2013年贵州省毕节市中考数学试卷
2013贵州毕节中考数学

2013年毕节市初中毕业生学业(升学)统一考试试卷数学注意事项:1、答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置。
2.答题时,卷1必须使用2B 铅笔,卷2必须0.5毫米黑色签字笔,将答案书写在答题卡规定的位置,字迹工整、笔迹清楚。
3.所有题目必须在答题卡上作答,在试卷上答题无效。
4.本试题共6页,满分150分,考试用时120分钟。
5.考试结束后,将试卷和答题卡一并交回。
卷1一、选择题(本大题共15个小题,每小题3分,共45分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项涂在相应的答题卡上) 1.(2013贵州毕节,1,3分)2-的相反数是( )A .2± B. 2 C. 2- D. 12【答案】B .2. (2013贵州毕节,2,3分)如图所示的几何体的主视图是( )【答案】C .3.(2013贵州毕节,3,3分)2013年毕节市参加初中毕业生学业(升学)统一考试的学生人数约为107000人,将107000用科学记数法表示为( )A .410.710´ B .51.0710´ C .310710´ D .60.10710´ 【答案】B .4.(2013贵州毕节,4,3分),0 , -,13,0.1010010001…(相邻两个1之间依次多一个0 ),其中无理数的个数是( )个 A .1 B .2 C .3 D .4第2题图A B C D5.(2013贵州毕节,5,3分) 的值在( ) A .1与2之间 B.2与3之间 C .3与4之间 D .4与5之间 【答案】C .6.(2013贵州毕节,6,3分)下列计算正确的是( ) A .3332a aa ? B .33a a a ?C .2a a a +=D .325()a a = 【答案】C .7.(2013贵州毕节,7,3分)已知等腰三角形一边长为4,另一边长为8,刚这个等腰三角形的周长为( )A .16 B.20或16 C 、20 D 、12 【答案】C .8.(2013贵州毕节,8,3分)下列图形中,既是轴对称图形又是中心对称图形的是( )① ②角 ③等边三角形 ④圆 ⑤平行四边形 ⑥矩形A .③④⑥ B. ①③⑥ C. ④⑤⑥ D. ①④⑥ 【答案】D .9.(2013贵州毕节,9,3分)数据4 ,7,4,8,6,9,4的众数和中位数分别是( ) A .6,7 B .4,8 C .6,8 D .4,6 【答案】D .10.(2013贵州毕节,10,3分)分式方程321x x =- 的解是( ) A . B.C D.无解11.(2013贵州毕节,11,3分)如图,已知AB //CD ,∠EBA =45°,那么∠E +∠D 的度数为( )A .30° B. 60° C. 90° D. 45° 【答案】D12. (2013贵州毕节,12,3分)如图,在O 中,弦AB 的长为8,OC AB ^,垂足为C ,且OC =3,则O 的半径为( ) A .5 B.10 C.8 D 、6 【答案】A13.(2013贵州毕节,13,3分)一次函数y =kx +b 与反比例函数ky x= 在同一直角坐标系下的大致图像如图所示,则k ,b 的取值范围是( ) A .k >0,b >0 B .k <0,b >0 C .k <0,b <0 D .k >0,b <0 【答案】C14.(2013贵州毕节,14,3分)将二次函数2y x =的图像向右平移1个单位,再向上平移3个单位,所得图像的解析式为( ) A .2(1)3y x =-+ B. 2(1)3y x =++ C. 2(1)3y x =-- D. 2(1)3y x =+- 【答案】A15.(2013贵州毕节,15,3分)在等腰直角三角形ABC 中,4AB AC ==,点O 为BC 的中点,以点O 为圆心作O 交BC于点M ,N ,O 与AB ,AC 相切,切点分别为D 、E ,则O的(第12题图)(第13题图)(第15题图)BC半径和MND Ð的度数为( )A . 2,22.5°B 、3,30°C 、3,22.5°D 、2,30° 【答案】A卷2二.填空题(本大题共5个小题,每小题5分,共25分)16.(2013贵州毕节,16,5分)二元一次方程组213211x y x y ì+=ïí-=ïî 的解是_______________.【答案】31x y ì=ïí=-ïî17、(2013贵州毕节,17,5分)正八边形的一个内角是__________度。
【精校】2013年贵州省毕节市初中毕业学业(升学)统一考试试卷数学(无答案)

2013年毕节市初中毕业学业(升学)统一考试试卷数 学卷 Ⅰ29.选择题(本大题共15小题,每小题3分,共45分。
在每小题的四个选项中,中只有一个选项正确。
)2. -2的相反数是( )A. 2±B. 2C. -2D.2. 如图所示的几何体的主视图是:3. 2013年毕节市参加初中毕业学业(升学)统一考试的学生人数约为107000人,将107000用科学计数法表示为:( )A. 410.710⨯B. 51.0710⨯C. 310710⨯D. 60.10710⨯4. 实数31270160.10100100013π-L ,,,,,(相邻两个1之间依次多一个0),其中无理数是( )个。
A. 1B. 2C. 3D. 45. 估计11的值在( )之间。
A. 1与2之间B. 2与3之间C. 3与4之间D. 4与5之间A .下列计算正确的是( )A. 3332a a a ⋅= B 33a a a ÷= A. 2a a a += A. 325()a a = 7. 已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为( )A. 16B. 20或16C. 20D. 128. 在下列图形中既是轴对称图形又是中心对称图形的是( )①线段 ②角 ③等边三角形 ④ 圆 ⑤平行四边形 ⑥矩形A. ③④⑥B.①③⑥ D.④⑤⑥ D. ①④⑥9. 数据4, 7, 4, 8,6, 6, 9,4的众数和中位数是( )A. 6,9B. 4,8C. 6, 8D. 4, 610. 分式方程321x x =-的解是( ) A. 3x =- B. 35x =- C. 3x = D. 无解 11. 如图,已知AB ∥CD ,∠EBA=45°,∠E+∠D 的读数为( )A. 30°B. 60°C. 90°D. 45°12. 如图在⊙O 中,弦AB=8,OC ⊥AB ,垂足为C ,且OC=3,则⊙O 的半径( )A. 5B. 10C. 8D. 613. 一次函数(0)y kx b k =+≠与反比例函数y (0)k k x=≠的图像在同一直角坐标系下的大致图像如图所示,则k 、b 的取值范围是( )A. 0,0k b >>B. 0,0k b <>C. 0,0k b <<D. 0,0k b ><14. 将二次函数2y x =的图像向右平移一个单位长度,再向上平移3个单位长度所得的图像解析式为( )A. 2(1)3y x =-+B. 2(1)3y x =++C. 2(1)3y x =--D. 2(1)3y x =+-15. 在等腰直角三角形ABC 中,AB=AC=4,点O 为BC 的中点,以O 为圆心作⊙O 交BC于点M 、N ,⊙O 与AB 、AC 相切,切点分别为D 、E ,则⊙O 的半径和∠MND 的度数分别为( )A. 2 , 22.5°B. 3 , 30°C. 3 , 22.5°D. 2 , 30°卷 Ⅱ二、填空题(本大题共5个小题,每小题5分,共25分) 16. 二元一次方程组213211x y x y +=⎧⎨-=⎩的解是 。
最新毕节市中考数学模拟新试卷卷及答案资料

A .6, 9
B. 4, 8
C. 6, 8
) D. 4, 6
10.( 3 分)( 2013?毕节地区)分式方程
的解是(
)
A.x=﹣3
B.
C. x=3
D.无解
11.(3 分)( 2013?毕节地区)如图,已知 AB ∥ CD ,∠ EBA=45 °,∠ E+∠ D . 60°
2
y=ax +b 与 x 轴交于点 A、 B,且 A 点的坐标为( 1, 0),与 y 轴交于
C. 90°
D. 45°
12.( 3 分)( 2013?毕节地区)如图在⊙ O 中,弦 AB=8 , OC⊥ AB ,垂足为 C,且 OC=3,则⊙ O 的半径(
)
精品文档
精品文档
A.5
B. 10
C.8
13.( 3 分)( 2013?毕节地区)一次函数 y=kx+b ( k≠0)与反比例函数
的大致图象如图所示,则 k、b 的取值范围是(
,圆心距 O1O2=5,
则两圆的位置关系是 _________ . 19.( 5 分)( 2013?毕节地区)已知圆锥的底面半径是 (结果保留 π)
2cm,母线长为 5cm,则圆锥的侧面积是
3
_________ cm
20.( 5 分)( 2013?毕节地区)一次函数 y=kx+1 的图象经过( 1, 2),则反比例函数
字之和为偶数 时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.
( 1)用画树状图或列表的方法,求甲获胜的概率; ( 2)这个游戏对甲、乙双方公平吗?请判断并说明理由.
23.( 8 分)( 2013?毕节地区)先化简,再求值.
2013年贵州省毕节市中考数学试题含答案

毕节市2013年初中毕业生学业(升学)统一考试试卷
数 学
注意事项:
1、答题前,务必将身己的姓名、准考证号填写在答题卡规定的位置。
2、答题时,卷I必须使用2B铅笔,卷II必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的 位置,字体工整,笔迹清楚。
3、所有题目必须在答题卡上作答,在试卷上答题无效
x
、解答及证明(本大题共7个小题,各题的分值见题号,共80分)
21.(本题8分)计算:(-3)0一( 一5)(-)」_、9--2
2
22.(本题10分)甲、乙玩转盘游戏时,把质地相同的两个图•游戏规则:甲、乙两人分别同时转动两个转盘各一次, 当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜。
的读数为()
A.30°B.60°C.90°D.45
12.如图在OO中,弦AB=8 OCL AB垂足为C,且OC=3则OO的半径(
A.5B.10C.8D.6
A.x- -3
x= 3D.无解
0
)
(第12题图)
D
13.一次函数y=kx・b(k=0)与反比例函数y二色(k = 0)的图像在同一直角
x
坐标系下的大致图像如图所示,则k、b的取值范围是(
A. k>0, b>0 B.k<0,b>0 C.k<0, b<0 D.
14.将二次函数2
位长度所得的图像解析式为(
A. y=(x—1)23
C. y=(x-1)2-3
15.在等腰直角三角形
OO交BC于点M N,的半径和/MND勺度数分别为(
A.2,22.5°B.3,30
)
kv0,b>0 C.k<0, b<0 D.k>0, b<0
毕节市中考数学试题及答案

毕节市中考数学试题及答案注意:本文所列的毕节市中考数学试题及答案仅供参考,具体答案以实际考试为准。
一、选择题1. 已知直角三角形中,斜边长度为10,其中一直角边为8,则另一直角边长度为多少?A. 6B. 9C. 12D. 15答案:B. 92. 若a:b=2:3,且a+b=25,则a的值为多少?A. 12B. 15C. 18D. 20答案:A. 123. 以下哪个数是质数?A. 1B. 6C. 9D. 11答案:D. 114. 已知函数y=kx+3中,当x=2时,y=7,则k的值为多少?A. 1B. 2C. 3D. 4答案:B. 25. 设多边形ABCD为正方形,AB边长为6cm,点E为AB延长线上一点,且AE=10cm,连接DE,则三角形AED的面积为多少平方厘米?A. 20B. 24C. 30D. 36答案:C. 30二、填空题1. 若3x+5=20,则x的值为________。
答案:52. 在三角形ABC中,已知AB=AC,且∠BAC=60°,则∠ABC的度数为________。
答案:60°3. 若a:b=3:4,且b:c=5:6,则a:b:c的比例为________。
答案:15:20:24三、解答题1. 某数的12%和18%之和为30,请计算该数。
解答:设该数为x,根据题目条件,可以列出等式:0.12x + 0.18x = 30。
解得 x = 150。
2. 小明的体重是小红的3/4,小红的体重是小绿的5/6。
如果小绿的体重是72kg,那么小明的体重是多少?解答:设小明的体重为x,根据题目条件,可以列出等式:(5/6) * (3/4) * x = 72。
解得 x = 64。
综上所述,本文给出了一些毕节市中考数学试题及答案,供考生参考。
希望大家认真复习,顺利完成考试!。
贵州省毕节市2013年中考数学真题试题(解析版)

贵州省毕节地区2013年中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题的四个选项中,中只有一个选项正确.) 1.(3分)(2013•毕节地区)﹣2的相反数是( ) A . ±2 B . 2 C . ﹣2 D .考点: 相反数. 分析: 根据只有符号不同的两个数互为相反数即可求解. 解答: 解:﹣2的相反数为2,故选B . 点评: 本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 2.(3分)(2013•毕节地区)如图所示的几何体的主视图是( )A .B .C .D .考点: 简单组合体的三视图. 分析: 找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 解答: 解:从正面看易得第一层有3个正方形,第二层中间有一个正方形.故选C . 点评: 本题考查了三视图的知识,主视图是从物体的正面看得到的视图. 3.(3分)(2013•毕节地区)2013年毕节市参加初中毕业学业(升学)统一考试的学生人数约为107000人,将107000用科学记数法表示为( )A . 10.7×104B . 1.07×105C . 107×103D . 0.107×106考点: 科学记数法—表示较大的数.分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答: 解:将107000用科学记数法表示为1.07×105.故选B .点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(3分)(2013•毕节地区)实数(相邻两个1之间依次多一个0),其中无理数是()个.A.1B.2C.3D.4考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:﹣π,0.1010010001….共有2个.故选B.点评:本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.(3分)(2013•毕节地区)估计的值在()之间.A.1与2之间B.2与3之间C.3与4之间D.4与5之间考点:估算无理数的大小.分析:11介于9与16之间,即9<11<16,则利用不等式的性质可以求得介于3与4之间.解答:解:∵9<11<16,∴3<<4,即的值在3与4之间.故选C.点评:此题主要考查了根式的计算和估算无理数的大小,解题需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.6.(3分)(2013•毕节地区)下列计算正确的是()A.a3•a3=2a3B.a3÷a=a3C.a+a=2a D.(a3)2=a5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:结合各选项分别进行同底数幂的乘法、同底数幂的除法、合并同类项、幂的乘方等运算,然后选出正确选项即可.解答:解:A、a3•a3=a6,原式计算错误,故本选项错误;B、a3÷a=a3﹣1=a2,原式计算错误,故本选项错误;C、a+a=2a,原式计算正确,故本选项正确;D、(a3)2=a6,原式计算错误,故本选项错误.故选C.点评:本题考查了同底数幂的除法、同底数幂的乘法、幂的乘方等运算,属于基础题,掌握各运算法则是解题的关键.7.(3分)(2013•毕节地区)已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A.16 B.20或16 C.20 D.12考点:等腰三角形的性质;三角形三边关系.分析:因为已知长度为4和8两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.解答:解:①当4为底时,其它两边都为8,4、8、8可以构成三角形,周长为20;②当4为腰时,其它两边为4和8,∵4+4=8,∴不能构成三角形,故舍去,∴答案只有20.故选C.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.(3分)(2013•毕节地区)在下列图形中既是轴对称图形又是中心对称图形的是()①线段,②角,③等边三角形,④圆,⑤平行四边形,⑥矩形.A.③④⑥B.①③⑥C.④⑤⑥D.①④⑥考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,不是中心对称图形;④是轴对称图形,也是中心对称图形;⑤不是轴对称图形,是中心对称图形;⑥是轴对称图形,也是中心对称图形;综上可得既是轴对称图形又是中心对称图形的有:①④⑥.故选D.点评:本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.(3分)(2013•毕节地区)数据4,7,4,8,6,6,9,4的众数和中位数是()A.6,9 B.4,8 C.6,8 D.4,6考点:众数;中位数.分析:根据众数和中位数的定义求解即可.解答:解:数据4出现3次,次数最多,所以众数是4;数据按从小到大排列:4,4,4,6,6,7,8,9,中位数是(6+6)÷2=6.故选D.点评:本题考查了中位数,众数的意义.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.10.(3分)(2013•毕节地区)分式方程的解是()A.x=﹣3 B.C.x=3 D.无解考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x﹣3=2x,解得:x=3,经检验x=3是分式方程的解.故选C.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.(3分)(2013•毕节地区)如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为()A.30°B.60°C.90°D.45°考点:平行线的性质;三角形的外角性质.分析:根据平行线的性质可得∠CFE=45°,再根据三角形内角与外角的关系可得∠E+∠D=∠CFE.解答:解:∵AB∥CD,∴∠ABE=∠CFE,∵∠EBA=45°,∴∠CFE=45°,∴∠E+∠D=∠CFE=45°,故选:D.点评:此题主要考查了平行线的性质,以及三角形内角与外角的关系,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.12.(3分)(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O 的半径()A.5B.10 C.8D.6考点:垂径定理;勾股定理.专题:探究型.分析:连接OB,先根据垂径定理求出BC的长,在Rt△OBC中利用勾股定理即可得出OB的长度.解答:解:连接OB,∵OC⊥AB,AB=8,∴BC=AB=×8=4,在Rt△OBC中,OB===.故选A.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.13.(3分)(2013•毕节地区)一次函数y=kx+b(k≠0)与反比例函数的图象在同一直角坐标系下的大致图象如图所示,则k、b的取值范围是()A.k>0,b>0 B.k<0,b>0 C.k<0,b<0 D.k>0,b<0考点:反比例函数与一次函数的交点问题.分析:本题需先判断出一次函数y=kx+b与反比例函数的图象在哪个象限内,再判断出k、b的大小即可.解答:解:∵一次函数y=kx+b的图象经过二、三、四象限,∴k<0,b<0又∵反比例函数的图象经过二、四象限,∴k<0.综上所述,k<0,b<0.故选C.点评:本题主要考查了反比例函数和一次函数的交点问题,在解题时要注意图象在哪个象限内,是解题的关键.14.(3分)(2013•毕节地区)将二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为()A.y=(x﹣1)2+3 B.y=(x+1)2+3 C.y=(x﹣1)2﹣3 D.y=(x+1)2﹣3考点:二次函数图象与几何变换.分析:由二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度,根据平移的性质,即可求得所得图象的函数解析式.注意二次函数平移的规律为:左加右减,上加下减.解答:解:∵二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度,∴所得图象的函数解析式是:y=(x﹣1)2+3.故选A.点评:本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.15.(3分)(2013•毕节地区)在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O 为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND 的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°考点:切线的性质;等腰直角三角形.分析:首先连接AO,由切线的性质,易得OD⊥AB,即可得OD是△ABC的中位线,继而求得OD的长;根据圆周角定理即可求出∠MND的度数.解答:解:连接OA,∵AB与⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,∴AO⊥BC,∴OD∥AC,∵O为BC的中点,∴OD=AC=2;∵∠DOB=45°,∴∠MND=∠DOB=22.5°,故选A.点评:此题考查了切线的性质、圆周角定理、切线长定理以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.二、填空题(本大题共5个小题,每小题5分,共25分)16.(5分)(2013•毕节地区)二元一次方程组的解是.考点:解二元一次方程组.专题:计算题.分析:根据y的系数互为相反数,利用加减消元法求解即可.解答:解:,①+②得,4x=12,解得x=3,把x=3代入①得,3+2y=1,解得y=﹣1,所以,方程组的解是.故答案为:.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.17.(5分)(2013•毕节地区)正八边形的一个内角的度数是135 度.考点:多边形内角与外角.分析:首先根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.解答:解:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为:×1080°=135°.故答案为:135.点评:此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n≥3)且n为整数).18.(5分)(2013•毕节地区)已知⊙O1与⊙O2的半径分别是a,b,且a、b满足,圆心距O1O2=5,则两圆的位置关系是外切.考点:圆与圆的位置关系;非负数的性质:绝对值;非负数的性质:算术平方根.分析:首先根据求得a、b的值,然后根据半径与圆心距的关系求解即可.解答:解:∵,∴a﹣2=0,3﹣b=0解得:a=2,b=3∵圆心距O1O2=5,∴2+3=5∴两圆外切,故答案为:外切.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.19.(5分)(2013•毕节地区)已知圆锥的底面半径是2cm,母线长为5cm,则圆锥的侧面积是10π cm3(结果保留π)考点:圆锥的计算.分析:圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.解答:解:圆锥的侧面积=2π×2×5÷2=10π.故答案为:10π.点评:本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.20.(5分)(2013•毕节地区)一次函数y=kx+1的图象经过(1,2),则反比例函数的图象经过点(2,).考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.分析:把点(1,2)代入一次函数解析式求得k的值.然后利用反比例函数图象上点的坐标特征来填空.解答:解:∵一次函数y=kx+1的图象经过(1,2),∴2=k+1,解得,k=1.则反比例函数解析式为y=,∴当x=2时,y=.故答案是:.点评:本题考查了一次函数、反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.三、解答及证明(本大题共7个小题,各题的分值见题号,共80分)21.(8分)(2013•毕节地区)计算:.考点:实数的运算;零指数幂;负整数指数幂.分析:分别进行零指数幂、去括号、负整数指数幂、二次根式的化简、绝对值等运算,然后按照实数的运算法则计算即可.解答:解:原式=1+5+2﹣3﹣2=3.点评:本题考查了实数的运算,涉及了零指数幂、去括号、负整数指数幂、二次根式的化简、绝对值等知识,属于基础题.22.(10分)(2013•毕节地区)甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.(1)用画树状图或列表的方法,求甲获胜的概率;(2)这个游戏对甲、乙双方公平吗?请判断并说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字之和为偶数情况,再利用概率公式即可求得答案;(2)分别求得甲、乙两人获胜的概率,比较大小,即可得这个游戏规则对甲、乙双方是否公平.解答:解:(1)画树状图得:∵共有6种等可能的结果,两数之和为偶数的有2种情况;∴甲获胜的概率为: =;(2)不公平.理由:∵数字之和为奇数的有4种情况,∴P(乙获胜)==,∴P(甲)≠P(乙),∴这个游戏规则对甲、乙双方不公平.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.(8分)(2013•毕节地区)先化简,再求值.,其中m=2.考点:分式的化简求值.专题:计算题.分析:原式第一项利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后通分,并利用同分母分式的加法法则计算得到最简结果,将m的值代入计算即可求出值.解答:解:原式=•+=+==,当m=2时,原式==2.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.24.(12分)(2013•毕节地区)解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.考点:解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.分析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.解答:解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.点评:此题主要考查了解一元一次不等式组,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.25.(12分)(2013•毕节地区)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心 A 点,按顺时针方向旋转90 度得到;(3)若BC=8,DE=6,求△AEF的面积.考点:旋转的性质;全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF;(2)由于△ADE≌△ABF得∠BAF=∠DAE,则∠BAF+∠EBF=90°,即∠FAE=90°,根据旋转的定义可得到△ABF可以由△AD E绕旋转中心 A点,按顺时针方向旋转90 度得到;(3)先利用勾股定理可计算出AE=10,在根据△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.解答:(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是DCB的延长线上的点,∴∠ABF=90°,在△ADE和△ABF中,∴△ADE≌△ABF(SAS);(2)解:∵△ADE≌△ABF,∴∠BAF=∠DAE,而∠DAE+∠EBF=90°,∴∠BAF+∠EBF=90°,即∠FAE=90°,∴△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到;故答案为A、90;(3)解:∵BC=8,∴AD=8,在Rt△ADE中,DE=6,AD=8,∴AE==10,∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到,∴AE=AF,∠EAF=90°,∴△AEF的面积=AE2=×100=50(平方单位).点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质以及勾股定理.26.(14分)(2013•毕节地区)如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,塔底E 的仰角为30°,求塔高.(精确到0.1米,≈1.732)考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:设EC=x,则在Rt△BCE中,BC=EC=x;在Rt△BCD中,CD=BC=3x;在Rt△A CD中,AC=AB+BC=73.2+x,CD=3x,利用关系式AC=CD列方程求出x;塔高DE=CD﹣EC=2x可以求出.解答:解:设EC=x(米),在Rt△BCE中,∠EBC=30°,∴BC==x;在Rt△BCD中,∠DBC=60°,∴CD=BC•tan60°=x•=3x;在Rt△ACD中,∠DBC=45°,∴AC=CD,即:73.2+x=3x,解得:x=12.2(3+).塔高DE=CD﹣EC=3x﹣x=2x=2×12.2(3+)=24.4(3+)≈115.5(米).答:塔高DE约为115.5米.点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度,难度一般.27.(16分)(2013•毕节地区)如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1).(1)求抛物线的解析式,并求出点B坐标;(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式,点B坐标可由对称性质得到,或令y=0,由解析式得到;(2)关键是求出点D的坐标,然后利用勾股定理分别求出四边形ABCD四个边的长度;(3)本问为存在型问题.可以先假设存在,然后按照题意条件求点P的坐标,如果能求出则点P存在,否则不存在.注意三角形相似有两种情形,需要分类讨论.解答:解:(1)∵点A(1,0)和点C(0,1)在抛物线y=ax2+b上,∴,解得:a=﹣1,b=1,∴抛物线的解析式为:y=﹣x2+1,抛物线的对称轴为y轴,则点B与点A(1,0)关于y轴对称,∴B(﹣1,0).(2)设过点A(1,0),C(0,1)的直线解析式为y=kx+b,可得:,解得k=﹣1,b=1,∴y=﹣x+1.∵BD∥CA,∴可设直线BD的解析式为y=﹣x+n,∵点B(﹣1,0)在直线BD上,∴0=1+n,得n=﹣1,∴直线BD的解析式为:y=﹣x﹣1.将y=﹣x﹣1代入抛物线的解析式,得:﹣x﹣1=﹣x2+1,解得:x1=2,x2=﹣1,∵B点横坐标为﹣1,则D点横坐标为2,D点纵坐标为y=﹣2﹣1=﹣3,∴D点坐标为(2,﹣3).如答图①所示,过点D作DN⊥x轴于点N,则DN=3,AN=1,BN=3,在Rt△BDN中,BN=DN=3,由勾股定理得:BD=;在Rt△ADN中,DN=3,AN=1,由勾股定理得:AD=;又OA=OB=OC=1,OC⊥AB,由勾股定理得:AC=BC=;∴四边形ABCD的周长为:AC+BC+BD+AD=+++=+.(3)假设存在这样的点P,则△B PE与△CBD相似有两种情形:(I)若△BPE∽△BDC,如答图②所示,则有,即,∴PE=3BE.设OE=m(m>0),则E(﹣m,0),BE=1﹣m,PE=3BE=3﹣3m,∴点P的坐标为(﹣m,3﹣3m).∵点P在抛物线y=﹣x2+1上,∴3﹣3m=﹣(﹣m)2+1,解得m=1或m=2,当m=1时,点E与点B重合,故舍去;当m=2时,点E在OB左侧,点P在x轴下方,不符合题意,故舍去.因此,此种情况不存在;(II)若△EBP∽△BDC,如答图③所示,则有,即,∴BE=3PE.设OE=m(m>0),则E(m,0),BE=1+m,PE=BE=(1+m)=+m,∴点P的坐标为(m, +m).∵点P在抛物线y=﹣x2+1上,∴+m=﹣(m)2+1,解得m=﹣1或m=,∵m>0,故m=1舍去,∴m=,点P的纵坐标为:+m=+×=,∴点P的坐标为(,).综上所述,存在点P,使以B、P、E为顶点的三角形与△CBD相似,点P的坐标为(,).点评:本题是代数几何综合题,考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、相似三角形的判定与性质、勾股定理等重要知识点.第(2)问的解题要点是求出点D的坐标,第(3)问的解题要点是分类讨论.。
2013年中考数学试题按章节考点分类:第40章动态型问题

四十章动态型问题18.(2013江苏苏州,18,3分)如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了(4+2)秒(结果保留根号).×=×=1×BE=3××=3,CD===2AB+BC+CD=2+2+2=4+24+21=4+24+223.(2013贵州省毕节市,23,12分)如图①,有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′.(1)如图②,将△ACD沿A′C′边向上平移,使点A与点C′重合,连接A′D和BC,四边形A′BCD是形;(2)如图③,将△ACD的顶点A与A′点重合,然后绕点A沿逆时针方向旋转,使点D、A、B在同一直线上,则旋转角为度;连接CC′,四边形CDBC′是形;(3)如图④,将AC边与A′C′边重合,并使顶点B和D在AC边的同一侧,设AB、CD相交于E,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由。
第23题图解析:(1)利用平行四边形的判定,对角线互相平分的四边形是平行四边形得出即可;(2)利用旋转变换的性质以及直角梯形判定得出即可;(3)利用等腰梯形的判定方法得出BD ∥AC,AD=CE,即可得出答案.解案:解:(1)平行四边形;证明:∵AD=AB,AA′=AC,∴A′C与BD互相平分,∴四边形A′BCD 是平行四边形;(2)∵DA 由垂直于AB ,逆时针旋转到点D 、A 、B 在同一直线上, ∴旋转角为90度;证明:∵∠D=∠B=90°,A ,D ,B 在一条直线上,∴CD ∥BC′,∴四边形CDBC′是直角梯形; 故答案为:90,直角梯; (3)四边形ADBC 是等腰梯形;证明:过点B 作BM ⊥AC ,过点D 作DN ⊥AC ,垂足分别为M ,N ,∵有一张矩形纸片,将它沿对角线AC 剪开,得到△ACD 和△A′BC′.∴△ACD ≌△A′BC′,∴BM=ND ,∴BD ∥AC ,∵AD=BC ,∴四边形ADBC 是等腰梯形.点评:此题主要考查了图形的剪拼与平行四边形的判定和等腰梯形的判定、直角梯形的判定方法等知识,熟练掌握判定定理是解题关键.26.(2013年广西玉林市,26,12分)如图,在平面直角坐标系xOy 中,矩形AOCD 的顶点A 的坐标是(0,4),现有两动点P ,Q ,点P 从点O 出发沿线段OC (不包括端点O ,C )以每秒2个单位长度的速度匀速向点C 运动,点Q 从点C 出发沿线段CD (不包括端点C 、D )以每秒1个单位长度的速度匀速向点D 运动.点P ,Q 同时出发,同时停止.设运动的时间为t (秒),当t=2(秒)时,PQ=52.(1)求点D 的坐标,并直接写出t 的取值范围;(2)连接AQ 并延长交x 轴于点E ,把AE 沿AD 翻折交CD 延长线于点F ,连接EF ,则△AEF 的面积S 是否随t 的变化而变化?若变化,求出S 与t 的函数关系式;若不变化,求出S 的值.(3)在(2)的条件下,t 为何值时,四边形APQF 是梯形?解:(1)设OC=x , 当t=2时,OP=4,PC=x -4;CQ=2.在Rt △PQC 中,222CQ PC PQ +=,()()2222452+-=x ,解得01=x (不合题意,舍去),82=x ,∴D 点坐标(8,4);(2)由翻折可知,点Q 和点F 关于直线AD 对称,∴QD=DF=4-t ,而AD=8,∴()t t S AQF 83242821-=-⨯⨯=∆. 设经过A (0,4)、Q (8,t )两点的一次函数解析式为b kx y +=,故有:⎩⎨⎧+==b k t b 84,解得84-=t k ,∴一次函数的解析式为484+-=x t y ,易知一次函数与x 轴的交点的坐标为(t -432,0),∴EC=t -432-8,∴()t t t S E Q F842843221=-⨯⎪⎭⎫⎝⎛--⨯=∆, ∴328832=+-=+=∆∆∆t t S S S QFE AFQ AFE .∴△AEF 的面积S 不随t 的变化而变化,S 的值为32.(3)因AP 与QF 不平行,要想使四边形APQF 是梯形,须有P Q ∥AF.∵AF=AQ ,∴∠AFQ =∠AQF ,而∠CQE =∠AQF ,要想P Q ∥AF ,须有∠AFQ =∠PQC ,故只需具备条件∠PQC =∠CQE ,又∵QC ⊥PE ,∴∠ CQP=∠QCE ,QC=QC ,∴△CQP ≌△QCE ,∴PC=CE ,即8-2t=t-432-8,解得5261+=t (不合题意,舍去),5262-=t .故当526-=t 时,四边形APQF 是梯形.22. (2013珠海,22,9分)如图,在等腰梯形ABCD 中AB ∥CD,AB =高CE=对角线AC 、BD 交于H ,平行于线段BD 的两条直线MN 、RQ 同时从点A 出发沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、G ;当直线RQ 到达点C 时,两直线同时停止移动.记等腰梯形ABCD 被直线MN 扫过的面积为1S ,被直线RQ 扫过的面积为2S ,若直线MN 平移的速度为1单位/秒,直线RQ 平移的速度为2单位/秒,设两直线移动的时间为x 秒.(1)填空:∠AHB =____________; AC =_____________; (2) 若213S S =,求x;(3) 若21S mS =,求m 的变化范围.第22题备用图【解析】(1) 如图第22题-1所示,平移对角线DB,交AB 的延长线于P.则四边形BPCD 是平行四边形,BD=PC,BP =DC .因为等腰梯形ABCD,AB ∥CD,所以AC =BD. 所以AC =PC.又高CE =AB =所以AE =EP =所以∠AHB =90°AC =4;第22题图-1⑵直线移动有两种情况:302x <<及322x ≤≤,需要分类讨论.①当302x <<时, 有2214S AG S AF ⎛⎫== ⎪⎝⎭.∴213S S ≠②当322x ≤≤时,先用含有x 的代数式分别表示1S ,2S ,然后由213S S =列出方程,解之可得x 的值; (3) 分情况讨论:①当302x <<时, 214S m S ==.②当322x ≤≤时,由21S mS =,得()222188223x S m S x --===2123643x ⎛⎫--+ ⎪⎝⎭.然后讨论这个函数的最值,确定m 的变化范围.【答案】(1) 90°,4;(2)直线移动有两种情况:302x <<及322x ≤≤.①当302x <<时,∵MN ∥BD,∴△AMN ∽△ARQ,△ANF ∽△AQG. 2214S AG S AF ⎛⎫== ⎪⎝⎭.∴213S S ≠ ②当322x ≤≤时, 如图第22题-2所示, 第22题图-2CG =4-2x,CH =1,14122BCDS ∆=⨯⨯=. ()22422821CRQ x S x ∆-⎛⎫=⨯=- ⎪⎝⎭2123S x =,()22882S x =-- 由213S S =,得方程()22288233x x --=⨯,解得165x =(舍去),22x =.∴x =2. (3) 当302x <<时,m =4 当322x ≤≤时, 由21S mS =,得()2288223x m x --==2364812x x -+-=2123643x ⎛⎫--+ ⎪⎝⎭.M 是1x 的二次函数, 当322x ≤≤时, 即当11223x ≤≤时, M 随1x 的增大而增大. 当32x =时,最大值m =4. 当x =2时,最小值m =3.∴3≤m ≤4.【点评】本题是一道几何代数综合压轴题,重点考查等腰梯形, 相似三角形的性质,二次函数的增减性和最值及分类讨论,由特殊到一般的数学思想等的综合应用.解题时,(1)小题,通过平移对角线,将等腰梯形转化为等腰三角形,从而使问题得以简化,是我们解决梯形问题常用的方法.(2) 小题直线移动有两种情况:302x <<及322x ≤≤,需要分类讨论.这点万不可忽略,解题时用到的知识点主要是相似三角形面积比等于相似比的平方.(3) 小题仍需要分情况讨论.对于函数2123643m x ⎛⎫=--+ ⎪⎝⎭,讨论它的增减性和最值是个难点. 讨论之前点明我们把这个函数看作“M 是1x的二次函数”对顺利作答至关重要.16、(2013·湖南省张家界市·16题·3分)已知线段AB=6,C 、D 是AB 上两点,且AC=DB=1,P 是线段CD 上一动点,在AB 同侧分别作等边三角形APE 和等边三角形PBF ,G 为线段EF 的中点,点P 由点C 移动到点D 时,G 点移动的路径长度为________.【分析】不好意思,本题做不出来,还请高手补充 18.(2013湖北荆州,18,3分)如图(1)所示,E 为矩形ABCD的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE —ED —DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,△ABE ∽△QBP ;其中正确的结论是__▲__(填序号).【解析】首先,分析函数的图象两个坐标轴表示的实际意义及函数的图象的增减情况. 横轴表示时间t ,纵轴表示△BPQ 的面积y .当0<t ≤5时,图象为抛物线,图象过原点,且关于y 轴对称,y 随的t 增大而增大,t=5的时候,△BPQ 的面积最大,图(1) 图(2)第18题图Q图(3)A C P D B5<t <7时,y 是常函数,△BPQ 的面积不变,为10.从而得到结论:t=5的时候,点Q 运动到点C ,点P 运动到点E , 所以BE =BC=AD =5×1=5cm ,5<t <7时,点P 从E →D ,所以ED =2×1=2cm ,AE=3 cm ,AB=4 cm. cos ∠ABE =54=BE AB . 设抛物线OM 的函数关系式为2at y =(,0≠a 0<t ≤5),把(5,10)代入得到a 2510=,所以52=a , 所以当0<t ≤5时, y =52t 2 当t >5时,点P 位于线段CD 上,点Q 与点C 重合,.当t =294秒,点P 位于P ’处,C P ’=CD -DP ’=4-(294-7)=415cm.在△ABE 和△Q ’BP ’中,34''==CP B Q AE AB ,∠A =Q ’=90°,所以△ABE ∽△Q ’BP ’ 【答案】①③④【点评】本题综合考察了动点问题、二次函数、三角形相似、常函数、锐角三角函数、分段函数的知识,综合性强。
2013年毕节数学中考模拟卷(一)

(A)4(B)8
(C)12(D)16
15.已知正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是()
(A)(2,1)(B)(-2,-1)(C)(-2,1)(D)(2,-1)
16.小明拿一张矩形纸(如图7),沿虚线对折一次如图甲,再将对角两顶点重合折叠得图乙,按图丙沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形是()
18.(本小题满分6分)下课了,老师给大家布置了一道作业题:当x=1+时,求代数式÷(1+)的值,雯雯一看,感慨道:“今天的作业要算得很久啊!”你能找到简单的方法帮雯雯快速解决这个问题吗?请写出你的求解过程.
19.(本题满分8分)解不等式组,并把它的解集在数轴上表示出来.
20.(本题满分10分)机关作风整顿领导小组为了了解某单位早上8点准时上班情况,随机调取了该单位某天早上10人的上班时间,得到如下数据:
(1)求y与x间的关系(4分)
(2)设商厦获得的毛利润(毛利润=销售额-成本)为S(元),销售单价定为多少时,该商厦获利最大?最大利润是多少?(6分)
25
0.25
四组
15<t≤20
20
五组
20<t≤25
15
0.15
合计
100
1.00
(1)在上表中填写所缺数据(4分)
(2)补全频数分布直方图.(2分)
(3)据调查顾客对服务质量的满意程度与所用时间t的关系如下:
所用时间t
顾客满意程度
0<t≤5
比较满意
10<t≤15
基本满意
15<t≤20
比较差
请结合频数分布表或频数分布直方图画出该次抽样调查顾客满意程度的扇形统计图.(4分)
数学中考试题及答案毕节

数学中考试题及答案毕节一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.0B. √2C. 0.33333...D. 3.14答案:B2. 一个等腰三角形的底边长为6cm,高为4cm,其周长是多少?A. 16cmB. 18cmC. 20cmD. 22cm答案:C3. 如果一个二次函数的图像开口向上,且顶点坐标为(1, -2),则下列哪个选项是该二次函数的表达式?A. y = (x - 1)^2 - 2B. y = -(x - 1)^2 - 2C. y = (x - 1)^2 + 2D. y = -(x - 1)^2 + 2答案:B4. 一个圆的半径为5cm,那么它的面积是多少?A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B5. 下列哪个选项是方程2x - 3 = 7的解?A. x = 5B. x = 3C. x = 2D. x = 10答案:A6. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 6答案:A7. 一个数的绝对值是5,那么这个数可能是?A. 5或-5B. 只有5C. 只有-5D. 0答案:A8. 一个长方体的长、宽、高分别为3cm、2cm、1cm,那么它的体积是多少?A. 6cm³B. 12cm³C. 18cm³D. 24cm³答案:A9. 一个角的补角是120°,那么这个角的度数是多少?A. 60°B. 30°C. 45°D. 15°答案:B10. 下列哪个选项是不等式3x - 5 > 10的解集?A. x > 5B. x > 3C. x > 2D. x < 5答案:C二、填空题(每题3分,共30分)11. 一个数的平方是25,那么这个数是________。
2013年贵州省贵阳市中考数学试题(含答案)

2013贵阳市年初中毕业生学业考试试题数 学考生注意:1.本卷为数学试题卷,全卷共4页,三大题25小题,满分150分.考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.可以使用科学计算器.一、选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分) 1. 3的倒数是( )(A )3- (B )3 (C )31-(D )312. 2013年5月在贵阳召开的“第十五届中国科协年会”中,贵州省签下总金额达790亿元的项目,790亿元用科学记数法表示为( ) (A )1079⨯亿元 (B )2109.7⨯亿元 (C )3109.7⨯亿元 (D )31079.0⨯亿元 3.如图,将直线1l 沿着AB 的方向平移得到直线2l ,若501=∠, 则2∠的度数是( )(A )40 (B )50(C ) 90 (D )1304.在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是( )(A )方差 (B )平均数 (C )中位数 (D )众数 5.一个几何体的三视图如图所示,则这个几何体的位置是( )6.某校学生小亮每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为31,遇到绿灯的概率为95,那么他遇到黄灯的概率为( )(A )94 (B )31 (C )95 (D )917.如图,P 是α∠的边OA 上一点,点P 的坐标为()5,12,则αtan等于( )(A )135 (B )1312 (C )125 (D )5128.如图,M 是ABC Rt ∆的斜边BC 上异于B 、C 的一定点,过M 点作直线截ABC ∆,使截得的三角形与ABC ∆相似,这样的直线共有( )(A )1条 (B )2条 (C )3条 (D )4条9.如图,在直径为AB 的半圆O 上有一动点P 从A 点出发,按顺时针方向绕半圆匀速运动到B 点,然后再以相同的速度沿着直径回到A 点停止,线段OP 的长度d 与运动时间t 之间的函数关系用图象描述大致是( )10.在矩形ABCD 中,6=AB ,4=BC ,有一个半径为1的硬币与边AB 、AD 相切,硬币从如图所示的位置开始,在矩形内 沿着边AB 、BC 、CD 、DA 滚动到开始的位置为止,硬币自 身滚动的圈数大约是( )(A )1圈 (B )2圈 (C )3圈 (D )4圈 二、填空题(每小题4分,共20分)11.方程713=+x 的解是 .12.在一个不透明的袋子中有10个除颜色外均相同的小球,通过 多次摸球实验后,发现摸到白球的频率约为40%,估计袋中白 球有 个. 13.如图,AD 、AC 分别是直径和弦,30=∠CAD ,B 是 AC 上一点,AD BO ⊥,垂足为O ,cm BO 5=,则CD 等于 cm .14.直线()0>+=a b ax y 与双曲线xy 3=相交于()11,y x A ,()22,y x B 两点,则 2211y x y x +的值为 .15.已知二次函数222++=mx x y ,当2>x 时,y 的值随x 值的增大而增大,则实数m 的取值范围是 . 三、解答题:16.(本题满分6分)先化简,再求值:12211322++-÷⎪⎭⎫ ⎝⎛-+x x x x x x ,其中1=x . 17.(本题满分10分)现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是2和3,从每组牌中各随机摸出一张牌,称为一次试验.(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜,请用列表法或画树状图的方法说明这个游戏是否公平?(5分)(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4、5、6三种情况,所以出现‘和为4’的概率是31”,她的这种看法是否正确?说明理由.(5分) 18.(本题满分10分)在一次综合实践活动中,小明要测某地一座古塔AE 的高度,如图,已知塔基AB 的高为m 4,他在C 处测得塔基顶端B 的仰角为30,然后沿AC 方向走m 5到达D 点,又测得塔顶E 的仰角为50.(人的身高忽略不计)(1)求AC 的距离;(结果保留根号)(5分) (2)求塔高AE .(结果保留整数)(5分)19.(本题满分10分)贵阳市“有效学习儒家文化”课题于今年结题,在这次结题活动中,甲、乙两校师生共150人进行了汇报演出,小林将甲、乙两校参加各项演出的人数绘制成如下不完整的统计图表,根据提供的信息解答下列问题:(1)______;____,==n m (4分)(2)计算乙校的扇形统计图中“话剧”的圆心角度数;(3分) (3)哪个学校参加“话剧”的师生人数多?说明理由. (3分)20.本题满分10分)已知:如图,在菱形ABCD 中,F 是BC 上任意一点,连接AF 交对角线BD 于点E ,连接EC . (1)求证:EC AE =;(5分)(2)当 60=∠ABC , 60=∠CEF 时,点F 在线段BC 上的什 么位置?说明理由.(5分)21.(本题满分10分)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;(5分)(2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过...155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.(5分) 22.(本题满分10分)已知:如图,AB 是⊙O 的弦,⊙O 的半径为10,OE 、 OF 分别交AB 于点E 、F ,OF 的延长线交⊙O 于点D , 且BF AE =,60=∠EOF .(1)求证:OEF ∆是等边三角形;(5分) (2)当OE AE =时,求阴影部分的面积. (结果保留根号和π)(5分)23.(本题满分10分)已知:直线b ax y +=过抛物线322+--=x x y 的顶点P , 如图所示.(1)顶点P 的坐标是 ;(3分)(2)若直线b ax y +=经过另一点()11,0A ,求该直线 的表达式. (3分)(3)在(2)的条件下,若有一条直线n mx y +=与直 线b ax y +=关于x 轴成轴对称,求直线n mx y +=与抛物 线322+--=x x y 的交点坐标. (4分)24.(本题满分12分)在ABC ∆中,a BC =,b AC =,c AB =,设c 为最长边,当222c b a =+时,ABC∆是直角三角形;当222c b a ≠+时,利用代数式22b a +和2c 的大小关系,探究ABC ∆的形状(按角分类).(1)当A B C ∆三边分别为6、8、9时,ABC ∆为 三角形;当ABC ∆三边分别为6、8、11时,ABC ∆为 三角形.(4分)(2)猜想,当22b a + 2c 时,ABC ∆为锐角三角形;当22b a + 2c 时,ABC ∆为钝角三角形. (4分)(3)判断当2=a ,4=b 时,ABC ∆的形状,并求出对应的c 的取值范围.(4分)25.(本题满分12分)如图,在平面直角坐标系中,有一条直线l :433+-=x y 与x 轴、y 轴分别交于点M 、N ,一个高为3的等边三角形ABC ,边BC 在x 轴上,将此三角形沿着x 轴的正方向平移. (1)在平移过程中,得到111C B A ∆,此时顶点1A 恰 落在直线l 上,写出1A 点的坐标 ;(4分) (2)继续向右平移,得到222C B A ∆,此时它的外心 P 恰好落在直线l 上,求P 点的坐标;(4分)(3)在直线l 上是否存在这样的点,与(2)中的2A 、 2B 、2C 任意两点能同时构成三个等腰三角形,如果存在,求出点的坐标;如果不存在,说明理由. (4分)2013年贵阳市初中毕业生学业考试试题数学参考答案及评分标准一、选择题(每小题3分,共30分)题号 1 2 3 4 56 7 8 9 10 答案 D B B DADCCAB二、填空题(每小题4分,共20分)题 号 11 1213 14 15答 案2=x 435 6 2-≥m三、解答题:16.(本题满分6分)解: 原式()()()1211122-+⨯+-=x x x x x x ……………………………………3分 21xx +=……………………………………5分 当1=x 时,原式2= ……………………………………6分17.(本题满分10分)解:(1)列表正确或画树状图正确给2分()()21==数字相同小红获胜P P ……………………………………3分 ()()21==数字不同小明获胜P P ……………………………………4分∵()=小红获胜P ()小明获胜P ∴这个游戏公平.……………………………………5分 (2)不正确. ……………………………………6分 因为“和为4”只出现了一次,由列表或树状图可知和的情况总共有4种. 故“和为4”的概率为41. ……………………………………10分解:(1)在ABC Rt ∆中,30=∠ACB ,4=AB∴AC ABACB =∠tan ……………………………………2分 ∴)(3430tan 4tan m ACB AB AC ==∠=答:AC 的距离为m 34. ……………………………………5分 (2)在ADE Rt ∆中,50=∠ADE ,345+=AD ………………………6分 ∴ADAEADE =∠tan ……………………………………8分 ∴())(1450tan 345tan m ADE AD AE ≈⨯+=∠⋅=答:塔高AE 约m 14. ……………………………………10分19.(本题满分10分)解:(1)=m 25 ;=n 38% . ……………………………………4分 (2)()108%10%601360=--⨯∴圆心角为108. ……………………………………7分 (3)()30%3050150=⨯-(人) ……………………………………9分 ∵2530> ∴乙校参加“话剧”的师生人数多.…………………10分解:(1)证明:连接AC …………………………………1分∵BD 是菱形ABCD 的对角线,BD 垂直平分AC . ……………………3分∴EC AE = ………………………………5分 (2)答:点F 是线段BC 的中点. ………………………………6分 理由:∵菱形ABCD 中,BC AB =,又60=∠ABC∴ABC ∆是等边三角形,60=∠BAC …………………………7分∵EC AE = 60=∠CEF ∴30=∠EAC ………………8分∴AF 是ABC ∆的平分线 ………………………………9分 ∵AF 交BC 于点F ,∴AF 是ABC ∆的BC 边上的中线.∴点F 是线段BC 的中点. ………………………………10分21.(本题满分10分)解(1)设2010年底至2012年底该市汽车拥有量的年平均增长率为x . ………1分 由题意得:()14411002=+x ………………………………3分解得:%202.01==x ,2.22-=x (不合题意,舍去)答:2010年底至2012年底,该市汽车拥有量的年平均增长率为20%.……5分(2)设2012年底至2013年底该市汽车拥有量的年平均增长率为y . 由题意得:()52.155%101441144≤⨯-+y ………………………………8分 解得:18.0≤y ………………………………9分答:2012年底至2013年底该市汽车拥有量的年平均增长率不超过18%才能达到要求. ………………………………10分22.(本题满分10分)(1)证明:作AB OC ⊥于点C …………………1分 ∴BC AC = …………………2分 ∵BF AE = ∴FC EC = ………………3分 ∵EF OC ⊥ ∴OF OE = ………………4分 ∵60=∠OEF ∴OEF ∆是等边三角形.…………5分(2)解:∵在等边三角形OEF 中,60=∠=∠EOF OEF ,又OE AE =∴30=∠=∠AOE A , ∴90=∠AOF ………………………………6分∵10=AO ∴3310=OF ………………………………7分 335010331021=⨯⨯=∆AOF S ………………………………8分 ππ2510360902=⨯=AOD S 扇形 ………………………………9分 ∴335025-=-=∆πAOF AOD S S S 扇形阴影 ………………………………10分23.(本题满分10分)解(1)()4,1-P ………………………………3分 (2)将点()4,1-P ,()11,0A 代入b ax y +=得⎩⎨⎧=+-=bba 114 …………4分解得⎩⎨⎧==117b a ………………………………5分∴这条直线的表达式为117+=x y . ………………………………6分 (3)∵直线n mx y +=与直线117+=x y 关于x 轴成轴对称.∴n mx y +=过点()4,1'--P 、()11,0'-A ……………………………7分⎩⎨⎧=-+-=-n n m 114 解得⎩⎨⎧-=-=117n m ∴117--=x y ……………8分321172+--=--x x x ………………………………9分 解得71=x 22-=x ,此时 32=y∴直线n mx y +=与抛物线322+--=x x y 的交点坐标为()60,7-,()3,2-…10分24.(本题满分12分)解(1)锐角,钝角 ………………………………4分 (2)>,< ………………………………8分 (3)∵c 为最长边 ∴64<≤x ………………………………9分① 222c b a >+,即202<c ,520<<c∴当524<≤x 时,这个三角形是锐角三角形.………………………10分 ②222c b a >+,202=c , 52=c∴当52=x 时,这个三角形是直角三角形. ………………………11分 ③222c b a <+,202>c ,52>c∴当652<<c 时,这个三角形是钝角三角形.………………………12分25.(本题满分12分) (1)()3,31A ………………………………4分(2)设()y x P ,,连接P A 2并延长交x 轴于点H ,连接P B 2 ………………………5分 在等边三角形222C B A 中,高32=H A∴3222=B A ,32=HB ………………………………6分∵点P 是等边三角形222C B A 的外心∴ 302=∠H PB ,∴1=PH 即1=y ………………………………7分将1=y 代人433+-=x y ,解得:33=x ∴()1,33P ………………………………8分 (3)点P 是222C B A ∆的外心,∵22PB PA = 22PC PB = 22PA PC = 22B PA ∆,22C PB ∆,22C PA ∆是等腰三角形∴点P 满足条件,由(2)得()3,33P ………………………………9分 由(2)得:()0,342C ,点2C 满足直线l :433+-=x y 的关系式. ∴点2C 与点M 重合. ∴302=∠PMB设点Q 满足条件,22B QA ∆,22QC B ∆,22QC A ∆能构成等腰三角形.此时22QB QA = 222C B Q B = 222C A Q A = 作x QD ⊥轴于D 点,连接2QB∵322=QB , 60222=∠=∠PMB D QB∴3=QD ,∴()3,3Q ………………………………10分 设点S 满足条件,22B SA ∆,S B C 22∆,S A C 22∆能构成等腰三角形. 此时22SB SA = S C B C 222= S C A C 222= 作⊥SF x 轴于F 点∵322=SC , 30222=∠=∠PMB B SC ∴3=SF∴()3,334-S ………………………………11分 设点R 满足条件,22B RA ∆,R B C 22∆,R A C 22∆能构成等腰三角形. 此时22RB RA = R C B C 222= R C A C 222= 作⊥RE x 轴于E 点∵322=RC , 3022=∠=∠PMB E RC∴3=ER∴()3,343-+R答:存在四个点,分别是()1,33P ,()3,3Q ,()3,334-S ,()3,343-+R………………………………………………………………12分。
贵州省毕节市中考数学试卷

贵州省毕节市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.(3分)下列实数中,无理数为()A.0.2 B.C.D.22.(3分)毕节市参加中考的学生约为115000人,将115000用科学记数法表示为()A.1.15×106B.0.115×106C.11.5×104D.1.15×1053.(3分)下列计算正确的是()A.a3•a3=a9 B.(a+b)2=a2+b2C.a2÷a2=0 D.(a2)3=a64.(3分)一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少有()A.3个 B.4个 C.5个 D.6个5.(3分)对一组数据:﹣2,1,2,1,下列说法不正确的是()A.平均数是1 B.众数是1 C.中位数是1 D.极差是46.(3分)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=()A.55°B.125°C.135° D.140°7.(3分)关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.28.(3分)为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条B.1750条C.2500条D.5000条9.(3分)关于x的分式方程+5=有增根,则m的值为()A.1 B.3 C.4 D.510.(3分)甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表:选手甲乙丙丁方差0.0230.0180.0200.021则这10次跳绳中,这四个人发挥最稳定的是()A.甲B.乙C.丙D.丁11.(3分)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+212.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为()A.30°B.50°C.60°D.70°13.(3分)如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为()A.6 B.4 C.7 D.1214.(3分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,将△ABE绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是()A.△AEE′是等腰直角三角形B.AF垂直平分EE'C.△E′EC∽△AFD D.△AE′F是等腰三角形15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.B.C.D.6二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.(5分)分解因式:2x2﹣8xy+8y2=.17.(5分)正六边形的边长为8cm,则它的面积为cm2.18.(5分)如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=(x>0)交于C点,且AB=AC,则k的值为.19.(5分)记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了场.20.(5分)观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017=.三、解答题(本大题共7小题,各题分值见题号后,共80分.请解答在答题卡相应题号后,应写出必要的文字说明、证明过程或演算步骤)21.(8分)计算:(﹣)﹣2+(π﹣)0﹣|﹣|+tan60°+(﹣1)2017.22.(8分)先化简,再求值:(+)÷,且x为满足﹣3<x<2的整数.23.(10分)由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.24.(12分)如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE 上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=,求AF的长.25.(12分)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.26.(14分)如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC 是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO 与BD交于G点.(1)求证:EF是⊙O的切线;(2)求AE的长.27.(16分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC 的最大面积.贵州省毕节市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.(3分)(2017•毕节市)下列实数中,无理数为()A.0.2 B.C.D.2【分析】有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是无理数.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2017•毕节市)毕节市参加中考的学生约为115000人,将115000用科学记数法表示为()A.1.15×106B.0.115×106C.11.5×104D.1.15×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将115000用科学记数法表示为:1.15×105,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•毕节市)下列计算正确的是()A.a3•a3=a9 B.(a+b)2=a2+b2C.a2÷a2=0 D.(a2)3=a6【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a6,不符合题意;B、原式=a2+2ab+b2,不符合题意;C、原式=1,不符合题意;D、原式=a6,符合题意,故选D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2017•毕节市)一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少有()A.3个 B.4个 C.5个 D.6个【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故选:B.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.(3分)(2017•毕节市)对一组数据:﹣2,1,2,1,下列说法不正确的是()A.平均数是1 B.众数是1 C.中位数是1 D.极差是4【分析】根据平均数、众数、中位数、极差的定义以及计算公式分别进行解答即可.【解答】解:A、这组数据的平均数是:(﹣2+1+2+1)÷4=,故原来的说法不正确;B、1出现了2次,出现的次数最多,则众数是1,故原来的说法正确;C、把这组数据从小到大排列为:﹣2,1,1,2,中位数是1,故原来的说法正确;D、极差是:2﹣(﹣2)=4,故原来的说法正确.故选A.【点评】此题主要考查了平均数、众数、中位数、极差的含义和求法,要熟练掌握定义和求法是解题的关键,是一道基础题.6.(3分)(2017•毕节市)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=()A.55°B.125°C.135° D.140°【分析】根据平行线性质求出∠CAB,根据角平分线求出∠EAB,根据平行线性质求出∠AED即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=70°,∴∠CAB=180°﹣70°=110°,∵AE平分∠CAB,∴∠EAB=55°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣55°=125°.故选:B.【点评】本题考查了角平分线定义和平行线性质的应用,注意:平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补.7.(3分)(2017•毕节市)关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.2【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据x≥4,求得m的值.【解答】解:≤﹣2,m﹣2x≤﹣6,﹣2x≤﹣m﹣6,x≥m+3,∵关于x的一元一次不等式≤﹣2的解集为x≥4,∴m+3=4,解得m=2.故选:D.【点评】考查了不等式的解集,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.8.(3分)(2017•毕节市)为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条B.1750条C.2500条D.5000条【分析】首先求出有记号的2条鱼在50条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:由题意可得:50÷=1250(条).故选A.【点评】本题考查了统计中用样本估计总体,表示出带记号的鱼所占比例是解题关键.9.(3分)(2017•毕节市)关于x的分式方程+5=有增根,则m的值为()A.1 B.3 C.4 D.5【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣1),得7x+5(x﹣1)=2m﹣1,∵原方程有增根,∴最简公分母(x﹣1)=0,解得x=1,当x=1时,7=2m﹣1,解得m=4,所以m的值为4.故选C.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.(3分)(2017•毕节市)甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表:选手甲乙丙丁方差0.0230.0180.0200.021则这10次跳绳中,这四个人发挥最稳定的是()【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S乙2<S丙2<S丁2<S甲2,∴这10次跳绳中,这四个人发挥最稳定的是乙.故选B.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(3分)(2017•毕节市)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+2【分析】根据“左加右减”的函数图象平移规律来解答.【解答】解:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选B.【点评】本题考查的是一次函数的图象与几何变换,熟知“左加右减、上加下减”的原则是解答此题的关键12.(3分)(2017•毕节市)如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为()【分析】连接BD,根据直径所对的圆周角是直角,得∠ADB=90°,根据同弧或等弧所对的圆周角相等,得∠ABD=∠ACD,从而可得到∠BAD的度数.【解答】解:连接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故选C.【点评】本题考查了圆周角定理,解答本题的关键是掌握圆周角定理中在同圆或等圆中,同弧或等弧所对的圆周角相等.13.(3分)(2017•毕节市)如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为()A.6 B.4 C.7 D.12【分析】先根据直角三角形的性质求出CD的长,再由三角形中位线定理即可得出结论.【解答】解:∵Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,∴CD=AB=4.5.∵CF=CD,∴DF=CD=×4.5=3.∵BE∥DC,∴DF是△ABE的中位线,∴BE=2DF=6.故选A.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.14.(3分)(2017•毕节市)如图,在正方形ABCD中,点E,F分别在BC,CD 上,且∠EAF=45°,将△ABE绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是()A.△AEE′是等腰直角三角形B.AF垂直平分EE'C.△E′EC∽△AFD D.△AE′F是等腰三角形【分析】由旋转的性质得到AE′=AE,∠E′AE=90°,于是得到△AEE′是等腰直角三角形,故A正确;由旋转的性质得到∠E′AD=∠BAE,由正方形的性质得到∠DAB=90°,推出∠E′AF=∠EAF,于是得到AF垂直平分EE',故B正确;根据余角的性质得到∠FE′E=∠DAF,于是得到△E′EC∽△AFD,故C正确;由于AD⊥E′F,但∠E′AD不一定等于∠DAE′,于是得到△AE′F不一定是等腰三角形,故D错误.【解答】解:∵将△ABE绕点A顺时针旋转90°,使点E落在点E'处,∴AE′=AE,∠E′AE=90°,∴△AEE′是等腰直角三角形,故A正确;∵将△ABE绕点A顺时针旋转90°,使点E落在点E'处,∴∠E′AD=∠BAE,∵四边形ABCD是正方形,∴∠DAB=90°,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠E′AD+∠FAD=45°,∴∠E′AF=∠EAF,∵AE′=AE,∴AF垂直平分EE',故B正确;∵AF⊥E′E,∠ADF=90°,∴∠FE′E+∠AFD=∠AFD+∠DAF,∴∠FE′E=∠DAF,∴△E′EC∽△AFD,故C正确;∵AD⊥E′F,但∠E′AD不一定等于∠DAE′,∴△AE′F不一定是等腰三角形,故D错误;故选D.【点评】本题考查了旋转的性质,正方形的性质,相似三角形的判定,等腰直角三角形的判定,线段垂直平分线的判定,正确的识别图形是解题的关键.15.(3分)(2017•毕节市)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD 平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.B.C.D.6【分析】依据勾股定理可求得AB的长,然后在AB上取点C′,使AC′=AC,过点C′作C′F⊥AC,垂足为F,交AD与点E,先证明C′E=CE,然后可得到CE+EF=C′E+EF,然后依据垂直线段最短可知当点C′F⊥AC时,CE+EF有最小值,最后利用相似三角形的性质求解即可.【解答】解:如图所示:在AB上取点C′,使AC′=AC,过点C′作C′F⊥AC,垂足为F,交AD与点E.在Rt△ABC中,依据勾股定理可知BA=10.∵AC=AC′,∠CAD=∠C′AD,AE=C′E,∴△AEC≌△AEC′.∴CE=EC′.∴CE+EF=C′E+EF.∴当C′F⊥AC时,CE+EF有最小值.∵C′F⊥AC,BC⊥AC,∴C′F∥BC.∴△AFC′∽△ACB.∴=,即=,解得FC′=.故选:C.【点评】本题主要考查的是相似三角形的性质、勾股定理的应用、轴对称图形的性质,熟练掌握相关图形的性质是解题的关键.二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.(5分)(2017•毕节市)分解因式:2x2﹣8xy+8y2=2(x﹣2y)2.【分析】首先提取公因式2,进而利用完全平方公式分解因式即可.【解答】解:2x2﹣8xy+8y2=2(x2﹣4xy+4y2)=2(x﹣2y)2.故答案为:2(x﹣2y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练利用完全平方公式分解因式是解题关键.17.(5分)(2017•毕节市)正六边形的边长为8cm,则它的面积为96cm2.【分析】先根据题意画出图形,作出辅助线,根据∠COD的度数判断出其形状,求出小三角形的面积即可解答.【解答】解:如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD==60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=×=4cm,∴S△OCD=CD•OE=×8×4=16cm2.∴S正六边形=6S△OCD=6×16=96cm2.【点评】此题比较简单,解答此题的关键是根据题意画出图形,把正六边形的面积化为求三角形的面积解答.18.(5分)(2017•毕节市)如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=(x>0)交于C点,且AB=AC,则k的值为.【分析】作CD⊥x轴于D,则OB∥CD,易得△AOB∽△ADC,根据相似三角形的性质得出OB=CD=3,根据图象上的点满足函数解析式,把C点纵坐标代入反比例函数解析式,可得横坐标;根据待定系数法,可得一次函数的解析式.【解答】解:作CD⊥x轴于D,则OB∥CD,∴△AOB∽△ADC,∴=,∵AB=AC,∴OB=CD,由直线y=kx﹣3(k≠0)可知B(0,﹣3),∴OB=3,∴CD=3,把y=3代入y=(x>0)解得,x=4,∴C(4,3),代入y=kx﹣3(k≠0)得,3=4k﹣3,解得k=,故答案为.【点评】本题考查了反比例函数与一次函数的交点问题,图象上的点满足函数解析式,求得C点的坐标是解题的关键.19.(5分)(2017•毕节市)记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了27场.【分析】根据统计图中的数据可以求得比赛总场数,从而可以求得足球队全年比赛胜的场数.【解答】解:由统计图可得,比赛场数为:10÷20%=50,胜的场数为:50×(1﹣26%﹣20%)=50×54%=27,故答案为:27.【点评】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(5分)(2017•毕节市)观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017=.【分析】令s=1+3+32+33+…+32017,然后在等式的两边同时乘以3,接下来,依据材料中的方程进行计算即可.【解答】解:令s=1+3+32+33+…+32017等式两边同时乘以3得:3s=3+32+33+…+32018两式相减得:2s=32018﹣1,∴s=,故答案为:.【点评】本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.三、解答题(本大题共7小题,各题分值见题号后,共80分.请解答在答题卡相应题号后,应写出必要的文字说明、证明过程或演算步骤)21.(8分)(2017•毕节市)计算:(﹣)﹣2+(π﹣)0﹣|﹣|+tan60°+(﹣1)2017.【分析】先依据负整数指数幂的性质、零指数幂的性质、绝对值的性质、特殊锐角三角函数值、有理数的乘方法则进行化简,最后依据实数的加减法则计算即可.【解答】解:原式=+1+﹣+﹣1=3+1+﹣+﹣1=3+.【点评】本题主要考查的是实数的运算,熟练掌握相关法则是解题的关键.22.(8分)(2017•毕节市)先化简,再求值:(+)÷,且x 为满足﹣3<x<2的整数.【分析】首先化简(+)÷,然后根据x为满足﹣3<x<2的整数,求出x的值,再根据x的取值范围,求出算式的值是多少即可.【解答】解:(+)÷=[+]×x=(+)×x=2x﹣3∵x为满足﹣3<x<2的整数,∴x=﹣2,﹣1,0,1,∵x要使原分式有意义,∴x≠﹣2,0,1,∴x=﹣1,当x=﹣1时,原式=2×(﹣1)﹣3=﹣5【点评】此题主要考查了分式的化简求值问题,要熟练掌握,注意先把分式化简后,再把分式中未知数对应的值代入求出分式的值.23.(10分)(2017•毕节市)由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.【分析】(1)根据概率公式直接计算即可;(2)列表得出所有等可能的情况数,找出两指针所指数字都是偶数或都是奇数的概率即可得知该游戏是否公平.【解答】解:(1)∵转盘的4个等分区域内只有1,3两个奇数,∴小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率==;(2)列表如下:1234 1(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)所有等可能的情况有16种,其中两指针所指数字数字都是偶数或都是奇数的都是4种,∴P(小王胜)==,P(小张胜)==,∴游戏公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.24.(12分)(2017•毕节市)如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=,求AF的长.【分析】(1)由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,证出∠C=∠AFB,即可得出结论;(2)由勾股定理求出BE,由三角函数求出AE,再由相似三角形的性质求出AF 的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB,∴△ABF∽△BEC;(2)解:∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根据勾股定理得:BE===4,在Rt△ADE中,AE=AD•sinD=5×=4,∵BC=AD=5,由(1)得:△ABF∽△BEC,∴,即,解得:AF=2.【点评】此题考查了相似三角形的判定与性质,以及平行四边形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.25.(12分)(2017•毕节市)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.【分析】(1)首先设这种笔单价为x元,则本子单价为(x﹣4)元,根据题意可得等量关系:30元买这种本子的数量=50元买这种笔的数量,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,根据题意可得这种笔的单价×这种笔的支数m+本子的单价×本子的本数n=1000,再求出整数解即可.【解答】解:(1)设这种笔单价为x元,则本子单价为(x﹣4)元,由题意得:=,解得:x=10,经检验:x=10是原分式方程的解,则x﹣4=6.答:这种笔单价为10元,则本子单价为6元;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得:10m+6n=100,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本;③购买这种笔1支,购买本子15本.【点评】此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.26.(14分)(2017•毕节市)如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于G点.(1)求证:EF是⊙O的切线;(2)求AE的长.【分析】(1)利用圆周角定理得到∠DBC=90°,再利用平行四边形的性质得AO ∥BC,所以BD⊥OA,加上EF∥BD,所以OA⊥EF,于是根据切线的判定定理可得到EF是⊙O的切线;(2)连接OB,如图,利用平行四边形的性质得OA=BC,则OB=OC=BC,于是可判断△OBC为等边三角形,所以∠C=60°,易得∠AOE=∠C=60°,然后在Rt△OAE 中利用正切的定义可求出AE的长.【解答】(1)证明:∵CD为直径,∴∠DBC=90°,∴BD⊥BC,∵四边形OABC是平行四边形,∴AO∥BC,∴BD⊥OA,∵EF∥BD,∴OA⊥EF,∴EF是⊙O的切线;(2)解:连接OB,如图,∵四边形OABC是平行四边形,∴OA=BC,而OB=OC=OA,∴OB=OC=BC,∴△OBC为等边三角形,∴∠C=60°,∴∠AOE=∠C=60°,在Rt△OAE中,∵tan∠AOE=,∴AE=3tan60°=3.【点评】本题考查了切线的判定与性质:圆的切线垂直于经过切点的半径;经过半径的外端且垂直于这条半径的直线是圆的切线.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;也考查了平行四边形的性质和解直角三角形.27.(16分)(2017•毕节市)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC 的最大面积.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;(3)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣3x﹣4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PD,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,﹣2);(3)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图2,∵B(4,0),C(0,﹣4),∴直线BC解析式为y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,∴S△PBC =S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(﹣t2+4t)×4=﹣2(t﹣2)2+8,∴当t=2时,S△PBC最大值为8,此时t2﹣3t﹣4=﹣6,∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.【点评】本题为二次函数的综合应用,涉及待定系数法、等腰三角形的性质、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出P点的位置是解题的关键,在(3)中用P点坐标表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
毕节市中考数学试卷及答案(Word解析版)

贵州省毕节市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题的四个选项中只有一个选项正确,请你把认为正确的选项天灾相应的答题卡上)1.(3分)(•毕节地区)计算﹣32的值是()A .9 B.﹣9 C.6 D.﹣6考点:有理数的乘方.分析:根据有理数的乘方的定义解答.解答:解:﹣32=﹣9.故选B.点评:本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.2.(3分)(•毕节地区)如图是某一几何体的三视图,则该几何体是()A .三棱柱B.长方体C.圆柱D.圆锥考点:由三视图判断几何体分析:三视图中有两个视图为矩形,那么这个几何体为柱体,根据第3个视图的形状可得几何体的具体形状.解答:解:∵三视图中有两个视图为矩形,∴这个几何体为柱体,∵另外一个视图的形状为圆,∴这个几何体为圆柱体,故选C.点评:考查由三视图判断几何体;用到的知识点为:三视图中有两个视图为矩形,那么这个几何体为柱体,根据第3个视图的形状可得几何体的形状.A .π﹣3.14=0 B.+=C.a•a=2a D.a3÷a=a2考点:同底数幂的除法;实数的运算;同底数幂的乘法.分析:根据是数的运算,可判断A,根据二次根式的加减,可判断B,根据同底数幂的乘法,可判断C,根据同底数幂的除法,可判断D.解答:解;A、π≠3.14,故A错误;B、被开方数不能相加,故B错误;C、底数不变指数相加,故C错误;D、底数不变指数相减,故D正确;故选:D.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.A .2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+2考点:提公因式法与公式法的综合运用分析:A直接提出公因式a,再利用平方差公式进行分解即可;B和C不能运用完全平方公式进行分解;D是和的形式,不属于因式分解.解答:解:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故此选项正确;B、x2﹣2x+1=(x﹣1)2,故此选项错误;C、x2+1,不能运用完全平方公式进行分解,故此选项错误;D、x2﹣x+2=x(x﹣1)+2,还是和的形式,不属于因式分解,故此选项错误;故选:A.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.A.方差越大,说明数据就越稳定B.在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变C.不在同一直线上的三点确定一个圆D.两边及其一边的对角对应相等的两个三角形全等考点:方差;不等式的性质;全等三角形的判定;确定圆的条件分析:利用方差的意义、不等号的性质、全等三角形的判定及确定圆的条件对每个选项逐一判断后即可确定正确的选项.解答:解:A、方差越大,越不稳定,故选项错误;B、在不等式的两边同时乘以或除以一个负数,不等号方向改变,故选项错误;C、正确;D、两边及其夹角对应相等的两个三角形全等,故选项错误.故选C.点评:本题考查了方差的意义、不等号的性质、全等三角形的判定及确定圆的条件,属于基本定理的应用,较为简单.6.(3分)(•毕节地区)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A .6 B.5 C.4 D.3考点:垂径定理;勾股定理分析:过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.解答:解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.点评:本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.7.(3分)(•毕节地区)我市5月的某一周每天的最高气温(单位:℃)统计如下:A .23,24 B.24,22 C.24,24 D.22,24考点:众数;中位数分析:根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数,即可得出答案.解答:解:24出现了2次,出现的次数最多,则众数是24;把这组数据从小到大排列19,20,22,24,24,26,27,最中间的数是24,则中位数是24;故选C.点评:此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.8.(3分)(•毕节地区)如图,菱形ABCD中,对角线AC、BC相交于点O,H为AD 边中点,菱形ABCD的周长为28,则OH的长等于()A .3.5 B.4 C.7 D.14考点:菱形的性质;直角三角形斜边上的中线;三角形中位线定理分析:根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.解答:解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选A.点评:本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.9.(3分)(•毕节地区)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A .13 B.14 C.15 D.16考点:多边形内角与外角分析:根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.解答:解:设新多边形是n边形,由多边形内角和公式得(n﹣2)180°=2340°,解得n=15,原多边形是15﹣1=14,故选:B.点评:本题考查了多边形内角与外角,多边形的内角和公式是解题关键.10.(3分)(•毕节地区)若分式的值为零,则x的值为()A .0 B.1 C.﹣1 D.±1考点:分式的值为零的条件.专题:计算题.分析:分式的值是0的条件是:分子为0,分母不为0,由此条件解出x.解答:解:由x2﹣1=0,得x=±1.当x=1时,x﹣1=0,故x=1不合题意;当x=﹣1时,x﹣1=﹣2≠0,所以x=﹣1时分式的值为0.故选C.点评:分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.11.(3分)(•毕节地区)抛物线y=2x2,y=﹣2x2,共有的性质是()A .开口向下B.对称轴是y轴C .都有最低点D.y随x的增大而减小考点:二次函数的性质分析:根据二次函数的性质解题.解答:解:(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=x2开口向上,对称轴为y轴,有最低点,顶点为原点.故选B.点评:考查二次函数顶点式y=a(x﹣h)2+k的性质.二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.12.(3分)(•毕节地区)如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于()A .B.C.D.考点:相似三角形的判定与性质分析:根据已知条件得出△ADC∽△BDE,然后依据对应边成比例即可求得.解答:解:∵∠C=∠E,∠ADC=∠BDE,△ADC∽△BDE,∴=,又∵AD:DE=3:5,AE=8,∴AD=3,DE=5,∵BD=4,∴=,∴DC=,故应选A.点评:本题考查了相似三角形的判定和性质:对应角相等的三角形是相似三角形,相似三角形对应边成比例.13.(3分)(•毕节地区)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A .2 B.0 C.﹣1 D.1考点:合并同类项分析:根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,根据乘方,可得答案.解答:解:若﹣2a m b4与5a n+2b2m+n可以合并成一项,,解得,m n=20=1,故选:D.点评:本题考查了合并同类项,同类项是字母相同且相同字母的指数也相同是解题关键.14.(3分)(•毕节地区)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A .x≥B.x≤3 C.x≤D.x≥3考点:一次函数与一元一次不等式分析:将点A(m,3)代入y=2x得到A的坐标,再根据图形得到不等式的解集.解答:解:将点A(m,3)代入y=2x得,2m=3,解得,m=,∴点A的坐标为(,3),∴由图可知,不等式2x≥ax+4的解集为x≥.故选A.点评:本题考查了一次函数与一元一次不等式,要注意数形结合,直接从图中得到结论.15.(3分)(•毕节地区)如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A .1 B.C.3 D.考点:圆周角定理;解直角三角形分析:由以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.易得∠ACD=∠B,又由cos∠ACD=,BC=4,即可求得答案.解答:解:∵AB为直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠B=∠ACD,∵cos∠ACD=,∴cos∠B=,∴tan∠B=,∵BC=4,∴tan∠B===,∴AC=.故选D.点评:此题考查了圆周角定理以及三角函数的性质.此题难度适中,注意掌握数形结合思想的应用.二、填空题(本大题共5小题,每小题5分,共25分)16.(5分)(•毕节地区)1纳米=10﹣9米,将0.00305纳米用科学记数法表示为 3.05×10﹣12米.考点:科学记数法—表示较小的数分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00305纳米=3.05×10﹣3×10﹣9=3.05×10﹣12米,故答案为:3.05×10﹣12.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.(5分)(•毕节地区)不等式组的解集为﹣4≤x≤1.考点:解一元一次不等式组分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x≤1,由②得,x≥﹣4,故此不等式组的解集为:﹣4≤x≤1.故答案为:﹣4≤x≤1.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(5分)(•毕节地区)观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.考点:规律型:数字的变化类专题:规律型.分析:观察已知一组数发现:分子为从1开始的连线奇数,分母为从2开始的连线正整数的平方,写出第n个数即可.解答:解:根据题意得:这一组数的第n个数是.故答案为:.点评:此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.19.(5分)(•毕节地区)将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为 30度.考点:矩形的性质;含30度角的直角三角形;平行四边形的性质.分析:根据矩形以及平行四边形的面积求法得出当AE=AB,则符合要求,进而得出答案.解答:解:过点A作AE⊥BC于点E,∵将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),∴当AE=AB,则符合要求,此时∠B=30°,即这个平行四边形的最小内角为:30度.故答案为:30.点评:此题主要考查了矩形的性质和平行四边形面积求法等知识,得出AE= AB是解题关键.20.(5分)(•毕节地区)如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为.考点:翻折变换(折叠问题)分析:利用勾股定理求出BC=4,设BE=x,则CE=4﹣x,在Rt△B'EC中,利用勾股定理解出x的值即可.解答:解:BC==4,由折叠的性质得:BE=BE′,AB=AB′,设BE=x,则B′E=x,CE=4﹣x,B′C=AC﹣AB′=AC﹣AB=2,在Rt△B′EC中,B′E2+B′C2=EC2,即x2+22=(4﹣x)2,解得:x=.故答案为:.点评:本题考查了翻折变换的知识,解答本题的关键是掌握翻折变换的性质及勾股定理的表达式.三、解答及证明(本大题共7小题,共80分)21.(8分)(•毕节地区)计算:(﹣)﹣2﹣|﹣﹣2|+(﹣1.414)0﹣3tan30°﹣.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值专题:计算题.分析:原式第一项利用负指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,第四项利用特殊角的三角函数值计算,最后一项利用平方根定义化简,计算即可得到结果.解答:解:原式=4﹣(2﹣)+1﹣3×﹣2=4﹣2++1﹣﹣2=1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(8分)(•毕节地区)先化简,再求值:(﹣)÷,其中a2+a﹣2=0.考点:分式的化简求值;解一元二次方程-因式分解法分析:先把原分式进行化简,再求a2+a﹣2=0的解,代入求值即可.解答:解:解a2+a﹣2=0得a1=1,a2=﹣2,∵a﹣1≠0,∴a≠1,∴a=﹣2,∴原式=÷=•=,∴原式===﹣.点评:本题考查了分式的化简求值以及因式分解法求一元二次方程的解,是重点内容要熟练掌握.23.(10分)(•毕节地区)在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.考点:作图-旋转变换专题:作图题.分析:(1)根据网格结构找出点B、C的对应点B1、C1的位置,然后与点A顺次连接即可;(2)以点B向右3个单位,向下5个单位为坐标原点建立平面直角坐标系,然后写出点A、C的坐标即可;(3)根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可.解答:解:(1)△AB1C1如图所示;(2)如图所示,A(0,1),C(﹣3,1);(3)△A2B2C2如图所示,B2(3,﹣5),C2(3,﹣1).点评:本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.(12分)(•毕节地区)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修易门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.考点:频数(率)分布直方图;扇形统计图;列表法与树状图法.分析:(1)根据C类有12人,占24%,据此即可求得总人数,然后利用总人数乘以对应的比例即可求得E类的人数;(2)利用列举法即可求解.解答:解:(1)该班总人数是:12÷24%=50(人),则E类人数是:50×10%=5(人),A类人数为:50﹣(7+12+9+5)=17(人).补全频数分布直方图如下:;(2)画树状图如下:,或列表如下:共有12种等可能的情况,恰好1人选修篮球,1人选修足球的有4种,则概率是:=.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.(12分)(•毕节地区)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.考点:二次函数的应用;一元二次方程的应用分析:(1)每件的利润为6+2(x﹣1),生产件数为95﹣5(x﹣1),则y=[6+2(x﹣1)][95﹣5(x﹣1)];(2)由题意可令y=1120,求出x的实际值即可.解答:解:(1)∵第一档次的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润加2元,但一天生产量减少5件.∴第x档次,提高的档次是x﹣1档.∴y=[6+2(x﹣1)][95﹣5(x﹣1)],即y=﹣10x2+180x+400(其中x是正整数,且1≤x≤10);(2)由题意可得:﹣10x2+180x+400=1120整理得:x2﹣18x+72=0解得:x1=6,x2=12(舍去).答:该产品的质量档次为第6档.点评:本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.26.(14分)(•毕节地区)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.考点:切线的判定分析:(1)根据圆周角定理可得∠ADC=90°,再根据直角三角形的性质可得∠A+∠DCA=90°,再由∠DCB+∠ACD=90°,可得∠DCB=∠A;(2)当MC=MD时,直线DM与⊙O相切,连接DO,根据等等边对等角可得∠1=∠2,∠4=∠3,再根据∠ACB=90°可得∠1+∠3=90°,进而证得直线DM与⊙O相切.解答:(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠DCA=90°,∵∠ACB=90°,∴∠DCB+∠ACD=90°,∴∠DCB=∠A;(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切;解:连接DO,∵DO=CO,∴∠1=∠2,∵DM=CM,∴∠4=∠3,∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.点评:此题主要考查了切线的判定,以及圆周角定理,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.27.(16分)(•毕节地区)如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线Ac的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求P点的坐标,若不存在,请说明理由.考点:二次函数综合题分析:(1)利用顶点式将(﹣1,﹣1)代入求出函数解析式即可;(2)首先根据题意得出C点坐标,进而利用待定系数法求出直线AC的解析式,进而联立二次函数解析式,即可得出B点坐标;(3)首先求出直线EF的解析式,进而得出BP的解析式,进而将y=﹣2x﹣7和y=x+联立求出P点坐标即可.解答:解:(1)设抛物线解析式为:y=a(x+1)2﹣1,将(1,0)代入得:0=a(1+1)2﹣1,解得;a=,∴抛物线的解析式为:y=(x+1)2﹣1;(2)∵A(﹣1,﹣1),∴∠COA=45°,∵∠CAO=90°,∴△CAO是等腰直角三角形,∴AC=AO,∴C(﹣2,0),设直线AC的解析式为:y=kx+b,将A,C点代入得出:,解得:,∴直线AC的解析式为:y=﹣x﹣2,将y=(x+1)2﹣1和y=﹣x﹣2联立得:,解得:,,∴直线AC的解析式为:y=﹣x﹣2,B点坐标为:(﹣5,3);(3)过点B作BP⊥EF于点P,由题意可得出:E(﹣5,﹣2),设直线EF的解析式为:y=dx+c,则,解得:,∴直线EF的解析式为:y=x+,∵直线BP⊥EF,∴设直线BP的解析式为:y=﹣2x+e,将B(﹣5,3)代入得出:3=﹣2×(﹣5)+e,解得:e=﹣7,∴直线BP的解析式为:y=﹣2x﹣7,∴将y=﹣2x﹣7和y=x+联立得:,解得:,∴P(﹣3,﹣1),故存在P点使得BP⊥EF,此时P(﹣3,﹣1).点评:此题主要考查了待定系数法求一次函数解析式以及顶点式求二次函数解析式以及垂直的两函数系数关系等知识,求出C点坐标是解题关键.。
毕节中考真题数学试卷答案

毕节中考真题数学试卷答案以下是毕节中考真题数学试卷的答案:一、选择题1. C2. A3. A4. B5. D6. A7. D8. C9. B 10. D 11. C 12. A 13. B 14.C 15. D二、填空题16. 5 17. 19 18. 15 19. 3 20. 7三、解答题21. 解:设球A的半径为r,球B的半径为4r。
由题意,球A和球B的体积之和等于球C的体积。
则有:(4/3)πr^3 + (4/3)π(4r)^3 = (4/3)π(5r)^3。
化简得:64r^3 + 125r^3 = 625r^3。
取消相同项,并整理得:189r^3 = 625r^3。
移项化简得:625r^3 - 189r^3 = 0。
合并同类项得:436r^3 = 0。
因为r^3不等于0,所以436r^3 = 0 没有解。
因此,无法满足题意,选择“无解”。
22. 解:设这辆火车原本的速度为x km/h。
根据题意,装满2000L水所需的时间是装满4000L水所需时间的1.5倍,即(4000/2000) = (t+20)/(t+30)。
对等交叉相乘得:4000(t+30) = 2000(t+20)。
化简得:4000t + 120000 = 2000t + 40000。
移项化简得:2000t = 80000。
解得:t = 40。
因此,这辆火车原本的速度是40 km/h。
23. 解:首先,在△ABC中,根据余弦定理,有:AC^2 = AB^2 + BC^2 - 2×AB×BC×cos∠ABC。
带入已知值,可得:AC^2 = 625 + 576 - 2×25×24×cos45°。
化简计算得:AC^2 = 625 + 576 - 720.合并同类项得:AC^2 = 481.因此,AC = √481 ≈ 21.92。
24. 解:已知用1元纸币和5元纸币一共购买12个鸡蛋的情况下,最多能购买的鸡蛋数量为16个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年毕节市初中毕业学业(升学)统一考
试试卷
数 学
卷 Ⅰ
一、选择题(本大题共15小题,每小题3分,共45分。
在每小题的四个选项中,中只有一个选项正确。
)
1. -2的相反数是( )
A. 2±
B. 2
C. -2
D. 12
2. 如图所示的几何体的主视图是:
3. 2013年毕节市参加初中毕业学业(升学)统一考试的学生人数约为107000人,将107000用科学计数法表示为:( )
A. 410.710⨯
B. 51.0710⨯
C. 310710⨯
D. 60.10710⨯
4. 实数31270160.10100100013
π- ,,,,,(相邻两个1之间依次多一个0),其中无理数是( )个。
A. 1
B. 2
C. 3
D. 4
5. 估计11的值在( )之间。
A. 1与2之间
B. 2与3之间
C. 3与4之间
D. 4与5之间
6. 下列计算正确的是( )
A. 3332a a a ⋅= B 33a a a ÷= A. 2a a a += A. 325()a a =
7. 已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为( )
A. 16
B. 20或16
C. 20
D. 12
8. 在下列图形中既是轴对称图形又是中心对称图形的是( ) ①线段 ②角 ③等边三角形 ④ 圆 ⑤平行四边形 ⑥矩形
A. ③④⑥
B.①③⑥ D.④⑤⑥ D. ①④⑥
9. 数据4, 7, 4, 8,6, 6, 9,4的众数和中位数是( )
A. 6,9
B. 4,8
C. 6, 8
D. 4, 6
10. 分式方程321
x x =-的解是( )
A. 3x =-
B. 35
x =- C. 3x = D. 无解
11. 如图,已知AB ∥CD ,∠EBA=45°,∠E+∠D 的读数为( )
A. 30°
B. 60°
C. 90°
D. 45°
12. 如图在⊙O 中,弦AB=8,OC ⊥AB ,垂足为C ,且OC=3,则⊙O 的
半径( )
A. 5
B. 10
C. 8
D. 6
13. 一次函数(0)y kx b k =+≠与反比例函数y (0)k k x
=≠的图像在同一直角坐标系下的大致图像如图所示,则k 、b 的取值范围是( )
A. 0,0k b >>
B. 0,0k b <>
C. 0,0k b <<
D. 0,0k b ><
14. 将二次函数2y x =的图像向右平移一个单位长度,再向上平移3个单位长度所得的图像解析式为( )
A. 2(1)3y x =-+
B. 2(1)3y x =++
C. 2(1)3y x =--
D. 2(1)3y x =+-
15. 在等腰直角三角形ABC 中,AB=AC=4,点O 为BC 的中点,以O 为圆心作⊙O 交BC 于点M 、N ,⊙O 与AB 、AC 相切,切点分别为D 、E ,则⊙O 的半径和∠MND 的度数分别为( )
A. 2 , 22.5°
B. 3 , 30°
C. 3 , 22.5°
D. 2 , 30°
卷 Ⅱ
二、填空题(本大题共5个小题,每小题5分,共25分)
16. 二元一次方程组213211x y x y +=⎧⎨-=⎩的解是 。
17. 正八边形的一个内角的度数是 度。
18. 已知12,O O a b 与的半径分别是,且a 、b 满足230a b -+-=,圆心距125O O =则两圆的位置关系是 。
19. 已知圆锥的底面半径是2cm,母线长为5cm ,则圆锥的侧面积是 3cm (结果保留π)
20. 一次函数1y kx =+的图像经过(1 , 2),则反比例函数k y x
=的图像经过点(2 , )。
三、解答及证明(本大题共7个小题,各题的分值见题号,共80分)
21. (本题8分)计算:0115922
---+---(-3)()()
22.(本题10分)甲、乙玩转盘游戏时,把质地相同的两个转盘A 、B 平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜。
若指针落在分界线上,则需要重新转动转盘。
(1)用画树状图或列表的方法,求甲获胜的概率;
(2)这个游戏对甲、乙双方公平吗?请判断并说明理由。
23. (本题8分)先化简,再求值。
224422111
m m m m m m -+-÷+---,其中x=2。
24. (本题12分)解不等式组。
253(2)13212
x x x x ++⎧⎪⎨+-⎪⎩≤<把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解。
25. (本题12分)四边形ABCD 是正方形,E 、F 分别是DC 和CB 的延长线上的点,且DE=BF ,连接AE 、AF 、EF 。
(1)求证:△ADE ≌△ABF ;
(2)填空:△ABF 可以由△ADE 绕旋转中心 点,按顺时针方向旋转 度得到;
(3)若BC=8,DE=6,求△AEF 的面积。
26. (本题14分)如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,
塔底E的仰角为30°,求塔高。
(精确到0.1米,3 1.732
≈)
27.(本题16分)如图,抛物线2
=+与x轴交于点A、B,且A点的坐标
y ax b
为(1,0),与y轴交于点C(0,1)。
(1)求抛物线的解析式,并求出点B坐标;
(2)过点B作BD∥CA交抛物线与点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)
(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,是以B、P、E为顶点的三角形与△CBD相似,若存在请求出P点的坐标;若不存在,请说明理由。