微积分在物理学上的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分在物理学上的应用
1 引言
微积分就是数学的一个基本学科,内容包括微分学,积分学,极限及其应用,其中微分学包括导数的运算,因此使速度,加速度等物理元素可以使用一套通用的符号来进行讨论。而在大学物理中,使用微积分去解决问题就是及其普遍的。对于大学物理问题,可就是使其化整为零,将其分成许多在较小的时间或空间里的局部问题来进行分析。只要这些局部问题分的足够小,足以使用简单,可研究的方法来解决,再把这些局部问题的结果整合起来啊,就可以得到问题的结果。而这种将问题无限的分割下去,局部问题无限的小下去的方法,即称为微分,而把这些无限个微分元中的结果进行求与的方法,即就是积分。这种解决物理问题的思想与方法即就是微积分的思想与方法。
2 微积分的基本概念及微分的物理含义
微积分就是一种数学思想,其建立在函数,实数与极限的基础上,其主要探讨的就就是连续变量。在运用微积分去解决物理问题时,可以将我们所需要得出的结果瞧成就是一个整体,再将这个整体先微分,即将其分成足够小的个体,我们可以将这个个体的变量瞧成衡量,得出个体结果后,再将其积分,即把个体的结果累积起来进行求与。例如,在我们研究匀变速直线运动时,我们就可以在其运动过程中选取一个微小的时间dt,而这一时间内的位移为dt,在每一段时间内速度的变化量非常小,可以近似忽略,那么我们就可以将这段时间内的运动近似瞧成匀速直线运动,再把每段时间内的位移相加,无限求与,就可以得出总的位移。
在物理学中,每个物理公式都就是某些物理现象与规律的数学表示,因此,我们在使用这些公式时,面对物理量与公式的微分形式我们不能仅仅从数学方面去考虑,更要从物理含义上去考虑。在我们使用微分符号时,不能只从数学角度去理解其为无限小,更要结合具体
的物理量与角度去判断她的正确含义。
例:如图所示,一通有交流电流i=的长直导线旁有一共面的单匝矩形线圈ABCD,试求线圈中的感应电动势大小。
解:设在某个时刻,长直导线电流产生的磁场为
B=
在图中做一个微元面dS,dS=ldx,则该面元上的磁场可以近似于均匀磁场,微元面dS上的磁通量为
d
线圈围成的面上通过的磁通量为
线圈中的感应电动势为
在这个例题中,微元面dS的磁通量与线圈的感应电动势都有,但她们的物理含义却就是不一样的,前者的表示微元面dS上的磁通量,就是一个微小量,而后者的表示的就是微笑时间内的磁通量变化量,就是一个微小变化量。
3 微元的选取以及微积分解决物理问题时的一般步骤
3、1 微元的选取
在使用微积分去解决物理问题时,微元的选取就是非常重要的,有的时候在微元的选择上并不就是仅仅只有一个,因此,选取一个合适的微元对我们解决问题会有很大帮助。
我们通常在微元的选取方面有以下几点注意,第一,在我们选取微元时,要保证我们们所选择的微元能够让我们可以将原本的问题近似处理的比较简单,以使我们能够更加便利且清晰的区解决物理问题;第二,我们要使我们选择的微元尽可能地大,这样在我们去积分时可以更为方便,如果微分过细,那么我们的过程会更精准,可就是相对的,我们在积分时面临的过程也会更加繁琐,因此我们要处理好微分与积分之间的运算;第三,能用一元微元去解决问题时尽量使用一元微元,因为重积分使用起来要比一元积分麻烦的很多。
选取微元要遵循以下几个原则:1、可加性原则,由于在题目中我们所选取的微元要可以叠加演算,因此,选取的微元要具备可加性;2、有序性原则,为了保证我们所选取的微元能够在叠加区域可以不遗漏,不重复的叠加,我们就需要注意按照量的某种序来选取微元;3、平权型原则,叠加演算实际上就就是一种复杂的“加权叠加”。对于一般的“权函数”而言,叠加演算,也就就是求定积分就是十分复杂的,但如果“权函数”具备了“平权性”特征(在定义域内的值处处相等),原本复杂的题目就会化成简单的形式更有利于我们去解决问题。
例:求半径为R的均匀带电半球面在点O的电场强度,设球面上电荷面密度σ>0、
解法一:如图,在球面上任取面元dS,将其上的电荷为一点电荷dq,则有 dq=dS=(Rd)(R)d
=d d
则该点电荷元在点O产生的场强
dE=dq/(4ε0)=d d/(4ε0)
根据对称性,即得出点O场强E0沿Z轴正方向,大小为
E=∫∫dE=/(4ε0)
解法二:如图,沿着与Z轴的垂直方向把半球面分割成许多不同半径的带电圆环,任取一圆环,其上的电荷在点O产生的场强
dE=dqz/[4ε0]
=(/2ε0)d
方向沿OZ轴正方向,点O场强
E=∫dE=/(4ε0)
由例子可知选取的微元不同,解法也就是不同的,代表的物理含义也就是不一样的,然而微元的选取并不影响结果,因此我们要正确理解其含义,才能更好地从物理概念,物理实质上去把握微积分。
3、2 微积分解决物理问题时的一般步骤
1、根据题意分析,选取一个具有广泛意义的微元,对微元进行分析,若就是题目简单且物理含义比较明显,且遵从题意,可直接进行积分。
2、若就是题目较复杂,根据题意,对于一个暂态过程写出一个平衡等式,然后对两边微分,在得到一个微元结果后,对这个分式进行积分操作。
以上步骤都就是在遵从题意的基础下进行,进行微分分析的结果一般就是一个微分方程,在求解时要注意初始条件,在积分时,更要注意取上下限时,要满足边界条件。
例:圆柱形桶的内壁高为h,内半径为R,桶底有一半径为r的小孔,试问从盛满水开始打开小孔直至流完桶中的水,共需多长时间?
解:如图建立坐标系,在没有摩擦力的情况下,当桶内水位高度为
h-x时,水从小孔中单位时间内流过单位截面积的流量为v=,其中g为重力加速度设积分变量x,其变化区间为[0,h]
任取[x,x+Δx]∈[0,h],当桶中液体下降Δx时,所需要的时间用dt表示,根据水的流量体积相等得dx=v dt