信号与系统课后习题参考答案.pdf

合集下载

(完整版)信号与系统(吴大正)--完整版答案--纠错修改后版本

(完整版)信号与系统(吴大正)--完整版答案--纠错修改后版本

第一章 信号与系统1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为(2)∞<<-∞=-t e t f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε 解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

信号与系统 陈后金 第二版 课后习题答案(完整版)

信号与系统 陈后金 第二版 课后习题答案(完整版)

(1) f (t) = 3sin 2t + 6 sinπ t
(2) f (t) = (a sin t) 2
(8)
f
(k)
=
cos⎜⎛ ⎝
πk 4
⎟⎞ ⎠
+
sin⎜⎛ ⎝
πk 8
⎟⎞ ⎠

2
cos⎜⎛ ⎝
πk 2
⎟⎞ ⎠
解:(1)因为 sin 2t 的周期为π ,而 sin πt 的周期为 2 。
显然,使方程
−∞
0
2-10 已知信号 f (t) 的波形如题 2-10 图所示,绘出下列信号的波形。
f (t)
2
1
−1 0
t 2
题 2-10 图
(3) f (5 − 3t) (7) f ′(t) 解:(3)将 f (t) 表示成如下的数学表达式
(5) f (t)u(1 − t)
由此得
⎧2
f
(t)
=
⎪ ⎨ ⎪ ⎩
f (t)u(1− t) 2
1
0.5
t
−1 0
1
(7)方法 1:几何法。由于 f (t) 的波形在 t = −1处有一个幅度为 2 的正跳变,所以 f ′(t) 在 此处会形成一个强度为 2 的冲激信号。同理,在 t = 0 处 f ′(t) 会形成一个强度为 1 的冲激信 号(方向向下,因为是负跳变),而在 0 < t < 2 的区间内有 f ′(t) = −0.5 (由 f (t) 的表达式可
第 1 页 共 27 页
《信号与系统》(陈后金等编)作业参考解答
(2)显然,该系统为非线性系统。 由于
T{f (t − t0 )}= Kf (t − t0 ) + f 2 (t − t0 ) = y(t − t0 )

《信号与系统》课后习题参考答案

《信号与系统》课后习题参考答案

《信号与系统》课后习题参考答案第二章 连续信号与系统的时域分析2-9、(1)解:∵系统的微分方程为:)(2)(3)(t e t r t r '=+',∴r(t)的阶数与e(t) 的阶数相等,则h(t)应包含一个)(t δ项。

又∵系统的特征方程为:03=+α,∴特征根3-=α∴)()(2)(3t u Ae t t h t -+=δ∴)]()(3[)(2)(33t e t u e A t t h t t δδ--+-+'=')()(3)(23t A t u Ae t t δδ+-'=-将)(t h 和)(t h '代入微分方程(此时e(t)= )(t δ),得:)()(3)(23t A t u Ae t t δδ+-'-+3)(2)]()(2[3t t u Ae t t δδ'=+-∴A=-6则系统的冲激响应)(6)(2)(3t u et t h t --=δ。

∴⎰⎰∞--∞--==t td ue d h t g τττδτττ)](6)(2[)()(3⎰∞-=t d ττδ)(2⎰∞---t d u e τττ)(63 )()(6)(203t u d e u t t ⎰-∞--=τττ )()3(6)(203t u e t u t --=-τ)()1(2)(23t u e t u t -+=- )(23t u e t -=则系统的阶跃响应)(2)(3t u et g t -=。

2-11、解:①求)(t r zi : ∵系统的特征方程为:0)3)(2(652=++=++αααα,∴特征根:21-=α,32-=α ∴t t zi e C eC t r 3221)(--+= (t ≥0) ②求)(t r zs :t t e A eA t h 3221)(--+= (t ≥0),可求得:11=A ,12-=A (求解过程略) ∴)()()(32t u e e t h t t ---=∴)(*)()(*)()]()[(*)()(*)()(3232t u e t u e t u e t u e t u e e t u e t h t e t r t t t t t t t zs --------=-==)()2121()()(21)()(3232t u e e e t u e e t u e e t t t t t t t -------+-=---= ③求)(t r :)(t r =)(t r zi +)(t r zs ++=--)(3221t te C e C )2121(32t t t e e e ---+- t tt e C e C e 3221)21()1(21---++-+= (t ≥0) ∵)()(t u Ce t r t -=,21=C 21=C ∴ 011=-C , ∴ 11=C0212=+C 212-=C ∴=-)0(r 21211)0(21=-=+=+C C r zi , ='-)0(r 2123232)0(21-=+-=--='+C C r zi 2-12、解:(1)依题意,得:)(2)(*)()(t u e t h t u t r tzi -=+)()()(t t h t r zi δ=+∴)(2)]()([*)()(t u e t r t t u t r t zi zi -=-+δ)(2)()()()1(t u e t r t u t r t zi zi --=-+∴)()12()()()1(t u e t r t r t zi zi -=---,两边求导得:)()12()(2)()(t e t u e t r t r t t zi ziδ-+-=-'-- )(2)()()(t u e t t r t r t zi zi--=-'δ ∴)(11)(112)()()1(t p p t p t t r p zi δδδ+-=+-=- ∴)()(11)(t u e t p t r t zi -=+=δ (2)∵系统的起始状态保持不变,∴)()(t u e t r t zi -=∵)()()(t t h t r zi δ=+,∴)()()(t u e t t h t--=δ∴)]()([*)()()(*)()()(33t u e t t u e t u e t h t e t r t r t t t zi ----+=+=δ )()()(t u te t u e t u e tt t ----+=)()2(t u e t t --= 2-16、证:∑∑∞-∞=--∞-∞=--=-=k k t k t k t u e k t t u e t r )3()3(*)()()3(δ∑∞-∞=--=k k t k t u e e )3(3 ∵当t-3k>0即3t k <时:u(t-3k)为非零值 又∵0≤t ≤3,∴k 取负整数,则:3003311)(---∞=∞=----===∑∑e e e e e et r t k k k t k t 则t Ae t r -=)(,且311--=e A 。

信号与系统(第二版)电子工业出版社【参考答案】

信号与系统(第二版)电子工业出版社【参考答案】

第一章1.8 系统的数学模型如下,试判断其线性、时不变性和因果性。

其中X (0-)为系统的初始状态。

(2)()()2f t y t e = (5)()()cos2y t f t t = (8)()()2y t f t = 解:(2)()()2f t y t e = ① 线性: 设 ()()()()1122,f t y t f t y t →→,则 ()()()()122212,f t f t y t ey t e==那么 ()()()()()()()112211222221122a f t a f t a f t a f t a f t a f t y t ee e +⎡⎤⎣⎦+→==,显然,()()()1122y t a y t a y t ≠+,所以是非线性的。

② 时不变性设()()11,f t y t →则 ()()()()10122110,f t t f t y t e y t t e-=-=设()()102,f t t y t -→则()()()102210f t t y t e y t t -==-,所以是时不变的。

③ 因果性因为对任意时刻 t 1,()()121f t y t e =,即输出由当前时刻的输入决定,所以系统是因果的。

(5)()()cos2y t f t t = ① 线性: 设 ()()()()1122,f t y t f t y t →→,则 ()()()()1122cos2,cos2y t f t t y t f t t ==那么()()()()()()()112211221122cos 2cos 2cos 2a f t a f t y t a f t a f t t a f t t a f t t +→=+=+⎡⎤⎣⎦, 显然()()()1122y t a y t a y t =+,所以系统是线性的。

② 时不变性设()()11,f t y t →则 ()()()()()1110100cos2,cos2y t f t t y t t f t t t t =-=--设()()102,f t t y t -→则()()()21010cos2y t f t t t y t t =-≠-,所以是时变的。

信号与系统陈后金版答案

信号与系统陈后金版答案

第二步:求差分方程的齐次 解: 2 求差分方程的齐次 第二步 h [ 0 ] = C 1 + C 2 r −5r /6 +1/ 6 = 0 1 k1 1 k 1 特征方程为: [ ( + 特征方程为=hCk1 ] = )[3 (C 2) ( −) 2 ( 求 ] u [ C ] = 3, C 2 = − 2 h [1] ⇒ ) 出 k1 ∴r =1/ 2, r2 =1/3 2 3 3 1 2
(3) 计算固有响应与强迫响应 计算固有响应与强迫响应:
1 7 1 k 4 1 k y[k ] = [ − ( ) + ( ) ]u[k ] 完全响应: 完全响应 2 2 2 3 3 7 1 k 4 1 k 固有响应: yh [k ] = [− ( ) + ( ) ]u[ k ] 固有响应 2 2 3 3 1 强迫响应: 强迫响应 y p [k ] = u[k ] 2 (4) 计算瞬态响应与稳态响应 计算瞬态响应与稳态响应:
特征根为 s1 = -2, s2 = -5, 又因为 n > m , 所以: 则 h ( t ) = K 1e − 2 t u ( t ) + K 2 e − 5 t u ( t )
h '(t ) = − 2 K 1e −2 t u (t ) + K 1δ (t ) − 5 K 2 e −5 t u (t ) + K 2δ (t ) = − 2 K 1e −2 t u (t ) − 5 K 2 e −5 t u (t ) + ( K 1 + K 2 )δ (t ) h ''(t ) = 4 K 1e −2 t u (t ) − 2 K 1δ (t ) + 25 K 2 e −5 t u (t ) − 5 K 2δ (t ) + ( K 1 + K 2 )δ '(t ) 代入方程有: = K 1 + K 2 = '( t ) = 2 K 2δ ( t ) + 5 K∴K2 + (7/3; K1 )δ −1/3; 2δ '( t ) + 3δ ( t ) 1δ ( t )

信号与系统第三版郑君里课后习题答案

信号与系统第三版郑君里课后习题答案

信号与系统第三版郑君里课后习题答案第一章习题参考解1,判刑下列信号的类型解:()sin [()];y t A x t = 连续、模拟、周期、功率型信号 。

()()tt y t x ed τττ--∞=⎰连续、模拟、非周期、功率型信号。

()(2y n x n =) 离散、模拟、非周期、功率型信号。

()()y n n x n = 离散、模拟、非周期、功率型信号。

1-6,示意画出下列各信号的波形,并判断其类型。

(1) 0()s in ()x t A t ωθ=+ 连续、模拟、周期、功率型(2) ()t x t A e -= 连续、模拟、非周期、只是一个函数,不是物理量。

(3) ()c o s 0tx t ett -=≥ 连续、模拟、非周期、能量型 (4) ()2112,x t t t =+-≤≤ 连续、模拟、非周期、能量型(5) 4()(),0.5k x k k =≥ 离散、模拟、非周期、能量型(6) 0().j kx k eΩ= 离散、模拟、周期、功率型()s i n [()];()()()(2);()()tt y t A x t y t x ed y n x n y n n x n τττ--∞====⎰1-6题,1-4图。

t=-pi:1/200:pi;y1=1.5*sin(2*t+pi/6);subplot(4,1,1),plot(t,y1),title('1.5sin(2*t+pi/6)'),gridy2=2*exp(-t);subplot(4,1,2),plot(t,y2),title('2exp(-t)'),gridt1=0:1/200:2*pi;y3=10*exp(-t1).*cos(2*pi*t1);subplot(4,1,3),plot(t1,y3),title('10exp(-t1)cos(2*pi*t1)'),grid t2=-1:1/200:2;y4=2*t2+1;subplot(4,1,4),plot(t2,y4),title('2x+1'),grid习题1-6 5-6题n=0:pi/10:2*pi;y=(0.8).^n;subplot(4,1,1),stem(n,y,'fill'),title('(0.8)^n'),gridn1=0:pi/24:2*pi;y1=cos(2*pi*n1);y2=sin(2*pi*n1);subplot(4,1,2),stem3(y1,y2,n1,'fill'),title('exp[2*pi*n1'),gridsubplot(4,1,4),stem(n1,sin(2*pi*n1),'fill'),title('sin2pin1'),gridsubplot(4,1,3),stem(n1,cos(2*pi*n1),'fill'),title('cos2pin1)'),grid1-8,判断下列系统的类型。

信号与系统课后习题附参考答案

信号与系统课后习题附参考答案

1-1试分别指出以下波形是属于哪种信号?题图1-11-2 试写出题1-1图中信号的函数表达式。

1-3已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。

题图1-3t)(2t x )(b 12112t)(1t x )(a 121123122T T2TEt)(t x )(a t)(t x )(b 13124023412t)(t x )(c n)(n x )(d 2213012112344⑴)2(1t x ⑵)1(1t x ⑶)22(1t x ⑷)3(2tx ⑸)22(2t x ⑹)21(2t x ⑺)(1t x )(2t x ⑻)1(1t x )1(2tx ⑼)22(1t x )4(2tx 1-4 已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。

题图1-4⑴)12(1n x ⑵)4(1n x ⑶)2(1n x ⑷)2(2n x ⑸)2(2n x ⑹)1()2(22n x n x ⑺)2(1nx )21(2n x ⑻)1(1n x )4(2nx ⑼)1(1nx )3(2nx 1-5 已知信号)25(t x 的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。

题图1-5t)25(t x 110232523n)(2n x )(b 2213121124n)(1n x )(a 22131142134212321231-6 试画出下列信号的波形图:⑴)8sin()sin()(t t t x ⑵)8sin()]sin(211[)(t t t x ⑶)8sin()]sin(1[)(t t t x ⑷)2sin(1)(t tt x 1-7 试画出下列信号的波形图:⑴)(1)(t u e t x t⑵)]2()1([10cos )(t u t u t e t x t⑶)()2()(t u e t x t⑷)()()1(t u et x t ⑸)9()(2tu t x ⑹)4()(2tt x 1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。

(完整版)信号与系统课后题答案

(完整版)信号与系统课后题答案

《信号与系统》课程习题与解答第二章习题(教材上册第二章p81-p87)2-1,2-4~2-10,2-12~2-15,2-17~2-21,2-23,2-24第二章习题解答2-1 对下图所示电路图分别列写求电压的微分方程表示。

图(a):微分方程:11222012()2()1()()()2()()()()2()()()c cc di t i t u t e t dtdi t i t u t dtdi t u t dt du t i t i t dt ⎧+*+=⎪⎪⎪+=⎪⇒⎨⎪=⎪⎪⎪=-⎩图(b ):微分方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧-==+++=+++⎰⎰2021'2'21'2'11)(01)(1Ri t v Ri Mi Li dt i Ct e Ri Mi Li dt i C)()(1)(2)()2()(2)()(33020022203304422t e dtd MR t v C t v dt d C R t v dt d C L R t v dt d RL t v dt d M L =+++++-⇒ 图(c)微分方程:dt i C i L t v ⎰==211'101)(⎪⎪⎪⎩⎪⎪⎪⎨⎧===⇒⎰dt t v L i t v L i dtdt v L i dt d)(1)(1)(10110'1122011∵ )(122111213t i dt d L C i i i i +=+=)(0(1]1[][101011022110331t e dt dR t v RL v dt d RR L C v dt d R C R C v dt d CC μ=+++++⇒图(d)微分方程:⎪⎩⎪⎨⎧+-=++=⎰)()()()()(1)()(11111t e t Ri t v t v dt t i C t Ri t e μRC v dt d 1)1(1+-⇒μ)(11t e V CR = ∵)()(10t v t v μ=)()(1)1(0'0t e R v t v R Cv v =+-⇒2-4 已知系统相应的其次方程及其对应的0+状态条件,求系统的零输入响应。

信号系统(第3版)习题解答

信号系统(第3版)习题解答

《信号与系统》(第3版)习题解析高等教育目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。

1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。

[提示:f ( 2t )表示将f ( t )波形压缩,f (2t)表示将f ( t )波形展宽。

](a) 2 f ( t - 2 ) (b) f ( 2t )(c) f ( 2t)(d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。

图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。

题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i Lt u L L d )(d )(= ⎰∞-=tC C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

S RS LS C题1-4图解 系统为反馈联接形式。

设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有)()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T == )()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。

信号与系统课后答案

信号与系统课后答案

与奇分量的波形,相应如图题 1.12 中所示。
1-13 已知信号 f(t)的偶分量 fe(t)的波形如图题 1-13(a)所示, 信号 f(t+1)×U(-t-1)的波形如图题 1-13(b) 所示。求 f(t)的奇分量 fo(t),并画出 fo(t)的波形。
解 因
f (t ) = f e (t ) + f 0 (t )

t
−∞
δ (τ )dτ ,故根据现行系统的积分性有
y (t ) = ∫ h(τ (dτ = ∫ [δ (τ ) − δ (τ − 1) − δ (τ − 2) + δ (τ − 3)]dτ = u (t ) − u (t − 1) − u (t − 2) + u (t − 3)
1-2 已知各信号的波形如图题 1-2 所示,试写出它们各自的函数式。
解: f 1 (t ) = t[u (t ) − u (t − 1)] + u (t − 1)
f 2 (t ) = −(t − 1)[u (t ) − u(t − 1)]
f 3 (t ) = (t − 2)[u(t − 2) − u(t − 3)]
y 2 (t ) 的波形如图题 1.17(c)所示.
1-18 图题 1-18(a)所示为线性时不变系统,已知 h1(t)=δ(t)-δ(t-1), h2(t)=δ(t-2)-δ(t-3)。(1)求响 应 h(t); (2) 求当 f(t)=U(t)时的响应 y(t)(见图题 1-18(b))。
解(1) h(t ) = h1 (t ) − h2 (t ) = δ (t ) − δ (t − 1) − δ (t − 2) + δ (t − 3) (2) 因 f (t ) = u (t ) =

信号与系统课后答案(PDF)

信号与系统课后答案(PDF)

第二章第二章 课后题答案课后题答案2-1.1.图题2-1所示电路,求响应u 2(t)对激励f(t)的转移算子H(p)及微分方程。

解 其对应的算子电路模型如图题2.1(b )所示,故对节点①,②可列出算子形式的KCL 方程为= +++−=−+0)(111)(1)()(1)(1312121t u p p t u p t f t u p t u p即()=+++−=−+0)(1)()()()(13122121t u p p t u t pf t u t u p联解得)()()(443)(22t f p H t f p p t u =++=故得转移算子为443)()()22++==p p t f t u p H (u 2(t)对f(t)的微分方程为())()(t f t u p p 34422=++即)(t f t u t u dt d t u dt d 3)(4)(4)(22222=++2-2图题2-2所示电路,求响应i(t)对激励f(t)的转移算子H(p)及微分方程。

解 其对应的算子电路模型如图2.2(b)所示。

故得)()(t f p p p p pp t f t i 3011101022221.01)(2+++=+×++=故得转移算子为30111010)()()(2+++==p p p t f t i p Hi(t)对f(t)的微分方程为)()1010()()3011(2t f p t i p p +=++即)(10)(10)(30)(11)(22t f t f dt d t i t i dt d t i dt d +=++2-3图题2-3所示电路,已知u C (0-)=1 V, i(0-)=2 A。

求t>0时的零输入响应i(t)和u C (t)。

解 其对应的算子电路模型如图题2.3(b)所示。

故对节点N 可列写出算子形式的KCL 方程为0)(2312= ++t u p p C又有uc(t)=pi(t),代入上式化简,即得电路的微分方程为=====++−+−+1)0()0(2)0()0(0)()23(2c cu u i i t i p p电路的特征方程为0232=++p p故得特征根(即电路的自然频率)为p 1=-1,p 2=-2。

信号与系统课后答案(西南交大)

信号与系统课后答案(西南交大)

y x (t ) = 3e −2 t − 2 e−3 t t ≥ 0 y f ( t ) = te−2 t − e−2 t + e −3 t t ≥ 0
自由响应 2 e−2 t − e −3 t 强迫响应 te−2 t 稳态响应 0
暂态响应 te−2 t + 2e −2 t − e− 3t t ≥ 0
2.19 y f ( t ) =
2.22① t 3 u( t ) ④(
②∞
③( t−
1 2
1 1 −2 t + e )u( t ) 4 4
sin t + cost 1 −t − e )u( t ) ⑤ eu (t − 3) + e t − 2 u( 3 − t ) ⑥ cos(ωt + 45° ) 2 2 1 − cosπt cosπt − 1 1 1 2.23① u( t ) + u( t − 2) ② t 2 u( t ) − ( t − 1)2 u( t − 1) π π 2 2
3.6 f (t ) =
1 − j 3 ω0 t 3 − j 2 ω 0 t 3 1 e + e + e − jω 0 t + 1 + e jω 0 t + e j 2 ω0 t + e j 3 ω 0t 2 2 2 2
3.7 f (t ) = cos( 4ω0 t + 20°) + 2 cos( 2ω0 t + 30 °) + 3 cos(ω 0 t + 10° ) + 2
p2 + p +1 2.3 H ( p ) = 3 p + 2 p2 + 3p + 2 p2 + 3 p + 2 2.4 H ( p ) = 2p2 +3p +2

信号与系统课后习题答案汇总

信号与系统课后习题答案汇总

1第一章习题参考解答1.1 绘出下列函数波形草图;1 ||3)(t et x -=2 ()⎪⎪⎨⎧<≥=02021)(n n n x n n3 )(2sin )(t t t x επ=4 )(4sin )(n n n x επ=5 )]4()([4cos )(--=-t t t et x tεεπ6 )]4()1([3)(---=n n n x nεε7 t t t t x 2cos)]2()([)(πδδ--=8 )]1()3([)(--+=n n n n x δδ29 )2()1(2)()(-+--=t t t t x εεε10 )5(5)]5()([)(-+--=n n n n n x εεε11 )]1()1([)(--+=t t dtdt x εε 12 )()5()(n n n x --+-=εε13 ⎰∞--=td t x ττδ)1()(14 )()(n n n x --=ε1.2 确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是; 1 ||3)(t et x -=解 能量有限信号;信号能量为:()⎰⎰⎰⎰∞-∞-∞∞--∞∞-+===02022||2993)(dt edt edt e dt t xE ttt ∞<=⋅-⋅+⋅⋅=∞-∞-9)21(92190202tte e2 ()⎪⎩⎪⎨⎧<≥=02021)(n n n x n n解 能量有限信号;信号能量为:()∞<=+=+==∑∑∑∑∑∞=--∞=∞=--∞=∞-∞=35)41(4])21[(2)(0102122n n n nn n n n n n xE3 t t x π2sin )(=3解 功率有限信号;周期信号在∞-∞,区间上的平均功率等于在一个周期内的平均功率,t π2sin 的周期为1;214cos 2124cos 1)2(sin )2(sin 121212121212121212222=-=-===⎰⎰⎰⎰⎰-----tdt dt dt t dt t dt t TP T T ππππ 4 n n x 4sin)(π=解 功率有限信号;n 4sinπ是周期序列,周期为8;21218122cos1814sin 81)(143434322==-===∑∑∑∑--=-=>=<n n n N n nn n x NP ππ5 )(2sin )(t t t x επ=解 功率有限信号;由题3知,在),(∞-∞区间上t π2sin 的功率为1/2,因此)(2sin t t επ在),(∞-∞区间上的功率为1/4;如果考察)(2sin t t επ在),0(∞区间上的功率,其功率为1/2;6 )(4sin)(n n n x επ=解 功率有限信号;由题4知,在),(∞-∞区间上n 4sin π的功率为1/2,因此)(4sinn n επ在),(∞-∞区间上的功率为1/4;如果考察)(4sin n n επ在),0(∞区间上的功率,其功率为1/2;7 tet x -=3)(解 非功率、非能量信号;考虑其功率:())(49lim2921lim 921lim 321lim 22222T TT T Tt T T T t T T T t T e e TeT dt e T dt e T P --=-===-∞→--∞→--∞→--∞→⎰⎰上式分子分母对T 求导后取极限得∞→P ;8 )(3)(t e t x tε-=解 能量信号;信号能量为:29299)3()(0202022=-====∞-∞-∞-∞∞-⎰⎰⎰t t t e dt e dt e dt t x E1.3 已知)(t x 的波形如题图1.3所示,试画出下列函数的波形;)(t x1t -1 0 1 2题图1.341 )2(-t x2 )2(+t x3 )2(t x4 )21(t x5 )(t x -6 )2(+-t x7 )2(--t x8 )22(+-t x9 )221(-t x)2(+t x1t -3 -2 -1 0)2(-t x1t 0 1 2 3 4)2(t x1t -1/2 0 1)2/(t x1t-2 -1 0 1 2 3 4)(t x -1t -2 -1 0 1)2(+-t x1t 0 1 2 3)2(--t x1t -4 -3 -3 -1 0)22(+-t x1t 0 1 3/2)22/(-t x1t 0 1 2 3 4 5 6 7 8510 )221(--t x11 )221()(-+t x t x12 )21()2(t x t x ⋅ 13dtt dx )(14 ⎰∞-t d x ττ)(=⎪⎪⎪⎩⎪⎪⎪⎨⎧-<≥<≤+<≤-++=122320210121221t t t t t t t)22/(--t x1t -8 -4 -2 0)221()(-+t x t x 1t -1 0 1 2 3 4 5 6 7 8)21()2(t x t x ⋅1t -1/2 0 1 dt t dx )(1t -1 0⎰∞-td x ττ)(3/21/2-1 0 1 2 t61.4 已知)(1t x 及)(2t x 的波形如题图1.4所示,试分别画出下列函数的波形,并注意它们的区别;1 )2(1t x2 )21(1t x3 )2(2t x4 )21(2t x1.5已知)(n x 的波形如题图1.5所示,试画出下列序列的波形;)(1t x 2 1t -1 0 1 )(2t x 21t0 1 2 3 4a b题图1.4)2(1t x 21t-1/2 1/2 )2(2t x210 1 2 t)21(1t x 21t -2 0 2)21(2t x 21t 0 4 8n 题图1.571)4(+n x2 )(n x -3 )3(--n x4 )3(+-n x5 )3(--n x +)3(+-n x6 0)3()3(=+-⋅--n x n x 图略7 )1()()(--=∇n x n x n x8∑-∞=nm m x )(1.6 任何信号可以分解为奇分量和偶分量的和:)()()(t x t x t x o e += 或 )()()(n x n x n x o e +=其中e x 为偶分量;o x 为奇分量;偶分量和奇分量可以由下式确定:)]()([21)(t x t x t x e -+=, )]()([21)(t x t x t x o --= )]()([21)(n x n x n x e -+=, )]()([21)(n x n x n x o --=1 试证明)()(t x t x e e -=或)()(n x n x e e -=;)()(t x t x o o --=或)()(n x n x o o --=;n) nnn -6-5–4 -3–2 –1 0 1 2 3 4∑-∞=nm m x )(n82 试确定题图1.6a 和b 所示信号的偶分量和奇分量,并绘出其波形草图;1 证明 根据偶分量和奇分量的定义:)()]()([21)(t x t x t x t x e e =+-=- )()]()([21)]()([21)(t x t x t x t x t x t x o o -=---=--=-离散序列的证明类似; 2 根据定义可绘出下图1.7 设nn x 2)(=,试求)(),(),(),(22n x n x n x n x ∆∇∆∇;)(t x1t 0 1 2)(t x -1t-2 -1 0)(t x e1/2t-2 -1 0 1 2)(t x o1/2 -2 -10 1 2t)(n x en9解 11222122)1()()(--=⋅=-=--=∇n nn n n x n x n x 21212222122)1()()(----=⋅=-=-∇-∇=∇n n n n n x n x n xn n n n x n x n x 222)()1()(1=-=-+=∆+n n n n x n x n x 222)()1()(112=-=∆-+∆=∆-+1.8 判断下列信号是否为周期信号,若是周期的,试求其最小周期; 1 )64cos()(π+=t t x解 周期信号,21π=T2 )()2sin()(t t t x επ= 解 非周期信号;3 )2cos()(t et x tπ-=解 非周期信号;4 )3(4)(-=t j et x π解 周期信号,81=T ;5 )cos()5sin()(t b t a t x π+=解 若,0,0≠=b a 则)(t x 为周期信号,21=b T ;若,0,0=≠b a 则)(t x 为周期信号,π521=a T ;若,0,0≠≠b a 则)(t x 为非周期信号;6 )38cos()(+=n n x π解 周期信号,161=N ;7 )97cos()(n n x π= 解 周期信号,181=N ;8 )16()(n con n x = 解: 非周期信号;9 n j en x 152)(π=10解: 周期信号,151=N ;10 )34sin(2)3sin()6cos(3)(ππππ+-+=n n n n x 解: 周期信号,最小公共周期为241=N ;1.9 计算下列各式的值; 1⎰∞∞--dt t t t x )()(0δ解: 原式dt t t x )()(0δ⎰∞∞--==).(0t x -2⎰∞--td t x ττδτ)()(0解: 原式ττδd t x t)()(0⎰∞--=)()(0t t x ε⋅-=3⎰∞∞--dt t t t x )()(0δ解: 原式dt t t x )()(0δ⎰∞∞-=)(0t x =4⎰∞∞--dt t t t x )(')(0δ解: 原式)(')(000't x t t x t --=--==5⎰∞∞---dt t t t t )2()(00εδ 解: 原式dt t t t t )()2(000-⋅-=⎰∞∞-δε)2(0t ε=6⎰∞---td t t ττετδ)2()(00解: 原式=⎰∞---td t t t τετδ)2()(000=⎰∞---t d t t ττδε)()(00)()(00t t t --=εε=⎩⎨⎧<->0)(00000t t t t ε 7⎰∞∞-dt t )(δ解: 原式1= 8⎰-∞-0)(dt t δ解: 原式0=119⎰∞+)(dt t δ解 原式0= 10⎰+-00)(dt t δ解 原式1= 11⎰∞∞--+-dt t tt )12)(33(2δ解 令t v 3=得:原式dv v vv 31]132)3)[(3(2-+-=⎰∞∞-δ32]132)3[(31=-+=x v v 32=12⎰∞∞-+dt t x t )()1('δ解: 原式)1()('1'--=-=-=x t x t13⎰∞∞--dt et t)('δ解: 原式1][0'=-==-t t e 14⎰--3131)()32(dt t x t δ解: 令t v 2=得:原式dv v x v 21)2()3(3232⋅-=⎰-δ=dv v x v 21)2()3(3232⋅-=⎰-δ因为0)3(3232=-⎰-dv v δ,所以: 原式=01.10 设)(t x 或)(n x 为系统的输入信号,)(t y 或)(n y 为系统的输出信号,试判定下列各函数所描述的系统是否是:a 线性的 b 时不变的 c 因果的 d 稳定的 e 无记忆的 1 )4()(+=t x t y 解 )(a 线性的.若 );4()()(111+=→t x t y t x )4()()(222+=→t x t y t x则: )()()4()4()()()(212121t by t ay t bx t ax t y t bx t ax +=+++=→+)(b 时不变的.若 )4()()(+=→t x t y t x则: )4()(ττ-+→-t x t x)(c 非因果的.120t 时刻的响应取决于0t 以后时刻即40+t 时刻的输入. )(d 稳定的.若|M t x ≤|)(<∞ 则:∞<≤M t y |)(| )(e 有记忆的若系统的输出仅仅取决当前时刻的输入,则称此系统为无记忆系统;题给系统显然不满足此条件;2 )()()(τ-+=t x t x t y 0>τ,且为常数 解 )(a 线性的.若 )()()()(1111τ-+=→t x t x t y t x ,)()()()(2222τ-+=→t x t x t y t x则: )]()([)]()([)()()(221121ττ-++-+=→+t x t x b t x t x a t y t bx t ax =)()(21t by t ay +)(b 时不变的.若 )()()()(τ-+=→t x t x t y t x则: )()()()(0000t t y t t x t t x t t x -=--+-→-τ )(c 当0>τ时为因果的.当0>τ时:系统0t 时刻的输出仅与0t 及0t 以前时刻的输入有关. 当0<τ时:系统0t 时刻的输出与0t 以后时刻的输入有关. )(d 稳定的.若|)(|t x ∞<, 则∞<|)(|t y )(e 有记忆的.系统0t 时刻的输出与0t 时刻以前的输入有关.3 )2/()(t x t y = 解:)(a 线性的. 说明略)(b 时变的若)2()()(t x t y t x =→ 则: )2()2()(τττ-≠-→-t x t x t x )(c 非因果的.)21()1(-=-x y . 即1-=t 时刻的输出与1-=t 时刻以后)21(-=t 的输入有关.)(d 稳定的. 说明略)(e 有记忆的.)21()1(x y =. 即1=t 时刻的输入与1=t 时刻以前)21(=t 的输入有关.4 )()(2t x t y = 解:)(a 非线性的.若 )()()(2111t x t y t x =→, )()()(2222t x t y t x =→则: )()()()()]()([)()(21222122121t by t ay t bx t ax t bx t ax t bx t ax +=+≠+→+)(b 时不变的.13若)()()(2t x t y t x =→ 则: )()()(2τττ-=-→-t y t x t x)(c 因果的. 说明略 )(d 稳定的. 说明略 )(e 无记忆的.0t 时刻的输出仅取决于0t 时刻的输入.5 )(2)(t x et y =解:)(a 非线性的. 说明略)(b 时不变的. 说明略 )(c 因果的. 说明略d 稳定的.若 |)(t x |∞<≤M , 则∞<≤M e t y 2|)(|e 无记忆的. 说明略6 t t x t y π2sin )()(=解: a 线性的.若 )(]2[sin )()(111t x t t y t x π=→,)(]2[sin )()(222t x t t y t x π=→ 则: )()()]()([2sin )()(212121t by t ay t bx t ax t t bx t ax +=+→+π b 时变的.若 )()(t y t x →则: )()](2[sin )()()2(sin )(ττπττπτ--=-≠-→-t x t t y t x t t x c 因果的. 说明略d 稳定的.若∞<≤M t x |)(|, 则∞<≤≤M t M t y |2sin ||)(| e 无记忆的. 说明略7 ⎩⎨⎧>=0)()()(t x t x t y解: a 非线性的.若 0)()0()(1≠→<t y t x而0<a 时: )(0)()0)((12t ay t y t ax ≠=→<,即不满足均匀性. b 时不变的.若 )()(t y t x → 则: )(0)(00)()()(00000t t y t t x t t x t t x t t x -=⎩⎨⎧<->--→-c 因果的.0t 时刻的输出仅与0t 以后时刻的输入无关. d 稳定的. 说明略 e 无记忆的. 说明略148 dtt dx t y )()(=解:a 线性的.若 dt t dx t y t x )()()(111=→,dtt dx t y t x )()()(222=→ 则: )()()]()([)()(212121t by t ay t bx t ax dtdt bx t ax +=+→+ b 时不变的.若: dtt dx t y t x )()()(=→ 则: )()()()()(τττττ-=--=-→-t y t d t dx dt t dx t xc 因果的. 说明略d 非稳定的.)()()()(t t y t u t x δ=→=e 无记忆的 说明略 9 ⎰∞-=td x t y ττ)()(解: a 线性的. 说明略 b 时不变的.若: ⎰∞-=→td x t y t x ττ)()()(则: )()()()(0000t t y dv v x d t x t t x t t t-==-→-⎰⎰-∞-∞-ττc 因果的. 说明略d 非稳定的.若∞<=|)(||)(|t u t x 1,但∞→|)(|t y e 有记忆的. 说明略10 )1()()(-⋅=n x n x n y解: a 非线性的若 )1()()()(1111-⋅=→n x n x n y n x ,)1()()()(2222-⋅=→n x n x n y n x则: )()()]1()1()][()([)()(2122121n by n ay n bx n ax n bx n ax n bx n ax +≠-+-+→+b 时不变的.若 )1()()()(-⋅=→n x n x n y n x则: )()1()()(N n y N n x N n x N n x -=--⋅-→- c 因果的.0n 时刻的输出与0n 时刻以后的输入无关. d 稳定的.若 |∞<≤M n x |)(, 则: |∞<≤2|)(M n y15e 有记忆的.0n 时刻的输出与0n 时刻以前的输入有关.11 )()(n nx n y =解: a 线性的.若 )()()(11n nx n y n x =→,)()()(222n nx n y n x =→ 则: )()()]()([)()(212121n by n ay n bx n ax n n bx n ax +=+→+ b 时不变的.若 )()()(n nx n y n x =→则: )()()()(N n y N n x N n N n x -=--→- c 因果的. 说明略d 非稳定的.即使M n x <|)(|,∞→n 时,∞→)(n y e 无记忆的. 说明略12 6)(5)(+=n x n y解: a 非线性的.若 6)(5)()(111+=→n x n y n x ,6)(5)()(222+=→n x n y n x 则: )(6)(6)]()([5)()()(212121n y n ay n bx n ax n y n bx n ax +≠++=→+ b 时不变的. 说明略 c 因果的. 说明略 d 稳定的. 说明略 e 无记忆的. 说明略13 )()(n x n y -= 解: a 线性的. 说明略 b 时变的.若 )()()(n x n y n x -=→则: )]([)()()(N n x N n y N n x N n x --=-≠--→-c 非因果的.)1()1(x y =- . 即 1-=n 时刻的输出与 1-=n 以后时刻1=n 时刻的输入有关. d 稳定的. 说明略e 有记忆的.).1()1(-=x y 即 1=n 时刻的输出与1=n 以前时刻1-=n 时刻的输入有关.1.11 已知)22(t x -的波形如题图1.11所示,试画出)(t x 的波形; 解 将)22(t x -的波形扩展可得)2(t x -,将)2(t x -的波形翻转得)2(t x +,将)2(t x +右移2个单位可得)(t x 的波形如下:)22(t x -2 1t 0 1 2 3 4题图1.11161.12 判断下列每个系统是否是可逆的,如果是可逆的,试构成其逆系统;如果不是,找出使系统具有相同输出的两个输入信号; 1 ⎰∞---=tt d x e t y τττ)()()(解 原式两边求导得:⎰⎰⎰∞---∞---∞---=-⋅=⎪⎭⎫ ⎝⎛=tt tt t t tt d x et x d x e e t x e e d x e e dt d t y τττττττττ)()()()()()(')(上式同原式相加得:dtt dy t y t x )()()(+=所以系统可逆,逆系统为: dt t dy t y t x )()()(+=2 ⎪⎩⎪⎨⎧-≤=≥-=1)(001)1()(n n x n n n x n y解: 系统可逆,逆系统为: ⎩⎨⎧-≤≥+=1)(0)1()(n n y n n y n x3 dtt dx t y )()(=解 系统不可逆,因为不能由)(t x 唯一地确定)(t y ;例如:11)(c t x =,)()(2122c c c t x ≠=0)()()()(2111====τd t dx dt t dx t y t y4 )()(n nx n y =解 系统不可逆,因为当0=n 时,不论)(n x 取何值,0)(0==n n y ;5 ⎰∞-=td x t y ττ)()(解 系统可逆,逆系统为dtt dy t x )()(=; )(t x21t -6 -4 -2 0176 )()21()(k x n y k n nk --∞=∑=解 系统可逆,逆系统为)1(21)()(--=y n y n x ; )()()21(21)()21()1(21)(11n x k x k x n y n y kn n k k n nk =-=------∞=--∞=∑∑ 或从z 域考虑:),()211()()()(),(*)()21()(121z Y z z X z X z z z Y n x n n y n --=∴-==ε 即逆系统为: )1(21)()(--=n n n h δδ1.13 对于例1.2中的)(t x 和)(n x ,请指出下面求解)12(-t x 和)1(+-n x 的过程错在何处 求解)12(-t x 的过程:)]21(2[)12(-=-t x t x∴先将)(t x 的波形右移21个单元得到,)21(-t x 的波形,再将)21(-t x 的波形压缩一倍得到)]21(2[-t x 即)12(-t x 的波形,如题图1.13a 所示;求解)1(+-n x 的过程:)]1([)1(--=+-n x n x∴先将)(n x 的波形右移1个单元得到)1(-n x 的波形,再将)1(-n x 的波形反转得到)]1([--n x 即)1(+-n x 的波形,如题图1.13b 所示;题图1.1318答 设)21()(-=t x t g ,则)12()212()2(-≠-=t x t x t g ,所以)12(-t x 和)21(-t x 并不构成压扩关系;类似,)1(+-n x 和)1(-n x 并不构成反转关系;。

《信号与系统》习题参考答案

《信号与系统》习题参考答案

《信号与系统》习题参考答案(1)2—1(1) 01()()()()(1)()ta at x t h t x u t d e d e u t aτττττ∞---∞*=⋅-==-⎰⎰ (2) 00()()(cos sin )()x t h t t d ωτωτδττ∞-∞*=+⋅-⎰0000(cos sin )()cos sin t t t d t t ωωδττωω∞-∞=+⋅-=+⎰(3) 当0t <时 ()()0x t h t *=当01t ≤<时 20()()(1)2tt x t h t d t ττ*=+=+⎰当12t ≤<时 13()()(1)2x t h t d ττ*=+=⎰ 当23t ≤<时 12213()()(1)22t x t h t d t t ττ-*=+=-++⎰ 当3t ≥时 ()()0x t h t *= (4) 当0t <时 ()()0x t h t *=当0t ≥时 01()()sin 2(1cos 2)2tx t h t d t ττ*==-⎰ (5) 22222(2)2(4)241()()(2)2t t t t t t t x t h t e d e d e ee ττττ-----*=-=-+⎰⎰ (6)()x t at b =+11212()()()()()(2)3363tt x t h t a b d a tb t a t a bττδ-*=+++*--=++⎰2—2(1) [][][][2](2)[2]x n h n nu n n n u n δ*=*-=--(2) 10[][](2)[](21)[]nin i x n h n u n u n +=*==-∑(3) 当0n ≥时 1111[][]2()()232i n in i x n h n --=-∞*==∑ 当0n <时 111[][]2()223n i n i n i x n h n --=-∞*==⋅∑ (4) 当0n <时 [][]0x n h n *=当0n ≥时 110[][]()[]n n nin ii x n h n u n βααββα++-=-*==-∑(5) 当07n ≤≤时 071[][](1)[1(1)]2in i n x n h n -=-*=-=--∑ 当70n -≤≤时 71[][](1)[(1)1]2ni n i x n h n -=-*=-=--∑ 2—3(1) 12()()[(1)(1)][(5)(5)]x t x t u t u t t t δδ*=+--*++- (6)(4)(4)(6)u t u t u t u t =++--+-- (2) 123()()()x t x t x t **{[(6)(4)][(4)(6)]}*[u t u t u t u t =+-++---11()()]22t t δδ++- ( 6.5)( 4.5)( 5.5)( 3.5)( 3.5)( 5.5)u t u t u t u t u t u t =+-+++-++--- ( 4.5)( 6.5)u t u t +---(3) 1311()()[(1)(1)][()()]22x t x t u t u t t t δδ*=+--*++- ( 1.5)(0.5)(0.5)( 1.5)u t u t u t u t =+--++-- 2—4 0(3)331()(3)1t k k t tk k y t eu t k e e e e∞-----=-∞=-∞=-=⋅=-∑∑311A e-=- 2—5(1) 当2t ≥时 ()()0x t h t *= 当20t -<<时 11()()2t x t h t d t τ+-*==+⎰当02t <<时 11()()2t x t h t d t τ-*==-⎰(2) 当01t <<时 1()()22(1)tx t h t d t τ*==-⎰ 当10t -<<时 01()()22(1)2t tx t h t d d t t t ττ+*=+=-++=+⎰⎰当21t -<<-时 11()()2t x t h t d t τ+-*==+⎰当 1t ≥ 或 2t <-时 ()()0x t h t *=此题也可利用性质,先对()x t 积分,对()h t 微分,'()()()y t x t dt h t =*⎰(3) 当0t <时 (1)1()()1t x t h t e dt +∞--*==⎰当0t ≥时 1(1)(1)11()()22t t t t t x t h t e dt e dt e ++∞-----+*=+=-⎰⎰(4) 当t π< 或 5t π>时 ()()0x t h t *= 当3t ππ<<时 0()()sin 1cos t x t h t d t πττ-*==+⎰当35t ππ<<时 23()()sin 1cos t x t h t d t ππττ-*==--⎰(5) 当01t <<时 2211()()222()22x t h t t t t *=-=--当12t <≤时 2231()()264[2()]22x t h t t t t *=-+-=---()()x t h t *是以2为周期的周期函数 2—7(1) 111[][1]()[]()[1]22nn h n Ah n u n A u n ---=--111()[()()][1]()22nn n A u n n δδ-=+--=12A =(2) 111[][][][1][][]h n h n Ah n h n h n n δ---*-*-=*11[][][1]2h n n n δδ-∴=-- (3) 11[][][]2[[][1]][]nx n h n h n u n u n h n --**=--* 2[]2[[][4]]2[[1][5]]nn x n u n u n u n u n -∴=------2—8(1) 0()3()y t y t =(2) 00()()(2)y t y t y t =-- (3) 0()(1)y t y t =- (4) 0()()y t y t =-(5) 0()()dy t y t dt=(6) 202()()d y t y t dt =2—9 12111[][]()[]()[1]222n n x n h n u n u n -*=-+--1()([][1])[]2nu n u n n δ=---=1221[][][][]([][])*[]y n x n h n h n x n h n h n =**=* []*([][])[][]n n n n n u n u n u n u n δαβαβ=+=+ 2—10(1) 341201[][]((0.5))[3]2(1())[3]2n nn n x n x n u n u n ++=*=+=-+∑ (2) 4123[][][]2(1(0.5))[3]([][1])n x n x n x n u n n n δδ+**=-+*-- 43312(1(0.5))[3]2(1(0.5))[2]()[3]2n n n u n u n u n +++=-+--+=+ (3) 23[][][3]([][1])[3][2][3]x n x n u n n n u n u n n δδδ*=+*--=+-+=+ 2—11(1) 12345[][]([][][])[]h n h n h n h n h n h n =*-*+ (2) 34[][][1]h n h n nu n *=- 234[][][](1)[][1][]h n h n h nn u n n u n u n -*=+--= 12345[][]([][][])[]h n h n h n h n h n h n =*-*+514()([][3])*[][]2nu n u n u n hn =--+ 4[]6[1]7[2][]4[3]5[]6[1]7[2]4[3]n n u n n n n n u n n δδδδδδδ=+-+-++-=+-+---(1)'()()(2)(2)()(2)tt y t e x d x t y t x t τττ---∞=--+-=-+-⎰(2)()(2)t h t eu t --=- (2)当1t ≤时 ()0y t =当14t <≤时 1(2)(1)2()1t t y t e d e ττ+----==-⎰当4t >时 1(2)(4)(1)2()t t t t y t e d e e ττ+-------==-⎰2—13(1)213()()()()(1)[()](1)[()](1)h t h t h t u t t t u t t u t δδδ**=*-*-=-*-=-- 1213()()()()()()(1)h t h t h t h t h t u t u t =+**=--(2)1(10)1(02)()3(23)0t t t y t t t +-<<⎧⎪<<⎪=⎨-<<⎪⎪⎩其余2—14(1)因果、稳定 (2)非因果、非稳定 (3)非因果、稳定 (4)非因果、稳定 (5)非因果、稳定 (6)因果、稳定 (7)因果、非稳定 2—15(1)因果、稳定 (2)非因果、稳定 (3)非因果、非稳定 (4)非因果、稳定 (5)因果、非稳定 (6)非因果、稳定 (7)因果、稳定 2—16(1)对 (2)对()h t dt ∞-∞=+∞⎰(3)错 例如单位冲激响应(1)t δ-是因果的,但LTI 系统的逆系统(1)t δ+不是因果的。

《信号与系统》第二版课后答案_(郑君里)_高等教育出版社

《信号与系统》第二版课后答案_(郑君里)_高等教育出版社

5t −∞
e2

)

= c1r1 (t ) + c2r2 (t )
∫ ∫ ∫ ( ) ( ) ( ) ( ) ( ) 时变:输入 e t − t0
,输出
5t
e
−∞
τ
− t0
τ −t0 = x
dτ =
e 5t −t0
−∞
x
dx ≠
e 5(t−t0 )
−∞
x
dx = r
t − t0
非因果: t
= 1时,
解题过程: (1)方法一:
f (t)
1
f (t − 2)
1

-2
-1
f (3t − 2)
0
1

1
2
f (−3t − 2)
1

3
2/3 1
-1 -2/3
方法二:
f (t)
f (3t )
1
1


-2
-1
f (3t − 2)
0
1
-2/3

1/3
f (−3t − 2)
2/3 1 方法三:
-1 -2/3
1
f (t)
(2) r (t ) = e(t )u (t )
线性:设 r1 (t ) = e1 (t )u (t ) 、 r2 (t ) = e2 (t )u (t ) , 则 ⎡⎣c1e1 (t ) + c2e2 (t )⎤⎦ u (t ) = c1r1 (t ) + c2r2 (t )
6
时变:输入 e (t − t0 ) ,输出 e (t − t0 )u (t ) ≠ e (t − t0 )u (t − t0 ) = r (t − t0 ) 因果: r (t ) 仅与此时刻 e (t ) 有关 (3) r (t ) = sin ⎡⎣e(t )⎤⎦ u (t ) 非线性:设 r1 (t ) = sin ⎡⎣e1 (t )⎤⎦ u (t ) 、 r2 (t ) = sin ⎡⎣e2 (t )⎤⎦ u (t ) , 则 sin ⎡⎣c1e1 (t ) + c2e2 (t )⎤⎦ u (t ) ≠ sin ⎡⎣c1e1 (t )⎤⎦ u (t ) + sin ⎡⎣c2e2 (t )⎤⎦ u (t ) 时变:输入 e (t − t0 ) ,输出 sin ⎡⎣e (t − t0 )⎤⎦ u (t ) ≠ sin ⎡⎣e(t − t0 )⎤⎦ u (t − t0 ) = r (t − t0 ) 因果: r (t ) 仅与此时刻 e (t ) 有关 (4) r (t ) = e (1− t ) 线性:设 r1 (t ) = e1 (1− t ) 、 r2 (t ) = e2 (1− t ) ,则 c1e1 (1− t ) + c2e2 (1− t ) = c1r1 (t ) + c2r2 (t ) 时变:设 e1 (t ) = u (t ) − u (t −1.5) ,则 r1 (t ) = u (t + 0.5) − u (t ) e2 (t ) = e1 (t − 0.5) = u (t − 0.5) − u (t − 2) ,则 r2 (t ) = u (t +1) − u (t − 0.5) ≠ r1 (t − 0.5) 非因果:取 t = 0 ,则 r (0) = e (1) ,即 t = 0 时刻输出与 t = 1时刻输入有关。 (5) r (t ) = e(2t ) 线性:设 r1 (t ) = e1 (2t ) 、 r2 (t ) = e2 (2t ) ,则 c1e1 (2t ) + c2e2 (2t ) = c1r1 (t ) + c2r2 (t ) 时变:设 e1 (t ) = u (t ) − u (t − 2) ,则 r1 (t ) = u (t ) − u (t −1) e2 (t ) = e1 (t − 2) = u (t − 2) − u (t − 4) ,则 r2 (t ) = u (t −1) − u (t − 2) ≠ r1 (t − 2) 非因果:取 t = 1,则 r (1) = e (2) ,即 t = 1时刻输出与 t = 2 时刻输入有关。 (6) r (t ) = e2 (t ) 非线性:设 r1 (t ) = e12 (t ) 、 r2 (t ) = e22 (t ) , 则 ⎡⎣c1e1 (t ) + c2e2 (t )⎤⎦2 = c12e12 (t ) + c22e22 (t ) + 2c1c2e1 (t ) e2 (t ) ≠ c1r1 (t ) + c2r2 (t ) 时不变:输入 e (t − t0 ) ,输出 e2 (t − t0 ) = r (t − t0 ) 因果: r (t ) 仅与此时刻 e (t ) 有关
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-5
-4 -3 -2
-1
2 1
2
3
-1
x(-t+4)
t
45
6
2 1
4
6
-1
x(-t/2+4)
t 8 10 12
(e)[x(t)+x(-t)]u(t)
-2
-1
2
x(-t)
1
t
01
2
-1
(f)
x(t)[δ(t +
3) − δ(t - 3)]
2
2
3
[x(t)+x(-t)]u(t)
1 t
01
2
-1
-3/2 (-1/2)
x(t)[δ(t + 3) − δ(t - 3)]
2
2
3/2
t
0 (-1/2)
6
1.22
(a)x[n-4]
x[n-4]
11 1 1
1/2 1/2
1/2 n
0 1 23 4 5 6 7 8
-1/2
-1
(b)x[3-n]
x[n+3]
11 1 1
1/2 1/2
1/2 n
-7 -6 -5 -4 -3 -2 -1 0 1
=
2π 4
=π 2
则:整个信号的周期为:T = LCM{T1,T2} = π
1.11
j 4πn
解: e 7

ω1
=
4πn 7
,则:
2π ω1
=
2π 4π
=7= 2
N1 k
,⇒
N1
=
7
7
j 2πn
e5
→ ω2
= 2πn ,则: 2π
5
ω2
=
2π 2π
= 5 = N2 2k
,⇒ N2
=5
5
直流信号‘1’不影响信号的周期,故整个信号的周期为:N = LCM{N1, N2} = 35
y1[n]= x2[n] S2
y[n]= y2[n]
3
y[n]
=
y 2 [n]
=
x2[n

2] +
1 2
x2[n

3]
(1)
=
{2x1[n

2]
+
4x1[n
Байду номын сангаас

3]}
+
1 2 {2x1[n

3]
+
4x1[n

4]}
= 2x1[n − 2] + 5x1[n − 3] + 2x1[n − 4]
即: y[n] = 2x[n − 2] + 5x[n − 3] + 2x[n − 4]
-3 –2 –1 0 1 2 3 4 5 6 n
故: u[−n + 3] 即:M=-1,n0=-3。
1.13


∫ ∫ y(t) = t x(τ )dτ = t [δ (τ + 2) − δ (τ − 2)]dτ =u(t + 2) − u(t − 2)
−∞
−∞
y(t) 1
t
-2
0
2
∫ ∫ 则: E∞ =
西南科技大学信号与系统ÿÿÿ教ÿÿÿ材ÿÿÿ课ÿÿ后ÿÿÿ习ÿÿÿ题ÿÿÿ参ÿÿÿ考ÿÿ答ÿÿÿ案ÿÿÿ(魏冬梅老师布置的作业)
第一章作业解答
1.9
解:(b) x2 (t) = e −(1+ j)t = e −t e − jt
由于 x2 (t + T ) = e −(1+ j)(t+T ) = e e −(1+ j)t −(1+ j)T ≠ x2 (t) ,故不是周期信号;
(2)若系统级联顺序改变,该系统不会改变,因为该系统是线性时不变系统。 (也可以通过改变顺序求取输入、输出关系,与前面做对比)。
1.17
解:(a)因果性: y(t) = x(sin t)
举一反例:当 t = −π时s int = 0,则y(−π ) = x(0) 输出与以后的输入有关,不是因果
的; (b)线性:按照线性的证明过程(这里略),该系统是线性的。

|
y(t) |2
dt
=
2
1dt
=4
−∞
−2
1.14 解:x(t)的一个周期如图(a)所示,x(t)如图(b)所示:
2
x(t)的一个周期 x(t)
1 1
01
2
t
……
……
2 10 1 2 3 4 t
-2 (a)
-2 (b)
g(t)
(1)
……
……
3 2 10 1 2 3 4 t
而:g(t)如图(c)所示
4
x(t-2)
2
1
-1
0
12
t 3
(b)x(2-t)
x(t+2)
2
2 1
1 t
-4
-3 -2 -1 0
-1
0
1
-1
x(-t+2)
t
23
4
(c)x(2t+1)
x(t+1)
2
1
t
-3
-2
-1 0
1
-1
x(2t+1)
2
1
t
-1.5
-1
-0.5 0
0.5
-1
(d)x(4-t/2)
5
x(t+4)
2
1
t
-6
1.20
解:(a)
x1 (t)
=
cos( 2t )
=
1 2
(e j2t
+
e− j2t
)
则:
y1 (t)
= T{1 (e j2t 2
+ e − j2t )} =
1 (e j3t 2
+ e − j3t ) ;
(b)
x2 (t)
=
cos(2(t

1 )) 2
=
1 (e j(2t−1) 2
+ e − j(2t−1) )
-1/2
-1
1 1/2 -2 -1 0 1
1 1 1 x[-n+3]
1/2 n
678 2 34 5
-1/2 -1
(c) x[3n]
1 x[3n]
1/2 n
-4 -3 -2 -1 0 1 2 3 -1/2
7
(d) x[3n+1]
x[n+1]
11 1 1
1/2 1/2
1/2 n
-5 -4 -3 -2 -1 0 1 2 3
1.12

解: x[n] = 1 − ∑δ[n −1 − k] k =3
(1 + k) = m

= 1 − ∑δ [n − m] = 1 − u[n − 4] m=4
1
1


减去:
-3 –2 –1 0 1 2 3 4 u[n-4]
56 n

-3 –2 –1 0 1 2 3 4 5 6 n 等于:

(或者:由于该函数的包络随 t 增长衰减的指数信号,故其不是周期信号;)
(c) x3[n] = e j7πn 则 ω0 = 7π
2π = 2 是有理数,故其周期为 N=2; ω0 7
1.10
解:
2 cos(10t
+ 1)

ω1
= 10 ,则:T1
=
2π ω
1
=
π 5
sin(4t −1) → ω2
= 4 ,则:T2
-1/2
-1
1 x[3n+1]
1/2 1/2 n
-5 -4 -3 -2 -1 0 1 2 3
(e) x[n]u[3-n]=x[n]
x[n]u[3-n]
(c)
dx(t)/dt
(3)
……
…… 3 2 10 1 2 3 4 t (c)
(-3
dx(t) 如图(d)所示: dt
故: dx(t) = 3g(t) − 3g(t −1) dt
则: A1 = 3, A2 = −3;t1 = 0, t 2 = 1
1.15
解:该系统如下图所示:
x[n]=x1[n]
S1
=
1 e − j1e j2t 2
+
1 e j1e − j2t 2
则: y2 (t) =
1 e − j1e j3t 2
+
1 e j1e − j3t 2
=
1
(e
j 3(t − 1 ) 3
2
+

e
j 3(t − 1 ) 3
)
=
cos
3(t

1)
3
(注意:此系统不是时不变系统。)
1.21
(a) x(t-1)
相关文档
最新文档