信号波形合成实验电路

合集下载

第五组--信号波形合成电路实验(2010年电子竞赛C题论文)2

第五组--信号波形合成电路实验(2010年电子竞赛C题论文)2
1
高,在高压、高频、大功率的场合不适用。 综合以上的分析,由 TI 公司生产的宽带低失真单位增益稳定的电压反馈运算放
大器 OPA842 组成的滤波电路满足本次设计的要求,因此选择方案二。 1.1.3 移相电路
方案一:用双极性运算放大器 OP07 组成的移相电路,由于 OP07 具有非常低的 输入失调电压,所以在很多应用场合不需要额外的调零措施。OP07 是一种低噪声, 非斩波稳零的双极性运算放大器,由它组成的移相电路具有电路简单、工作可靠、成 本低、波形好、适应性强,而且可以提供 180°的相移。
表一:信号编码表
A0
A1
X
1
0
0
1
0
波形 正弦波 方波 三角波
A0、A1 表示波形设定端;X 表示任意状态;1 为高电平;0 为低电平。 74LS14 非门对输出的信号进行整形,使输出的波形更加的理想。 3.1.2 分频电路 分频电路如附录图 3 所示,由 74LS90、74LS00、CD4013 三片芯片组成。先将 300KHz 的方波信号进行 3 分频、5 分频、15 分频,再通过 D 触发器二分频,最终得到 50KHz、 30KHz、10KHz 的正弦波信号。 74LS90 不仅可以用于计数,还能用于分频,一片 74LS90 可构成最大进制计数器 是十进制,若分频数大于 10,则要用两片或多片级联,级联后高位的周期即为分频 后的周期,但占空比并非 50%,这就需要用 D 触发器对分频后的方波进行整形。74LS00 是四集成与非门,在电路中起缓冲隔离的作用。CD4013 是由两个相同的、相互独立 的数据型触发器构成。每个触发器有独立的数据、置位、复位、时钟输入和 Q 及 Q
方案三:用 MAX038 精密、高频波形发生器来产生方波信号,电路结构简单,能产 生 0.1Hz~20MHz 的方波信号,波形的频率和占空比可以由电流、电压或电阻控制 。 MAX038 构成的电路低失真、低漂移、外围元件少、可靠性和稳定性好,但相对于上 面的方案而言,价格会稍高一点。

信号波形合成实验电路

信号波形合成实验电路

信号波形合成实验电路摘要:本设计通过ICL8038产生300K方波信号,再通过计数器CD4518及74LS161与D 触发器分频成多个不同频率的方波信号,并将这些信号经过巴特沃斯低通滤波器、反相比例运放电路、 型滤波电路、跟随器,将其转换为10K、30K、50K正弦信号,再经RC移相电路之后,利用同相输入求和加法器将峰峰值分别为6V、2V、1.2V的正弦波合成为近似方波及其他信号。

Abstract:This design can produce 300KHz square-wave signals by ICL8038, then spilt frequency through CD4518 counter with D flip-flop 74LS161 , and will put these signals through butterworth low-pass filter, opposite proportion amp circuit, filter circuit and follower circuit,and will produce 10KHz,30KHz and 50KHz sine signals, then by using RC phase-shifting circuit with these signals and same-phase sum adder,it can compound 6V、2V、1.2V sine signals to produce approximate sine signals and other signals.一、系统方案与论证1.1高频方波产生电路的比较方案一:采用555定时器,555 定时器成本低,性能可靠,只需要外接几个电阻、电容就可以产生方波。

缺点是本电路需要产生高频方波,而用555定时器产生的高频方波不稳定。

方案二:采用ICL8038精密压控函数发生器,ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从0.001Hz~1M Hz的正弦波、三角波、矩形波等脉冲信号。

波形产生电路实验报告

波形产生电路实验报告

波形产生电路实验报告一、实验目的本实验旨在探究波形产生电路的基本原理和实现方法,并通过实验操作,了解不同电路参数对波形产生的影响。

二、实验器材1.示波器2.函数信号发生器3.电阻、电容等元器件4.万用表三、实验原理1.基本原理:波形产生电路是指能够产生各种规定形状的周期性信号的电路。

其中,常见的信号有正弦波、方波、三角波等。

2.具体实现:通过改变元器件参数或改变连接方式,可以得到不同形状和频率的周期性信号。

例如,正弦波可以通过RC滤波电路产生;方波可以通过比较器电路和反相放大器电路产生;三角波可以通过积分放大器电路和反相放大器电路产生。

四、实验步骤及结果分析1.正弦波产生电路:(1)将函数信号发生器输出连接至RC滤波电路输入端;(2)调节函数信号发生器输出频率为1000Hz;(3)调节RC滤波电路中的R值和C值,观察示波器上输出的正弦波形状,并记录下所使用的元器件参数;(4)重复以上步骤,改变RC电路中的R和C值,观察输出波形的变化情况。

实验结果:通过调节RC电路中的R和C值,可以得到不同频率和振幅的正弦波。

2.方波产生电路:(1)将函数信号发生器输出连接至比较器电路输入端;(2)设置比较器电路阈值电压为0V;(3)调节函数信号发生器输出频率为1000Hz;(4)观察示波器上输出的方波形状,并记录下所使用的元器件参数;(5)重复以上步骤,改变比较器电路阈值电压和函数信号发生器输出频率,观察输出波形的变化情况。

实验结果:通过调节比较器电路阈值电压和函数信号发生器输出频率,可以得到不同占空比和频率的方波。

3.三角波产生电路:(1)将函数信号发生器输出连接至积分放大器电路输入端;(2)将积分放大器电路输出连接至反相放大器输入端;(3)调节函数信号发生器输出频率为1000Hz;(4)观察示波器上输出的三角波形状,并记录下所使用的元器件参数;(5)重复以上步骤,改变积分放大器电路中的R和C值,观察输出波形的变化情况。

信号波形合成实验电路设计

信号波形合成实验电路设计

信号波形合成实验电路设计_________________________________________ ____________________________________设计报告信号波形合成实验电路2016-1-17设计报告信号波形合成实验电路摘要:利用NE555产生10kHz的基准方波信号,用CPLD EPM1270对方波信号进行分频,分别产生10KHZ,30KHz,50KHz的方波信号,以及500KHz,1.5MHz的时钟信号(用于巴特沃斯低通滤波器的时钟信号),并完成数据转换控制及LCD显示驱动;用TI的TLC04ID四阶巴特沃斯低通滤波器对10KHz,30KHz方波进行低通滤波,产生相应的正弦波信号,而50KHz的正弦波信号,用二阶有源带通滤波器对50KHz的方波进行处理来获得;采用有源RC网络对正弦波进行移相,调整电阻R可实现对10KHZ,30KHz,50KHz的正弦波信号约101度范围的移相;采用运放求和电路对10KHZ,30KHz,50KHz的正弦波信号进行相加,实现近似方波、三角波的合成。

另外,用AD563将正弦交流电压转换成直流电压,用TI的ADC TLC549进行电压幅度检测,测量误差在5%以内。

完成了该题目的基本要求和发挥部分的全部内容。

共用TI公司五种IC。

关键词:波形合成滤波器移相网络电压测量一、系统方案论证根据题目要求,设计制作一个电路,将产生的频率为6MHz方波信号,经分频滤波后得到10KHz、30KHz、50KHz频率的正弦信号,然后将这些信号再合成为近似方波信号和近似三角波信号,并制作数字显示电表,检测并显示各正弦波信号的幅值。

1.方波振荡器方案比较方案1:555电路产生方波信号方案2:运放电路产生方波信号方案3:用门电路及石英晶体产生方波信号。

其中,方案1、2所产生的方波信号频率不高,频率稳定性较差,而方案3产生的方波信号频率稳定度高,也可产生较高频率(MHz以上)信号,故采用方案3产生方波信号。

信号波形合成实验电路的设计与制作

信号波形合成实验电路的设计与制作

信号波形合成实验电路的设计与制作任何电信号都是由不同频率、幅值、初相的正弦波叠加而成的。

本方案设计了一个信号波形的合成电路,通过方波振荡器产生的一定频率的方波,经分频,滤波后得到按傅里叶级数展开的基波和3次、5次谐波,经移相后将其中的基波与多次谐波相叠加后模拟合成方波。

本方案采用了大量TI公司的芯片例如CD4046、CD4018、MSP430F149、OPA820等。

标签:CD4046 CD4018 MSP430F149 OPA820 基波谐波方波1 方案设计1.1 系统分析系统设计框图如图1所示。

图1 系统分析该系统主要由方波振荡电路、分频滤波电路、移相电路、加法电路及幅值测量显示电路组成。

由方波振荡电路产生150KHZ方波,经分频分别得到10KHZ、30KHZ和50KHZ的方波,通过滤波得到10KHZ、30KHZ和50KHZ正弦波。

正弦波经移相后由加法电路叠加生成合成信号,同时由幅值测量显示电路显示对应正弦波的幅值。

1.2 系統设计与理论计算振荡电路振荡电路如图2所示。

该模块主要由锁相环CD4046构成的电路来实现。

要产生频率为10kHz和30kHz,幅度为6V和2V的正弦波信号,则输入信号幅度必须大于6V,锁相环锁定在30KHZ附近。

图2 振荡电路CD4046是通用的CMOS锁相环集成电路,其锁相环采用的是RC型压控振荡器。

当9脚输入端输入5V电源时,电路即起基本方波振荡器的作用。

振荡器的充、放电电容C1接在6脚与7脚之间,调节电阻R2的阻值即可调整振荡器振荡频率,振荡方波从4脚输出。

f0=1/8*C1*((V1-VGS)R1+(VDD-2*VTP)R2)其中V1是9脚的输入电压,VGS是锁相环内部MOS管的栅-源极压降,VTP是栅极的开启阈值电压,VDD是工作电压。

当C1=103Pf,R1=100k时,振荡频率变化范围为80-150KHZ。

分频电路CD4018是一个高电压型可预置1/N计数分频器,固定可编程2,3,4,5,6,7,8,9,10分频。

信号波形合成实验电路的设计与制作

信号波形合成实验电路的设计与制作
r u me n t s . US A.
图 7 峰 值 检 波 电路
【 3 】 MSP 4 3 O x 1 x x F a m I v Us e r 。 s Gu i d e E r r a t a , T e x a s I n s t —
r u me n t s . US A.
幅值检 测显 示 电路
2 9 7
1所 示 。
表 ) 实际频 率( H )峰 峰值 ( V) 测量值( V) 测量误差
图 6 加 法 电路
参考文献 :
【 1 慷 华光. 《 电子技术基础——模 拟部分》 , 高等教育出版社 , 2 0 0 6
1.
【 2 ] SL AUO 4 9 D, MSP 4 3 0 x1 x x F a mj l v Us e r ‘ s Gu i d e , T e x a s I n s t —
图 5 移 相 电 路
移 相 电路如 图 5所 示 , 由两 级 运放 组 成 , 本 设计 中采 用L F 3 5 3, 第一 级运 放 与 C1 7 、 R 2 3构 成 有源微 分网络 , 第 图8 MS P 4 3 0 F 1 4 9幅 值测 量 显 示 电路 二级 运放 与 R 2 4 、 C 1 9组 成有 源积 分 网络。 当输 入正 弦 交 其 中 MS P 4 3 0 F 1 4 9是 T I 公司 1 6位 超 低 功 耗 单 片 流信 号 时 , 第 一 级 运放 输 出超 前 相 位信 号 , 第 二级 运 放输 机。由 2个 1 6位定 时器 、 8路 快速 1 2位 A / D 转换器 、 2个 出一 滞 后相 位信 号 ,通过 调 节 R 2 4可 使输 出信 号 与 输入 通用 串行 同步 / 异步 通信 信 号 接 口和 1 8个 I / O 引脚 等构 信 号相 位 发生 变化 。 成 的微 控 制器 。 其特 点是 电源 电压 范 围为 1 . 8 V 一 3 . 6 V , 超低 加 法 电路 功耗 , 内部 集成 看 门狗定 时器 。 加 法 电路 如 图 6所 示 ,本 设计 采 用 同相 输 入 加 法 电 通过 F 1 4 9单 片 机 的 P 1 . 0 、 P 1 . 1和 P 1 . 2口分 别进 行 路。输出 U 。 = ( 1 + R 2 5 , R 2 7 ) ( U1 + U 2 + U 3 】 。当 R 2 5 = R 2 7 时, U 。 = 2 AD采样 ,得 到 1 O K H Z 、 3 0 K H Z和 5 0 K H Z正 弦波 的幅值 , ( U + U 2 + U 。 ) , 此时 实现输 入信 号 叠加 。 通 过 按键 S W1 、 S W2 、 S W 3切 换 在 1 2 8 6 4液 晶 上 显 示 各 自峰值。 2 测试 结果 在 测试 阶段 , 我 们 对得 到 的正 弦波 进 行 了频 率 、 峰 峰 值 的测 量并计 算 了峰峰值 测 量误差 。 测试 得 到 的数 据如 表

【原创】信号波形合成实验电路

【原创】信号波形合成实验电路

信号波形合成实验电路摘要:本文介绍了一个信号波形合成的电路方案。

该电路能产生多个不同频率的正弦信号,并将这些信号再合成为近似方波和三角波。

该电路用运放构成的迟滞比较器并结合RC震荡电路产生了方波,产生的方波再经滤波电路进行分频产生出不同频率的正弦波,这些不同频率的正弦波经移相电路形成不同相位的正弦波,再经由运放构成的加法器电路最终产生合成信号。

此外,该电路还以LM3s811为主控制器对产生的信号的幅度和频率进行测量和数字显示。

所有指标都达到题目要求。

关键词:方波电路分频与滤波移相电路加法器电路Abstract:This article describes a signal waveform synthesis circuit scheme. The circuit can produce several different frequency sinusoidal signal, and these signals and then to an approximate square wave synthesis and other signals. The circuit amplifier consisting of comparator with hysteresis RC oscillation circuit produced a square wave, square wave generated by the filter circuit for frequency division produces different frequency sine wave, these different frequency sine wave and then via the formation phase-shift circuit different phase sine wave, then through the amplifier consisting of Adder the resulting composite signal. In addition, this circuit is also the main controller LM3s811 circuit on the amplitude of the signal measurement and digital display. All indicators have reached the required title.Key words::The shock wave circuit, frequency division and filtration, phase-shifting circuit, adder circuit一、作品简介根据题目要求,此波形发生器的设计主要包括四个部分:方波振荡电路、分频与滤波电路、移相电路、加法器电路。

信号波形分离及合成实验电路

信号波形分离及合成实验电路

“信号波形分离及合成”大综合电路设计题目一、课题的任务课题任务:对一个特定频率的方波进行变换产生3个不同频率的正弦信号,再将这些正弦信号合成为近似方波和近似三角波。

电路方框图:图1 课题参考实现方案要求:(1)6人为一个小组,请各班课代表将组队名单(包括小组长)交给指导教师。

(2)在购买元器件清单之前,要将仿真报告上传到指导教师的邮箱上,或BB平台上,经确认后以班级为单位购买元器件,发票统一开1张,发票单位是中国计量学院,(其中通用板、导线、焊锡丝由老师提供)。

(3)6人为一个小组完成上述电路(可以分工分为两个模块实现)。

小组长分工要注意协调、合理,加强团队合作精神。

(如部分人做振荡电路、部分人做分频电路,最终合成一个产品)。

(4)最终综合报告模板请见相关通知(每小组提交一份报告,手写中国计量学院信纸)。

(5)制作完成后以小组为单位答辩,每人负责回答相关电路一个问题。

(6)仿真报告上交时间为11周的周三前,12周开始焊接调试。

16周前全部答辩上交实物作品及综合报告。

(7)开放时间:为了便于学生调试,搭接电路,12周-16周周六全天实验室303室、302室对同学开放。

二、要求(1)方波振荡器的信号经分频与滤波处理,同时产生频率为10kHz和30kHz的正弦波信号,这两种信号应具有确定的相位关系;+12分(2)产生的信号波形无明显失真,幅度峰峰值分别为6V和2V;+12分(3)制作一个由移相器和加法器构成的信号合成电路,将产生的10kHz和30kHz 正弦波信号,作为基波和3次谐波,合成一个近似方波,波形幅度为5V,合成波形的形状如图2所示。

+26分图2 利用基波和3次谐波合成的近似方波(4)再产生50kHz的正弦信号作为5次谐波,参与信号合成,使合成的波形更接近于方波,如图3所示;+15分图3 利用基波和3、5次谐波合成的近似方波(5)根据三角波谐波的组成关系,设计一个新的信号合成电路,将产生的10kHz、30kHz等各个正弦信号,合成一个近似的三角波形如图4所示;+20分图4 利用基波和3谐波合成的近似三角波(6)创新功能及美观布线等其它。

信号波形合成

信号波形合成

课程设计报告设计课题:信号波形合成实验专业班级:学生姓名:指导教师:设计时间:目录一、课程设计目的 (1)二、课程设计题目描述和要求 (1)1.基本要求 (1)2.发挥部分 (2)三、系统分析与设计 (2)1、方案设计 (2)方波振荡部分 (2)分频部分 (2)滤波部分 (2)移相、放大部分 (3)波形合成部分 (3)2、硬件实现 (3)方波振荡器 (3)分频器 (4)滤波器 (5)移向、放大器 (5)波形合成器 (6)四、系统调试过程中出现的主要问题 (7)五、系统运行报告与结论 (7)六、总结 (9)七、参考书目 (9)八、附录 (10)信号波形合成实验一、课程设计目的设计制作一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波和其他信号。

电路示意图如图1所示:图1 电路示意图二、课程设计题目描述和要求1.基本要求(1)方波振荡器的信号经分频与滤波处理,同时产生频率为10kHz和30kHz 的正弦波信号,这两种信号应具有确定的相位关系;(2)产生的信号波形无明显失真,幅度峰峰值分别为6V和2V;(3)制作一个由移相器和加法器构成的信号合成电路,将产生的10kHz和30kHz正弦波信号,作为基波和3次谐波,合成一个近似方波,波形幅度为5V,合成波形的形状如图2所示。

图2 利用基波和3次谐波合成的近似方波2.发挥部分(1)再产生50kHz的正弦信号作为5次谐波,参与信号合成,使合成的波形更接近于方波;(2)根据三角波谐波的组成关系,设计一个新的信号合成电路,将产生的10kHz、30kHz等各个正弦信号,合成一个近似的三角波形;(3)其他。

三、系统分析与设计1、方案设计方波振荡部分方波振荡电路采用555定时器组成多谐振荡器,调节至300kHz 左右方波,由于之后的分频电路具有调节占空比功能,所以方波产生电路暂时不需要调节占空比。

分频部分分频部分实现将产生的方波通过分频产生10kHz 、30kHz 和50kHz 的新的方波。

8信号波形合成实验电路

8信号波形合成实验电路

简易波形合成电路的设计与实现李灿,王成跃,杨卫南京医科大学生物医学工程系,南京210029摘要本文主要设计一个能够合成指定波形的信号波形发生电路,该电路基于傅里叶合成,能够产生不同频率的正弦信号,将这些信号处理后送入加法电路可合成所需信号,主要由方波产生模块产生方波,分频与滤波模块对所得方波分频并滤成正弦波,放大模块对所得正弦波幅值进行放大,移相模块调整各频率正弦波相位,信号合成模块合成所需波形。

关键词:波形合成;分频滤波;移相The Design and Implementation of Simple Waveform Synthesis Circuit Li Can, WangChengyue, Yang Wei,Zhu Songsheng,Wang Wei*Department ofBiomedical Engineering, NanjingMedicalUniversity,Nanjing210029,China Abstract This paper mainly designs a signal waveform generating circuit that can synthesize designated waveform.Based on Fourier, it can produce various frequency sine signals. After processing, these sine signals can be synthesized designatedsignal through addition circuit. Among the circuit,the square wavegenerating module produces square-wave, and thesquare-wave is divided frequency and filtered into sine wave though frequency separating and filtering modules. After that, the amplifier module magnify the amplitude of the sine wave obtained. Then p hase shifting module adjusts the amplification of each frequency sine wave. Finally the signal waveform synthesis module synthesizes designated waveform with processed sine waves. Keywords waveform synthesis,frequency separating and filtering, phase shifting filter display1引言在电子测仪器中.信号发生器有着非常重要的地位。

波形产生电路实验报告

波形产生电路实验报告

波形产生电路实验报告1. 背景波形产生电路是电子工程中的一种基础电路,用于产生各种形状和频率的电信号。

在实际应用中,波形产生电路常被用于信号发生器、音频设备、通信系统等。

本实验旨在通过设计和搭建一个简单的波形产生电路,掌握波形产生电路的基本原理和操作方法,并通过实验验证其性能。

2. 设计与分析2.1 电路结构本实验采用了经典的RC低通滤波器作为波形产生电路的核心部分。

该滤波器由一个电阻R和一个电容C组成,输入信号通过该滤波器后,输出信号将会被滤除高频成分,从而得到所需的波形。

2.2 参数选择为了得到稳定且正弦波形的输出信号,我们需要合理选择RC值。

根据经验公式:f c=1 2πRC其中f c表示截止频率。

我们可以根据需要选择截止频率来确定RC值。

一般情况下,我们可以选择f c为所需信号频率的十分之一。

2.3 电路实现根据以上分析,我们可以设计出以下波形产生电路:其中,R1和C1为滤波器的参数,Vin为输入信号源。

3. 实验步骤3.1 实验材料•电阻R1•电容C1•示波器•函数发生器•连接线等3.2 实验步骤1.按照电路图连接上述元件。

2.将函数发生器的输出连接到滤波器的输入端。

3.打开函数发生器和示波器,并调整函数发生器的频率和幅度。

4.观察示波器上输出信号的波形,并记录相关数据。

4. 实验结果与分析根据实验步骤得到的数据,我们可以绘制出输入信号和输出信号的波形图,并进行分析。

以下是实验结果:输入频率(Hz)输出幅度(V)1000 52000 45000 2通过观察实验结果,可以看出输出信号的幅度随着输入频率的增加而减小。

这是因为滤波器对高频成分进行了滤除,使得输出信号的幅度降低。

5. 实验建议在进行本实验时,我们可以尝试调整电阻和电容的取值,观察它们对输出信号的影响。

此外,我们还可以尝试使用不同形状的输入信号,并比较它们在滤波器中的表现。

为了得到更准确的实验结果,我们还可以提高示波器的采样率,并使用更精确的测量工具来测量电阻和电容的值。

信号波形合成实验电路

信号波形合成实验电路

信号波形合成实验电路信号波形合成实验电路是一种能够生成并合成不同信号波形的电路,它通常由一些基本元件组成,如电阻、电容、电感、二极管、晶体管等。

下面我们将详细介绍一种简单的信号波形合成实验电路。

一、实验电路的设计1.设计目标该实验电路的设计目标是生成并合成两种不同信号波形,即正弦波和方波。

通过对这两种波形的合成,可以观察到不同信号波形之间的叠加效果。

2.电路设计为了实现上述目标,我们需要以下主要元件:信号发生器、比较器、RC 滤波器、示波器和负载。

(1)信号发生器:为了生成正弦波和方波,我们采用两个独立的信号发生器,其中一个用于生成正弦波,另一个用于生成方波。

(2)比较器:比较器的作用是将两个信号波形进行比较,从而产生一个新的波形。

在这里,我们将使用一个运算放大器作为比较器。

(3)RC滤波器:由于我们希望在负载上得到干净的波形,因此需要使用RC滤波器对信号进行滤波处理。

(4)示波器:示波器的作用是显示合成后的波形。

(5)负载:负载的作用是吸收合成的波形并转换为其他形式的能量。

3.电路连接将两个信号发生器输出端分别接入比较器的两个输入端,将比较器的输出端接入RC滤波器的输入端,将RC滤波器的输出端接入示波器的输入端,最后将负载接入示波器的输出端。

二、实验电路的工作原理4.信号发生器信号发生器是一种能够产生不同波形(如正弦波、方波等)的电路。

在这里,我们采用两个独立的信号发生器,一个用于生成正弦波,另一个用于生成方波。

5.比较器比较器的作用是比较两个信号波形,产生一个新的波形。

在这里,我们将使用一个运算放大器作为比较器,将两个信号波形进行比较,从而产生一个新的波形。

6.RC滤波器RC滤波器是一种常见的滤波器,它由电阻和电容组成。

在这里,我们使用RC滤波器对信号进行滤波处理,从而在负载上得到干净的波形。

7.示波器示波器是一种用来显示波形的电子仪器。

在这里,我们将示波器的输入端接入合成后的波形,以便观察和记录合成后的波形。

第六组---信号波形合成实验电路设计

第六组---信号波形合成实验电路设计

信号波形合成实验电路设计指导老师:邵建设队员及年级:方辉(08级),卫鹏(08级),谭诗梦(08级)学校及院系:黄冈师范学院物理科学与技术学院摘要:本设计通过产生不同频率和幅值的正弦信号,并将这些信号合成为近似的方波和三角波,构成了信号波形合成实验电路。

本系统主要由8个部分构成:由MAX038构成的方波振荡电路;主要由集成计数器74LS90和作为D触发器的CD4013构成的分频电路;使用OPA842构成的窄带通滤波电路;由双运放构成的移相电路;加法器合成电路;三角波合成电路;使用AD637构成的真有效值检测电路;单片机控制电路。

在本设计中,方波振荡电路可产生不同频率的方波,经过分频电路和隔直电容以后成为双极性方波。

再经过滤波和放大以后得到了所需的各次谐波,其经过移相电路之后初相位相同,即可通过加法器合成为近似的方波和三角波。

各次谐波有效值可检测并由单片机控制对幅度进行显示。

系统工作稳定,基本达到了题目的所有要求。

关键字:方波振荡电路;分频;移相;真有效值;信号合成。

一、方案设计与论证1.1 方案设计1.1.1 方波振荡电路设计方案方案一:用555定时器构成的多谐振荡器产生单极性方波(脉冲)。

可将电路设计为占空比为50%的单极性方波,该电路灵活方便,低功耗,输入阻抗高,输出驱动电流大。

但其回差电压过大,产生波形的频率不够精确,易失真。

故不采用此方案。

方案二:用信号源产生双极性方波。

采用低温漂、低失真、高线性单片压控函数发生器集成电路MAX038设计,能精密地产生三角波、方波、正弦波信号;频率范围从0.1Hz~20MHz,最高可达40MHz;占空比调节范围宽,最大调节范围10%~90%,利用控制端FADJ、DADJ实现频率微调和占空比调节,互不影响;波形失真小,占空比调节时非线性度低于2%。

从频率范围,频率精确度,对芯片及波形的控制性能,都能达到要求。

故采用此方案。

1.1.2 分频电路设计方案方案一:利用数字电路设计分频电路。

周期信号波形的合成和分解

周期信号波形的合成和分解

周期信号波形的合成和分解实验四周期信号波形的合成和分解⼀.实验⽬的1. 加深了解信号分析⼿段之⼀的傅⽴叶变换的基本思想和物理意义。

2. 观察和分析由多个频率、幅值和相位成⼀定关系的正弦波叠加的合成波形。

3. 观察和分析频率、幅值相同,相位⾓不同的正弦波叠加的合成波形。

4. 通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义。

⼆. 实验原理提⽰按富⽴叶分析的原理,任何周期信号都可以⽤⼀组三⾓函数{sin(2πnf0t),cos(2πnf0t)}的组合表⽰: x(t)=a0/2+a1*sin(2πf0t)+b1*cos(2πf0t)+a2*sin(4πf0t)+b2*cos(4πf0t)+........也就是说,我们可以⽤⼀组正弦波和余弦波来合成任意形状的周期信号。

对于典型的⽅波,根据傅⽴叶变换,其三⾓函数展开式为:由此可见,周期⽅波是由⼀系列频率成分成谐波关系,幅值成⼀定⽐例,相位⾓为0的正弦波叠加合成的。

三.实验仪器和设备计算机若⼲台,labVIEW虚拟仪器平台 1套,打印机1台四.实验步骤及内容1.启动labVIEW中的"波形合成与分解"实验脚本,进⾏该实验。

4. 在"波形合成与分解"实验中的频率输⼊框中输⼊100,幅值输⼊框中输⼊300,相位输⼊框中输⼊0,然后点击"产⽣信号"按钮,产⽣1次谐波,并点击"信号合成"按钮将其叠加到波形输出窗中。

5. 然后在频率输⼊框中输⼊300,幅值输⼊框中输⼊100,相位输⼊框中输⼊0,点击"产⽣信号"按钮,产⽣3次谐波,并点击"信号合成"按钮将其叠加到波形输出窗中,形成1,3次谐波叠加后的波形。

6. 然后在频率输⼊框中输⼊500,幅值输⼊框中输⼊60,相位输⼊框中输⼊0,点击"产⽣信号"按钮,产⽣5次谐波,并点击"信号合成"按钮将其叠加到波形输出窗中,形成1,3,5次谐波叠加后的波形。

全国大学生电子设计大赛实验报告

全国大学生电子设计大赛实验报告
3个
瓷片电容
1500PF 2700PF 3000PF
3个
参考文献
[1]余孟尝数字电子技术基础。三版。北京:高等教育出版社,1998
[2]清华大学电子电子教研组杨素行主编。模拟电子技术基础。北京:高等教育出版社。2001
[3]倪叶杰常熟理工学院文摘。江苏:常数大学教育出版社。1997
图2利用基波和3次谐波合成的近似方波
2方案设计
2.1系统分析及整体方案
方波信号由基波成分和若干个谐波成分构成,即 ,本作品根据这一理论原理制作而成。
主要思路上是产生分别产生10K 30K的方波,然后分别通过滤波器提取出它的基波,然后再通过加法器生成方波。
总体设计框图
系统框图如图所示,由电源模块,分频、滤波和移相及正弦波生成模块,正弦波模块和显示模块构成。
关键词:方波信号,滤波器,正弦波信号,滤波,移相,合成
1作品简介
1.1设计目标
设计制作一个电路,能够产生多个不同频率的正弦信号,利用傅里叶原理产生以10KHz为基波,以奇次谐波为辅助谐波的信号,并将这些信号再合成为近似方波和其他信号。电路示意图如图1所示:
图1信号波形合成电路示意图
1.2要求及指标
1.2.1基本要求
材料清单
名称
型号
数量
说明
万能版
1个
集成芯片
NE555P
1个
集成芯片
HD74LSOOP
3个
集成芯片
SN74LS161AN
3个
集成芯片
TL084CN
1个
集成芯片
TL081CP
2个
二极管
1N4148
2个
可控电阻
900Ω1kΩ
2个

信号波形合成实验报告

信号波形合成实验报告

信号波形合成实验电路摘要:本设计包含方波振荡电路,分频电路,滤波电路,移相电路,加法电路,测量显示电路。

题目要求对点频率的各参数处理,制作一个由移相器和加法器构成的电路,将产生的10KHz 和30KHz 正弦信号作为基波和三次谐波,合成一个波形幅度为5V、近似于方波的波形。

振荡电路采用晶振自振荡并与74LS04 结合,产生6MHz 的方波源。

分频电路采用74HC164 与74HC74分频出固定频率的方波,作为波形合成的基础。

滤波采用TI公司的运放LC084,分别设置各波形的滤波电路。

移相电路主要处理在滤波过程中相位的偏差,避免对波形的合成结果造成影响。

关键词:方波振荡电路分频与滤波移相电路加法器Experimental waveform synthesiscircuitAbstract:The design consists of a square wave oscillator circuit,divider circuit, filter circuit, phase shift circuits, addition circuits, measurement display circuit. Subject of the request of the point frequency of the various parameters of processing, production of a phase shifter circuit consisting of adders, will have the 10KHz and 30KHz sinusoidal signal as the fundamental and third harmonic, synthesis of a wave amplitude 5V, similar to square wave waveform. Since the oscillating crystal oscillation circuit combined with the 74LS04 to produce a square wave source 6MHz. Frequency circuit 74HC164 and the 74HC74 divider out of a fixed frequency square wave, as a basis for waveform synthesis. Filtering using TI's op LC084, respectively, set the waveform of the filter circuit. Phase-shifting circuit in the main processing phase in the filtering process deviations, to avoid prejudicing the outcome of the waveform synthesis.Keywords:Square-wave oscillator circuit Frequency and filter Phase-shifting circuit1.课题技术指标基本要求对一个特定频率的方波进行变换并产生多个不同频率的正弦信号,再将这些正弦信号合成为近似方波。

信号波形发生与合成实验.

信号波形发生与合成实验.

摘要本系统主要以TL081A 运放为核心,由方波发生器、滤波分频电路、移相电路、加法器电路模块组成。

实现了产生多个不同频率的正弦信号与基于多个正弦波合成方波信号的电路功能。

系统基本工作过程为:1kHz 方波信号通过低通滤波器和带通滤波器得到按傅里叶级数展开的1kHz 基波正弦波信号和3kHz 三次谐波正弦波信号。

而后将基波信号通过移相电路使其相位调整到与三次谐波相同,然后通过加法电路将信号合成近似的方波信号。

输出波形结果表明,系统合成波形符合理论傅里叶分析结果,比较准确。

正弦波及合成波的幅值测试误差小于5%,符合题目要求。

关键词:方波发生器;傅里叶级数;分频;滤波;移相一.总体方案设计及论证 1.1题目设计任务设计制作一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波信号。

系统框图如下图所示:具体要求:矩形波发生电路滤波分频移相器加法器正弦波产生实验方波合成实验矩形波测试点基波测试点三次谐波测试点移相后基波测试点合成信号测试点1.2 方案论证比较1.2.1 系统总体方案方波发生电路产生1kHz方波,对其中的基波和三次谐波分量进行提取,1kHz 基波可用截止频率为1kHz的巴特沃斯低通滤波器滤波得到,3kHz谐波可用中心频率设为3kHz的高Q值带通滤波器滤波得到。

最后再经相位调整重新合成近似方波。

1.2.2方波振荡电路的选择本系统中的方波发生电路是实现后续各级电路功能的基础,对频率准确度和稳定度的要求较高。

方案一:555定时器组成的多谐振荡器,直接调节至1KHz左右的对称方波。

此方案成本低廉,实现方便,但其稳定性容易受到外部元件的影响,在振荡频率较高时频率稳定度不够。

方案二:使用石英晶振组成高稳定度的频率参考源,并使用计数器和集成锁相环芯片构成分频/倍频环,以产生1KHz的方波。

该方法产生的信号稳定度高,但需要搭建石英晶体振荡电路,并进行锁相环分频、倍频,电路较复杂。

方案三:采用基于反相输入的滞回比较器和RC电路的方波产生电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号波形合成实验电路(C 题)
内容介绍:该项目基于多个正弦波合成方波与三角波等非正弦周期信号的电
路。

使用555电路构成基准的方波振荡信号,以74LS161实现前置分频形成10KHz 、30kHz 、50kHz 的方波信号,利用TLC04滤波器芯片获得其正弦基波分量,以TLC084实现各个信号的放大、衰减和加法功能,同时使用RC 移相电路实现信号的相位同步;使用二极管峰值包络检波电路获得正弦信号的幅度,以MSP430作为微控制器对正弦信号进行采样,并且采用段式液晶实时显示测量信号的幅度值。

1方案 1.1题目分析
考虑到本设计课题需要用多个具有确定相位和幅度关系的正弦波合成非正弦周期信号,首选使用同一个信号源产生基本的方波振荡,使得后级的多个正弦波之间保持确定的相位关系。

在滤波器环节,为了生成10kHz 、30kHz 和50kHz 的正弦波,我们需要使用三个独立的滤波器,由于输入滤波器的是10kHz 、30kHz 和50kHz 的方波信号,所以可以使用带通滤波器或者低通滤波器,并且尽量维持一致的相位偏移。

从Fourier 信号分析理论看,合成 数学上可以证明此方波可表示为:
)7sin 7
15sin 513sin 31(sin 4)( ++++=t t t t h t f ωωωωπ
三角波也可以表示为:
)7sin 7
1
5sin 513sin 31(sin 8)(2222 +-+-=t t t t h t f ωωωωπ
由以上的数学分析可知,保持各个正弦波之间的相位和幅度的准确关系是准确合成方波和三角波的关键,为此,需要为各个频率的正弦波设计移相电路和放大电路以调节大小和相位关系。

在正弦波幅度测量与显示部分中,需要使用MCU 采集并处理信息,使用液晶显示数值。

1.2系统结构
系统结构如图1所示,使用同一个方波发生器作为基准,以便实现相位同步;为补偿在分频器和滤波器中出现的相位偏移,需要后级进行相位和幅度校准。

图1 总体原理框图
1.3方案选择
方波发生器
方案一:使用晶振。

晶振产生的方波频率精确,但一般晶振频率较高,而且不能调节,对后级分频电路的要求比较高。

方案二:采用NE555。

N555产生的方波震荡电路比较稳定,而且频率、占空比均可调。

因此选用方案二。

分频器
方案一:采用CPLD。

对CPLD编程固然可以,但是成本太高,性价比较低。

方案二:使用74LS161计数器。

74LS161是一种高性能、低功耗CMOS4位同步二进制加计数器,分频出来的信号比较稳定。

因此选用方案二。

滤波器
方案一:使用LC滤波器构建带通滤波器或者使用RC构建低通滤波器。

方案二:使用TLC04集成四阶巴特沃兹滤波器。

TLC04滤波器有以下两种接法。

一是使用外接接时钟信号,二是直接用RC构成自激振荡作为时钟信号,而且电位器可调,可以调整波形。

由于滤波器截止频率较低,使用LC滤波器比较困难,而普通的一阶RC滤波器过渡带过于平坦,滤波效果较差,在比较了多种滤波器设计方法之后,我们选定了TI的TLC04芯片作为滤波器。

正弦波幅值检测电路
方案一:二极管峰值包络检波器。

方案二:基于运放的RC峰值检测。

两种方案相比较,二极管峰值包络检波器电路较为简单,频率范围宽。

因此选用方案一。

2分析计算 2.1公式推导
555的振荡频率计算公式:
2
1122212111)R (7.0)(7.0t t f c R R t c
R R R t w w w w +=
++=++=右左 考虑到555需要产生150kHz 的方波信号,我们选用了如图2电路,选用元器件参数为:定值电阻Ω100,变阻器1k Ω,电容3.3nF ,构成占空比和频率均可调的方波振荡电路。

分频器的分频计算公式:
3
1505051503010
15010kHz
kHz kHz kHz kHz kHz =
=
=
滤波器的基本参数计算公式:
RC
f V V V V V V V V RC f clock CC T T T CC T cc clock 69.1110)]
)(ln[(1
=
=--⨯=
-+
+-
滤波器参数说明
根据TLC 元器件手册给定的指标,(截止频率与元器件参数公式),三个滤波器选用电路图 ,其RC 参数分别为:
10kHz 方波:R 为10k 变位器,C 为200p 电容 30kHz 方波:R 为10k 变位器,C 为50p 电容 50kHz 方波:R 为10k 变位器,C 为15p 电容
波形合成计算公式: 方波合成公式:
)5sin 5
1
3sin 31(sin 4)(t t t h t f ωωωπ++=
三角波合成公式:
)5sin 513sin 31(sin 8)(2
22t t t h t f ωωωπ+-=
根据题目要求和上述公式,在方波合成中我们选择的信号幅度分别为6V 、2V 和1.2V ,三个信号起始同相;在三角波合成中我们选择的信号幅度分别为6V 、0.67V 和0.24V ,并且30kHz 正弦波与10kHz 正弦波起始相位相反。

2.2关键电路分析
0¡ 5 Vrms
50kHz

图2-图6是关键电路的电路图,图2是采用555构成的方波振荡电路,图3
是用74LS161构成的5分频电路,图4是10kHz 正弦波与30kHz 正弦波的叠加电路,图5是电压放大电路,图6是有源移相电路。

图2
方波振荡电路
图3
5分频电路
3电路设计
3.1设计仿真、指标分析
图7-图12是multisim 仿真软件的仿真结果,图7是用555定时器产生的方波电路,图8是用74LS161计数器产生的30kHz 的方波信号,图9是采用有源移相。

图10-图12,是合成方波和正弦波信号。

图7
方波输出波形
图8
5分频仿真结果
图9
移相结果
图10
10kHz 和30kHz
正弦波合成结果
图12
三角波输出结果
图11
10kHz 、30kHz 和
50kHz 正弦波合成结果
4程序设计
4.1软件功能结构
5测试方案
5.1测量方法
本系统能够自行产生150kHz的基准方波信号,故不需要外接信号源作为基准;同时,本系统的低通滤波器使用了RC自振荡信号作为基准频率,不需要外接时钟信号。

在信号测量部分中,MSP430单片机实用晶振作为基准时钟,自带A/D进行信号采样。

5.2测量点选择
为更好的进行系统调试与测试,本系统在以下位置留有测试点:
1、波器输出端,用以测试滤波器幅频特性和相频特性。

2、移相器输出端,用以测试移相器性能并测试信号幅度。

3、信号合成加法器端,用以测试合成方波与三角波的幅度、相位与失真。

6测试结果
图13 方波合成波形图图14 三角波合成波形图
图15 三个频率的方波合成波形图16 数字显示图
7总结展望
经过六天的电路设计、焊接调试、程序设计联调,最终完成了整个规定的设计过程。

从最终的结果看,达到了预期的要求,主要包括:
1.10kHz、30kHz、50kHz正弦波的生成,无明显失真,幅度达到规定的要求。

2.将多个正弦信号合成非正弦的周期信号,完成了方波与三角波的合成,波形基本没有失真,相位稳定。

3.设计并制作了正弦波幅度测量电路,并且能够实时显示电压大小,误差符合设计要求。

由于时间限制,也有部分设想没有完成,在以后可以继续进行补充与完善,主要包括:
4. 使用A/D转换采样正弦波信号,使用MSP430进行分析,计算信号频率并实时显示。

5. 使用锁相环稳定各个正弦波的相位,尽量减小相位误差。

相关文档
最新文档