A synthesizable IP Core for DVB-S2 LDPC Code Decoding
罗德与施瓦茨提供快速简便的DVB—S2和DVB-S2X卫星传输测试解决方案
负 。 冈 此 我 们 需 要 一 套 能 够 按 照 计划 和 业 务 部 门 需 求 生 成 任 务 ,并 具 有 任 务 管 理 、 任 务 执 行 的 强 大 专 业 网 管 调 度 系 统 。 正 奇 网 管 调 度 系 统 可 以 按 计 划 完 成 数 据 流 的 智 能 化 调 度 管 理 ,全 流 程 图 形 化 操 作 ,值 班 人 员 负 责 执 行 审 核 、临 时 变 更 调 整 、 节 目质 量 监 看 、 紧急 状 况处 置的 : I = 作 即 可 ,极 大 减 轻
地适应 未来的发展。
s Mw 2 o 0 A 为 支 持 这 些 标 准 的 组 件 、设
备 和 卫 星 提 供 了 一 个 简 单 的 测 试 解 决
方 案 。 这 是 目前 市 场 上 首 个 单 设 备 解
决 方 案 ,其 不仅 可 以 产生 6 G Hz以 下
和 标 清 频 道 同 步 播 出 的 需 求 , 同 播 的
守 自动 播 出 。
随 着 各 电 视 台 高 清 改 造 的 进 一 步
据 传 输 的 最 佳 方 案 。 这 些 传 输 不 仅 使
用 Ku波 段 ,也 会 用到 K a波 段 。
推 进 , 目前 新 奥 特 的 播 出 线 图 文 系统
侄 各 台 得 到 广 泛 应 用 , 如北 京 电 视 台 、 四 川电 视 台 、 浙 江 电视 台 、 江 西 电视 台 、
下 层 是 实 时 编 解 码 、信 号 处 理 、图 文 包 装、 监视等模块 , 层 是 网 管 调 度 系统 , 包 括 涵 盖 全 业 务 流 程 的 管 理 软 件 , 叮
DVB-S2标准中联合LDPC译码的16-APSK星座迭代软判决算法研究
Hale Waihona Puke 0 引 言 方面性 能 的分 析 也 是 近 些 年来 的研 究 热 点 。 D B V —
S 2标 准 中 所 采 用 的 4+1 2一A S 和 4+1 PK 2+l 6一
D BS V -2标 准¨ 是 欧洲 E T 组 织 于 2 0 SI 0 5年批
AS P K经过前 人 的许 多论 文 研 究 发 现 , 即 能适 用 其 于具有 非线性 失 真特 性 的 卫 星信 道 , 具有 较 高 的功
D0I 0. 8 3 j i n 1 0 —3 8 2 1 . 3 0 7 :1 3 7 /.s .0 0 1 2 . 0 0 . 2 s 1
Re e r h o m bi d LDPC c di g Ie a i e So tDe ii n s a c n Co ne De o n t r tv f — c so
DVB—2i ivsiae . A mp o e trt e agrtm o h ai o i lg l eio drt ( L s s n et td n i rvd i ai loi n teb ss fbt o — k l o —ae L R) sf d cso lo g e v h i h o —e iin ag — t
许 大 正 ,刘 爱 军
( 放 军 理 工 大学 通 信 工 程 学 院 ,南 京 2 0 0 ) 解 107
摘 要 :对 D Bs V —2标 准 中的 1 一P K( 度相 移 键 控 ) 座 软 判 决 算 法 展 开 研究 , 比特 L R 对 数 似 然 比 ) 6A S 幅 星 在 L ( 软 判 决 算 法 的 基 础 上提 出 了一 种 基 于 联 合 L P 低 密 度 奇偶 校 验码 ) 码 的 星 座 迭代 软 判 决 改 进 算 法 。经 仿真 分 D C( 译 析 发 现 , 改 进 算 法 在 具 有 与 原 算法 相近 的误 码 性 能 的 同 时 至少 降低 了一 半 的计 算 量 , 有 较 强 的实 用 价 值 。 该 具 关 键 词 :D Bs V —2标 准 ;幅度 相 移 键 控 ; 比特 对 数 似 然 比 ;低 密 度 奇偶 校验 码 ;软 判 决 中图 分 类 号 :T 9 l N1 文 献 标 识 码 :A 文 章 编 号 :10 —38 2 1 )30 3 -6 0 012 (0 1 0 -6 40
基于FPGA的DVB-S2中IRA码编码器设计实现
基于FPGA的DVB-S2中IRA码编码器设计实现摘要:介绍了一种用FPGA实现DVB-S2中IRA码编码器的设计方法。
设计采用RAM组和FIFO组配合使用的方法,有效解决了校验矩阵储存和校验位生成等难点问题。
用Verilog语言实现了DVB-S2的编码器,得到的FPGA综合报告表明,在占用硬件资源不大的条件下,编码器符合DVB-S2标准的要求,能够被标准所运用。
关键字:DVB-S2;IRA码;FPGA;编码器1、引言DVB-S2[1]是欧洲数字视频广播(DVB)组织在2004年制定的第二代卫星广播标准。
DVB-S2标准采用BCH码与LDPC码级联的前向纠错(FEC)系统,其性能接近理论极限。
DVB-S2提供了11种纠错编码比率,以适应不同的调制方式和系统需求,并引入了64800和16200两种LDPC码长,码长极长是其性能优异(距香农限仅0.7dB,比DVB-S标准提高了3dB)的原因之一。
LDPC 码的编码通常非常复杂,其复杂度与码长的平方成正比。
DVB-S2的编码实现对于整个标准的开发运用和推广起着十分重要的作用,本文基于这一原因,对DVB-S2标准中的LDPC码的编码规则进行了深入研究,针对其特点用FPGA实现其编码系统,在占用较少硬件资源的条件下,核心的编码处理频率为63.725MHz,可以满足DVB-S2标准应用的需要。
2、DVB-S2中的LDPC码编码方法根据DVB-S2标准,其LDPC码的编码任务是由个信息位得到个奇偶校验位,最后得到码字。
具体过程概括为:①初始化校验位:。
②计算信息位对奇偶校验位的贡献,计算公式为,(1)其中,是第个校验位,是第个信息位,是奇偶校验位的个数。
表示奇偶校验位的地址取DVB-S2标准附录B和C 提供的相应地址列表的第行的数据。
是由码率R决定的常量,计算公式为:DVB-S2标准中给出了长码和短码对应的不同码率的值。
从这一步可以看出,DVB-S2中的码有周期为360的循环结构,极大程度降低了编译码复杂度,且有利于硬件实现。
谈DVB-S及DVB-S2
2021/3/8
谈DVB-S及DVB-S2
7
• 目前世界上许多国家都在发展数字卫星电 视系统,原因在于其独特的优点:
一、采用了数字传输和误码保护技术通过卫 星传输后,接收端的信号质量可与发送端 的相比拟,而普通模拟电视信号采用的是 模拟处理和传输方式,接收质量容易受噪 声及干扰的影响;
二、采用数字压缩技术及数字调制技术,在 只能传1路模拟电视节目的一个36MHz卫星 转发器上,可传输5-6路数字电视节目,从 而大大的节约了空间频率资源;
节等信息。
⑷使用统一的里德-所罗门前向纠错系统。
2021/3/8
谈DVB-S及DVB-S2
6
⑸使用统一的加扰系统,但可有不同的加密 方式。
⑹选择适用于不同传输媒体的调制方式和信 道编码方法以及任何必须的附加纠错方法。
⑺鼓励欧洲以外的地区使用DVB标准,推动 建立世界范围的数字视频广播标准。
⑻支持数字系统中的图文电视系统
2021/3/8
谈DVB-S及DVB-S2
18
• DVB-S标准中主要规范的是发送端的系统 结构和信号处理方式,对接收端则是开放 的,各厂商可以开发各自的DVB-S接收设 备,只要该设备能正确接收和处理发射信 号,并满足DVB-S所规定的性能指标
2021/3/8
谈DVB-S及DVB-S2
19
• DVB-S标准提供了一套完整的适用于卫星传 输的数字电视系统规范,选定ISO/IEC MPEG-2标准作为音频及视频的编码压缩方 式,对信源编码进行了统一;
谈DVB-S 及DVB-S2
谈DVB-S及DVB-S2
1.DVB-S标准
1.1 概述 1.2 DVB-S的核心技术 1.3 DVB-S系统
iDirect推出支持DVB-S2X的iQ系列小站
Industry Observation ........................产业观察2网管系统发展过程网管系统经过多年才发展到现在,它从功能单 一到功能全面,网络结构随着播出设备的变化,经 历了由简单到复杂、再到简洁的过程。
总局第62号 令发布后,给我台卫星上行系统和网管系统又提出 了许多新要求,也为网管系统部分改造提供了动力 和方向,下面介绍网管建设的三个重要时期。
2.1初上网管当时是我台第一次安装网管系统称数字卫星监 控系统,它;;2004年4月数字化设备安装运行后,于2005年10月在地球站各种硬件的基础上开发的。
当时我台是数字、模拟信号同时并发,网管也 只能对数字上行系统进行管理,并且,由于基带部 分(编码器、复用器)都是哈雷公司的产品,具有独 立网管不共享数据,因此,没有基带部分。
主要功能 是监视设备当前状态,读取各个设备的各种数据信 息;通过软件可以更改设备参数;日常管理可进行日 常报表查询、保存和用户权限管理等操作。
2.2第一次网管重大改造主要有以下原因:由于模拟上行系统的停发和 总局对安全播出的要求,新增加了一套上行设备,网络管理内容增加彳多;网管经过几年的运行,存在 一些问题,我们也希望增加一些功能,比如波形监 视、电源的监控、空调监控等;按总局要求地球站要 上传上行系统的实时运行数据,因此要把基带网管 也拿入地球站网管(只能读取数据,不能控制它);希望网管界面升级,使它更美观、更好操作。
于2009年元月到4月我台与北京某公司合作对 地球站网管系统进行了升级改造,历时3个月,达到预期的效果。
2.3第二次重大改造2009年12月,总局下发了国家广播电影电视总 局《广播电视安全播出管理规定》第62号令,按照 总局的要求,我台卫星上行系统设备配置和设计必 须达标的要求,我台根据我们的实际情况主要完成 两个上行系纟分离,实现独立工作彼此互不影响,网管也必须进行全面改造升级。
罗德与施瓦茨提供快速而简便的DVB-S2和DVB-S2X卫星传输测试解决方案
图上标注的为7075k V A,按照2/3的容量以及励磁涌流为额定电 流6倍的情况,不难求出,重新合阐的瞬间,励磁电流的最高值可 以达到1634A。
下面,还可以通过励磁涌流衰减过程的计算方法,就是励磁 涌流幅值与间断角随时间变化的计算公式,来求出励磁涌流随着 时间的变化,其本身会发生什么样的变化。
在正式列出公式前,可 以先来设定几个值:k为励磁周期数,k=l,2,3…;Ik为第k个 周期时,励磁涌流的幅值;I。
为第一个周期中励磁涌流的幅值;0 j.k为间断角,那么就可以将公式列为[2]:It«= [(1+cosC 0 j.k/2)) /(1+cosC 0 j.〇/2)) ]*I 由于励磁涌流摔跤需要明显的实践过程,所以可以将第一个 周期中的励磁涌流衰减近似成0,之后还可以用变压器衰减励磁 涌流的相关计算方式来对每一个工频周期里面的间断角进行推 算,在第一个工频周期中,其间断角为121. 86° ;第五个中的间 断角为217. 01° ;第十个为262. 48°。
这样一来,就可以计算出每一个贡品中期中馈线开关533 到开关B之间的励磁涌流幅值,比如,第五个工频周期幅值是 751A,第十个则是375A。
所有,这样再结合图一就能看出,在第五 个工频周期中励磁涌流达到了 751A,已经远远超过了开关A的安全定值600A/0. Is。
所以才造成了开关A跳闸现象的发生。
3各级开关配合问题在变电站中,10k V线路产生故障时之所以会造成多级别开 关共同跳闸现象的发生,主要是因为线路上的开关存在着一定的 动作特性,从而在整条线路的末端出现短路现象发生时,就会造 成馈线开关与短路开关之前的线路开关一同发生跳闸现象。
励磁 涌流的变化与时间有关,所以通过这一点就可以大致估算出在线 路合闸后每个不同的工频周期中励磁涌流的幅值,这样就可以有 效的判断出跳闸开关的定值与动作时限的安排是否合理。
澜起科技推出DVB-S2/S卫星接收前端单芯片M88RS6000
平滑升级, 从而降低 网络投资, 并仍可以保证无线资
源有 效 利 用 。所 以说 S S C 9方 案 是 T D — S C D MA 和
T D ~ L T E双网运营商的必然选择 。( 来 自中兴通讯 )
事应用 、 光纤传感等信道容量大 、 速率快 、 传输距离 短( 1 0 0 0 米以下 ) 的场合 。在热 门的 F r T x网络 , 普
M 8 8 R S 6 0 0 0 完全符合卫星数字电视广播传输标
准 D VB — S 2和 D V B — S , 支持 Q P S K、 8 P S K、1 6 A P S K
和3 2 A P S K等解 调方式 。该 芯 片能 接收 9 5 0 MH z 至
2 1 5 0 MH z 的射频 信号 ,支 持 1 Ms p s 一5 3 Ms p s 的符
澜起科技推 出 D V B — S 2 / S 卫 星
遍使用的是长距离低损耗的单模光纤分路器。但实
接收前端单芯 片 M 8 8 R S 6 0 0 0
近 日,澜起科技集 团有限公 司宣布 已成功推 出
际上 , 在数据交换 中心 、 军事应用 、 光纤传感等信道
容量 大 、 速率 快 , 传输距离短 ( 1 0 0 0米 以下 ) 的场 合, 多采用多模光纤进行信号传输 , 也有大量的信号
扰 。这 意味着 , 在T D — L T E与 T D — S C D MA双 网共存 的前提 下 , 运 营商能 够 实现 F频 段 T D D 3 G到 4 G的
上海 光芯 发布 P L C分 路 器 芯 片
上海光芯集成光学股份有限公 司发布一款多模
光 纤用 P L C分路 器 芯 片 ,可用 于 数据 交 换 中 心 、 军
基于DVB-S2的LDPC码算法研究和仿真
联 码 , 以在 接近 香农极 限仅 0 7 d 处 无误码 工作 , 制 可 . ~1B 调 则 以多种 高阶调 制方式取 代Q S 。 P K 这种 编码 方式与 高阶调 制 相 结台 ,在 给 定 转 发 器 带 宽和 发 射 机 等 效 全 向辐 射 功率 (I ) ,与 D B S相比 , 输容量 增益可 高达 3 % 。编码 ER 下 P V- 传 O
D B S 最 引 人 注 目 的革 新 在 于 信 道 编 码 方 式 ,包 括 纠 错 编 V-2 码 和 调 制 。纠 错 编 码 使 用 B H码 作 外 码 , D C码 作 内 码 的 级 C LP
我 们 也 可 以 用 T n e图 来 表 示 L P an r D C码 。 a nr 中 用 变 Tne图
本 文首 先介绍 了D B S 中L P 的构造 和特点 , 后 V - 2 D C码 然 介 绍 了译 码算 法 。由于码 长较长 ,硬件 实现 复杂 度比较 大 ,
为 了便 于 硬 件 实 现 , 文 提 出 了 B 算 法 的 简 化 后对基 于 D B S 标 准的 L P 最 V- 2 D C码 进行 了仿 真 分析 了不 同的算 法 和量 化对 译码 的 影响 ,为
D BS V - 2编 码 器 和 译 码 器 的硬 件 实 现 提 供 了 一 个 参 考 。
Ra o & TV oa di Br dca tEngieern s n ig NoV 2006
【 要 】 本 文 阐述 了L C码 译码 的 基 本原 理 ,提 出 了 提 DP 最 小和 ( n¥ m)算 法 的 改进 算 法 ,通过 对 基 于 DVB— mi一H
2D B S V - 2中 L P D C码特 点
DVB-S2和DVB-S的区别
DVB-S2和DVB-S究竟有什么区别摘要DVB-S.2作为新一代数字卫星广播标准即将出台,草案已正式发布,新标准在提升原有信道传输容量的同时,还将大大拓展业务范围,得到了广电、电信、计算机等领域的广泛关注。
在与以往标准相比较的基础上,本文阐述了新标准技术上的主要优势,并简要介绍了标准的研发背景、目前的进展及未来应用前景。
一数字卫星广播标准的发展沿革与DVB-S.2数字卫星广播标准发展始于1990年代初,应用较多的制式主要有两种,即欧洲的DVB-S 标准和美国GI公司开发的Digicipher标准,两种方式互不兼容,其差别主要在于数字信号的传输方式即信道编码,而信源编码部分都采用了MPEG-2。
从欧洲电信标准协会(ETSI)的ETS 300 421算起,DVB-S作为当今广播电视领域的主流卫星传输标准,问世已逾十年,在世界范围内得到广泛应用。
1995年中央电视台通过卫星播出数字压缩加扰电视节目时,我国尚未公布将DVB-S作为试行标准,当时采用了美国GI的Digicipher系统,随着近年来国内模拟卫星传输方式淡出市场,国内各上星频道普遍采用了DVB-S技术。
十年的使用期同时意味着DVB-S的核心技术与当今相关领域的前沿技术水平渐行渐远,因此,基于当前硬件支持能力和编码算法的最新成果,开发更适应当前乃至未来中长期业务发展需求的技术标准就成为当务之急,DVB-S.2也因此呼之欲出。
DVB-S.2由JTC(联合技术委员会)制定,JTC最初于1990年由EBU(欧广联)、ETSI 联合组建,负责制定广播电视及相关领域的技术标准,1995年该组织吸纳CENELEC(欧洲电工标准化委员会)加入,后者负责广播电视接收机方面的标准化工作。
DVB-S.2的制定采用ETSI的“两步式” 程序,2004年6月,公开发布DVB-S.2草案(即Draft ETSI EN 302 307 V1.1.1),目前进入公开的意见征询阶段(2004.6.2~2004.10.1)。
DVB-S2
DVB-S2 调制器FPGA设计⽅案1. 功能⽬标根据EN302307v121标准,实现DVB-S2发送的基带处理部分。
该产品也可以作为⼀个独⽴的DVB-S2调制器FPGA IP core 使⽤。
2. 系统框图整个系统框图如下所⽰,⽬前实现CCM模式下的⼴播⽅式发送(QPSK/8PSK)。
3. 系统实现系统使⽤统⼀的时钟Fsys =Fsymbol*N,其中Fsymbol为符号率,N为倍频数,根据符号率所处的频段各不相同,M为每个符号进⾏星座映射的⽐特,对QPSK为2,8PSK为3,保持数据输⼊的速率⼤于发送的数据速率。
并通过填充程度,控制数据输⼊的节奏。
BCHcoder使能且数据有效后两个时钟,开始输出有效数据。
ldpc_codec第⼀次使能后12个时钟后请求输⼊数据,输⼊数据有效后两个时钟,开始输出有效数据。
4. 各模块⼯作频率Band width DDS_out =FsymbolDDS_clk DAC内部倍频Fsys(gclk)=Fsymol*NCLK2(fclk)内插系数最⼩字节读取时钟024 =< ~< 48Fsymbol*24Fsymbol*4Fsymbol*22012 =< ~< 24Fsymbol*24Fsymbol*4Fsymbol*22161 6 =< ~< 12Fsymbol*48Fsymbol*8Fsymbol*442 3 =< ~< 6Fsymbol*88Fsymbol*16Fsymbol*8831.5 =< ~< 3Fsymbol*168Fsymbol*32Fsymbol*16165. 基带成帧对于CCM模式下的⼴播⽅式,它主要包含对TS包的CRC-8的计算和插⼊,以及包的分⽚(slicer),以及基带帧头(80 bit)的插⼊,最后进⾏并/串转换。
6. ⽐特交织现在流的⼆代卫星传输标准DVB-S2(ETSI EN 302 307)中,对经过编码后的数据流⽐特交织要求如下:⽐特交织器结构调制⽅式⾏数(长帧)⾏数(短帧)列数8PSK216005400316APSK162004050432APSK12960324057. 物理成帧主要包含对输⼊数据及导频的扰码,以及物理帧头(90 symbol)的插⼊。
可调码率L频段DVB-S2 卫星调制器
告警接口 : 接口 接口类型
: 9 针 D 型 (阴) : 双闭合开关
机械特性 : 19" 机架结构, 1 RU 高 (4.4 cm), 6 kg
电源 : 90-130/180-260V, 60 VA
LNB 供电及控制 : 最大: 350 mA (根据选定的 IFL 输入) 电压: 11.5-14 V (垂直极化) 16-19 V (水平极化) 和 额外的 22 KHz ± 4 kHz DiSEq C 频段选择信号
基于 FPGA 设计的 NTC/2263.xF 版本能够处理的数据速 率为:QPSK:1Mbaud 到 29.1Mbaud;8PSK:1Mbaud 到 28Mbaud ; 16APSK : 1Mbaud 到 21Mbaud 。 如 同 所 有 的 Newtec 调制器和解调器,数据速率都能够被限制在一个较低 的上限,并在需要的情况下通过密码升级。这样做可以降低运 营商前期投资费用。
载波带宽<1MHz)
5. SNMP 代理以及 MIB 库
当需要通过 Ethernet 或使用 NMS 远程控制设备的时候可 以安装此选件。
技术规范
接口 L 波段输入: 双输入,可选择
频率范围
: 950-2150 MHz
回波损耗
: > 7 dB (75 Ohm-F(F))
信号电平
: -25 to -65 dBm
AZIMUTH 系列
可调码率 L 频段 DVB-S2 卫星解调器
NTC/2263.xF
• 简介
DVB-S2 卫 星 解 调 器 NTC/2263 是 业 内 著 名 品 牌 Azimuth 系列产品之一。它对单一 DVB-S2 调制信号进行接 收,解调,传输误码检测和纠错,以 IP 或 MPEG 传输包格式 重建输出数字信号。
Skyworks Solutions 双DVB-C2 S2 S2X T C S数字电视解调器说明书
DescriptionThe Si21602C integrates two separate high-performance digital demodulators for the DVB-C2/C, DVB-T, DVB-S2/S and DVB-S2X standards into a single compact package. Leveraging Skyworks'proven digital demodulation architecture, the Si21602C achieves excellent reception performance for each media while significantly minimizing front-end design complexity, cost, and power dissipation. Connecting the Si21602C to both a dual terrestrial/cable TV tuner, and a dual satellite tuner, results in a high-performance and cost optimized TV front-end solution.Skyworks' internally developed DVB-C2 demodulator can accept a standard IF (36 MHz) or low-IF input (differential) and support all modes specified by the DVB-C2 standard. The main features of the DVB-C2 mode are 4096-QAM, 6 or 8MHz bandwidth,management of notch insertion (broadband and narrowband), and support of multiple data slices and PLPs.The DVB-T and DVB-C, including ITU-T J.83 annex B,demodulators are enhanced versions of proven and broadly used Si2164/67/68/69 Skyworks devices.The satellite reception allows demodulating widespread DVB-S,DIRECTV™ (DSS), DVB-S2, DIRECTV™ (AMC) legacy standards, and new Part II of DVB-S2 (S2X) satellite broadcast standard. A zero-IF interface (differential) allows for a seamless connection to market proven satellite silicon tuners. It also integrates two DiSEqC™ 2.0 LNB interfaces for satellite dish control and, for each satellite demodulator, an equalizer to compensate for echoes in long cable feeds from the LNB to the satellite tuner RF input.The Si21602C offers an on-chip blind scanning algorithm for DVB-S/S2/S2X and DVB-C standards, as well as blind lock function.Features-Pin-to-pin compatible with all dual demodulator family: Si216x2 and Si218x2-API compatible with all single and all dual demodulators -DVB-C2 (ETSI EN 302 769)-16-QAM to 4096-QAM OFDM demodulation -DVB-T (ETSI EN 300 744)-NorDig Unified 2.5, D-Book 8 compliant-DVB-C (ETSI EN 300 429) / ITU-T J.83 Annex A/B/C-1 to 7.2 MSymbol/s, C-Book compliant -DVB-S2 (ETSI EN 302 307-1 V1.4.1)-QPSK/8PSK demodulator-DVB-S2X (ETSI EN302 307-2 V1.1.1)-QPSK/8PSK, 8/16/32APSK demodulator -Roll-off factors from 0.05 to 0.35-Channel bonding for TS transmission supported -Dual DiSEqC™ 2.x interface, Unicable support -DVB-S (ETSI EN 300 421) and DSS supported - 1 to 45 MSps for all satellite standards (<40 MSps in 32APSK)-I 2C serial bus interfaces (master and host)-Upgradeable with firmware patch download via fast SPI or I 2C (broadcast mode supported)-Dual independent differential IF input for T/C tuners and differ -ential ZIF I/Q inputs for satellite tuners-GPIOs and multi-purpose ports (two per demodulator)-Separate flexible TS interfaces with serial or parallel outputs and cross-bar feature -Fast lock times for all standards-Only two power supplies: 1.2 and 3.3V8x8mm, QFN-68 pin package, Pb-free/RoHS compliantSelected Electrical Specifications (T A =–10 to 70°C).ParameterTest Condition Min Typ Max Unit GeneralInput clock reference 4—30MHz Supported XTAL frequency 16—30MHz T otal power consumption for each demodulatorDVB-T 1—182—mW DVB-C22—327—mW DVB-C 3—142—mW DVB-S24—421—mW DVB-S 5—230—mW Thermal resistance ( JA ) 4 layer PCB—42—°C/W Power Supplies V DD _VCORE 1.14 1.20 1.30V V DD _VANA 3.00 3.30 3.60V V DD _VIO3.003.303.60VNotes:1. T est conditions: 8MHz, 8K FFT, 64-QAM, parallel TS.2. T est conditions: 4096-QAM, CR =5/6, GI =1/128, C/N = 34 dB (at picture failure).3. T est conditions: 6.9Mbaud, 256-QAM, parallel TS.4. T est conditions: 32Mbaud, CR =3/5, 8PSK, pilots On, parallel TS, C/N at picture failure.5.T est conditions: 30Mbaud, CR =7/8, parallel TS, at QEF: BER =2 x 10–4.Pin AssignmentsSelection GuidePart #DescriptionSi21602-C60-GM/R Dual Digital TV Demodulator for DVB-C2/S2/S2X/T/C/S, 8x8mm QFN-68_A D C _I P _AD D R _AD D R _BD D _A N AOT A L _I /C L K _I NE S E T BD D _C O R EP _C _AP _D _BP I O _1/T S _E R R _AD D _C O R ES 2_D A T A [7]S 1_D A T A [6]S 2_D A T A [6]S 1_D A T A [7]S 2_D A T A [5]M P _A _AD I SE C _C M D _G P I O _0/T S _E R R _M P _B _BD I SE Q C _O U T _D I S E Q C _I N _A _D I S E Q C _O U T _G N DV D D _C O R EV D D _C O R ES C L _H O S TV D D _V I OS D A _H O S T T S 1_S Y N CT S 2_V A LT S 1_V A LT S 2_S Y N C。
DVB-S2 LDPC译码变量节点更新模块及其实现方法[发明专利]
专利名称:DVB-S2 LDPC译码变量节点更新模块及其实现方法
专利类型:发明专利
发明人:母洪强,王本庆,赵峰,施渊籍,苏泳涛,周一青,石晶林申请号:CN202010945001.9
申请日:20200910
公开号:CN112152637A
公开日:
20201229
专利内容由知识产权出版社提供
摘要:本发明公开了一种DVB‑S2LDPC译码变量节点更新模块及其实现方法,该方法包括:根据输入的第一数量,例化得到相应第一数量的变量节点更新子模块;在第一RAM上分别为每个变量节点更新子模块分配LLR存储单元,用于存储所述变量节点更新子模块从外部获取的第一LLR和计算得到第二LLR;在第二RAM上分别为每个变量节点更新子模块分配校验数据存储单元,用于存储所述变量节点更新子模块从校验节点处理模块获得的校验矩阵数据信息。
本发明采用集群化设计变量节点更新模块,实现变量节点更新模块内部的功能模块化及资源共享化,能够有效提高内存使用效率,减少碎片。
申请人:中科院计算技术研究所南京移动通信与计算创新研究院
地址:211135 江苏省南京市人工智能产业园6号楼副楼1-3层
国籍:CN
代理机构:广州嘉权专利商标事务所有限公司
代理人:景鹏
更多信息请下载全文后查看。
DVB-S2第二代卫星数字视频广播标准
对同一个传输系统而言,载噪比要比信噪比大, 两者之间相差一个载波 功率。当然载波功率与传输信号功率相比通常都是很小的,因而载噪比 与信噪比在数值上十分接近。
E:信号能量
可以看出 Eb/n0 中已经考虑了效率这一因素。
15
引言:信噪比、载噪比与 Eb/N0 —可靠性
a
a
b
b
对于 Eb/n0~BER 曲线,可以比较系统的综合性能
左图:对相同的 BER,在相同 SNR 条件下,Eb/n0 越小,频谱效率越高。 在相同抗干扰能力情况下,系统b效率优于系统a。所以系统 b 综合性能 优于a。
根经据推仙导农可定以理得到C:BR lb o g2(1B lNSo )2,(1 g 为N S 了)保B 证l可o 靠2(1 传g 输E n b 0 ,R B 必b)须 Rb C ,
Eb n0
1
Rb B
(2Rb/B 1)
仙农理论曲线说明:噪声只是 限制了可以得到的信息传输速 率,但不能限制可以获得的精 确度。只要信息传输速率低于 信道容量 C,理论上可以找到 一种编码方式可以获得误码率 为任意小的信息传输。(无误 码理论曲线)
对通信系统的评估中通常还定义了净荷速率,它是指在传 输的符号中扣除由于信道编码和同步字段等一切额外花销 后的“纯”信息速率,单位通常是 bit/s。
7
引言:频谱效率和滚降系数—有效性
频谱效率定义为每赫兹(Hz) 带宽的传输频道上每秒可传 输比特数,单位是 bit/s/Hz, 表示通信系统的有效性。
DVB-S2 的纠错编码技术
DVB-S2的纠错编码技术李娟 门爱东本文作者李娟女士,中国东方通信卫星有限责任公司工程师;门爱东先生,北京邮电大学电信学院多媒体通信中心教授。
关键词:DVB-S2编码 BCH LDPC双向图 迭代译码DVB-S2编码方案概述随着数字通信技术和大功率卫星技术的发展,欧洲DVB组织在第一代DVB-S的基础上,又制定了第二代卫星数字视频广播系统标准,即DVB-S2。
为了在恶劣的卫星信道中可靠地传输信息,如同DVB-S标准,DVB-S2的信道纠错编码也采用了内码和外码的级联纠错编码,但具体的编码算法不同。
DVB-S2的编码模块由外码BCH、内码LDPC(LowDensity Parity Check)和比特交织三部分组成,如图1所示。
DVB-S2的纠错编码部分的数据帧结构如图2所示,输入为Kbch bit的基带帧(BBFrame),输出为nldpc bit的纠错编码帧(FECFrame)。
外码BCH的校验位(BCHFEC)附加在BBFrame 后面,而内码LDPC的校验位(LDPCFEC)将附加在BCHFEC域后面。
为了适应不同的应用情况,DVB-S2标准设置了两种纠错编码帧的长度:64800比特和16200比特,分别称为正常FECFrame和短小FECFrame,代表LDPC纠错编码后的码字长度。
不同码长的BCH和LDPC码组合,得到了各种编码码率,分别为1/4、1/3、2/5、1/2、3/5、2/3、3/4、4/5、5/6、8/9、9/10等。
DVB-S2系统具体的纠错编码参数见表1和表2。
外码BCHBCH码是1959年B.C. Bose、D.K. Ray-Chandhari和A. Hocquenghem发明的一类能纠多个随机错误的循环码,有严格的代数结构,在短、中等码长下其性能接近理论值。
BCH码是用一个域GF(2m)中的n级元素α的d-1个连续幂次为根的多项式生成的循环码。
一个纠t个符号错误的BCH码有如下参数:n=2m-1d min=2t+1n-k≤mt为了适应传输帧结构的长度,在实际系统中可以采取缩短的BCH码。
说明书DVB-S2(78304)+User+Manual++-_看图王
Indicates a situation which could damage the equipment or other apparatus. ** • Note ** Indicates additional information to make the user aware of possible problems
CONTENTS
1 Before Using the Product..........................................................................................1 1.1 Front Panel....................................................................................................... 1 1.2 Rear Panel........................................................................................................ 2
touch dangerous voltage points or damage parts.
11. LOCATION • Place the product indoors to avoid exposing it to lightning, rain or sun. • Do not place it near a radiator or heat register. • Make sure it has more than 10 cm clearance from any appliances susceptible to electromagnetic influences, such as a TV or a VCR. • Do not block the openings with any object, and do not place the product on a bed, sofa, rug, or other similar surface. • If you place the product on a rack or a bookcase, ensure that there is adequate ventilation and that you have followed the manufacturer’s instructions for mounting. • Do not place the product on an unstable cart, stand, tripod, bracket, or table where it can fall. A falling product can cause serious injury to a child or adult, and serious damage to the appliance.
DVB-S2中LDPC和积译码的GPU实现
( D p r n f Eet nc E gn eig .Di 1T eerh C ne; e at to lc oi nier ;b gt V R sac e t me r n o r c ee c ntueo I om t n Tc nlg,Tig u nvri ,B in 0 0 4 hn ) .R sa h Istt f n r ai eh o y s ha U iesy e ig 10 8 ,C ia r i f o o n t j
【 btat eod gnrt n o i t racsn ytm D B ¥ ssL w D ni ai h c ( D C)cd si n e A s c】S cn e e i fd i lbodat g ss V - 2 ue o e sy Pry C ek L P r ao ga i e t t o e a t inr s
d cdn to sp o td u ig G a hc P o esn i ( P ) po rmmig h aallp o esn bly o U n be e o ig meh d i rmoe sn rp i rc sig Unt G U s rga n .T e p rl rc sig a it fGP e a ls e i
【 键 词 】D B S ;D C; 积译 码 ; P 关 V —2L P 和 GU 【 中图 分 类 号 】T 9 93 N 1. 【 文献 标 识 码 】A
GPU m pl me a i n o I e nt to fLDPC m -pr uc c di n Su od tDe o ng i DVB—S2
【 e od 】D B S ; D C sm po ut eoig G U K y w rs V - 2 L P ; u - rd c dcdn; P
DVB-S中IP数据封装方法研究
DVB-S中IP数据封装方法研究孔轶艳【摘要】对DVB-S中IP数据的封装方法进行了深入研究,主要研究了已形成规范的多协议封装(MPE)和单向轻量级封装(ULE),并对这两种封装协议的性能进行详细的比较,结果表明,ULE较MPE更加简单与高效.【期刊名称】《柳州职业技术学院学报》【年(卷),期】2011(011)002【总页数】5页(P35-39)【关键词】DVB-S;IP封装;多协议封装;单向轻量级封装【作者】孔轶艳【作者单位】柳州职业技术学院,广西柳州545006【正文语种】中文【中图分类】TN919.1卫星通信由于其覆盖范围广,传输带宽宽等特点,自投入使用以来就获得了广泛而迅速的发展。
数字视频广播(Digital Video Broadcasting,DVB)是国际数字视频广播组织提出的一套有关数字电视广播系统诸多要素的一个统一标准,包括我国在内的很多国家都采用此标准。
DVB作为一种高效的音、视频传输业务与卫星通信技术的结合(DVB-S)成为必然趋势。
DVB-S中的IP数据承载着多种业务,其IP数据的封装目前使用最多的是多协议封装(MPE),它可以通过数字电视平台(DVB或ATSC)进行传输。
单向轻量级封装(ULE)由于其简单、高效、可配置性强,对于DVB-S中IP数据的封装而言是一个新的选择。
DVB标准使用统一的MPEG-2标准传送比特流复用。
MPEG-2系统层标准重点强调了将一个或多个音频、视频或其他性质的原始流(ES,Elementary Stream)复用成为单个或多个数据流,以适应于存储和传送[1]。
MPEG-2的系统层编码分为两种:传送流(TS,Transport Stream)和节目流(PS,Program Stream),分别适用于不同的应用。
TS是针对那些很容易发生错误的环境而设计的,譬如在容易丢失数据或高噪声的媒体环境下。
PS是针对错误相对较少的环境设计的,适用于像交互式多媒体这样一些涉及软件信息处理系统的应用。
DataSheet AV2018 V210
This document is commercially confidential and must NOT be disclosed to third parties without prior consent. The information provided herein is believed to be reliable. But production testing may not include testing of all parameters. AIROHA Technology Corp. reserves the right to change information at any time without DatasheetVERSION 2.1 18-Feb-13Digital Satellite TunerSingle Chip Tuner for DVB-S2 ReceiverPage 2 of 22 CONFIDENTIALCopyright © 2013, Airoha Technology Corp.Single Chip Tuner for DVB-S2 ReceiverAV2018 Single Chip DVB-S2 TunerThis document is commercially confidential and must NOT be disclosedto third parties without prior consent.The information provided herein is believed to be reliable. But production testing may not include testing of all parameters. AIROHA Technology Corp. reserves the right to change information at any timewithout notification.Single Chip Tuner for DVB-S2 ReceiverRevision HistorySummary Date Author Version Change1.0 Created 24-Sep-2012 Raindrop Chang1.1 Modify table 4.1 and 4.2 12-Oct-2012 Ivan Huang2.0 Update document. 23-Jan_2013 Raindrop Chang 2.1 Modify 7.3 18-Feb-2013 Ivan HuangPage 3 of 22CONFIDENTIAL AV2018 Single Chip DVB-S2 TunerCopyright © 2013, Airoha Technology Corp.Single Chip Tuner for DVB-S2 ReceiverINDEXRevision History (3)1Features (5)2Description (5)3Pin Assignment (6)3.1Pin Name Description (7)4Block Diagram and Description (8)4.1General Description (8)4.2Receiver Section (9)4.3Synthesizer Section (9)4.4Control Section (9)4.5Low power standby mode (10)52-wire Serial Interface (11)5.1Read/Write Timing Parameters (11)5.2Read/Write Procedures (12)6Register Programming (13)6.1Register (13)6.2Register Description (14)6.3RF Channel Frequency Setting (16)6.4Channel Filter Bandwidth Setting (17)7Electrical Characteristics (18)7.1Absolute Maximum Ratings (18)7.2DC Electrical Specifications (19)7.3AC Electrical Specification (20)8Package Dimension (22)Page 4 of 22CONFIDENTIAL AV2018 Single Chip DVB-S2 TunerCopyright © 2013, Airoha Technology Corp.Single Chip Tuner for DVB-S2 Receiver1 FeaturesInput RF Frequency: 950MHz to 2150MHzSingle +3.3V Power SupplyEmbedded LNA, Mixer, VCO, crystal oscillator, and LDOLow Noise Figure: 5dB, typicalEmbedded DC offset Cancellation CircuitProgrammable channel filter with bandwidth from 4MHz to 40MHzAutomatic gain controlEmbedded RF signal loop through pathSingle-ended I/Q interface2-wire serial control interfaceQFN3*3mm 16pin package2 DescriptionThe AV2018 is a highly integrated silicon tuner for DVB-S2 standard. It integrates a synthesizer, crystal oscillator, LDO, loop through path, and a direct conversion receiver including LNA, RF variable gain amplifiers, Mixer, programmable channel filter, and PGA. The low noise figure of the receiver and the loop through path eliminates the need of an external LNA. The integrated crystal oscillator can provide a reference clock for demodulator. The LDO supplies all the internal blocks that only an external voltage sourceis required. The AV2018 requires only a small number of external components, thus enables very competitive design.The AV2018 implements an automatic gain control mechanism that only an analog control signal from the demodulator is required to form a close-loop gain control. The mechanism will arrange the gain of the receiver blocks to achieve best performance according to the control signal voltage. The embedded automatic calibration mechanism provides precise control of channel filter bandwidth and DC offset, no additional calibration procedure is required.Page 5 of 22CONFIDENTIAL AV2018 Single Chip DVB-S2 TunerCopyright © 2013, Airoha Technology Corp.Single Chip Tuner for DVB-S2 Receiver3 Pin AssignmentPage 6 of 22CONFIDENTIALCopyright © 2013, Airoha Technology Corp. AV2018 Single Chip DVB-S2 TunerSingle Chip Tuner for DVB-S2 Receiver3.1 Pin Name DescriptionPIN SIGANL TYPE DESCRIPTION1 RFIN Input, Analog RF Signal InputConnect2 NC - No3 RFAGC Input, Analog Control RF AGC Control Voltage4 RFLP Output, Analog RF Loop Through Signal Output5 RXQP Output, Analog BB Output6 RXIP Output, Analog BB Output7 ADDR0 Digital Device Address Control8 SCL Input, Digital Serial Interface9 SDA Input/Output, Digital Serial InterfaceInput10 XTAL2 Analog XTALInput11 XTAL1 Analog XTAL12 GND Ground Ground13 VCCREG1 VCC Supply 3.3V Supply Voltage for RegulatorPump14 CP Analog Charge15 REGCAP2 Analog Regulator Output for External Capacitor16 VCCREG2 VCC Supply 3.3V Supply Voltage for RegulatorPage 7 of 22CONFIDENTIAL AV2018 Single Chip DVB-S2 TunerCopyright © 2013, Airoha Technology Corp.Single Chip Tuner for DVB-S2 Receiver4 Block Diagram and Description4.1 General DescriptionRFINNCRFLPRFAGCGNDXTAL2XTAL1SDAC PV C C R E G 1V C C R E G 2R E G C A P 2R X I PR X Q PA D D R 0S C LThe AV2018 is a single chip tuner IC for DVB-S2 application. There are three main sections within the AV2018, i.e. the receiver section, the synthesizer section, and thePage 8 of 22CONFIDENTIALCopyright © 2013, Airoha Technology Corp.AV2018 Single Chip DVB-S2 TunerSingle Chip Tuner for DVB-S2 Receivercontrol section.4.2 Receiver SectionThe direct conversion receiver section comprises LNA, RF variable gain amplifiers, quadrature mixer, programmable channel filter and PGA. The RF signal is amplified by the LNA and the followed RF variable gain amplifiers, then directly down-converted to baseband signals, filtered by the channel filter and amplified by the PGA. Both the bandwidth of the channel filter and the gain of the PGA are designed to be programmable. RXIQ supports single-ended outputs.The AV2018 integrates an advanced gain control mechanism which will automatically control the gain of each receiving block to get optimal performance. The gain control is easily implemented by demodulator which requires only an analog signal, RFAGC, to control the gain of AV2018. No additional procedures are required.AV2018 implements calibration mechanisms including the calibration of the channel filter bandwidth and the calibration of DC offset, and achieves high quality regardless of any variations.A low noise loop-through path is provided in the AV2018. The input RF signal can be re-transmitted to another receiver box through this path.4.3 Synthesizer SectionA low phase noise, fractional-N frequency synthesizer is implemented in the AV2018. The controlled frequency ranges from 950MHz to 2150MHz. The associated loop filter is also integrated to save design efforts. AV2018 further embeds a crystal oscillator, only an external crystal is needed. The generated reference clock can offer to the demodulator and its swing is programmable.4.4 Control SectionA 2-wire control interface is implemented in the AV2018. The AV2018 provides two device addresses in each read and write mode, selected by the external pin ADDR0, listed in table 4.1 and table 4.2. When ADDR0 is floating, the default state is at “High”. DetailedPage 9 of 22CONFIDENTIAL AV2018 Single Chip DVB-S2 TunerCopyright © 2013, Airoha Technology Corp.Single Chip Tuner for DVB-S2 Receivertiming diagram and read/write procedures of the 2-wire interface are described in chapter 5.7-bit AddressADDR0MSB LSBR/W bitRead Address(in Hex)Low 1 1 0 0 0 1 0 1 0xC5 High1 1 0 0 0 1 1 10xC7Table 4.1: Read Address7-bit Address ADDR0MSB LSB R/W bitWrite Address(in Hex) Low 1 1 0 0 0 1 0 0 0xC4 High1 1 0 0 0 1 1 00xC6Table 4.2: Write Address4.5 Low power standby modeAV2018 supports software power down mode, defined by D5 of Register 12. When D5 isset ‘1’, it will turn off the synthesizer section, control section, and receiver section except the 2-wire control, the crystal oscillator , and the loop-through path. The on/off of the loop-through path and the crystal oscillator is defined by D6 and D7 of register 12 respectively.Page 10 of 22 CONFIDENTIALCopyright © 2013, Airoha Technology Corp.AV2018 Single Chip DVB-S2 TunerSingle Chip Tuner for DVB-S2 Receiver5 2-wire Serial Interface5.1 Read/Write Timing Parameters70%30%70%30%CLOCKDATAT LOW T HIGH T IF T IR T PS T BUFT S1T H1T S2T H2T S3T IR T IF T OFSTARTSTARTSTOPSYMBOL PARAMETER MIN TYP MAX UNITCLOCK Frequency 0 400 KHz T S1CLOCK Input to DATA N-edge Setup time (START)600 ns T H1CLOCK Input to DATA N-edge Hold time (START)600 ns T S2DATA Input to CLOCK P-edge Setup time 100 ns T H2DATA Input to CLOCK N-edge Hold time 0 900 ns T S3CLOCK Input to DATA P-edge Setup time (STOP)600 ns T BUF STOP to START time 1300 ns T OF DATA Output Fall time 20 250 ns T IR DATA Input & CLOCK Rise time 20 300 ns T IF DATA Input & CLOCK Fall time20 300 ns T HIGH CLOCK HIGH duration 600 ns T LOW CLOCK LOW duration 1300 ns T PSInput Filter Pulse Suppression50nsPage 11 of 22 CONFIDENTIALCopyright © 2013, Airoha Technology Corp.AV2018 Single Chip DVB-S2 TunerSingle Chip Tuner for DVB-S2 Receiver5.2 Read/Write ProceduresThe 2-wire interface of the AV2018 supports single read/write process and multiple sequential write process. In each R/W process, a read or write device address is first transmitted, then followed by the register address and data content. There are two device addresses available in the AV2018 for read/write mode, and are selected by external pin ADDR0 as described in Sec 4.4.Single Write ProcedureSequential Write ProcedureSingle Read ProcedurePage 12 of 22 CONFIDENTIALCopyright © 2013, Airoha Technology Corp.AV2018 Single Chip DVB-S2 TunerSingle Chip Tuner for DVB-S2 Receiver6 Register Programming6.1 RegisterRegister ContentRegister Address Read/ WriteRegister NameD7 D6 D5 D4 D3 D2 D1 D000 R/W Integer int<7:0> 01 R/W Fraction 1 frac<16:9> 02 R/W Fraction2 frac<8:1>03 R/W Fraction 3 frac<0> Reserved 05 R/W FilterBW BF<7:0>08 R/W BB Gain Reservedgc2<3:0>Reserved PGAout_cs<1:0>09 R/W XO xocore_ct<1:0> Reserved11 R/W LOCKReserved BWLF CHLF12 R/W RFLP&PD xocore_ena RFLP_ena PD_softReserved37 R/W FTReserved FT_block FT_EN FT_holdPage 13 of 22 CONFIDENTIALCopyright © 2013, Airoha Technology Corp.AV2018 Single Chip DVB-S2 TunerSingle Chip Tuner for DVB-S2 Receiver6.2 Register DescriptionBit No. Bit Name Description ConditionR00: IntegerD7~D0 int<7:0> Integer part for fractional-N PLL RF Channel Frequency settingR01: Fraction 1D7~D0 frac<16:9> Fractional part for fractional-N PLL RF Channel Frequency settingR02: Fraction 2D7~D0 frac<8:1> Fractional part for fractional-N PLL RF Channel Frequency settingR03: Fraction 3D7 frac<0> Fractional part for fractional-N PLL RF Channel Frequency settingR05: Filter BWD7~D0 BF<7:0> Channel filter bandwidth settingR08: BB GainD6~D3 gc2<3:0> BB PGA gain control setting, 1.5dB per step"0000": 0dB"0001": 1.5dB"0010": 3dB"0011": 4.5dB"0100": 6dB"0101": 7.5dB"0110": 9dB"0111": 10.5dB"1000": 15.5dBD1~D0 PGAout_cs<1:0> BBPGA output driving stage current setting"00": 500uA"01": 1mA"10": 1.5mA"11": 2mAR09: XOD7~D6 xocore_ct<1:0> XO current setting "00": min current"01":"10":Page 14 of 22CONFIDENTIAL AV2018 Single Chip DVB-S2 TunerCopyright © 2013, Airoha Technology Corp.Single Chip Tuner for DVB-S2 Receiver"11": max current R11: LOCKD1 BWLF Filter bandwidth lock flag, read only "1": Lock"0": UnlockD0 CHLF Channel lock flag, read only "1": Lock"0": UnlockR12: RFLP & PDD7 xocore_ena XO core enable control "1": Enable"0": DisableD6 RFLP_ena RF Loop Through path enable control "1": Enable"0": DisableD5 PD_soft Analog circuit Power-Down control (exceptXtal and Loop-Through path) "1": Power Down "0": Power UpR37: FTD2 FT_block Fine-tune function block control "1": block"0": DisableD1 FT_EN Fine-tune function enable control "1": Enable"0": DisableD0 FT_hold Fine-tune function hold control "1": hold"0": DisablePage 15 of 22CONFIDENTIALCopyright © 2013, Airoha Technology Corp. AV2018 Single Chip DVB-S2 TunerSingle Chip Tuner for DVB-S2 Receiver6.3 RF Channel Frequency SettingThere are 8 integer bits and 17 fractional bits for the fractional-N PLL control in the AV2018. These bits are arranged in the first four registers (register address 00~03). All of the four registers must be sent sequentially without any interruption at programming a channel frequency. The programming rule is as follows:Int = round ( Channel_freq / 27 )Frac = int ( ( (Channel_freq / 27) – Integer part of (Channel_freq / 27) ) * 2^17 )For example, to set a RF channel of 950MHz:Int = round (950/27) = round (35.185185……) = 35 (decimal) = “0010_0011” (binary) Then, the registers R00 = 0010_0011 = 0x23Frac = (0.185185……) * 2^17 = 24272.592 = “0010_1111_0110_1000_0” (binary) Then, the registers R01 = 0010_1111 = 0x2F; R02 = 0110_1000 = 0x68The LSB of Frac bits is placed at D7 of register 03. Please multiplex LSB with the bits at D6~D0 whenever a channel frequency is updated.A read-only register, D0 of register 11, is provided to indicate the state of PLL locking. The state “1” means that the channel frequency setting is done. If the state is “0”, it means that the PLL is failed to execute the channel frequency setting.Page 16 of 22CONFIDENTIAL AV2018 Single Chip DVB-S2 TunerCopyright © 2013, Airoha Technology Corp.Single Chip Tuner for DVB-S2 Receiver6.4 Channel Filter Bandwidth SettingThe AV2018 supports variable channel bandwidths from 4MHz to 40MHz by setting the values of BF<7:0> in register 05. The programming rule is as follows:BF = round ( ( Desired_BW (in MHz) * 1.27 ) / 211KHz ), (in integer)Actual channel bandwidth = ( 211KHz * BF ) / 1.27For example, for a desired bandwidth of 26.5MHz,BF = ( 26.5MHz * 1.27 ) / 211KHz = 159.5 => 160 (decimal) = “1010_0000” (binary) Then, the register R05 = 1010_0000 = 0xA0Actual channel bandwidth = ( 211KHz * 160) / 1.27 = 26.58MHzA read-only register, D1 of register 11, is also provided to indicate the state of filter bandwidth locking.Page 17 of 22CONFIDENTIAL AV2018 Single Chip DVB-S2 TunerCopyright © 2013, Airoha Technology Corp.Single Chip Tuner for DVB-S2 Receiver7 Electrical Characteristics7.1 Absolute Maximum RatingsAV2018 could be damaged by any stress in excess of the absolute maximum ratings listed below.MAX.ITEM MIN.Power supply voltage (VCCREG1/2) – 0.3V 4.0VPin voltage – 0.3V HOST_IO_VCC + 0.3VMaximum power dissipation - 0.5WOperating temperature – 20°C +85°CStorage temperature – 65°C +150°CLNA input level - +10dBmDigital pin - +5mARFAGC pin - +5mAPage 18 of 22CONFIDENTIALAV2018 Single Chip DVB-S2 TunerCopyright © 2013, Airoha Technology Corp.Single Chip Tuner for DVB-S2 Receiver7.2 DC Electrical SpecificationsTypical values are measured at VCCREG=3.3V, Ta=25o C on Airoha AV2018 evaluation board unless the items specified in the notes of the table.Item SymbolTest Condition Min. Typ. Max. UnitPower Supply Voltage VCCREG33.33.6VPower Supply Current (RF Loop Through path disabled)Register12 D5=0Register12 D6=0135 mAPower Supply Current (RF Loop Through path enabled) Register12 D5=0Register12 D6=1146 mAStandby Current by Register (RF Loop Through path enabled) Register12 D5=1Register12 D6=126 mALeakage Current by Register (RF Loop Through path disabled)(xo disabled)Register12 D5=1Register12 D6=0Register12 D7=00.9 mADigital Input Voltage – High Level V IH 0.7*VCCREG VCCREG+0.3V Digital Input Voltage – Low Level V IL - 0.3 0.3*VCCREG V Interface Output Voltage – High Level V OH I OUT = 500μA 0.8*VCCREGV Interface Output Voltage – Low LevelV OL I OUT = - 500μA0.2*VCCREGVPage 19 of 22 CONFIDENTIALCopyright © 2013, Airoha Technology Corp.AV2018 Single Chip DVB-S2 TunerSingle Chip Tuner for DVB-S2 Receiver7.3 AC Electrical SpecificationTypical values are measured at VCCREG=3.3V, Ta=25o C on Airoha AV2018 evaluation board unless the items specified in the notes of the table.PARAMETER CONDITIONSMIN. TYP. MAX. UNIT Receiver SectionRF Front-End InputInput frequency range950 2150 MHz RF gain control range Controlled by RFAGC pin-10 +78 dB RF input return lossMax Gain 10 dB Noise FigureMax Gain5 dB RFAGC control voltage range0 2.5 V Baseband gain control range Controlled by register15.5 dB Baseband gain control step1.5 dB/step IIP3 -25dBm RF input (Note 2) 7 dBm IIP2-25dBm RF input (Note 3)11 dBm Adjacent Channel Rejection 25 dB LO product leakage at RFLP-84 dBm 2LO-RF rejection -45dBm RF Input (Note 4) 35 50 dBc 2RF-LO rejection-45dBm RF Input (Note 5)50dBcBaseband OutputNormal output swing 0.5 Vpp I/Q Amplitude imbalance 1 dB I/Q Quadrature phase imbalance@ 1.5MHz3 deg I/Q output impedance 50 Ohm High pass –3dB frequency 500 1200 Hz Channel filter -3dB Bandwidth4 40 MHz Channel filter Rejection Ratio > 2x F -3dB 40 dB> 8MHz +/- 5 % Channel filter BW accuracy< 8MHz+/- 0.5MHzRF Loop Through PathOutput return loss 950-2150 MHz10 dB Gain 7 dB Noise Figure6dB OIP3 5 dBm OIP2 21 dBm Reverse Isolation23dBcPage 20 of 22 CONFIDENTIALCopyright © 2013, Airoha Technology Corp.AV2018 Single Chip DVB-S2 TunerSingle Chip Tuner for DVB-S2 ReceiverSynthesizer SectionRef divider frequency range 27 MHz LO integrated phase jitter 10kHz to 20MHz 1.7 Degree Locking time 1 4 ms Xtal buffer output swing 600 mVpp Xtal buffer output duty cycle 40 50 60 %Note 1: Test conditions: Baseband Gain = 1.5dB, Channel filter Bandwidth = 27MHz, Output amplitude = -6dBm with fine-tuned voltage of RFAGC pin.Note 2: Set RFAGC at CW power = -25dBm of wanted channel fc. Two interference tones are at fc-200 MHz and fc-405 MHz with CW power = -18dBmNote 3: Set RFAGC at CW power = -25dBm of wanted channel fc. Two interference tones are at fc-1000 MHz andfc-1100 MHz with CW power = -25dBmNote 4: Set RFAGC at CW power = -45dBm of wanted channel fc. Interference tone is at 2*fc with CW power = -25dBm Note 5: Set RFAGC at CW power = -45dBm of wanted channel fc. Interference tone is at fc/2 with CW power = -25dBmPage 21 of 22CONFIDENTIAL AV2018 Single Chip DVB-S2 TunerCopyright © 2013, Airoha Technology Corp.Single Chip Tuner for DVB-S2 Receiver8 Package DimensionPackage: Saw type QFN 3x3x0.9mm, 0.5mm pitch, 16 pinsPage 22 of 22 CONFIDENTIALCopyright © 2013, Airoha Technology Corp.AV2018 Single Chip DVB-S2 Tuner。
DVB通用解扰算法的高性能IP核设计
DVB通用解扰算法的高性能IP核设计
贺光辉;罗飞;俞伟;周祖成
【期刊名称】《半导体技术》
【年(卷),期】2005(30)1
【摘要】提出了DVB通用解扰算法高性能IP核设计、验证和测试的方法,着重描
述了IP核的可重用设计,使本IP核与多种总线能互连。
整个设计采用VHDL语言
设计,在Altera的FPGA和富士通CE66库上进行了综合和验证。
最终在富士通
CE66库上实现的IP核最高时钟频率为212.8MHz,数据率可以达到1.7024Gbps。
【总页数】5页(P24-27)
【关键词】IP核;片上系统集成;可重用;通用解扰算法
【作者】贺光辉;罗飞;俞伟;周祖成
【作者单位】清华大学电子工程系
【正文语种】中文
【中图分类】TN402
【相关文献】
1.DVB通用加扰算法的研究及实现 [J], 麦胤;陆明莹
2.DVB通用加扰算法研究与硬件实现 [J], 吴林煌;杨秀芝
3.高性能MD5算法IP核的设计空间探索与分析 [J], 原昊;吴东;谢向辉
4.基于FPGA的CORDIC算法通用IP核设计 [J], 张俊涛;王红仓
5.密码SoC中算法IP核通用接口模型 [J], 王凯;李伟;陈韬;南龙梅
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A synthesizable IP Core for DVB-S2LDPC Code DecodingFrank Kienle,Torben Brack,Norbert WehnMicroelectronic System Design Research GroupUniversity of KaiserslauternErwin-Schr¨o dinger-Straße67663Kaiserslautern,Germany{kienle,brack,wehn}@eit.uni-kl.deAbstractThe new standard for digital video broadcast DVB-S2 features Low-Density Parity-Check(LDPC)codes as their channel coding scheme.The codes are defined for various code rates with a block size of64800which allows a trans-mission close to the theoretical limits.The decoding of LDPC is an iterative process.For DVB-S2about300000messages are processed and reordered in each of the30iterations.These huge data processing and storage requirements are a real challenge for the de-coder hardware realization,which has to fulfill the specified throughput of255MBit/s for base station applications.In this paper we will show,to the best of our knowledge, thefirst published IP LDPC decoder core for the DVB-S2 standard.We present a synthesizable IP block based on ST Microelectronics0.13µm CMOS technology.1IntroductionThe new DVB-S2standard[2]features a powerful for-ward error correction(FEC)system which enables trans-mission close to the theoretical limit(Shannon limit).This is enabled by using Low-Density Parity-Check(LDPC) codes[3]one of the most powerful codes known today which can even outperform Turbo-Codes[4].To provide flexibility11different code rates ranging from(R=1/4up to9/10)are specified with a codeword length up to64800 bits.This huge maximum codeword length is the reason for the outstanding communications performance(∼0.7dB to Shannon)of this DVB-S2LDPC code proposal,so in this paper we only focus on the codeword length of64800 bits.To yield this performance,the decoder has to iterate30 times.At each iteration up to300000data are scrambled and calculated.This huge data processing,storage and net-work/interconnect requirements is a real challenge for the decoder realization.A LDPC code can be represented by a bipartite graph. For the DVB-S2code64800so called variable nodes(VN) and64800∗(1−R)check nodes(CN)exist.The connec-tivity of these two type of nodes is specified in the standard [2].For decoding the LDPC code messages are exchanged iteratively between this two type of nodes,while the node processing is of low complexity.Within one iterationfirst the variable nodes are procesed,then the check nodes.For a fully parallel hardware realization each node is instantiated and the connections between them are hard-wired.This was shown in[5]for a1024bit LDPC code. But even for this relatively short block length severe rout-ing congestion problems exist.Therefore a partly paral-lel architecture becomes mandatory for larger block length, where only a subset of nodes are instantiated.A network has to provide the required connectivity between VN and CN nodes.But realizing any permutation pattern is very costly in terms of area,delay and power.To avoid this problem a decoderfirst design approach was presented in[6].First an architecture is specified and afterwards a code is designed whichfits this architecture. This approach is only suitable for regular LDPC code where each VN has the same number of incident edges,the CN respectively.But for an improved communications perfor-mance so called irregular LDPC codes are mandatory[7], where the VN nodes are of varying degrees.This is the case for the DVB-S2code.In[8]we have presented a design method for irregular LDPC codes which can be efficiently processed by the decoder hardware.We used so called ir-regular repeat accumulate(IRA)codes[9]which are within the class of LDPC codes with the advantage of a very sim-ple(linear)encoding complexity.In general,LDPC code encoder are very difficult to implement due to the inherent complex encoding scheme.The LDPC codes as defined in the DVB-S2standard are IRA codes,thus the encoder realization is straight for-ward.Furthermore,the DVB-S2code shows regularities which can be exploited for an efficient hardware realization.Figure1.Tanner graph for the DVB-S2LDPCcodeThese regularities are also the base for our methodology in-troduced in[8].In this paper we show how to exploit these regulari-ties and present an efficient mapping of VN and CN nodes to hardware instances.Memory area and access conflicts are most critical in this mapping process.Thus we used simulated annealing to minimize memory requirements and avoidance of RAM access conflicts.We present to the best of our knowledge thefirst IP core capable to process all specified code rates in the DVB-S2 standard.We show synthesis results using a0.13µm tech-nology.The paper is structured as follows:the DVB-S2LDPC codes and the decoding algorithm are presented in Sec-tion2.In Section3the mapping of nodes to hardware instances is explained.The overall decoder architecture is shown in Section4.Section5gives synthesis results and Section6concludes the paper.2DVB-S2LDPC CodesLDPC codes are linear block codes defined by a sparse binary matrix(parity check matrix)H.The set of valid codewords x∈C have to satisfyHx T=0,∀x∈C.(1)A column in H is associated to a bit of the codeword and each row corresponds to a parity check.A nonzero ele-ment in a row means that the corresponding bit contributes to this parity check.The code can best be described by a Tanner graph[7],a graphical representation of the as-sociations between code bits and parity checks.Code bits are shown as variable nodes(circles),and parity checks as check nodes(squares),with edges connecting them.The number of edges on each node is called the node degree.If the node degree is identical for all variable nodes,the cor-responding parity check matrix is called regular,otherwise it’s irregular.By carefully inspection of the construction rules,the DVB-S2parity check matrix consists of two distinctiveRate j f j f3k N K1/412540010800449600162001/312720014400543200216002/512864017280638880259201/281296019440732400324003/51212960259201125920388802/3134320388801021600432003/4125400432001416200486004/5116480453601812960518405/6135400486002210800540008/94720050400277200576009/10464805184030648058320Table1.Parameters describing the DVB-S2LDPC Tanner graph for different coderates parts:a random part dedicated to the systematic informa-tion,and afixed part that belongs to the parity information.The Tanner graph for DVB-S2is shown in Figure1.There exist two types of variable nodes,the information(IN)and parity nodes(PN),corresponding to the systematic and par-ity bits respectively.The permutationΠrepresents the ran-dom matrix part of the connectivity between IN and CN nodes,while the PN nodes are all of degree two and are connected in afixed zigzag pattern to the CN nodes.The N check nodes have a constant degree k.The K information nodes consist of two subsets f j and f3,with f the number of IN nodes of degree j and3.Table1summarizes the code rate dependent parameters as defined in the standard[2].The connectivity of the IN and CN nodes is defined by the DVB-S2encoding rulep j=p j⊕i m,j=(x+q(m mod360))mod N.(2) p j is the j th parity bit,i m the m th information code bit,and x,q,and N are code rate dependent parameters specified by the DVB-S2standard.Equation2determines the entries of the parity check matrix.The m th column has nonzero elements in each row j,thus the permutationΠgenerates one edge between every CN m and IN j.Thefixed zigzag connectivity of the PN and CN nodes is defined by the encoding scheme:p j=p j⊕p j−1,j=1,2,...,N−1.(3) This is a simple accumulator.The corresponding part of the parity check matrix has two nonzero elements in each column,forming a square banded matrix.This type of LDPC codes with this simple encoding procedure are also called irregular repeat accumulate(IRA)codes[9].2.1Decoding AlgorithmLDPC codes can be decoded using the message pass-ing algorithm[3].It exchanges soft-information iteratively 2a)b)parity node update (parallel)check node update (parallel)forward update (sequential)backward update (parallel)Figure 2.a)conventional message up-date scheme b)optimized message update schemebetween the variable and check nodes.The update of the nodes can be done with a canonical scheduling [3]:In the first step all variable nodes must be updated,in the second step all check nodes respectively.The processing of indi-vidual nodes within one step is independent,and can thus be parallelized.The exchanged messages are assumed to be log-likelihood ratios (LLR).Each variable node of degree i cal-culates an update of message k according to:λk =λch +i −1∑l =0,l =kλl ,(4)with λch the corresponding channel LLR of the VN and λi the LLRs of the incident edges.The check node LLR up-dates are calculated according totanh (λk /2)=i −1∏l =0,l =ktanh (λl /2).(5)For fixed-point implementations it was shown in [10]that the total quantization loss is ≤0.1db when using a 6bit message quantization compared to infinite precision.For a 5bit message quantization the loss is 0.1-0.2dB [7].2.2Optimized update of degree 2Parity NodesThe DVB standard supports LDPC codes ranging from code rate R =1/4to R =9/10.Each code has one common property:the connectivity of the check nodes caused by the accumulator of the 0is alway connected to CN 1by a variable node of degree 2and so on for all CN nodes.A variable node of degree 2has the property that the input of the first incident edge is the output of the second incident edge (plus the received channel value)and vice versa.For a sequential processing of the check nodes (e.g.from left to right in Figure 1)an already updated message can directly passed to the next check node due to the simple zigzag con-nectivity.This immediate message update changes the con-Rate qE PN E IN Addr 1/413597199972002701/3120863991296003602/5108777591555204321/290647991620004503/572518392332806482/360431991728004803/445323991944005404/536259192073605765/630215992160006008/920143991800005009/101812959181440504Table 2.Code rate dependent parameters,with E the number of incident edges of IN and PN nodes and Addr the number of values re-quired to store the code stuctureventional update scheme between CN an VN nodes (Equa-tion 4).The difference in the update scheme is presented in Fig-ure 2.Only the connectivity between check nodes and par-ity nodes is depicted,the incident edges from the informa-tion nodes are omitted.Figure 2a)shows the standard belief propagation with the two phase update.In the first phase all messages from the PN to CN nodes are updated,in the sec-ond phase the messages from CN to PN nodes respectively.The message update within one phase is commutative and can be fully parallized.Figure 2b)shows our new message update scheme in which the new CN message is directly passed to the next CN node.This data flow is denoted as a forward update and corresponds to a sequential message update.The backwards update from the PN to CN nodes is again a parallel update.Note that a sequential backwards update would result in a maximum a posteriori (MAP)al-gorithm.This new update scheme improves the communications performance.For the same communications performance 10iterations can be saved i.e.30iterations instead of 40have to be used.Furthermore we need to store only one message instead of two messages for the next iteration,which is explained in more detail in Section 4.3Hardware mappingAs already mentioned only partly parallel architectures are feasible.Hence only a subset P of the nodes are instan-tiated.The variable and check nodes have to be mapped on these P functional units.All messages have to be stored dur-ing the iterative process,while taking care of RAM access conflicts.Furthermore we need a permutation networks which provides the connectivity of the Tanner graph.3shuffling networkVN functionalunits message mappingCheck Nodes message mappingCN functionalunitsFigure 3.Message and functional unit map-ping for R =1/2We can split the set of edges E connecting the check nodes in two subsets E IN and E PN ,indicating the connec-tions between CN/IN nodes and CN/PN nodes respectively.The subsets are shown in Table 2for each code rate.Fur-thermore the q factor of Equation 2is listed.The implemen-tation of E IN is the challenging part,since this connectivity (Π)changes for each code rate.The realization of E PN is straightforward,thus we focus on the mapping of the IN and CN nodes.Due to the varying node degrees the functional nodes process all incoming messages in a serial manner.Thus a functional node can except one message per clock cycle and produces at most one updated message per clock cycle.A careful analysis of Equation 2shows that the connec-tivity of 360edges of distinct information nodes are deter-mined by just one value x ,while q is a code rate dependent constant,see Table 2.These 360edges can be processed simultaneously by P =360functional units.Within a half iteration a func-tional unit has to process q ∗(k −2)edges.(k −2)is the number of edges between one check node and information nodes.For each code rate q was chosen to satisfy the con-straintE IN /360=q ∗(k −2).(6)It guarantees that each functional unit has to process thesame amount of nodes which simplifies the node mapping.Figure 3shows the mapping of the IN and CN nodes for the LDPC code of rate R =1/2.Always 360consecutive VN nodes are mapped to 360functional units.To each func-tional unit a RAM is associated to hold the corresponding messages (edges).Please note that for each IN of degree 8,8storage places are allocated to this VN,because each incident edge has to be stored.The check nodes mapping depends on the rate depen-dent factor q .For R =1/2the first q =90CN nodes are mapped to the first functional unit.The next 90CN nodes are mapped to the next producer and so on.Again the CN number corresponds to CN degree storage locations.This node mapping is the key for an efficient hardware realization,since it enables to use a simple shuffling net-work to provide the connectivity of the Tanner graph.The shuffling network ensures that at each cycle 360input mes-sages are shuffled to 360distinct target memories.Thus we have to store E IN /390=450shuffling and addressing infor-mation for the R =1/2code,see Table 2for the other code rates.The shuffling offsets and addresses can be extracted from the x tables provided by [2].4Decoder ArchitectureBased on the message mapping described in the previ-ous chapter,the basic architecture of the DVB-S2LDPC decoder is shown in Figure 4.It consists of functional units which can process the functionality of variable and check nodes.This is possible,since only one type of the node are processed during one half iteration.The IN message memo-ries banks hold the messages which are exchanged between information and check nodes.Furthermore we have memo-ries for storing the exchanged messages for the parity nodes (PN message memories),which are all of degree two.The address and shuffling RAM together with the shuffling net-work provides the connectivity of the Tanner graph.As mentioned the decoder processes 360nodes in par-allel so 360messages have to be provided per cycle.All 360messages are read from the same address from the IN message memory bank.Though,for the information node processing we just increment the reading address.The func-tional unit can accept each clock cycle new data,while a control flag just labels the last message belonging to a node and starts the output processing.The newly produced 360messages are then written back to the same address loca-tion but with a cyclic shift,caused by the shuffling network.To process the check nodes we have to read from dedicated addresses,provided by the address RAM.These addresses were extracted from node mapping as described in the pre-vious chapter.Again 360messages are read per clock cycle and written back to the same address after the processing via the shuffling network.This ensures that the messages are shuffled back to their original position.The processing of the parity nodes can be done con-currently during the check node processing,by using the update scheme described in Section 2.2.Each functional4Figure4.Basic architecture of our LDPC decoderunit processes consecutive check nodes(Figure3).The message which is passed during the forward update of the check nodes is kept in the functional unit.Only the mes-sages of the backward update has to be stored which re-duces the memory requirements for the zigzag connectivity to E PN/2messages.The PN message memories are only read and written during the check node phase,while the channel(CH)RAMs delivers the corresponding received channel value.We use single port SRAMs due to area and power ef-ficiency.Hence we have to take care of read/write con-flicts during the iterative process.Read/write conflicts oc-cur,since data are continously read from the360RAMs and provided to the functional units,while new processed mes-sages have to be written back.The check node processing is the most critical part. We have to read from dedicated addresses extracted dur-ing the mapping process.Therefore,the IN message mem-ory block is partitioned in4RAMs which is shown in Fig-ure5.Even if the commutativity of the message processing within a check node is exploited all write conflicts can not be avoided.Therefore a buffer is required to hold a mes-sage if writing is not possible due to a conflict.We use simulated annealing tofind the best addressing scheme to reduce RAM access conflicts and hence to minimize the buffer overhead.This optimization step ensures that only one buffer is required which holds for all code rates.Per clock cycle we read data from one RAM,and write at most 2data back to two distinct RAMs,coming from the buffers or the shuffling network.The two least significant bits of the addresses determines the assignment to a partition.Thisallows a simple controlflow,which just has to compare the reading and the writing addresses of the current clock cycle.The resulting decoder throughput T isT=I#cyc·f cyc,(7) with I the number of information bits to be decoded and #cyc the number of cycles to decode one block including the input/output(I/O)processing.The number of cycles is calculated as CP IO+It· 2·E IN P .Thus Equation7yields:T=ICP IO+It· 2·(E IN P+T latency) ·f cycle.(8)The part CP IOis the number of cycles for input/output (I/O)processing.The decoder is capable to receive10chan-nel values per clock cycle.Reading a new codeword of sizeC and writing the result of the prior processed block can bedone in parallel with reading/writing P IO data concurrently.The latency T latency for each iteration depends on the pro-cessing units and the shuffling network.5ResultsThe LDPC decoder is implemented as a synthesizable VHDL model.Results are obtained with the Synopsis Design Compiler based on a ST Microelectronics0.13µm CMOS technology.The maximum clock frequency is270 MHz under worst case conditions.The decoder is capable to process all specified code rates of the DVB standard with5Figure5.Hierarchical RAM structurethe required throughput of255Mbit/s.30iterations are as-sumed.Table3shows the synthesis results for a6bit message quantization of the channel values and the exchanged mes-sages.The overall area is22.74mm2.The area is deter-mined by different code rates.R=1/4has the largest set of parity nodes and defines the size of the PN message memories.While the rate R= 3/5has the most edges to the informtion nodes and hence determines the size of the IN message memory banks.The size of a functional node depends on the maximum IN and PN degree,respectivly(R=2/3and R=9/10).The area is splitted in three parts:RAMs,logic and the shuffling network.Storing the messages yields the major part of the RAM area with9.12mm2.It is important to note, that only an area of0.075mm2is required to store the con-nectivity of the Tanner graph.This shows the efficiency of our architectural approach.The logic area of the func-tional nodes with10.8mm2is a major part of the overall area.This is due to the requiredflexibility of the different code rates.We also placed and routed the shuffling network to test routing congestions.Due to its regularity no conges-tions resulted,its area is dominated by the logic cells.6ConclusionLow-Density Parity-Check codes are part of the new DVB-S2standard.In this paper we presented to the best of our knowledge thefirst published IP core for DVB-S2 LDPC decoding.We explained how to explore the code structure for an efficient hardware mapping and presented a decoder architecture which can process all specified code rates ranging from R=1/4to R=9/10.0.13µm technologie AREA[mm2]channel LLRs 1.997RAMs Messages9.117Address/Shuffling0.075Logic Functional Nodes10.8control logic0.2Shuffling Network0.55Total Area[mm2]22.739Table3.Synthesis Results for the DVB-S2LDPC code decoder7AcknowledgmentsThe work presented in this paper was supported by the European IST project4More4G MC-CDMA multiple an-tenna system On chip for Radio Enhancements[1].Our special thanks goes to Friedbert Berens from the Advanced System Technology Group of STM,Geneva, Switzerland,for many valuable discussions.References[1].[2]European Telecommunications Standards Institude(ETSI).Digital Video Broadcasting(DVB)Second generation fram-ing structure for broadband satellite applications;EN302.[3]R.G.Gallager.Low-Density Parity-Check Codes.M.I.T.Press,Cambridge,Massachusetts,1963.[4] C.Berrou.The Ten-Year-Old Turbo Codes are Enteringinto Service.IEEE Communications Magazine,41:110–116,Aug.2003.[5] A.Blanksby and C.J.Howland.A690-mW1-Gb/s,Rate-1/2Low-Density Parity-Check Code Decoder.IEEE Journalof Solid-State Circuits,37(3):404–412,Mar.2002.[6] E.Boutillon,J.Castura,and F.Kschischang.Decoder-first code design.In Proc.2nd International Symposiumon Turbo Codes&Related Topics,pages459–462,Brest,France,Sept.2000.[7]T.Richardson and R.Urbanke.The Renaissance of Gal-lager’s Low-Density Pariy-Check Codes.IEEE Communi-cations Magazine,41:126–131,Aug.2003.[8] F.Kienle and N.Wehn.Design Methodology for IRACodes.In Proc.2004Asia South Pacific Design AutomationConference(ASP-DAC’04),Yokohama,Japan,Jan.2004.[9]H.Jin,A.Khandekar,and R.McEliece.Irregular Repeat-Accumulate Codes.In Proc.2nd International Symposiumon Turbo Codes&Related Topics,pages1–8,Brest,France,Sept.2000.[10]T.Zhang,Z.Wang,and K.Parhi.Onfinite precision im-plementation of low-density parity-check codes decoder.InProc.International Symposium on Circuits and Systems(IS-CAS’01),Antwerp,Belgium,May2001.6。