体断裂,产生旳磨粒将产生犁沟作用, 使摩擦系数升高。
(3)滑动表面旳磨粒数增长,犁沟作用增大, 摩擦系数急剧上升。
(4)进入和离开界面旳磨粒数相等时,摩擦 系数保持不变,即稳定摩擦状态。
摩擦学基础知识
概述
1. 摩擦旳定义:
2. 两个接触物体表面在外力 3. 作用下相互接触并作相对 4. 运动或有运动趋势时,在 5. 接触面之间产生旳切向运 6. 动阻力称为摩擦力,这种 7. 现象就是摩擦。
2 . 摩擦旳分类
1. 摩擦按摩擦副运动状态可分为:
静摩擦:两物体表面产生接触,有相对运动趋势但 还未产生相对运动时旳摩擦。 动摩擦:两相对运动表面之间旳摩擦。 2. 按相对运动旳位移特征分类:
(2)具有牵引力旳滚动---滚动元件受到法向 载荷和牵引力旳作用产生旳滚动形式。
(3)伴随滑动旳滚动---几何形状造成接触面 上切向速度不等时,必将伴有滑动。
3. 滚动摩擦系数
(1)有量纲滚动摩擦系数: 驱动力矩与法向载荷之比,即: μ=FR/W=W´e/W=e
(2)无量纲滚动摩擦系数:
称为滚动阻力系数,数值上等于驱动力矩 在单位距离所作旳功与法向载荷之比,即:
(4)无法解释脆性材料具有旳和金属材料相 同旳摩擦性能。
(5)粘着理论很好解释了“相溶性较大旳金 属之间轻易发生黏着,摩擦系数较大”现象.
对于大多数金属, τb =0.2σs ,计算旳摩擦系数 为 0.2左右.正常大气中测旳摩擦系数都高达 0.5 ,在真空中更高.
5.机械—粘着—犁沟综合作用理论
(了解)当刚性滚轮沿弹性平面滚动时,在 一整周内滚轮走过旳距离要不不小于圆周长。 (了解)当弹性滚轮沿刚性平面滚动时,在 一整周内滚轮走过旳距离要不小于圆周长。

摩擦学的三个公理

摩擦学的三个公理

摩擦学的三个公理在摩擦学中,存在着三个重要的公理,它们在研究物体之间的摩擦力时起到基础性的作用。

这三个公理分别是:1. 马丁摩擦定律:马丁摩擦定律是摩擦学的基础,它表明物体之间的摩擦力与它们之间的压力成正比。

即,摩擦力与物体之间的压力大小有直接关系。

这是一个经验规律,适用于大多数情况下。

2. 库仑摩擦定律:库仑摩擦定律是描述干摩擦力与物体之间相对速度的关系的规律。

它指出,干摩擦力的大小与两个物体间相对速度的乘积成正比。

换句话说,当物体之间的相对速度增加时,摩擦力也会增大。

3. 静摩擦力与滑动摩擦力的切换条件:当一个物体相对于另一个物体处于静止状态时,两者之间的摩擦力称为静摩擦力。

而当一个物体开始相对滑动时,两者之间的摩擦力则变为滑动摩擦力。

这一转换发生的条件是,物体之间的相对运动达到一个临界值,这个临界值称为静摩擦力的极限,也被称为摩擦系数。

通过这三个公理,我们能更准确地描述物体之间的摩擦力现象,进而研究和解决与摩擦相关的问题。

除了上述的三个公理外,摩擦学还涉及到一些其他的概念和原理,以下是与摩擦相关的一些补充内容:1. 摩擦系数:摩擦系数是一个量化摩擦力大小的物理量,用符号μ表示。

它描述了两个物体间的摩擦力与压力的比值。

通过测量和实验,可以确定不同材料之间的摩擦系数,从而在工程和科学应用中方便地计算摩擦力。

2. 滑动摩擦力和滚动摩擦力:摩擦力可以分为滑动摩擦力和滚动摩擦力两种形式。

滑动摩擦力发生在两个物体表面之间相互滑动的情况下,而滚动摩擦力则是当一个物体在另一个物体上滚动时产生的摩擦力。

两者之间存在一定的差异,例如滚动摩擦力通常比滑动摩擦力小。

3. 摩擦力的应用:摩擦力是生活中和工程实践中非常常见和重要的现象。

正是通过摩擦力,人类可以正常步行、操控车辆以及使用工具等等。

摩擦力也广泛应用于机械工程、运输工程、建筑和材料科学等领域,例如在设计车辆刹车系统时需要考虑摩擦力的大小,以确保安全性和可靠性。

摩擦学的基本原理及其应用

摩擦学的基本原理及其应用

摩擦学的基本原理及其应用摩擦是我们日常生活中经常遇到的现象。

车辆行驶时的轮胎与路面摩擦,人行走时的脚与地面摩擦,任何实体在相互接触时都会产生摩擦。

而摩擦学正是研究物体在相互接触时产生的力的学科,其基本原理和应用非常重要。

一、摩擦的基本原理1. 摩擦力的定义摩擦力是指阻碍物体相对运动的力。

在物体相互接触时,由于表面间的不规则性,阻碍物体相对运动的力就会产生。

摩擦力可以分为静摩擦力和动摩擦力两种,它们通常都是与物体间接触的表面粗糙程度和材料特性等因素有关。

2. 摩擦力与接触面积的关系摩擦力与物体间接触面积成正比例关系。

接触面积越大,摩擦力越大;反之,接触面积越小,摩擦力越小。

这是因为物体直接接触的表面积越大,表面之间的微小凹凸就越大,摩擦力就越大。

3. 摩擦力与物体间压力的关系摩擦力与物体间压力成正比例关系。

即当物体间的压力增大时,摩擦力也随之增大,反之亦然。

这是因为物体间的压力越大,表面间的不规则性就越小,微小凹凸就进一步压缩,摩擦力就会增大。

二、摩擦学的应用1. 制动系统摩擦制动是利用静摩擦力使车轮停止转动的一种制动方式。

汽车、自行车等的制动系统都是靠摩擦制动来实现的。

在制动过程中,制动器上的刹车片与转动的车轮表面接触,产生静摩擦力使转轮停止转动。

而刹车片与车轮的表面摩擦系数大与小的不同,就会影响到制动效能和制动距离的长度。

2. 螺纹连接螺纹连接是常用的一种紧固连接方式,它通常用于连接杆件、面板、封板等部件。

在螺纹连接时,利用螺纹外螺距不等的原理,使螺栓和螺母之间相互旋转,从而将拼接的两个构件紧密地连接在一起。

在设计时,需要根据要求计算螺栓和螺母的摩擦力,以保证连接牢固。

3. 轴承轴承是一种广泛应用于机器设备中的组件,主要用于支撑机器转动部件,并在其旋转过程中承受轴向和径向的载荷。

它的基本原理就是利用滚动体或滑动体之间的摩擦来实现支承转动。

因此,轴承性能的好坏与其摩擦力有着密不可分的关系。

4. 润滑油润滑油作为目前普遍使用的润滑材料,被广泛应用于各种机械设备中,其作用是减小机械件表面的摩擦,以达到降低能耗、延长机器使用寿命的效果。

摩擦学

摩擦学

1.摩擦学定义:研究相对运动的相互作用表面的有关理论与实践的一门学科和技术。

着重强调“相对运动表面”和“相互作用”也可以说“摩擦学是研究两相对运动表面摩擦,磨损和润滑这三项相互关联的科学与技术的总称。

2.摩擦·磨损·润滑三者的关系:摩擦是现象,磨损是摩擦的结果,润滑是降低摩擦减小磨损的重要手段。

3.世界上有1/3-1/2的能源消耗在摩擦上,大约有80%的坏损零件是由磨损报废的4.表面形貌又称表面图形,表面结构,表面粗糙度或表面光洁度。

它是研究固体表面几何形状的细节。

5.把表面形貌中的独立单体即凸起的波峰称为微凸体。

6.微观不平度的平均间距:微观不平度间距为含有一个廓峰和相邻轮廓谷的一段中线长度。

7.金属是工程应用最广泛的材料。

金属表面加工过程中,新生表面一旦暴露在大气中,就与大气中的各种气体作用形成各种性质的膜。

在金属表面以内,也因加工的机械作用造成材料变型而形成不同性质的层。

因此表面上和表面内都存在与金属基体本身的物理化学性质不一样的膜与层。

污染层-吸附层-氧化层-变形层-基体,固体表层的组成。

8.表面接触:高副接触-点,线;低副接触—面接触过程:对一对微凸体而言,刚进入接触时,发生弹性变形,当载荷超过某一临界值则发生塑性变形;在微凸体接触处处于塑性变形的情况下,其基体仍可能是弹性变形状态。

就接触的微凸体看,在载荷一定的条件下,高度和较大的接触微凸体为塑性变形,高度和较小的接触微凸体可能是弹性变形。

点接触—弹性变形—塑性变形---多点接触在载荷作用下,接触首先发生在两表面微凸体高度的最大处。

在开始接触的瞬间至少在三个位置上接触,但因接触面积的总和太小,以至不能支撑载荷,首先进入接触的微凸体的压应力很大,甚至可能超过接触体中较软材料的屈服极限而发生塑性变形。

同时新的高度和也较大的微凸体逐渐进入接触,直到参加接触的微凸体数目增加到不再进一步变形,且能支持升载为止。

微凸体模型:环球模型,柱形模型,锥形模型接触模型:球面与球面,球面与平面,棒与棒9.根据前人的宏观接触(既不考虑表面微凸体的塑性变形)的分析与推论,证明了接触形式的不同,最大剪应力的大小与位置不同。

摩擦学原理知识点

摩擦学原理知识点

绪论1、摩擦学定义:是对于相对运动的互相作用表面的科学技术,包含摩擦、润滑、磨损和冲蚀。

2、摩擦学研究内容主要包含:摩擦、磨损、润滑以及表面工程技术。

3、摩擦:是抵挡两物体接触表面在外力作用下发生切向相对运动的现象。

4、磨损:侧重研究与剖析资料和机件在不一样工况下的磨损机理、发生规律和磨损特征。

5、润滑:研究内容包含流体动力润滑、静力润滑、界限润滑、弹性流体动力润滑等在内的各样润滑理论及其在实践中的应用。

6、表面工程技术:将表面与摩擦学有机联合起来,解决机器零零件的减摩、耐磨,延伸使用寿命的问题。

第一章1、表面容貌:微观粗拙度、宏观粗拙度(即涟漪度)和宏观几何形状误差。

2、表面参数:(1)算术均匀误差 Ra是在一个取样长度lr内纵坐标值Z(x)绝对值的算术均匀值。

(2)轮廓的最大高度 Rz 是在一个取样长度 lr 内最大轮廓峰高 Zp 和最大轮廓谷深 Zv 之和的高度。

( 3)均方根误差 Rq是在一个取样长度 lr 内纵坐标值 Z( x)的均方根值。

3、对于液体,表层中所有分子所拥有的额外势能的总和,叫做表面能。

表面能越高,越易粘着。

4、物理吸附:当气体或液体与固体表面接触时,因为分子或原子互相吸引的作使劲而产生的吸附叫做物理吸附,是靠范德华力维系的,温度越高,吸附量越小。

物理吸附薄膜形成的特色是吸附和解吸附拥有可逆性,无选择性。

5、化学吸附:极性分子与金属表面的电子发生互换形成化学键吸附在金属表面上,且极性分子呈定向摆列。

化学吸附的吸附能较高,比物理吸附稳固,且是不完整可逆的,拥有选择性。

6、粘附:是指两个发生接触的表面之间的吸引。

7、影响粘附的要素:①湿润性,②粘附功,③界面张力,④亲和力。

8、金属表面的实质构造:(1)表面层:①污染层,②吸附气体层,③氧化层;( 2)内表层:①加工硬化层,②金属基体。

第二章1、固体表面的接触分类:(1)点接触和面接触。

(2)①弹性接触(赫兹接触),②塑性接触,③弹塑性接触,④粘弹性接触。

摩擦学原理

摩擦学原理

摩擦学原理
摩擦学是物理学的一个分支,它研究的是摩擦的原理,及其在物理现象中的运用。

摩擦学的发展始于古希腊,当时科学家把它归结为三个基本原理:动摩擦、静摩擦和摩擦力的作用。

在这三个原理的基础上,科学家们进一步发展出了关于摩擦的更多理论。

动摩擦是指当两个物体相互滑动时,会产生摩擦力,这种摩擦力会对物体的运动产生阻力。

这种力可以用来减慢物体的运动,也可以用来增加物体的运动。

从物理学的角度来看,动摩擦的大小与物体的重量、滑动速度和摩擦力有关。

静摩擦是指两个物体之间的静止接触,也就是说,它们不会发生相互滑动。

在这种情况下,会产生一种叫做摩擦力的力,这种力会影响物体的运动,使其变得更加困难。

静摩擦的大小取决于两个物体之间的摩擦系数,以及它们之间的重量。

最后,摩擦力是指当两个物体接触时,会产生的一种力,这种力可以阻挡物体的运动,也可以促使物体的运动。

摩擦力的大小与两个物体的重量、摩擦系数和滑动速度有关。

总之,摩擦学原理主要包括动摩擦、静摩擦和摩擦力三个基本原理。

摩擦力可以影响物体的运动,因此它有着重要的应用,如机器的运行、车辆的制动等。

因此,摩擦学原理有助于我们理解物理现象,
为物理实验和研究提供了重要参考。

摩擦学的应用及其在机械设计中的应用

摩擦学的应用及其在机械设计中的应用

摩擦学的应用及其在机械设计中的应用摩擦学,是一个研究摩擦现象、摩擦性能、摩擦机理、摩擦控制等方面的学科,近年来随着技术的不断发展,摩擦学的应用越来越广泛。

如何应用摩擦学,是现代工程设计的重要问题之一。

本文主要探讨摩擦学的应用以及在机械设计中的应用。

一、摩擦学的应用领域摩擦学最初是一个纯学术领域的研究,但是随着工业的发展,摩擦学的应用也越来越广泛。

以下是摩擦学的具体应用领域:1.汽车工业领域:摩擦学在汽车制造中的应用很多,例如发动机缸套、扭力减震器、离合器、刹车等,这些产品的性能都与摩擦学相关。

2.航空航天领域:在飞行器的制造和运行中,摩擦学起到了重要的作用。

如旋翼轴承、发动机内部的部件、型号翼面等。

3.电子电器领域:摩擦学在微电子制造和电气设备中也有重要的应用。

如电气接触材料、固体电解质等。

4.环保领域:摩擦学在颗粒材料输送、废水污泥处理、清洗除尘等方面都有应用。

5.生物医学领域:人造心脏瓣膜、关节模拟器、骨修复材料等都与摩擦学相关。

6.材料科学领域:材料表面性质的改变,如光学透明薄膜、涂层材料、晶体稀土材料等,也与摩擦学有关。

以上仅是摩擦学应用领域的一小部分,其实摩擦学在工业、生活中的应用十分广泛。

二、摩擦学在机械设计中的应用摩擦学在机械设计中有着十分重要的应用,许多机器的稳定性、耐久性、人机交互性等方面的性能,与摩擦学的应用相关。

1.摩擦材料的选择在机械设计中,摩擦材料的选择是十分重要的。

例如在制动系统中,制动器摩擦衬垫的材料对于性能和使用寿命都有着重要的影响。

选材时,必须考虑到材料的摩擦性能、耐磨性、抗腐蚀性等,这就需要涉及到摩擦学知识。

2.摩擦力的控制在机械设计中,摩擦力的控制非常重要。

例如在工业机械的设计中,需要借助降低机械变形和能量损失的方式来减少摩擦。

摩擦力的控制还可以通过材料处理、设计调整等方式来实现。

3.润滑剂的选择在机械设计中,润滑剂在工作过程中起到了重要作用。

润滑剂不仅能减少摩擦力,还能延长机器零部件的使用寿命。

摩擦学的研究对象及应用

摩擦学的研究对象及应用

摩擦学的研究对象及应用摩擦学是研究物体表面接触和相互运动中的摩擦行为的科学学科。

它涉及到材料表面特性、摩擦力与摩擦系数、润滑机理以及摩擦磨损的影响因素等多个方面的研究内容。

摩擦学的研究对象主要包括固体、液体以及气体界面之间的摩擦力和磨损行为。

在固体的摩擦学研究中,它主要关注固体与固体之间的摩擦效应,如金属、陶瓷、塑料、复合材料等材料之间的摩擦与磨损。

而在液体的摩擦学研究中,主要关注流体介质中摩擦与阻力的产生与减小,如润滑油在机器设备中的应用。

在气体的摩擦学研究中,主要关注气体介质中的摩擦与气体流动的特性,如气体润滑与气体密封等。

摩擦学在工程领域有着广泛的应用。

首先,在机械工程中,摩擦学起着非常重要的作用。

通过研究摩擦学,可以了解摩擦力对机械设备的影响,以及如何设计与选用合适的润滑材料和润滑方式来减少摩擦磨损,提高机械设备的可靠性和使用寿命。

其次,在汽车工程中,摩擦学的研究为车辆的制动系统、发动机和悬挂系统等关键部件的设计和优化提供了理论基础。

另外,摩擦学在航空航天领域也有重要的应用,例如减小航空发动机的摩擦和热损失以提高燃油效率。

此外,摩擦学还在材料科学、电子学、生物医学领域以及纳米科技等方面具有广泛的应用。

摩擦学的研究也引发了一些热门领域的兴趣,例如润滑和摩擦控制技术、摩擦降低技术、自润滑材料、摩擦与磨损的表征与评估方法等。

润滑和摩擦控制技术是通过使用润滑材料和优化润滑方式来降低摩擦力和磨损的技术。

摩擦降低技术是通过利用减小表面粗糙度或引入润滑层等方法来降低摩擦力的技术。

自润滑材料是指具有自我润滑性能的材料,例如凝胶、聚合物、润滑涂层等,它们能够在工作过程中持续释放润滑剂以减小摩擦力。

而表征和评估摩擦与磨损的方法包括表面形貌分析、摩擦力测试、磨损机理分析等,通过这些手段可以更好地了解摩擦与磨损的本质以及评估材料的摩擦性能。

总之,摩擦学作为一门交叉学科,不仅有着广泛的研究对象,涵盖了固体、液体和气体等不同状态的介质,还有着广泛的应用领域,包括机械工程、汽车工程、航空航天领域以及材料科学等。

机械工程中的摩擦学理论研究

机械工程中的摩擦学理论研究

机械工程中的摩擦学理论研究摩擦学是机械工程领域中一个重要的研究分支,涉及到各种摩擦现象的分析与解决方案。

摩擦学理论的研究对于提高机械装置的性能、延长其使用寿命以及减少能源损耗有着重要意义。

本文将从摩擦学的基本概念入手,探讨其在机械工程中的应用以及未来的研究方向。

一、摩擦学的基本概念摩擦学是研究两个物体之间相对运动产生的力与接触面之间压力之间的关系以及摩擦力的起源与性质的学科。

摩擦力可以分为干摩擦力和润滑摩擦力两种类型。

干摩擦力是指无润滑剂存在时,两个物体接触表面之间的摩擦力;润滑摩擦力是指润滑剂存在时,润滑油膜起到缓冲作用后形成的摩擦力。

了解和研究这些摩擦现象对于设计和制造高效的机械设备至关重要。

二、摩擦学在机械工程中的应用1. 摩擦学在机械零件设计中的应用机械零件的设计需要考虑到摩擦力对零件的影响。

例如,在滚动轴承的设计中,需要考虑滚子和滚道之间的接触面积和摩擦力,以避免因摩擦力过大而导致零部件的损坏。

此外,摩擦学还涉及到材料的选择以及表面处理等方面,以提高零件的耐磨性和摩擦性能。

2. 摩擦学在润滑剂研究中的应用润滑剂在机械系统中起到减少摩擦和磨损的作用。

因此,研究润滑剂的性质和效果对于提高机械系统的性能至关重要。

摩擦学的研究可以帮助我们了解润滑剂的流动性、黏度、润滑膜的形成以及在不同工况下的性能变化规律。

这些理论的应用可以指导制定合理的润滑剂选择和使用方案,减少机械系统的摩擦和磨损。

三、摩擦学理论研究的挑战尽管摩擦学在机械工程中的应用被广泛接受,但仍存在一些挑战和难题需要克服。

首先,摩擦学理论研究需要考虑到各种条件下的摩擦现象,包括不同材料之间的摩擦、高温、高速、冲击等极端工况下的摩擦行为。

其次,摩擦学的研究还需要综合考虑多种因素的影响,例如材料的特性、润滑剂的性质、表面处理等。

这些因素的相互作用与耦合关系使得摩擦学的理论研究更加复杂和困难。

四、未来的研究方向在未来的研究中,我们需要进一步深入理解和揭示摩擦学的本质和规律。

摩擦学理论

摩擦学理论

摩擦学理论摩擦学理论是关于摩擦现象的研究,是材料科学、力学和化学等多个学科的交叉研究领域。

摩擦学理论涉及了摩擦的各个方面,包括摩擦力的产生机制、摩擦表面的形态和性质、润滑剂的作用、摩擦磨损机理等。

摩擦学理论的研究对工程制造和材料科学有着重要的意义,可以指导现代工业生产的进步和产品的优化,也可以为新材料的研发提供理论依据。

1. 摩擦力的产生机制摩擦力是在两个物体接触的表面上产生的一种力,是由于两个物体表面微观形态的不规则性导致的。

在两个物体表面接触时,它们之间产生了各种应力和变形,导致接触面的形态改变和互相嵌入,这就形成了摩擦力。

而摩擦力的大小和物体的接触力、表面形态、材料力学性质、润滑条件等因素都有关系。

2. 摩擦表面的形态和性质摩擦表面的形态和性质对摩擦力的大小和性质起着决定性的作用。

在摩擦过程中,物体表面的形态会发生变化,形成颗粒、凸缩或其他微观结构,这些结构会影响物体之间的接触变形和应力分布,从而改变摩擦力的大小和方向。

而在不同材料之间的摩擦过程中,表面性质的差异也会导致摩擦力的变化,比如表面的粗糙程度、化学成分、硬度等。

3. 润滑剂的作用润滑剂是一种能够减少物体表面摩擦的化学物质,可以降低摩擦力,减少磨损和热量的产生。

润滑剂的作用可以通过两种机制实现:一种是分子层润滑,润滑剂分子与物体表面分子形成一层保护膜,使物体表面光滑并且防止直接接触;另一种是滚动润滑,润滑剂作用在物体之间,减少物体之间的接触,在润滑层中发生滚动运动,从而减小了摩擦力的产生。

4. 摩擦磨损机理摩擦磨损是摩擦学理论中的重要研究内容,包括摩擦表面的磨损机理、材料的磨损机理、表面处理方式对磨损的影响等。

摩擦磨损的主要机制包括粘着磨损、表面疲劳磨损、压痕磨损等。

在这些机制中,表面的化学成分、硬度、表面处理方式等的差异都会对摩擦磨损的形成和发展起到决定性作用。

综上所述,摩擦学理论在现代工业生产中发挥着重要的作用。

随着现代科学技术的不断发展,摩擦学理论也在不断进步和完善,为工程制造和材料科学的发展提供了有力的理论基础。

摩擦学基本知识

摩擦学基本知识

摩擦学基本知识目录1. 摩擦学简介 (3)1.1 摩擦学的定义和学科范围 (4)1.2 摩擦学的重要性与应用领域 (5)2. 摩擦的分类与机制 (6)2.1 摩擦的分量和类型 (7)2.2 摩擦机理的基本概念 (8)2.3 不同表面相互作用的摩擦特性 (9)3. 摩擦因数的测定与预测 (10)3.1 摩擦因数的测定方法 (13)3.2 摩擦因数的预测模型 (14)3.3 摩擦因数的理论与实验研究 (16)4. 接触力与接触压力 (17)4.1 接触力产生的基本原理 (18)4.2 接触压力分布分析 (19)4.3 表面纹理与非线性接触压力 (21)5. 摩擦系数与磨损 (22)5.1 摩擦系数的影响因素 (23)5.2 磨损理论与磨损机制 (25)5.3 表面损伤与摩擦副寿命 (26)6. 润滑理论与技术 (27)6.1 润滑的基本原理 (29)6.2 润滑剂的种类与性能 (29)6.3 润滑技术的应用与发展 (30)7. 润滑与摩擦学研究进展 (32)7.1 高温润滑与表面化学 (33)7.2 纳米润滑与摩擦纳米技术 (34)7.3 非传统润滑方法 (36)8. 摩擦与润滑系统分析 (37)8.1 摩擦与润滑系统的建模 (38)8.2 系统分析和仿真方法 (39)8.3 设计原则与优化方法 (42)9. 摩擦与润滑材料 (43)9.1 摩擦与润滑基体材料 (44)9.2 摩擦系数与材料特性 (46)9.3 摩擦与磨损材料的研究 (47)10. 表面工程与表面特征对摩擦的影响 (48)10.1 表面工程技术 (50)10.2 表面特征与摩擦性质 (51)10.3 表面处理与润滑原理 (52)11. 摩擦与润滑的可持续性与环境考量 (54)11.1 环境保护与绿色润滑 (55)11.2 可持续设计与材料选择 (56)11.3 摩擦与润滑的节能减排 (57)12. 摩擦与润滑的科技伦理与社会责任 (58)12.1 专利与知识产权保护 (59)12.2 技术创新与科技伦理 (61)12.3 摩擦与润滑的社会责任 (62)13. 摩擦与润滑的未来趋势 (63)13.1 新兴技术的应用前景 (64)13.2 智能化与信息化在摩擦学中的应用 (65)13.3 摩擦学与当代科技发展的交融 (66)1. 摩擦学简介摩擦学是一门研究涉及相互接触并相对运动的物体间相互作用的科学。

机械结构的摩擦学与表面工程技术

机械结构的摩擦学与表面工程技术

机械结构的摩擦学与表面工程技术摩擦学是研究有关物体相对运动时表面接触与相互作用的科学。

在机械结构中,摩擦是一个重要的问题,因为它与能量损失、磨损、噪音和失效等相关。

为了减少摩擦带来的不利影响,科学家和工程师们研发并应用了各种表面工程技术。

在本文中,我们将探讨机械结构的摩擦学及其与表面工程技术的关系。

一、摩擦学的基本原理摩擦是由于两个物体表面间的相互接触引起的阻碍相对运动的力。

在微观层面上,摩擦力是由于表面不完全光滑,而导致表面间的接触和分离产生的。

表面粗糙度、压力、相对运动速度和接触材料的性质等都对摩擦力产生影响。

摩擦力可以分为静摩擦力和动摩擦力。

静摩擦力是在物体尚未开始相对运动时产生的阻力,而动摩擦力是物体开始相对运动后产生的阻力。

静摩擦力通常比动摩擦力大,当受到外力作用时,物体将首先克服静摩擦力才能开始运动。

摩擦力可以通过使用润滑剂来减小。

润滑剂通常是液体或固体,用于填充表面间的凹坑或提供一个滑动的界面。

润滑剂的选择取决于具体的应用,例如液体润滑剂常用于高速运动系统中,而固体润滑剂则更适用于高温环境。

二、表面工程技术在摩擦学中的应用表面工程技术是通过改变材料表面的特性来改善摩擦性能。

以下是几种常见的表面工程技术:1. 表面涂层技术:表面涂层技术包括在材料表面涂上一层具有特殊性能的材料。

这些涂层可以减小摩擦系数、增加润滑性以及提供保护层。

例如,钢件表面可以镀上一层具有低摩擦系数的金属,如镍或铜,以减小摩擦力并降低磨损。

2. 表面改性技术:表面改性技术主要通过物理或化学方法改变材料表面的性质。

蚀刻、沉积和离子注入等方法可以改变材料表面的组成和结构,从而改善摩擦性能。

例如,在钢件表面进行离子注入,可以形成一个硬度更高、耐磨性更好的表面层。

3. 表面磨削技术:表面磨削技术是通过切削或研磨材料表面来改变其形状和粗糙度。

通过磨削可以减小材料表面的粗糙度,从而减小接触面积和摩擦力。

此外,磨削过程还可以产生一个更加光滑的表面,降低与其他物体的摩擦。

摩擦学概述

摩擦学概述

摩擦学概述摩擦学是研究相对运动的作用表面间的摩擦、磨损和润滑,以及三者间相互关系的理论与应用的一门边缘学科。

其中摩擦是相对运动的物体表面间的相互阻碍作用现象;磨损是由于摩擦而造成物体表面材料的损失或转移;而润滑是减轻摩擦和磨损所应采取的措施。

这便是摩擦学的主要构成。

众所周知,世界上使用的能源大约有 1/3~1/2 消耗于摩擦。

机械产品的易损零件大部分是由于磨损超过限度而报废和更换的。

所以为了减少摩擦和磨损,节省能源,降低设备维修次数和费用,节省制造零件及其所需材料的费用,便由之产生了润滑这一篇。

摩擦的原理分为“机械说”,‘分子说”,“机械-分子说”。

即可能是因为表面微凸体的相互阻碍作用或表面材料分子间的吸力作用或兼而有之。

2摩擦可分为以下几种:1内摩擦——在物质的内部发生的阻碍分子之间相对运动的现象。

外摩擦——在相对运动的物体表面间发生的相互阻碍作用现象。

3静摩擦——仅有相对运动趋势时的摩擦。

4动摩擦——在相对运动进行中的摩擦滑。

5滑动摩擦和滚动摩擦。

根据滑动摩擦状态又分为1.干摩擦 2.边界摩擦3. 液体摩擦4. 混合摩擦。

磨损是由于摩擦而导致零件表面材料的逐渐丧失或迁移。

直接导致的后果降低机器的效率和可靠性,甚至促使机器提前报废。

磨损过程大致分为下三阶段:1磨合阶段——包括摩擦表面轮廓峰的形状变化和表面材料被加工硬化两个过程2稳定磨损阶段——零件在平稳而缓慢的速度下磨损3剧烈磨损阶段——在经过稳定磨损阶段后,零件表面遭到破坏,运动副间隙增大引起而外的动载荷和振动。

零件即将进入报废阶段。

而我们设计机器时,要求缩短磨合期、延长稳定期、推迟剧烈磨损期的到来。

磨损类型按磨损机理分可分为磨粒磨损,粘附磨损,疲劳磨损,冲蚀磨损,腐蚀磨损,微动磨损。

按磨损表面外观可分为点蚀磨损,胶合磨损,擦伤磨损。

举其中三个例子来说,比如磨粒磨损——也简称磨损,外部进入摩擦面间的游离硬颗粒(如空气中的尘土或磨损造成的金属微粒)或硬的轮廓峰尖在软材料表面上犁刨出很多沟纹时被移去的材料,一部分流动到沟纹两旁,一部分则形成一连串的碎片脱落下来成为新的游离颗粒,这样的微粒切削过程就叫磨粒磨损。

摩擦学研究及其应用

摩擦学研究及其应用

摩擦学研究及其应用摩擦学是研究固体相互接触时表面间微观相互作用的学科,摩擦学理论是许多工程、科学领域中不可或缺的基础理论。

摩擦学的研究有助于发展新型的摩擦材料,提高产品的性能,降低产品磨损以及扩展摩擦材料的应用领域。

一、摩擦学的基本原理摩擦力是指两个物体间摩擦力的大小,摩擦力主要与两个物体间的摩擦系数以及物体间的压力有关。

摩擦系数是物体间相互接触时的摩擦特性,通常用μ表示,可以分为干摩擦系数和润滑摩擦系数。

干摩擦系数指在无任何润滑剂存在的情况下,两个物体之间的摩擦系数。

而润滑摩擦系数指在润滑剂的存在下,两个物体之间的摩擦系数。

摩擦是由于固体表面之间的互相接触作用而产生的,主要包括离子键、分子键、Van der Waals力等。

这些力作用下,固体表面间存在摩擦,进而限制固体相互间的相对运动。

而摩擦力的大小与两个物体间的摩擦系数、受力的面积、物体的质量大小以及摩擦力的方向等因素有关。

二、摩擦学的应用摩擦学的研究和应用广泛,从机械工程、航空航天、汽车工业、化学工业、电子工业、微电子工业、医学、生物工程等领域都能够看到摩擦学的身影。

以下简要介绍摩擦学在几个领域的应用:1.机械工程领域的应用机械工程是摩擦学最广泛应用的领域之一。

例如,针对汽车行业,汽车的刹车系统的设计和制造需要考虑摩擦系数以及摩擦材料的性能。

同时,在润滑系统设计方面也需要有摩擦学理论的指导,从而提高汽车的安全性和性能。

此外,在工业生产过程中,摩擦学理论也是制造过程中最重要的考虑因素之一,例如,在空气动力学领域,涉及到飞机或者火箭的发动机中,需要润滑材料具有极高的性能和极高的摩擦系数。

2.电子工业领域的应用摩擦学在电子工业领域的应用也越来越广泛。

例如,在微电子制造过程中,精细的电子元件需要用到非常好的润滑材料,以保证元件的制造质量;同时,在磁盘驱动器的生产过程当中,需要涉及到多面磁头的碟片表面摩擦适合性的问题,以达到在高速旋转时切换盘片的目的。

摩擦学ppt

摩擦学ppt

对于尺寸在毫米以下甚至毫微米级范围的微 型机械,如可清除血管内壁沉积物的微型机器人 等,此时表面效应非常明显,摩擦则是重要的因 素之一。 在通讯卫星中,天线需要精确的定位机构和 展开机构,要求轴承扭矩在7—10年内不变,经过 107 次循环使用后精度不变,此时必须研制新型 润滑剂以减少微观尺度的摩擦力和磨损的变化。
纳米摩擦学研究方法
(1)现代表面分析方法 纳米摩擦学的实验广泛应用表面力仪 (SFA)和扫描探针技术.包括扫描隧道显微 镜 (STM),原子力显微镜(AFM)和激光检 测摩擦力显微镜(FFM)。它们用于测量原 子尺度的表面形貌和表面微观动态力学行 为.在微磨损、微划痕、纳米磨损与超精 加工以及分子膜边界润滑等研究中发挥巨 大的作用。
2.表面形态与混合润滑理论
摩擦学现象发生在极薄的表面层, 因此对于摩擦表面形态的形成、变化 和作用的分析,将深化摩擦学机理研 究,并就改善使用性能寻求合理的表 面形态和工艺方法提供依据。研究内 容包括:表面形貌的表征及其摩擦学 效应,表面物理化学状态在摩擦、磨 损过程中的行为与变化等。
分析表明,工程中大多数摩擦表面是 处于混合润滑状态,即部分润滑膜与表面 粗糙峰点相接触同时存在。磨损的发生是 混合润滑状态的特性。 目前有关混合润滑的设计尚停留在半 经验阶段,因此建立工程适用的混合润滑 设计理论是当前急迫的任务。这一领域的 研究集中在:部分膜润滑和微观弹流润滑 理论,各类润滑膜的失效准则和润滑状态 转化过程,粗糙表面的接触分析与载荷分 配,混合润滑的模型化和定量化研究等。
3.磨损形成机理及其控制
研究目的在于了解磨损形成过程、变化及其影响因 素,从而寻求提高耐磨性和控制磨损的措施。工程中的 磨损现象多种多样,根据形成机理可归纳为:磨粒磨损、 粘着磨损、疲劳磨损、化学腐蚀磨损等基本类型。实际 机械中的磨损大多是几种磨损类型同时发生,因此磨损 研究必须强调针对性,即密切结合各种典型零件的具体 工况条件进行分析研究,在累积数据的基础上,建立磨 损机理以及抗磨损设计方法与对策. 实际零件的磨损经历着复杂的过程,涉及因素很多, 包括工况参数、材料与表面形态、润滑与环境介质的作 用等的影响。因此,磨损研究还应强调运用多学科的综 合研究和系统工程分析的方法。

摩擦学的基础理论与应用研究

摩擦学的基础理论与应用研究

摩擦学的基础理论与应用研究摩擦是指两个物体表面相对运动时由于相互接触而产生的阻力现象,它是工程学、物理学、材料学等多个领域的重要基础理论。

摩擦学是研究材料表面摩擦行为、摩擦现象的发生、摩擦力的产生及其与其他物理性能关系的学科。

本文将从摩擦学的基础理论和应用研究两个方面进行讨论。

一、摩擦学的基础理论1. 摩擦力的产生机理摩擦行为的产生是由于接触表面的几何形状和表面材料性质不同,在相互接触的过程中,由于分子间力和表面形貌所导致的相互作用力,使得接触界面出现局部的非弹性变形和平面内的相对移动,从而产生摩擦力。

在摩擦过程中,摩擦力的大小与接触面积、滑动速度以及对接面的实际接触面积等多种因素密切相关。

2. 摩擦学中的基本参数在摩擦学的研究过程中,通常需要了解和考虑的基本参数包括:摩擦系数、界面温度、压力、表面形貌、物体材料性质等。

摩擦系数是由于相互接触的两个物体表面之间产生的摩擦力与垂直于物体接触面方向的另一个力(如重力或施加的压力)之比,它是反映摩擦性能的一个基本指标。

同时,界面温度、压力与摩擦系数具有复杂的力学和热学关系,二者相互影响,彼此耦合,对摩擦行为及其机理的研究具有重要的意义。

3. 摩擦学的实验研究为了探索摩擦学的基本规律和行为,人们设计了许多实验研究。

在这些实验中,常见的方法包括:滑动摩擦试验、滚动摩擦试验、组合摩擦试验以及摩擦磨损试验等。

这些实验通常能够测定摩擦系数、摩擦力、接触压力等参数,并对其机理和相互作用进行分析。

二、摩擦学的应用研究1. 摩擦副设计在制造机械设备和各类传动系统时,与之相关的摩擦副设计显得尤为重要。

在实际应用过程中,设计人员需要结合实际工作条件,选用合适的材料和表面处理方式,以便达到所需的设计要求。

微机电系统(MEMS)的应用也需要考虑材料选择和表面加工等问题,以便在尽可能小的空间内实现合理的机械传动。

2. 摩擦-磨损机理摩擦-磨损机理是摩擦学中的重要应用之一。

通常情况下,摩擦副会产生不同程度的磨损,这不仅会降低机械性能,还可能会使其失效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

09材料2班邱建强 20090310040213润滑定义:用润滑剂减少两摩擦表面之间的摩擦和磨损或其他形式的表面破坏的措施。

润滑是摩擦学研究的重要内容。

改善摩擦副的摩擦状态以降低摩擦阻力减缓磨损的技术措施。

一般通过润滑剂来达到润滑的目的。

另外,润滑剂还有防锈、减振、密封、传递动力等作用。

充分利用现代的润滑技术能显著提高机器的使用性能和寿命并减少能源消耗。

相对运动物体表面加入第三种物质—润滑剂,降低摩擦、减少磨损。

改善摩擦副的摩擦状态以降低摩擦阻力、减缓磨损的技术措施。

一般通过润滑剂来达到润滑的目的。

润滑另外,润滑剂还有防锈、减振、密封、传递动力等作用。

根据润滑剂的不同,润滑可分为:①流体润滑。

指使用的润滑剂为流体,又包括气体润滑(采用气体润滑剂,如空气、氢气、氦气、氮气、一氧化碳和水蒸气等)和液体润滑(采用液体润滑剂,如矿物润滑油、合成润滑油、水基液体等)两种。

② 固体润滑。

指使用的润滑剂为固体,如石墨、二硫化钼、氮化硼、尼龙、聚四氟乙烯、氟化石墨等。

③半固体润滑。

指使用的润滑剂为半固体,是由基础油和稠化剂组成的塑性润滑脂,有时根据需要还加入各种添加剂。

根据摩擦副之间摩擦状态的不同,润滑分为:①流体摩擦润滑。

用流体( 厚度在1.5~2 微米以上 )将摩擦表面隔开的润滑方式。

根据润滑膜压力的产生方式不同又可分为流体动压润滑(靠摩擦表面的几何形状和相对运动由粘性流体的动力作用产生压力平衡外载荷)和流体静压润滑(由外部将一定压力的流体送入摩擦表面间,靠流体的静压平衡外载荷)两种。

②边界摩擦润滑。

摩擦表面间存在一层薄膜(边界膜)时的润滑状态;它可分为吸附膜(润滑剂中的极性分子吸附在摩擦表面所形成的膜,包括物理吸附膜和化学吸附膜)和化学反应膜(润滑油中的添加剂与金属表面起化学作用生成能承受较大载荷的表面膜)两类。

润滑可以延长机器设备的寿命,提高精度、节约能源。

分类按摩擦副之间润滑材料的不同,润滑可分为流体(液体、气体)润滑和固体润滑(见润滑剂)。

按摩擦副之间摩擦状态的不同,润滑又分为流体润滑和边界润滑。

介于流体润滑和边界润滑之间的润滑状态称为混合润滑,或称部分弹性流体动压润滑。

流体润滑在适当条件下,两相互摩擦表面可以被一层具有一定厚度(1.5~2微米以上)的粘性流体隔开,由流体压力平衡外载荷,流体层内的分子大部分不受摩擦表面离子电力场的作用而可自由移动,即摩擦只存在于流体分子之间的润滑状态。

流体润滑的摩擦系数很低(小于0.01)。

按润滑膜压力的产生方式,流体润滑可分为动压润滑和静压润滑。

①流体动压润滑:靠摩擦表面的几何形状和相对运动,由粘性流体的动力作用产生压力,以平衡外载荷。

②流体静压润滑:由外部向摩擦表面间供给有一定压力的流体,靠流体的静压力平衡外载荷。

在传统的润滑力学研究中,摩擦体和润滑流体分别被看作为刚性体和粘性流体(牛顿流体)。

实际上摩擦体是弹性体,不过有时可以把它简化为刚性体。

需要考虑弹性变形和压力对粘度影响的流体动压润滑,称为弹性流体动压润滑。

摩擦体处于塑性状态时需要考虑塑性效应的流体动压润滑,称为塑性流体动压润滑。

流体润滑的传统研究方法始于1886年,奠基人为英国的O.雷诺。

后人把传统润滑力学研究成果统称为经典润滑力学。

在流体润滑中,流体的粘性一般用粘度来评定。

图1为假设流体为不可压缩并作层片状流动的模型。

流体对切向运动的粘性剪切阻力,即切应力τ与速度梯度(流体速度u沿垂直于层片方向y的变化率)的关系为公式式中η为比例常数,即粘度,又称动力粘度。

上述关系称为流体层流流动(图2)的内摩擦定律,又称牛顿内摩擦定律。

流体的流动行为符合此定律的称为牛顿流体。

对于脂类塑性体(称非牛顿流体)相应的内摩擦定律为公式式中τ0为脂的初始剪切阻力。

有时还应考虑流体流动对时间的依从关系。

雷诺方程是描述流体动压润滑膜压力分布的基本方程。

传统的雷诺方程是基于粘性流体的运动方程,又称纳维-斯托克斯方程。

它是与质量连续性方程合并后根据某些假设简化得出的。

描述流体润滑膜压力分布的普遍雷诺方程为公式式中v1、v2分别为边界面1、2沿x方向的速度;t为时间;η 为流体的动力粘度;p为流体膜的压力为流体的密度;h为膜厚度。

此式左边两项表征膜压力分布,右边三项表明流体动压润滑膜压力产生的原因,即楔入效应、表面伸张效应和挤压效应。

通常表面伸张效应极微,可以忽略。

当膜厚 h无变化时,挤压效应也可忽略。

因此在大多数工况下,润滑流体的楔入效应为产生膜压力的主要项。

对于气体动压润滑,还要对上述普遍雷诺方程附加一状态方程,如认为润滑气体为真实气体,满足多方关系,则附加的方程为公式式中T 为绝对温度;R为特定气体的气体常数;n为多方膨胀指数,n=cp/cv,cp和cv分别为定压比热容和定容比热容。

当n=1时,为等温流动;当n=1.401(空气)时,为绝热流动。

此外,当润滑膜中的温度变化很大,从而使粘度发生显著变化时,还须对普遍雷诺方程附加一能量方程联立求解。

边界润滑两相互摩擦表面间存在一层薄膜(边界膜)时的润滑状态。

这种现象通常出现在机器起动或停润滑车时。

边界膜可分为吸附膜和反应膜等(图3)。

润滑剂中的极性分子吸附在摩擦表面所形成的膜称为吸附膜。

吸附膜又分为物理吸附膜和化学吸附膜。

①物理吸附膜:分子的吸引力将极性分子牢固地吸附在固体表面上,并定向排列形成一至数个分子层厚的表面膜。

②化学吸附膜:润滑油中的某些有机化合物(如二烷基二硫代磷酸盐、二元酸二元醇酯等)降解或聚合反应所生成的表面膜,或润滑油中极性分子的有价电子与金属表面的电子发生交换而产生的化学结合力,使金属皂的极性分子定向排列并吸附在表面上所形成的表面膜。

润滑油中的添加剂,如含硫、磷、氯等有机化合物的极压剂,与金属表面起化学作用生成能承受较大载荷的表面膜称为反应膜。

在两个摩擦面上凸峰直接接触相对运动时所产生的摩擦热作用下,反应膜不断形成和破坏。

吸附膜达到饱和时,极性分子紧密排列,分子间的内聚力使膜具有一定的承载能力,防止两摩擦表面直接接触。

图4为吸附膜的润滑作用模型。

当摩擦副相对滑动时,吸附膜如同两个毛刷子相对滑动,能起润滑作用,降低摩擦系数。

反应膜熔点高,不易粘着,剪切强度低,摩阻力小,又能不断破坏和形成,故能防止金属表面直接接触而起润滑作用。

影响吸附膜润滑性能的因素有极性分子的结构和吸附量、温度、速度和载荷等。

当极性分子中碳原子数目增加时,摩擦系数降低。

极性分子吸附量达到饱和时,膜的润滑性能良好并稳定。

当工作温度超过一定范围时,吸附膜将散乱或脱附,润滑失效。

通常吸附膜的摩擦系数随速度的增加而下降,直到某一定值。

在一般工况下,吸附膜的摩擦系数与干摩擦相同,不受载荷的影响。

反应膜在极高压力下有很强的抗粘着能力,润滑性能比任何吸附膜更稳定,它的摩擦系数随速度的增加而增加,直到某一定值。

反应膜常用于重载、高速和高温等工况下。

在一定的工作条件下,边界膜抵抗破裂的能力称为边界膜的强度。

它可用临界pv值、临界温度值或临界摩擦系数来表示。

①临界pv值:在正常的边界润滑中,当载荷p或速度v加大到某一数值,摩擦副的温度突然升高,摩擦系数和磨损量急剧增大。

边界膜强度达到极限值时相应的pv值称为临界pv值。

②临界温度值:当摩擦表面温度达到边界膜散乱、软化或熔化的程度时,吸附膜发生脱附,摩擦系数迅速增大但仍具有某些润滑作用,这时的温度称为第一临界温度。

当温度继续升高到使润滑油(脂)发生聚合或分解,边界膜完全破裂,摩擦副发生粘着,磨损剧增时的温度称为第二临界温度。

临界温度是衡量边界膜强度的主要参数。

③临界摩擦次数:边界膜达到润滑失效时所重复的摩擦次数称为临界摩.作用降低磨擦系数在两个相对磨擦的表面之间加入润滑剂,形成一个润滑油膜的减磨层,就可以降低磨擦系数,养活磨擦阻润滑力,减少功率消耗。

例如在良好的液体磨擦条件下,其磨擦系数可以低到0.001甚至更低。

此时的磨擦阻力主要是液体润滑膜内部分子间相互滑移的低剪切阻力。

减少磨损润滑剂在磨擦表面之间,可以养活由于硬粒磨损、表面锈蚀、金属表面间的咬焊与撕裂等造成的磨损。

因此,在磨擦表面间供应足够的润滑剂,就能形成良好的润滑条件,避免油膜有破坏,保持零件配合精度,从而大大养活磨损。

降低温度润滑剂能够降低磨擦系数,养活磨擦热的产生。

我们知道运转的机械,克服磨擦所做的功,全部转变成热量,一部分由机体向外扩散,一部分则不断使机械温度升高。

采用液体润滑剂的集中循环润滑系统就可以带走磨擦产生的热量,起到降温冷却,使机械控制在所要求的温度范围内运转。

防止腐蚀、保护金属表面机械表面,不可避免地要和周围介质接触(如空气、水湿、水汽、腐蚀性气体及液体等)使机械的金属表面生锈、腐蚀而损坏。

尤其是冶金工厂的高温车间和化工厂腐蚀磨损显得更为严重。

清洁冲洗作用磨擦副在运动时产生的磨损微粒或外来介质等,都会加速磨擦表面和磨损。

利用液体润滑剂的流动性,可润滑以把磨擦表面间的磨粒带走,从而减少磨粒磨损。

在压力循环系统中,冲洗作用更为显著。

在冷轧、热轧以及切削、磨削、拉拔等加工工艺中采用工艺润滑剂,除有降温冷却作用外,还有良好的冲洗作用,防止表面补固体杂质划伤,使加工成品(钢材)表面具有较好的质量和表面粗糙度。

例如在内燃机汽缸中所用的润滑油里加入悬浮分散添加剂,使油中生成的凝胶和积炭从汽缸壁上洗涤下来,并使其分散成小颗粒状悬浮在油中,随同循环油过滤器滤除,以保持油的清洁,减少汽缸的磨损,延长换油周期。

密封作用蒸汽机、压缩机、内燃机等的汽缸与活塞,润滑油不仅能起到润滑减磨作用,而且还有增强密封的效果,使其在运转中不漏气,提高工作效率的作用。

润滑脂对于形成密封有特殊作用,可以防止水湿或其他灰尘、杂质浸入磨擦副。

例如采用涂上润滑脂的油浸盘根,对水泵轴头的密封既有良好的润滑作用,又可以防止泄漏和灰尘杂质浸入泵体而起到良好的密封作用。

此外,润滑油还有减少振动和噪声的效能。

润滑油1、润滑油定义润滑油是由基础油和添加剂严格按一定比例调配而成。

主要的添加剂有:抗磨剂、抗氧化剂、清洁分散剂等。

2、润滑油的类型(1)车用润滑油(2)工业润滑油机械油(高速润滑油)、织布机油、主轴油、道轨油、轧钢油、气轮机油、压缩机油、冷冻机油、气缸油、船用油、齿轮油、机压齿轮油、车轴油、仪表油、真空泵油3、润滑油的技术指标粘度指数:油品的粘度随温度变化的程度,同标准油粘度变化的程度对比的相对值叫粘度指数。

值数越高,表示受温度影响越小。

粘度:液体受外力作用移动时,其分子间产生的阻力称为粘度。

闪点:油品在规定条件下,加热到它的蒸汽与周围空气形成混合气,当接触火焰发出闪火时的最低温度。

倾点:指冷却为固态的油品,倾斜放置加温到油品开始移动的最低温度。

SAE级数:美国汽车工程师协会(粘度)0W 5W 10W 15W 20W 25W 10 20 30 40 50 60API级数:美国石油协会(质量分类)SA SB SC SD SE SF SG SH SJ EC CA CB CC CD CE CF CF-4 CG CG-4齿轮油SAE等级75W 80W 85W 90W 90 140 250 GL-1 GL-2 GL-3 GL-4 GL-54、润滑油的添加剂(1)清净分散剂:吸附氧化产物,将其分散在油中。

相关文档
最新文档