概率论与数理统计考研笔记(pdf 10页)

合集下载

考研数学三必背知识点:概率论与数理统计

考研数学三必背知识点:概率论与数理统计

概率论与数理统计必考知识点一、随机事件和概率1、 随机事件及其概率运算律名称 表达式交换律A B B A +=+ BA AB =结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()(分配律 AC AB C B A ±=±)( ))(()(C A B A BC A ++=+德摩根律B A B A =+ B A AB +=2、概率的定义及其计算公式名称公式表达式 求逆公式 )(1)(A P A P -= 加法公式 )()()()(AB P B P A P B A P -+=+条件概率公式 )()()(A P AB P A B P =乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P =全概率公式∑==ni iiA B P A P B P 1)()()(贝叶斯公式 (逆概率公式) ∑∞==1)()()()()(i ijj j j A B P A P A B P A P B A P伯努力概型公式 n k p p C k P k n kk n n ,1,0,)1()(=-=-两件事件相互独立相应公式)()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ;1)()(=+A B P A B P二、随机变量及其分布1、分布函数性质)()(b F b X P =≤ )()()(a F b F b X a P -=≤<2、 散型随机变量分布名称 分布律0–1分布),1(p B 1,0,)1()(1=-==-k p p k X P k k二项分布),(p n Bn k p p C k X P k n kk n ,,1,0,)1()( =-==-泊松分布)(λP,2,1,0,!)(===-k k ek X P kλλ几何分布)(p G,2,1,0,)1()(1=-==-k p p k X P k超几何分布),,(n M N H),min(,,1,,)(M n l l k C C C k X P nNkn MN k M +===--3..续型随机变量分布名称密度函数 分布函数均匀分布),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f⎪⎪⎩⎪⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F ,1,,0)(指数分布)(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ 正态分布),(2σμN+∞<<∞-=--x ex f x 222)(21)(σμσπ ⎰∞---=xt t ex F d21)(222)(σμσπ标准正态分布)1,0(N+∞<<∞-=-x ex x 2221)(πϕ⎰∞---=xt t ex F d21)(222)(σμσπ三、多维随机变量及其分布1、离散型二维随机变量边缘分布 ∑∑======⋅jjijjii i py Y x X P x X P p ),()(∑∑======⋅iiijjij j py Y x X P y Y P p ),()(2、离散型二维随机变量条件分布2,1,)(),()(=========⋅i P p y Y P y Y x X P y Y x X P p jij j j i j i j i2,1,)(),()(=========⋅j P p x X P y Y x X P x X y Y P p i ij i j i i j i j3、连续型二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(4、连续型二维随机变量边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=yY dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(5、二维随机变量的条件分布 +∞<<-∞=y x f y x f x y f X X Y ,)(),()( +∞<<-∞=x y f y x f y x f Y Y X ,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k k k p x X E 连续型随机变量:⎰+∞∞-=dx x xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E =(2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E +=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -<(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov6、相关系数:)()(),(),(Y D X D Y X Cov Y X XY ==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关7、协方差和相关系数的性质(1))(),(X D X X Cov = ),(),(X Y C o v Y X C o v =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X a b C o v d bY c aX Cov =++8、常见数学分布的期望和方差分布 数学期望方差0-1分布),1(p B p)1(p p - 二行分布),(p n B np)1(p np -泊松分布)(λP λλ几何分布)(p G p1 21pp -超几何分布),,(n M N H N M n1)1(---N mN N M N M n均匀分布),(b a U 2b a + 12)(2a b - 正态分布),(2σμN μ2σ指数分布)(λEλ1 21λ五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E X P ≤≥-或2)(1})({ξξX D X E X P -≥<-2、大数定律:若n X X 1相互独立且∞→n 时,∑∑==−→−ni iDni i X E nX n11)(11(1)若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且M i ≤2σ则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11(2)若n X X 1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−∑=Pn i i X n 11 3、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:)1,0(~1N n n XY nk kn −→−-=∑=σμ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n =η则对任意x 有: ⎰∞--+∞→Φ==≤--xt n x x dtex p np np P )(21})1({lim 22πη(3)近似计算:)()()()(11σμσμσμσμσμn n a n n b n n b n n Xn n a P b Xa P nk knk k-Φ--Φ≈-≤-≤-=≤≤∑∑==六、数理统计1、总体和样本总体X 的分布函数)(x F 样本),(21n X X X 的联合分布为)(),(121k nk n x F x x x F =∏=2、统计量(1)样本平均值:∑==ni i X nX 11(2)样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11(3)样本标准差:∑=--=ni i X X n S 12)(11(4)样本k 阶原点距: 2,1,11==∑=kXn A ni ki k(5)样本k 阶中心距:∑==-==ni k ik k k X XnM B 13,2,)(1(6)次序统计量:设样本),(21n X X X 的观察值),(21n x x x ,将n x x x 21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤ ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤ 为样本),(21n X X X 的次序统计量。

概率论与数理统计重点笔记

概率论与数理统计重点笔记

概率论与数理统计重点笔记
概率论与数理统计是数学中的重要分支,它涉及到随机现象的
规律性和统计规律的研究。

在学习概率论与数理统计时,重点笔记
可以包括以下内容:
1. 概率论的基本概念,包括样本空间、随机事件、事件的概率、事件的运算规律等内容。

重点理解事件的概率定义、概率的性质和
概率的运算法则。

2. 随机变量及其分布,重点掌握随机变量的定义、离散随机变
量和连续随机变量的概念,以及它们的分布律、密度函数、分布函
数等。

还要重点理解常见的离散分布(如二项分布、泊松分布)和
连续分布(如正态分布、指数分布)。

3. 大数定律和中心极限定理,重点掌握大数定律和中心极限定
理的表述和应用,理解随机变量序列的收敛性质,以及大样本时样
本均值的渐近正态性质。

4. 参数估计,包括点估计和区间估计的基本概念和方法,重点
理解最大似然估计、矩估计等常用的参数估计方法。

5. 假设检验,理解假设检验的基本思想、原理和步骤,掌握显著性水平、拒绝域、接受域等相关概念,重点理解假设检验的错误类别和势函数的概念。

6. 相关性和回归分析,重点理解相关系数、回归方程、残差分析等内容,掌握相关性和回归分析的基本原理和方法。

总之,在学习概率论与数理统计的过程中,重点笔记应该围绕着基本概念、常用分布、极限定理、参数估计、假设检验和回归分析展开,全面理解这些内容并掌握其应用是十分重要的。

希望以上内容能够帮助你更好地理解概率论与数理统计。

概率论与数理统计笔记

概率论与数理统计笔记

AB = A ∪ B
设 A1, A2, …, An 是样本空间 Ω 的一个划分, B 是任意一 个事件,且 p(B)>0,则 P(Ai|B)=
P ( AB ) . P ( A)
P( Ai ) P( B | Ai) P( Ai ) P( B | Ai) = n , i=1,..,n P(B) P( Ak ) P( B | Ak)
k 1
概率的乘法公式: 当 P(A)>0 时,P(AB)= P(A)P(B|A) 当 P(B)>0 时,P(AB)= P(B)P(A|B) 乘法公式还可以推广到 n 个事件的情况:
n 重贝努利(Bernoulli)试验: Pn(k) =
C
k n
pk(1-p)n-k, k=0, 1, 2, …, n.(q=1-p)


k 1
Ak) =

k 1
P(Ak)
性质: (1) 0 ≤ P(A) ≤ 1, P (Φ) = 0 (2) P(A∪B) = P(A) + P(B)-P(AB) 特别地,当 A 与 B 互不相容时,P(A∪B) = P(A) + P(B) 推广: 对于任意事件 A, B, C 有 P(A∪B∪C) = P(A) + P(B)
当 0 < P(A) < 1 时,A 与 A 就是 Ω 的一个划分,又设 B 为任一事件, 则全概率公式的最简单形式为 P(B)=P(A) P(B|A)+ P( A ) P(B| A ) 运算律: 交换律:A∪B = B∪A, A∩B = B∩A 结合律:A∪(B∪C) = (A∪B)∪C, A∩(B∩C) = (A∩B)∩C 分配律:A∪(B∩C) = (A∪B)∩(A∪C), A∩(B∪C) = (A∩B)∪(A∩C)

浙江大学概率论与数理统计第4版课后答案及笔记

浙江大学概率论与数理统计第4版课后答案及笔记

浙江⼤学概率论与数理统计第4版课后答案及笔记浙江⼤学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解第1章 概率论的基本概念1.1 复习笔记⼀、随机事件1事件间的关系(见表1-1-1)表1-1-1 事件间的关系2事件的运算设A,B,C为事件,则有:(1)交换律:A∪B=B∪A;A∩B=B∩A;(2)结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C);(4)德摩根律:;。

⼆、频率与概率概率的性质(1)若A⊂B,则P(B-A)=P(B)-P(A)与P(B)≥P(A)(2)(逆事件的概率)P(A_)=1-P(A);(3)(加法公式)P(A∪B)=P(A)+P(B)-P(AB);推⼴:对于任意n个事件A1,A2,…,A n,三、等可能概型(古典概型)计算公式四、条件概率1乘法定理(1)乘法公式:若P(A)>0,则P(AB)=P(B|A)P(A)。

(2)若P(A1A2…A n-1)>0,则有2全概率公式和贝叶斯公式(1)全概率公式P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+…+P(A|B n)P(B n)(2)贝叶斯公式注:全概率公式和贝叶斯公式的最简单形式五、独⽴性1两个事件独⽴(1)P(AB)=P(A)P(B)(2)两个定理①若P(A)>0,A,B相互独⽴,则P(B|A)=P(B),反之同样。

②若事件A与B独⽴,则A与B_独⽴,A_与B独⽴,A_与B_独⽴。

2三个事件独⽴设A,B,C是三个事件,如果满⾜等式则称A,B,C两两独⽴,若也成⽴,则A,B,C相互独⽴。

3n个事件独⽴设A1,A2,…,A n是n(n≥2)个事件,∀1≤i<j<k<…≤n,则A1,A2,…,A n相互独⽴。

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结第一章概率论的基本概念定义:随机试验E的每个结果样本点组成样本空间S,S的子集为E的随机事件,单个样本点为基本事件.事件关系:1.A⊂B,A发生必导致B发生.2.A Y B和事件,A,B至少一个发生,A Y B发生.3.A I B记AB积事件,A,B同时发生,AB发生.4.A-B差事件,A发生,B不发生,A-B发生.5.A I B=Ø,A与B互不相容(互斥),A与B不能同时发生,基本事件两两互不相容.6.A Y B=S且A I B=Ø,A与B互为逆事件或对立事件,A与B中必有且仅有一个发生,记B=ASA-=.事件运算:交换律、结合律、分配率略.德摩根律:BABA IY=,BABA YI=.概率:概率就是n趋向无穷时的频率,记P(A).概率性质: 1.P(Ø)=0.2.(有限可加性)P(A1Y A2Y…Y A n)=P(A1)+P(A2)+…+P(A n),A i互不相容.3.若A⊂B,则P(B-A)=P(B)-P(A).4.对任意事件A,有)A(1)A(PP-=.5.P(A Y B)=P(A)+P(B)-P(AB).泊松分布:记X~π(λ),!}{kekXPkλλ-==,Λ,2,1,0=k.泊松定理:!)1(limkeppCkknkknnλλ--∞→=-,其中λ=np.当20≥n,05.0≤p应用泊松定理近似效果颇佳.随机变量分布函数:}{)(xXPxF≤=,+∞<<∞-x.)()(}{1221xFxFxXxP-=≤<.连续型随机变量:⎰∞-=x ttfxF d)()(,X为连续型随机变量,)(x f为X的概率密度函数,简称概率密度.概率密度性质:1.0)(≥xf;2.1d)(=⎰+∞∞-xxf;3.⎰=-=≤<21d)()()(}{1221xxxxfxFxFxXxP;4.)()(xfxF=',f(x)在x点连续;5.P{X=a}=0.均匀分布:记X~U(a,b);⎪⎩⎪⎨⎧<<-=其它,,1)(bxaabxf;⎪⎩⎪⎨⎧≥<≤--<=bxbxaabaxaxxF,,,1)(.性质:对a≤c<c+l≤b,有abllcXcP-=+≤<}{指数分布:⎪⎩⎪⎨⎧>=-其它,,1)(xexfxθθ;⎩⎨⎧>-=-其它,,1)(xexFxθ.无记忆性:}{}{tXPsXtsXP>=>+>.正态分布:记),(~2σμNX;]2)(ex p[21)(22σμσπ--=xxf;ttxF x d]2)(ex p[21)(22⎰∞---=σμσπ.性质:1.f(x)关于x=μ对称,且P{μ-h<X≤μ}=P{μ<X≤μ+h};2.有最大值f(μ)=(σπ2)-1.标准正态分布:]2exp[21)(2xx-=πϕ;⎰∞--=Φx ttx d]2ex p[21)(2π.即μ=0,σ=1时的正态分布X~N(0,1)性质:)(1)(xxΦ-=-Φ.正态分布的线性转化:对),(~2σμNX有)1,0(~NXZσμ-=;且有)(}{}{)(σμσμσμ-Φ=-≤-=≤=xxXPxXPxF.正态分布概率转化:)()(}{1221σμσμ-Φ--Φ=≤<xxxXxP;1)(2)()(}{-Φ=-Φ-Φ=+<<-ttttXtPσμσμ.3σ法则:P=Φ(1)-Φ(-1)=68.26%;P=Φ(2)-Φ(-2)=95.44%;P=Φ(3)-Φ(-3)=99.74%,P多落在(μ-3σ,μ+3σ)内.上ɑ分位点:对X~N(0,1),若zα满足条件P{X>zα}=α,0<α<1,则称点zα为标准正态分布的上α分位点.常用0.001 0.005 0.01 0.025 0.05 0.10上ɑ分位点:3.090 2.576 2.326 1.960 1.645 1.282Y服从自由度为1的χ2分布:设X密度函数f X(x),+∞<<∞-x,若Y=X2,则⎪⎩⎪⎨⎧≤>-+=)]()([21)(yyyfyfyyf XXY,,若设X~N(0,1),则有⎪⎩⎪⎨⎧≤>=--21)(221yyeyyfyY,,π定理:设X密度函数f X(x),设g(x)处处可导且恒有g′(x)>0(或g′(x)<0),则Y=g(X)是连续型随机变量,且有⎩⎨⎧<<'=其他,,)()]([)(βαyyhyhfyf XYh(y)是g(x)的反函数;①若+∞<<∞-x,则α=min{g(−∞),g(+∞)},β=max{g(−∞),g(+∞)};②若f X(x)在[a,b]外等于零,g(x)在[a,b]上单调,则α=min{g(a),g(b)},β=max{g(a),g(b)}.应用:Y=aX+b~N(aμ+b,(|a|σ)2).第二章多维随机变量及其分布二维随机变量的分布函数:分布函数(联合分布函数):)}(){(),(yYxXPyxF≤≤=I,记作:},{yYxXP≤≤.),(),(),(),(},{112112222121yxFyxFyxFyxFyYyxXxP+--=≤<≤<.F(x,y)性质:1.F(x,y)是x和y的不减函数,即x2>x1时,F(x2,y)≥F(x1,y);y2>y1时,F(x,y2)≥F(x,y1).2.0≤F(x,y)≤1且F(−∞,y)=0,F(x,−∞)=0,F(−∞,−∞)=0,F(+∞,+∞)=1.3.F(x+0,y)=F(x,y),F(x,y+0)=F(x,y),即F(x,y)关于x右连续,关于y也右连续.4.对于任意的(x1,y1),(x2,y2),x2>x1,y2>y1,有P{x1<X≤x2,y1<Y≤y2}≥0.离散型(X,Y):≥ijp,111=∑∑∞=∞=ijjip,ijyyxxpyxFii∑∑=≤≤),(.连续型(X,Y):vuvufyxF y x dd),(),(⎰⎰∞-∞-=.f(x,y)性质:1.f(x,y)≥0.2.1),(dd),(=∞∞=⎰⎰∞∞-∞∞-Fyxyxf.3.yxyxfGYXPG⎰⎰=∈dd),(}),{(.4.若f(x,y)在点(x,y)连续,则有),(),(2yxfyxyxF=∂∂∂.n维:n维随机变量及其分布函数是在二维基础上的拓展,性质与二维类似.边缘分布:F x(x),F y(y)依次称为二维随机变量(X,Y)关于X和Y的边缘分布函数,F X(x)=F(x,∞),F Y(y)=F(∞,y).离散型:*ip和j p*分别为(X,Y)关于X和Y的边缘分布律,记}{1iijjixXPpp==∑=∞=*,}{1jijijyYPpp==∑=∞=*.连续)(xfX ,)(yfY为(X,Y)关于X和Y的边缘密度函数,记型:⎰∞∞-=yy x f x f X d ),()(,⎰∞∞-=xy x f y fYd ),()(.二维正态分布:]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f .记(X ,Y )~N (μ1,μ2,σ12,σ22,ρ)]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,∞<<∞-y .离散型条件分布律: jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{.*=======i ij i j i i j p p x X P y Y x X P x X y Y P }{},{}{.连续型条件分布: 条件概率密度:)(),()(y f y x f y x f Y Y X =|| 条件分布函数:x y f y x f y Y x X P y x F xY Y X d )(),(}{)(⎰∞-==≤=||| )(),()(x f y x f x y f X X Y =||y x f y x f x X y Y P x y F yX X Y d )(),(}{)(⎰∞-==≤=|||含义:当0→ε时,)|(d )|(}|{||y x F x y x f y Y y x X P Y X xY X =≈+≤<≤⎰∞-ε.均匀分布:若⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x Ay x f ,则称(X ,Y)在G 上服从均匀分布.独立定若P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },即F (x ,y )=F x (x )F y (y ),则称随机变量X 和Y 是相互独立的.义:独立条件或可等价为:连续型:f(x,y)=f x(x)f y(y);离散型:P{X=x i,Y=y j}=P{X=x i}P{Y=y j}.正态独立:对于二维正态随机变量(X,Y),X和Y相互对立的充要条件是:参数ρ=0.n维延伸:上述概念可推广至n维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n-1元)的.定理:设(X1,X2,…,X m)和(Y1,Y2,…,Y n)相互独立,则X i和Y j相互独立.又若h,g是连续函数,则h(X1,X2,…,X m)和g(Y1,Y2,…,Y n)相互独立.Z=X +Y分布:若连续型(X,Y)概率密度为f(x,y),则Z=X+Y为连续型且其概率密度为⎰∞∞-+-=yyyzfzfYXd),()(或⎰∞∞-+-=xxzxfzfYXd),()(.f X和f Y的卷积公式:记⎰∞∞-+-==yyfyzfzfffYXYXYXd)()()(*⎰∞∞--=xxzfxfYXd)()(,其中除继上述条件,且X和Y相互独立,边缘密度分别为f X(x)和f Y(y).正态卷积:若X和Y相互独立且X~N(μ1,σ12),记Y~N(μ2,σ22),则对Z=X+Y有Z~N(μ1+μ2,σ12+σ22).1.上述结论可推广至n个独立正态随机变量.2.有限个独立正态随机变量的线性组合仍服从正态分布.伽马分布: 记),(~θαΓX ,0>α,0>θ.⎪⎩⎪⎨⎧>Γ=--其他,,00)(1)(1x e x x f x θαααθ,其中⎰+∞--=Γ01d )(te t t αα.若X 和Y 独立且X ~Γ(α,θ),记Y ~Γ(β,θ),则有X+Y~Γ(α+β,θ).可推广到n 个独立Γ分布变量之和.XYZ =:⎰∞∞-=xxz x f x z f X Y d ),()(,若X 和Y 相互独立,则有⎰∞∞-=xxz f x f x z f Y X X Y d )()()(.XYZ =分布: ⎰∞∞-=x xzx f x z f XY d ),(1)(,若X 和Y 相互独立,则有⎰∞∞-=x xz f x f x z f Y X XY d )()(1)(.大小分布:若X 和Y 相互独立,且有M =max{X ,Y }及N =min{X ,Y },则M 的分布函数:F max (z )=F X (z )F Y (z ),N 的分布函数:F min (z )=1-[1-F X (z )][1-F Y (z )],以上结果可推广到n 个独立随机变量的情况.第四章 随机变量的数字特征数学期望:简称期望或均值,记为E (X );离散型:kkk p x X E ∑=∞=1)(.连续型:⎰∞∞-=xx xf X E d )()(.定理: 设Y 是随机变量X 的函数:Y =g (X )(g 是连续函数). 1.若X 是离散型,且分布律为kk k p x g Y E )()(1∑=∞=. 2.若X 是连续型,概率密度为⎰∞∞-=xx f x g Y E d )()()(.P{X=x k}=p k,则:f(x),则:定理推广:设Z是随机变量X,Y的函数:Z=g(X,Y)(g是连续函数).1.离散型:分布律为P{X=x i,Y=y j}=p ij,则:ijjiijpyxgZE),()(11∑∑=∞=∞=.2.连续型:⎰⎰∞∞-∞∞-=yxyxfyxgZE dd),(),()(期望性质:设C是常数,X和Y是随机变量,则:1.E(C)=C.2.E(CX)=CE(X).3.E(X+Y)=E(X)+E(Y).4.又若X和Y相互独立的,则E(XY)=E(X)E(Y).方差:记D(X)或Var(X),D(X)=Var(X)=E{[X-E(X)]2}.标准差(均方差):记为σ(X),σ(X)= .通式:22)]([)()(XEXEXD-=.kkkpXExXD21)]([)(-∑=∞=,⎰∞∞--=xxfxExXD d)()]([)(2.标准化变量:记σμ-=xX*,其中μ=)(XE,2)(σ=XD,*X称为X的标准化变量.)(*=XE,1)(*=XD.方差性质:设C是常数,X和Y1.D(C)=0.2.D(CX)=C2D(X),D(X+C)=D(X).3.D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-)(xD是随机变量,则:E(Y))},若X,Y相互独立D(X+Y)=D(X)+D(Y).4.D(X)=0的充要条件是P{X=E(X)}=1.正态线性变换:若),(~2iiiNXσμ,i C是不全为0的常数,则),(~22112211iiniiininnCCNXCXCXCσμ∑∑+++==Λ.切比雪夫不等式:22}{εσεμ≤≥-XP或221}{εσεμ-≥<-XP,其中)(X E=μ,)(2XD=σ,ε为任意正数.协方差:记)]}()][({[),Cov(YEYXEXEYX--=.X与Y的相关系数:)()(),Cov(YDXDYXXY=ρ.D(X+Y)=D(X)+D(Y)+2Cov(X,Y),Cov(X,Y)=E(XY)-E(X)E(Y).性质:1.Cov(aX,bY)=ab Cov(X,Y),a,b是常数.2.Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y).系数性质:令e=E[(Y-(a+bX))2],则e取最小值时有)()1(]))([(22minYDXbaYEeXYρ-=+-=,其中)()(XEbYEa-=,)(),Cov(0XDYXb=.1.|ρXY|≤1.2.|ρXY|=1的充要条件是:存在常数a,b使P{Y=a+bX}=1.|ρXY|越大e越小X和Y线性关系越明显,当|ρXY|=1时,Y=a+bX;反之亦然,当ρXY=0时,X和Y不相关.X和Y相互对立,则X和Y不相关;但X和Y不相关,X和Y不一定相互独立.定义:k阶矩(k阶原点矩):E(X k ).n维随机变量X i的协方差矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛=nnnnnncccccccccΛMMMΛΛ212222111211C,),Cov(jiijXXc==E{[X i-E(X i)][X j-E(X j)]}.k+l阶混合矩:E(X k Y l ).k阶中心矩:E{[X-E(X)] k }.k+l阶混合中心矩:E{[X-E(X)]k[Y-E(Y)]l}.n维正态分布:)}()(21ex p{det)2(1),,,(1T221μXCμXC---=-nnxxxfπΛ,T21T21),,,(),,,(nnxxxμμμΛΛ==μX.性质:1.n维正态随机变量(X1,X2,…,X n)的每一个分量X i (i=1,2,…,n)都是正态随机变量,反之,亦成立.2.n维随机变量(X1,X2,…,X n)服从n维正态分布的充要条件是X1,X2,…,X n的任意线性组合l1X1+l2X2+…+l n X n服从一维正态分布(其中l1,l2,…,l n不全为零).3.若(X1,X2,…,X n)服从n维正态分布,且Y1,Y2,…,Y k是X j (j=1,2,…,n)的线性函数,则(Y1,Y2,…,Y k)也服从多维正态分布.4.若(X1,X2,…,X n)服从n维正态分布,则“X i 相互独立”与“X i 两两不相关”等价.第五章大数定律及中心极限定理弱大数定理:若X1,X2,…是相互独立并服从同一分布的随机变量序列,且E(Xk)=μ,则对任意ε>0有11lim1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμknknXnP或→μPX,knkXnX11=∑=.定义:Y1,Y2,…,Y n ,…是一个随机变量序列,a是一个常数.若对任意ε>0,有1}|{|lim=<-∞→εaYPnn则称序列Y1,Y2,…,Y n ,…依概率收敛于a.记aY Pn−→−伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心定理设X1,X2,…,Xn,…相互独立σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).~近似的极限定理一:并服从同一分布,且E(Xk)=μ,D(Xk)=σ2 >0,则n→∞时有定理二:设X1,X2,…,Xn,…相互独立且E(X k)=μ k,D(X k)=σk2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~p n bnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组图形特点:外轮廓接近宽,纵坐标为高的跨越横轴的几个小矩形.距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR 或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准2SS=样本k阶kinikXnA11=∑=,k≥1样本k阶kinikXXnB)(11-∑==,k≥2min Q1 M Q3 max差: (原点)矩:中心矩:经验分布函数: )(1)(x S nx F n =,∞<<∞-x .)(x S 表示F 的一个样本X 1,X 2,…,X n 中不大于x 的随机变量的个数.自由度为n 的χ2分布: 记χ2~χ2(n ),222212nX X X +++=Λχ,其中X 1,X 2,…,X n 是来自总体N (0,1)的样本.E (χ2 )=n ,D (χ2 )=2n . χ12+χ22~χ2(n 1+n 2). ⎪⎩⎪⎨⎧>Γ=--其他,,00)2(21)(2122y e x n y f y n n .χ2分布的分位点: 对于0<α<1,满足αχχαχα==>⎰∞y y f n P n )(222d )()}({,则称)(2n αχ为)(2n χ的上α分位点.当n 充分大时(n >40),22)12(21)(-+≈n z n ααχ,其中αz 是标准正态分布的上α分位点.自由度为n 的t 分布:记t ~t (n ),n Y Xt /=, 其中X~N (0,1),Y~χ2(n ),X ,Y 相互独立.2)1(2)1(]2[]2)1([)(+-+Γ+Γ=n n t n n n t h π h (t )图形关于t =0对称;当n充分大时,t 分布近似于N (0,1)分布.t 分布对于0<α<1,满足ααα==>⎰∞t t h n t t P n t )(d )()}({,则称)(n tα为)(n t 的上α的分位点:分位点.由h(t)对称性可知t1-α(n)=-tα(n).当n>45时,tα(n)≈zα,zα是标准正态分布的上α分位点.自由度为(n1,n2)的F分布:记F~F(n1,n2),21nVnUF=,其中U~χ2(n1),V~χ2(n2),X,Y相互独立.1/F~F(n2,n1)⎪⎩⎪⎨⎧>+ΓΓ+Γ=+-其他,,]1)[2()2()](2)([)(2)(21211)2(221212111xnynnnynnnny nnnnψF分布的分位点:对于0<α<1,满足αψαα==>⎰∞yynnFFPnnF),(2121d)()},({,则称),(21n nFα为),(21nnF的上α分位点.重要性质:F1-α(n1,n2)=1/Fα(n1,n2).定理一:设X1,X2,…,X n 是来自N(μ,σ2)的样本,则有),(~2nNXσμ,其中X是样本均值.定理二:设X1,X2,…,X n 是来自N(μ,σ2)的样本,样本均值和样本方差分别记为X,2S,则有1.)1(~)1(222--nSnχσ;2.X与2S相互独立.定理三:设X1,X2,…,X n 是来自N(μ,σ2)的样本,样本均值和样本方差分别记为X,2S,则有)1(~--ntnSXμ.定理设X1,X2,…,X n1与X,Y,21S,22S,则有四: Y 1,Y 2,…,Y n 2分别是来自N (μ1,σ12)和N (μ2,σ22)的样本,且相互独立.设这两个样本的样本均值和样本方差分别记为 1.)1,1(~2122212221--n n F S Sσσ.2.当σ12=σ22=σ2时,)2(~)()(21121121-++-----n n t nn S Y X w μμ,其中2)1()1(212222112-+-+-=n n S n S n S w,2wwS S=.第七章 参数估计定义:估计量:),,,(ˆ21nX X X Λθ,估计值:),,,(ˆ21nx x x Λθ,统称为估计.矩估计法: 令)(llX E =μ=li n i l X n A 11=∑=(kl ,,2,1Λ=)(k 为未知数个数)联立方程组,求出估计θˆ. 设总体X均值μ及方差σ2都存在,则有X A ==1ˆμ,212212122)(11ˆX X n X X n A A i n i i n i -∑=-∑=-===σ.最大似然估计法:似然函数:离散:);()(1θθini x p L =∏=或连续:);()(1θθini x f L =∏=,)(θL 化简可去掉与θ无关的因式项. θˆ即为)(θL 最大值,可由方程0)(d d=θθL 或0)(ln d d=θθL 求得.当多个未知参数θ1,θ1,…,θk时:可由方程组0d d=L iθ或0ln d d=L iθ(k i ,,2,1Λ=)求得.最大似然估计的不变性:若u=u(θ)有单值反函数θ=θ(u),则有)ˆ(ˆθuu=,其中θˆ为最大似然估计.截尾样本取样:定时截尾样本:抽样n件产品,固定时间段t0内记录产品个体失效时间(0≤t1≤t2≤…≤t m≤t0)和失效产品数量.定数截尾样本:抽样n件产品,固定失效产品数量数量m记录产品个体失效时间(0≤t1≤t2≤…≤t m).结尾样本最大似然估计:定数截尾样本:设产品寿命服从指数分布X~e(θ),θ即产品平均寿命.产品t i时失效概率P{t=t i}≈f(t i)d t i,寿命超过t m的概率θm tmettF-=>}{,则)(}){()(1imimnmmntPttFCL=-∏>=θ,化简得)(1)(m t sm eL---=θθθ,由0)(lndd=θθL得:m t s m)(ˆ=θ,其中s(t m)=t1+t2+…+t m+(n-m)t m,称为实验总时间.定时截尾样本:与定数结尾样本讨论类似有s(t0)=t1+t2+…+t m+(n-m)t0,)(01)(t sm eL---=θθθ,m t s)(ˆ0=θ,.无偏性:估计量),,,(ˆ21nXXXΛθ的)ˆ(θE存在且θθ=)ˆ(E,则称θˆ是θ的无偏估计量.有效性:),,,(ˆ211nXXXΛθ与),,,(ˆ212nXXXΛθ都是θ的无偏估计量,若)ˆ()ˆ(21θθDD≤,则1ˆθ较2ˆθ有效.相合性:设),,,(ˆ21nXXXΛθθ的估计量,若对于任意0>ε有1}|ˆ{|lim=<-∞→εθθPn,则称θˆ是θ的相合估计量.置信区间:αθθθ-≥<<1)},,,(),,,({2121nnXXXXXXPΛΛ,θ和θ分别为置信下限和置信上限,则),(θθ是θ的一个置信水平为α-1置信区间,α-1称为置信水平,10<<α.正态设X1,枢轴量W W分布a,b不等其中样本置信区间:X2,…,X n是来自总体X~N(μ,σ2)的样本,则有μ的置信区间:式置信水平置信区间)1,0(~NnXσμ-⇒ασμα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-12znXP⇒)(2ασznX±zα/2为上α分位点θ置信区间的求解:1.先求枢轴量:即函数W=W(X1,X2,…,X n;θ),且函数W的分布不依赖未知参数.如上讨论标注2.对于给定置信水平α-1,定出两常数a,b使P{a<W<b}=α-1,从而得到置信区间.(0-1)分布p 的区间估计:样本容量n>50时,⇒--∞→)1,0(~)1()(lim NpnpnpXnn{}⇒-≈<--αα1)1()(2zpnpnpXnP)2()(222222<++-+XnpzXnpznαα⇒若令22αzna+=,)2(22αzXnb+-=,2X nc=,则有置信区间(aacbb2)4(2---,aacbb2)4(2-+-).单侧置信区间:若αθθ-≥>1}{P或αθθ-≥<1}{P,称(θ,∞)或(∞-,θ)是θ的置信水平为α-1的单侧置信区间.正态总体均值、方差的置信区间与单侧置信限(置信水平为α-1)待估其他枢轴量W的分布置信区间单侧置信限一个正态总体μσ2已知)1,0(~NnXZσμ-=)(2ασznX±ασμznX+=,ασμznX-=μσ2未知)1(~--=ntnSXtμ⎪⎭⎫⎝⎛±2αtnSXαμtnSX+=,αμtnSX-=σ2μ未知)1(~)1(2222--=nSnχσχ⎪⎪⎭⎫⎝⎛---2212222)1(,)1(ααχχSnSn2122)1(αχσ--=Sn,222)1(αχσSn-=两个正态总体μ1-μ2σ12,σ22已知)1,0(~)(22212121NnnYXZσσμμ+---=⎪⎪⎭⎫⎝⎛+±-2221212nnzYXσσα2221212122212121nnzYXnnzYXσσμμσσμμαα+--=-++-=-μ1-μ2σ12=σ22=σ2未知)2(~)()(21121121-++---=--nntnnSYXtwμμ2)1()1(212222112-+-+-=nnSnSnSw()12112--+±-nnStYXwα2wwSS=121121121121----+--=-++-=-nnStYXnnStYXwwααμμμμσ12/σ22μ1,μ2未知)1,1(~2122212221--=nnFSSFσσ⎪⎪⎭⎫⎝⎛-212221222211,1ααFSSFSSασσ-=1222122211FSS,ασσFSS122212221=单个总体X ~N (μ,σ2),两个总体X ~N (μ1,σ12),Y ~N (μ2,σ22).第八章 假设实验定义: H 0:原假设或零假设,为理想结果假设;H 1:备择假设,原假设被拒绝后可供选择的假设.第Ⅰ类错误:H 0实际为真时,却拒绝H 0.第Ⅱ类错误:H 0实际为假时,却接受H 0.显著性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P {当H 0为真拒绝H 0}≤α,α称为显著水平.拒绝域:取值拒绝H 0.临界点:拒绝域边界.双边假设检验:H 0:θ=θ0,H 1:θ≠θ0.右边检验:H 0:θ≤θ0,H 1:θ>θ0.左边检验:H 0:θ≥θ0,H 1:θ<θ0. 正态总体均值、方差的检验法(显著性水平为α)原假设H 0 备择假设H 1 检验统计量 拒绝域 1 σ2已知 μ≤μ0 μ>μ0 nX Z σμ0-=z ≥z αμ≥μ0 μ<μ0 z ≤-z α μ=μ0μ≠μ0 |z |≥z α/2 2 σ2未知 μ≤μ0 μ>μ0 nS X t 0μ-=t ≥t α(n -1)μ≥μ0μ<μ0 t ≤-t α(n -1) μ=μ0 μ≠μ0 |t |≥t α/2(n -1) 3σ1,σ2 已μ1-μ1-222121n n Y X Z σσδ+--=z ≥z α μ1-μ1-z ≤-z α μ1-μ1-|z |≥z α/2 4 σ12μ1-μ1-1211--+--=nn S Y X t w δt ≥t α(n 1+n 2-2)=σ22μ1-μ1-2)1()1(212222112-+-+-=n n S n S n S wt ≤-t α(n 1+n 2-2) μ1-μ1-|t |≥t α/2(n 1+n 2-2) 5 μ未知 σ2≤σ02 σ2>σ02 2022)1(σχSn -=χ2≥χα2(n -1) σ2≥σ02 σ2<σ02χ2≤χ21-α(n -1) σ2=σ02 σ2≠σ02χ2≥χ2α/2(n -1)或χ2≤χ21-α/2(n -1) 6 μ1,μ2 未知 σ12≤σ22σ12>σ22 2221S S F =F ≥F α(n 1-1,n 2-1) σ12≥σ22σ12<σ22F ≤F 1-α(n 1-1,n 2-1)σ12=σ22σ12≠σ22F ≥F α/2(n 1-1,n 2-1)或F ≤F 1-α/2(n 1-1,n 2-1) 7 成对 数据μD ≤0 μD >0 nS D t D 0-=t ≥t α(n -1)μD ≥0μD <0 t ≤-t α(n -1) μD =0μD ≠0|t |≥t α-2(n -1)检验方法选择: 主要是逐对比较法(成对数据)跟两个正态总体均值差的检验的区别,如上表即7跟3、4的区别,成对数据指两样本X 和Y 之间存在一一对应关系,而3和4一般指X 和Y 相互对立,但针对同一实体.关系: 置信区间与假设检验之间的关系:未知参数的置信水平为1-α的置信区间与显著水平为α的接受域相同.定义:施行特征函数(OC函数):β(θ)=Pθ(接受H0).功效函数:1-β(θ).功效:当θ*∈H1时,1-β(θ*)的值.。

概率论与数理统计笔记

概率论与数理统计笔记

第一章 概率论的基本概念随机试验:1.可以在相同的条件下重复进行2.每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果3.进行一次试验之前不能确定哪个结果会出现样本空间:随机试验E 的所有可能结果组成的集合称为E 的样本空间,记为S 随机事件:试验E 的样本空间S 的子集,简称事件基本事件:由一个样本点(E 的每个结果)组成的单点集 频率:事件A 发生次数和试验次数的比值n A /n ,记作f n (A)概率:对事件A 赋予实数,P(A) 非负性,规范性,可列可加性性质i P(∅)=0.性质ii(有限可加性) 若A1,A2,…,An 是两两互不相容的事件,则有P(A 1⋃A 2⋃…⋃A n )=P (A 1)+P (A 2)+⋯+P(A n ).性质iii 设A,B 是两个事件,若A ⊂B,则有P(B-A)=P(B)-P(A);P(B)≥P(A). 性质iv 对于任一事件A,P(A)≤1.性质v(逆事件的概率) 对于任一事件A,有P(A )=1-P(A).性质vi(加法公式) 对于任意两事件 A,B 有P(A ⋃B)=P(A)+P(B)-P(AB). 古典概型:样本空间只包含有限个元素,每个基本事件可能性相同A 的对立事件A̅及其概率:也称逆事件 两个互不相容事件的和事件的概率:两事件不能同时发生,概率的有限可加性 概率的加法定理:P(A ⋃B )=P(A)+P(B)-P(AB)条件概率:在事件A 发生的条件下事件B 发生的P(B|A)=P(AB)P(A).概率的乘法公式:P(ABC)=P(C|AB)P(B|A)P(A) 全概率公式:P (A )=∑P (A |B i )n i=1P(B i ) B i 是试验E 的S 的划分,A 为E 的事件 贝叶斯公式:P (B i |A )=P(A|B i )P(B i )∑P(A|B j )P(B j )nj=1,i=1,2,…,n.事件的独立性:P(AB)=P(A)P(B),互相独立与互不相容不能同时成立设n 个事件,如果对于其中任意2个,任意3个,…,任意n 个事件的积事件的概率都等于各事件概率之积,则称n 个事件相互独立实际推断原理:概率很小的事件在一次实验中实际上几乎是不发生的第二章 随机变量及其分布随机变量:设E 的样本空间S={e},X=X(e)是定义在样本空间S 上的单值函数,称随机变量分布函数:X 是随机变量,x 是任意实数,F (x )=P {X ≤x },−∞<x <∞称为X 的分布函数任意实数x 1,x 2(x 1<x 2),有 P {x 1<X ≤x 2}=P {X ≤x 2}−P {X ≤x 1}=F (x 2)−F(x 1) 基本性质:不减函数,0≤F(x)≤1且F(-∞)=0,F(∞)=1离散型随机变量:全部可能取到的值是有限个或可列无限多个其分布律: P {X =x k }=p k ,k =1,2,… 连续性随机变量:F (x )=∫f(t)dt x−∞ 非负可积函数f (x )概率密度:f(x)性质:f (x )≥0;∫f (x )dx ∞−∞=1伯努利试验:试验E 只有两个可能结果:A 及A(0−1)分布: P {X =k }=p k (1−p)1−k ,k =0,1 (0<p <1) 记为X ~b(1,p) n 重伯努利试验:将伯努利试验E 独立重复地进行n 次,以C i 为A 或A ,i=1,2,…,n.独立:P (C 1C 2…C n )=P (C 1)P (C 2)…P(C n )二项分布:P {X =k }=(n k )p k (1−p)n−k ,k =0,1,2,…,n. 记为X ~b(n,p) 泊松分布:P {X =k }=λk e −λk!,k =0,1,2,…,λ是常数,记为X ~π(λ)指数分布:f (x )={1θe −xθ,x >00,otherwise,记为X ~η(θ)均匀分布:f (x )={1b−a ,a <x <b,0,otherwise.,记为X ~U(a,b)正态分布:f (x )=√2πσ−(x−μ)22σ2,-∞<x<∞,其中μ,σ(σ>0)是常数,记作X ~N (μ,σ2)标准正态分布:X ~N(0,1),概率密度为φ(x),分布函数为Φ(x) 引理:若X ~N(μ,σ2),则Z =X−μσ~N(0,1)随机变量函数的分布:Y=g(X),分布函数法(先求分布函数,再对分布函数求导)第三章 多维随机变量及其分布二维随机变量(X ,Y ):设X=X(e),Y=Y(e)是定义在样本空间S 上的随机变量构成的向量 (X ,Y )的分布函数:联合分布函数:F (x,y )=P {(X ≤x )∩(Y ≤y )}≝P{X ≤x,Y ≤y}边缘分布函数:F X (x )=P {X ≤x }=P {X ≤x,Y <∞}=F(x,∞),F Y (y )=F(∞,y) 离散型随机变量(X ,Y )的分布律:P{X =x i ,Y =y j }=p ij ,i,j =1,2,… 联合分布律 连续型随机变量(X ,Y )的概率密度:f(x,y) 联合概率密度1. f (x,y )≥02. ∫∫f(x,y)dxdy ∞−∞=F (∞,∞)=1∞−∞3. 设G 是xOy 平面上的区域,点(X,Y)落在G 内的概率为∬f(x,y)dxdyG . 4. 若f(x,y)在点(x,y)连续,则有∂2yF(x,y)∂x ∂y=f(x,y)离散型随机变量(X ,Y )的边缘分布律:P {X =x i }=∑p ij ∞i=0,i =1,2,…, Y 一样 连续型随机变量(X ,Y )的边缘概率密度:f X (x )=∫f(x,y)dy ∞−∞,Y 一样 条件分布函数:F X|Y (x |y )=P {X ≤x |Y =y }=∫f(x,y)f X (x)dy y −∞ 在Y=y 条件下X 的条件分布函数条件分布律:P {X =x i |Y =y i }=P{X=x i ,Y=y i }P{Y=y i }=p ij p .j,i =1,2,… 在Y=y j 条件下X 的条件分布律条件概率密度:f X|Y (x |y )=f(x,y)f Y (y)在Y=y 的条件下X 的条件概率密度两个随机变量X ,Y 的独立性:F (x,y )=F X (x)F Y (y)对二维正态随机变量变量(X,Y),X 和Y 相互独立的充要条件是参数ρ=0 Z=X+Y 、Z=Y/X 、Z=XY 的概率密度:Z=X+Y:f X+Y (z )={∫f X (z −y)f Y (y)dy∞−∞∫f X (x)f Y (z −x)dx∞−∞ Z=Y/X:f Y X(z )=∫|x|f(x,xz)dx ∞−∞=∫|x|f X (x)f Y (xz)dx ∞−∞Z=XY:f XY (z )=∫1|x|f(x,z x)dx ∞−∞=∫1|x|f X (x)f Y (zx)dx ∞−∞M=max{X ,Y},N=min{X ,Y}的概率密度:分布函数:F max (z)=P{M≤z}=P{X≤z,Y≤z}=P{X≤z}P{Y≤z}=F X (z)F Y (z).F min (z)=P{N≤z}=1-P(N>z)=1-P{X>z,Y>z}=1-P{X>z}∙P{Y>z}=1-[1-F X (z)][1-F Y (z)].第四章 随机变量的数字特征数学期望:E (X )=∑x k p k ∞k=1E (X )=∫xf(x)∞−∞dx (积分绝对收敛)随机变量函数的数学期望:Y=g(X)(g 是连续函数)E(Y)=E[g(X)]=∑g(x k )∞k=1p k E(Y)=E[g(X)]=∫g(x)f(x)dx ∞−∞E(Z)=E[g(X,Y)]=∑∑g(x i ,y j )p ij ∞i=1∞j=1E(Z)=E[g(X,Y)]=∫∫g(x,y)f(x,y)∞−∞dxdy ∞−∞数学期望的性质:1.设C 是常数,则有E(C)=C.2.设X 是一个随机变量,C 是常数,则有E(CX)=CE(X).3.设X,Y 是两个随机变量,则有E(X+Y)=E(X)+E(Y).(可推广到任意有限个随机变量之和)4.设X,Y 是相互独立的随机变量,则有E(XY)=E(X)+E(Y).(可推广到任意有限个相互独立随机变量之积)方差:D(X)=Var(X)=E{[X-E(X)]2}. 标准差:σ(x)=√D(X)方差的性质:1.设C 是常数,则D(C)=0.2.设X 是随机变量,C 是常数,则有D(CX)=C 2D(X),D(X+C)=D(X).3.设X,Y 是两个随机变量,则有D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-E(X))}. 若X,Y 相互独立,则有D(X+Y)=D(X)+D(Y).4.D(X)=0的充要条件是X 以概率1取常数E(X),即P{X=E(X)}=1. 标准化的随机变量:X ∗=X−μσ.(数学期望为0,方差为1)协方差:Cov(X,Y)=E{[X-E(X)][Y-E(Y)]}. 相关系数:ρXY =√D(X)D(Y)相关系数的性质:1.|ρXY |≤1.2.|ρXY |=1的充要条件是,存在常数a,b 使P{Y=a+bX}=1. X ,Y 不相关:当ρXY =0时.切比雪夫不等式:设随机变量X 具有E(X)=μ,方差D(X)=σ2,则对任意正数ε,不等式 P{|X −μ|≥ε}≤σ2ε2成立几种重要分布的数学期望和方差:(推导)矩:k 阶原点矩:E(X k ),k=1,2,…k 阶中心矩:E([X-E(X)]k ),k=2,3,… k+l 阶混合矩:E(X k Y l ),k,l=1,2,…k+l 阶混合中心矩:E([X-E(X)]k [Y-E(Y)]l ),k,l=1,2,…协方差矩阵:C =(c ij )=(Cov(X i ,Y j ))=E{[X i -E(X i )][X j -E(X j )]},i,j=1,2,…,n.第五章 大数定律及中心极限定理依概率收敛:设Y 1,Y 2,…,Y n ,…是一个随机变量序列,a 是一个常数.若对于任意正数ε,有lim n→∞P {|Y n −a |<ε}=1,则称序列Y 1,Y 2,…,Y n ,…依概率收敛于a,记为Y n P→a.伯努利大数定理:P(A)=P,频率nA n(n 次重复独立试验),对∀ε>0,lim n→∞P {|n A n−P|<ε}=1.辛钦大数定理:已知R.V . X 1,X 2,…,X n ,…相互独立且E(X i )=μ.(i=1,2,…)则∀ε>0,lim n→∞P {|1n ∑X k −μn k=1|<ε}=1.独立同分布的中心极限定理:设R.V .序列:X 1,X 2,…,X n ,…相互独立,并且E(X k )=μ, D(X k )=σ2,k=1,2,…则k n k=1√nσ2̃N(0,1) 标准正态分布(高斯分布)近似计算 李雅普诺夫中心极限定理:棣莫弗-拉普拉斯中心极限定理:设R.V. ηn ~B(n,p),则对任意x 有{η−np √np (1−p )≤x}≈Φ(x) 二项分布(n→∞)→ 正态分布第六章 样本及抽样分布总体:试验的全部可能的观察值.简单随机样本:设X 是具有分布函数F 的随机变量,若X 1,X 2,…,X n 是具有同一分布函数F 的、相互独立的随机变量,则称X 1,X 2,…,X n 为从分布函数F 得到的容量为n 的简单随机样本,简称样本.统计量:不含未知参数的样本的函数g(X 1,X 2,…,X n ).样本平均值:X̅=1n∑X i ni=1 样本方差:S 2=1n −1∑(X i −X ̅)2n i=1=1n −1(∑X i 2ni=1−nX̅2) 样本k 阶原点矩:A k =1n∑X i k ni=1,k =1,2,…样本k 阶中心矩:B k =1n∑(X i −X̅)k ni=1,k =1,2,… χ2分布:χ2=X 12+X 22+⋯+X n 2,服从自由度为n 的χ2分布,记为χ2~χ2(n).χ2(n)分布的概率密度为f (y )={12n 2Γ(n 2)yn 2−1e −y 2,y >0 0, otℎerwiseGamma 函数:Γ(x )=∫e −t t x−1dt +∞0,(x >0)t 分布:设X ~N(0,1),Y ~χ2(n),且X,Y 相互独立随机变量t=√n,服从自由度为n 的t 分布.记为t ~t(n).t(n)分布的概率密度函数为h (t )=Γ(n +12)√πnΓ(n 2)(1+t 2n )−n+12F 分布:设U ~χ2(n 1),V ~χ2(n 2),且U,V 相互独立随机变量F=Un 1V n 2,服从自由度为(n 1,n 2)的F 分布,记为F ~F(n 1,n 2). 密度函数为ψ(y).密度函数图形轮廓:χ2分布,F 分布类似,t 分布对称上α分位点:χα2(n),t α(n),F α(n 1,n 2) F 1-α(n 1,n 2)=1Fα(n 1,n 2):F 分布上分位点的重要性质,用来求表中未列出的常用上α分位点.关于样本均值、样本方差的重要结果1.设X 1,X 2,…,X n 是来自总体X(不管服从什么分布,只要它的均值和方差存在)的样本,且有E(X)=μ,D(X)=σ2n .2.设总体X~N(μ,σ2),X1,X2,…,X n是来自X的样本,则有);1)X̅~N(μ,σ2n~χ2(n−1);2)(n−1)S2σ23)X̅与S2相互独立;~t(n−1);4)X̅−μS√n3.对于两个正态总体X~N(μ1,σ12),Y~N(μ2,σ22),有定理四的重要结果.第七章 参数估计矩估计量:θ̂i =θi(A 1,A 2,…,A k ),i=1,2,…,k 作为θi 的估计量,A i 是样本矩. 最大似然估计量:θ̂(X 1,X 2,…,X n ),使L(x 1,x 2,…x n ;θ̂)=max θ∈ΘL(x 1,x 2,…,x n ;θ) 估计量的评选标准:无偏性:若估计量θ̂=θ̂(X 1,X 2,…,X n )的数学期望E(θ̂)存在,且对于任意θ∈~Θ有E(θ̂)=θ. 有效性:θ̂1=θ̂1(X 1,X 2,…,X n )与 θ̂2=θ̂2(X 1,X 2,…,X n )都是θ的无偏估计量,若对于任意θ∈Θ,有D(θ̂1)≤D(θ̂2)且至少对于某一个θ∈Θ上式中的不等号成立. 相合性:设θ̂(X 1,X 2,…,X n )为参数θ的估计量,若对与任意θ∈Θ,当n →∞时θ̂(X 1,X 2,…,X n )依概率收敛于θ.参数θ的置信水平为1-α的置信区间:θ的两个矩估计量θ=θ(X 1,X 2,…,X n )θ=θ(X 1,X 2,…,X n )给定的值α(0<α<1)有 P{θ<θ<θ}=1-α. 称(θ,θ)为置信水平为(1-α)的置信区间.枢轴量:一个样本和参数的函数W(X 1,X 2,…,X n ;θ),W 的分布不依赖于θ及其它未知参数. 参数θ的单侧置信上限和单侧置信下限P{θ>θ}≥1-α,即(θ,+∞)为θ的单侧置信区间,θ为单侧置信下限. P{θ<θ}≥1-α,即(θ,+∞)为θ的单侧置信区间,θ为单侧置信上限. 单个正态总体均值置信区间:若σ2已知,找U=X−μσ√n~N(0,1),得到μ的一个置信水平为1-α的置信区间为(X √nz α2)若σ2未知,E(S 2)=σ2,将σ换成S=√S 2找T=X−μS √n~t(n −1),得到μ的一个置信水平为1-α的置信区间为(X ±√nt α2(n −1))单个正态总体方差置信区间:σ2的无偏估计为S 2,(n −1)S 2σ2~χ2(n −1) P{χ1−α22(n −1)<(n −1)S 2σ2<χα22(n −1)}=1−α P {(n −1)S 2χα22(n −1)<σ2<(n −1)S 2χ1−α22(n −1)}=1−α 得到σ2的一个置信水平为1-α的置信区间为((n −1)S 2χα22(n −1),(n −1)S 2χ1−α22(n −1)) 单侧置信上限与单侧置信下限σ2已知,关于μ的单侧置信区间选U=X−μσ√n~N(0,1)单侧置信上限为μ=X √n α单侧置信下限为μ=X√nασ2未知,选T=X−μS√n~t(n−1)单侧置信上限为μ=X√nα(n−1)单侧置信下限为μ=X√nα(n−1)关于σ2,选(n−1)S 2σ2~χ2(n−1)单侧置信上限为σ2=(n−1)S 2χ1−α2(n−1)单侧置信下限为σ2=(n−1)S 2χα2(n−1)两个正态总体均值差、方差比的置信区间、单侧置信上限与单侧置信下限第八章 假设检验原假设:H 0:μ=μ0备择假设:H 1:μ≠μ0(原假设被拒绝后可供选择的假设) 检验统计量:Z =X−μ0σ√n单边检验:(右边检验)H 0:μ=μ0,H 1:μ>μ0(左边检验)H 0:μ=μ0,H 1:μ<μ0 双边检验:形如H 0:μ=μ0, H 1:μ≠μ0的检验显著性水平:关于x 与μ0有无差异的判断是在显著性水平α之下作出的. 拒绝域:区域C 中取某个值时拒绝原假设,如|z|>z α2.显著性检验:只对犯第I 类错误的概率加以控制,而不考虑犯第II 类错误的概率的检验. 一个正态总体的参数的检验:μ的检验σ2已知:利用统计量Z=X−μ0σ√n~N(0,1)确定拒绝域|Z|≥z α2σ2未知:|t|=|X−μ0S √n|~t(n-1)σ2的检验:χ2分布χ2=(n−1)S 2σ02~χ2(n −1)k 1=χ1−α22(n −1),k 2=χα22(n −1) 拒绝域为(n−1)S 2σ02≤k 1 或(n−1)S 2σ02≥k 2。

考研数学《概率论与数理统计》知识点总结[免费专享]

考研数学《概率论与数理统计》知识点总结[免费专享]

第一章 概率论的基本概念定义: 随机试验E 的每个结果样本点组成样本空间S ,S 的子集为E 的随机事件,单个样本点为基本事件.事件关系:1.A ⊂B ,A 发生必导致B 发生.2.A B 和事件,A ,B 至少一个发生,A B 发生. 3.A B 记AB 积事件,A ,B 同时发生,AB 发生. 4.A -B 差事件,A 发生,B 不发生,A -B 发生.5.A B=Ø,A 与B 互不相容(互斥),A 与B 不能同时发生,基本事件两两互不相容.6.AB=S 且A B=Ø,A 与B 互为逆事件或对立事件,A 与B 中必有且仅有一个发生,记B=A S A -=.事件运算: 交换律、结合律、分配率略.德摩根律:B A B A =,B A B A =.概率: 概率就是n 趋向无穷时的频率,记P(A).概率性质:1.P (Ø)=0.2.(有限可加性)P (A 1 A 2 … A n )=P (A 1)+P (A 2)+…+P (A n ),A i 互不相容. 3.若A ⊂B ,则P (B -A)=P (B)-P (A).4.对任意事件A ,有)A (1)A (P P -=.5.P (A B)=P (A)+P (B)-P (AB).古典概型: 即等可能概型,满足:1.S 包含有限个元素.2.每个基本事件发生的可能性相同.等概公式: 中样本点总数中样本点数S A )A (==n k P . 超几何分布: ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=n N k n D N k D p ,其中ra C r a =⎪⎪⎭⎫ ⎝⎛. 条件概率:)A ()AB ()A B (P P P =. 乘法定理:)A ()A B ()AB C ()ABC ()A ()AB ()AB (P P P P P P P ==.全概率公式: )B ()B A ()B ()B A ()B ()B A ()A (2211n n P P P P P P P +++= ,其中i B 为S 的划分. 贝叶斯公式: )A ()B ()B A ()A B (P P P P i i i =,∑==nj j j B P B A P A P 1)()()(或)()()()()()()(B P B A P B P B A P B P B A P A B P +=.独立性: 满足P (AB)=P (A)P (B),则A ,B 相互独立,简称A ,B 独立.定理一: A ,B 独立,则.P (B |A)=P (B). 定理二: A ,B 独立,则A 与B ,A 与B ,A 与B 也相互独立.第二章 随机变量及其分布(0—1)分布: k k p p k X P --==1)1(}{,k =0,1 (0<p <1).伯努利实验:实验只有两个可能的结果:A 及A .二项式分布: 记X~b (n ,p ),kn k k n p p C k X P --==)1(}{. n 重伯努利实验:独立且每次试验概率保持不变.其中A 发生k 次,即二项式分布.泊松分布: 记X~π(λ),!}{k e k X P k λλ-==, ,2,1,0=k .泊松定理: !)1(lim k e p p C k kn k knn λλ--∞→=-,其中λ=np .当20≥n ,05.0≤p 应用泊松定理近似效果颇佳.随机变量分布函数: }{)(x X P x F ≤=,+∞<<∞-x .)()(}{1221x F x F x X x P -=≤<.连续型随机变量:⎰∞-=xt t f x F d )()(,X 为连续型随机变量,)(x f 为X 的概率密度函数,简称概率密度.概率密度性质:1.0)(≥x f ;2.1d )(=⎰+∞∞-x x f ;3.⎰=-=≤<21d )()()(}{1221x x x x f x F x F x X x P ;4.)()(x f x F =',f (x )在x 点连续;5.P {X=a }=0.均匀分布: 记X~U(a ,b );⎪⎩⎪⎨⎧<<-=其它,,01)(bx a ab x f ;⎪⎩⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F ,,,10)(. 性质:对a ≤c <c +l ≤b ,有 a b l l c X c P -=+≤<}{ 指数分布:⎪⎩⎪⎨⎧>=-其它,,001)(x e x f x θθ;⎩⎨⎧>-=-其它,,001)(x e x F x θ. 无记忆性: }{}{t X P s X t s X P >=>+>. 正态分布: 记),(~2σμN X ;]2)(ex p[21)(22σμσπ--=x x f ;t t x F xd ]2)(ex p[21)(22⎰∞---=σμσπ.性质: 1.f (x )关于x =μ对称,且P {μ-h <X ≤μ}=P {μ<X ≤μ+h };2.有最大值f (μ)=(σπ2)-1. 标准正态分布:]2exp[21)(2x x -=πϕ;⎰∞--=Φxt t x d ]2ex p[21)(2π.即μ=0,σ=1时的正态分布X ~N(0,1)性质:)(1)(x x Φ-=-Φ.正态分布的线性转化: 对),(~2σμN X 有)1,0(~N X Z σμ-=;且有)(}{}{)(σμσμσμ-Φ=-≤-=≤=x x X P x X P x F .正态分布概率转化: )()(}{1221σμσμ-Φ--Φ=≤<x x x X x P ;1)(2)()(}{-Φ=-Φ-Φ=+<<-t t t t X t P σμσμ.3σ法则: P =Φ(1)-Φ(-1)=68.26%;P =Φ(2)-Φ(-2)=95.44%;P =Φ(3)-Φ(-3)=99.74%,P 多落在(μ-3σ,μ+3σ)内. 上ɑ分位点: 对X~N(0,1),若z α满足条件P {X>z α}=α,0<α<1,则称点z α为标准正态分布的上α分位点. 常用 上ɑ分位点: 0.001 0.005 0.01 0.025 0.05 0.10 3.0902.5762.3261.9601.6451.282Y 服从自由度为1的χ2分布:设X 密度函数f X (x ),+∞<<∞-x ,若Y=X 2,则⎪⎩⎪⎨⎧≤>-+=000)]()([21)(y y y f y f y y f X XY ,,若设X ~N(0,1),则有⎪⎩⎪⎨⎧≤>=--00021)(221y y e y y f y Y ,,π定理:设X 密度函数f X (x ),设g (x )处处可导且恒有g ′(x )>0(或g ′(x )<0),则Y=g (X)是连续型随机变量,且有⎩⎨⎧<<'=其他,,0)()]([)(βαy y h y h f y f X Yh (y )是g (x )的反函数;①若+∞<<∞-x ,则α=min{g (−∞),g (+∞)},β=max{g (−∞),g (+∞)};②若f X (x )在[a ,b ]外等于零,g (x )在[a ,b ]上单调,则α=min{g (a ),g (b )},β=max{g (a ),g (b )}.应用: Y=aX +b ~N(a μ+b ,(|a |σ)2).第三章 多维随机变量及其分布二维随机变量的分布函数: 分布函数(联合分布函数):)}(){(),(y Y x X P y x F ≤≤= ,记作:},{y Y x X P ≤≤. ),(),(),(),(},{112112222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤<.F (x ,y )性质: 1.F (x ,y )是x 和y 的不减函数,即x 2>x 1时,F (x 2,y )≥F (x 1,y );y 2>y 1时,F (x ,y 2)≥F (x ,y 1).2.0≤F (x ,y )≤1且F (−∞,y )=0,F (x ,−∞)=0,F (−∞,−∞)=0,F (+∞,+∞)=1.3.F (x +0,y )=F (x ,y ),F (x ,y +0)=F (x ,y ),即F (x ,y )关于x 右连续,关于y 也右连续.4.对于任意的(x 1,y 1),(x 2,y 2),x 2>x 1,y 2>y 1,有P {x 1<X ≤x 2,y 1<Y ≤y 2}≥0.离散型(X ,Y ):0≥ij p ,111=∑∑∞=∞=ij j i p ,ij yy x x p y x F i i ∑∑=≤≤),(.连续型(X ,Y ):v u v u f y x F y xd d ),(),(⎰⎰∞-∞-=.f (x ,y )性质: 1.f (x ,y )≥0.2.1),(d d ),(=∞∞=⎰⎰∞∞-∞∞-F y x y x f .3.y x y x f G Y X P G⎰⎰=∈d d ),(}),{(.4.若f (x ,y )在点(x ,y )连续,则有),(),(2y x f yx y x F =∂∂∂. n 维: n 维随机变量及其分布函数是在二维基础上的拓展,性质与二维类似. 边缘分布:F x (x ),F y (y )依次称为二维随机变量(X ,Y )关于X 和Y 的边缘分布函数,F X (x )=F (x ,∞),F Y (y )=F (∞,y ).离散型: *i p 和j p *分别为(X ,Y )关于X 和Y 的边缘分布律,记}{1i ij j i x X P p p ==∑=∞=*,}{1j ij i j y Y P p p ==∑=∞=*. 连续型:)(x f X ,)(y f Y 为(X ,Y )关于X 和Y 的边缘密度函数,记⎰∞∞-=y y x f x f X d ),()(,⎰∞∞-=x y x f y f Y d ),()(. 二维正态分布:]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f . 记(X ,Y )~N (μ1,μ2,σ12,σ22,ρ)]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,∞<<∞-y . 离散型条件分布律: jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{. *=======i ij i j i i j p p x X P y Y x X P x X y Y P }{},{}{.连续型条件分布:条件概率密度:)(),()(y f y x f y x f Y Y X =|| 条件分布函数:x y f y x f y Y x X P y x F xY Y X d )(),(}{)(⎰∞-==≤=||| )(),()(x f y x f x y f X X Y =|| y x f y x f x X y Y P x y F yX X Y d )(),(}{)(⎰∞-==≤=||| 含义:当0→ε时,)|(d )|(}|{||y x F x y x f y Y y x X P Y X xY X =≈+≤<≤⎰∞-ε.均匀分布: 若⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x Ay x f ,则称(X ,Y)在G 上服从均匀分布. 独立定义:若P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },即F (x ,y )=F x (x )F y (y ),则称随机变量X 和Y 是相互独立的. 独立条件或可等价为:连续型:f (x ,y )=f x (x )f y (y );离散型:P {X =x i ,Y =y j }=P {X =x i }P {Y =y j }.正态独立: 对于二维正态随机变量(X ,Y ),X 和Y 相互对立的充要条件是:参数ρ=0.n 维延伸: 上述概念可推广至n 维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n -1元)的.定理:设(X 1,X 2,…,X m )和(Y 1,Y 2,…,Y n )相互独立,则X i 和Y j 相互独立.又若h ,g 是连续函数,则h (X 1,X 2,…,X m )和g (Y 1,Y 2,…,Y n )相互独立.Z=X+Y 分布: 若连续型(X ,Y )概率密度为f (x ,y ),则Z=X+Y 为连续型且其概率密度为 ⎰∞∞-+-=y y y z f z f Y X d ),()(或⎰∞∞-+-=x x z x f z f Y X d ),()(.f X 和f Y 的卷积公式: 记⎰∞∞-+-==y y f y z f z f f f Y X Y X Y X d )()()(*⎰∞∞--=x x z f x f Y X d )()(,其中除继上述条件,且X 和Y相互独立,边缘密度分别为f X (x )和f Y (y ).正态卷积:若X 和Y 相互独立且X ~N (μ1,σ12),记Y ~N (μ2,σ22),则对Z=X+Y 有Z ~N (μ1+μ2,σ12+σ22).1.上述结论可推广至n 个独立正态随机变量.2.有限个独立正态随机变量的线性组合仍服从正态分布.伽马分布:记),(~θαΓX ,0>α,0>θ.⎪⎩⎪⎨⎧>Γ=--其他,,00)(1)(1x e x x f x θαααθ,其中⎰+∞--=Γ01d )(t e t t αα.若X 和Y 独立且X ~Γ(α,θ),记Y ~Γ(β,θ),则有X+Y~Γ(α+β,θ).可推广到n 个独立Γ分布变量之和.X YZ =:⎰∞∞-=x xz x f x z f X Y d ),()(,若X 和Y 相互独立,则有⎰∞∞-=x xz f x f x z f Y X X Y d )()()(.XYZ =分布: ⎰∞∞-=xxzx f x z f XY d ),(1)(,若X 和Y 相互独立,则有⎰∞∞-=x x z f x f x z f Y X XY d )()(1)(. 大小分布:若X 和Y 相互独立,且有M =max{X ,Y }及N =min{X ,Y },则M 的分布函数:F max (z )=F X (z )F Y (z ),N 的分布函数:F min (z )=1-[1-F X (z )][1-F Y (z )],以上结果可推广到n 个独立随机变量的情况.第四章 随机变量的数字特征数学期望: 简称期望或均值,记为E (X );离散型:k k k p x X E ∑=∞=1)(.连续型:⎰∞∞-=x x xf X E d )()(.定理: 设Y 是随机变量X 的函数:Y =g (X )(g 是连续函数).1.若X 是离散型,且分布律为P {X =x k }=p k ,则: k k k p x g Y E )()(1∑=∞=.2.若X 是连续型,概率密度为f (x ),则:⎰∞∞-=x x f x g Y E d )()()(.定理推广: 设Z 是随机变量X ,Y 的函数:Z =g (X ,Y )(g 是连续函数).1.离散型:分布律为P {X =x i ,Y =y j }=p ij ,则:ij j i i j p y x g Z E ),()(11∑∑=∞=∞=. 2.连续型:⎰⎰∞∞-∞∞-=y x y x f y x g Z E d d ),(),()(期望性质:设C 是常数,X 和Y是随机变量,则:1.E (C )=C .2.E (CX )=CE (X ).3.E (X +Y )=E (X )+E (Y ). 4.又若X 和Y 相互独立的,则E (XY )=E (X )E (Y ).方差:记D (X )或Var(X ),D (X )=V ar(X )=E {[X -E (X )]2}.标准差(均方差): 记为σ(X ),σ(X )= .通式:22)]([)()(X E X E X D -=. k k k p X E x X D 21)]([)(-∑=∞=,⎰∞∞--=x x f x E x X D d )()]([)(2.标准化变量: 记σμ-=x X *,其中μ=)(X E ,2)(σ=X D ,*X 称为X 的标准化变量. 0)(*=X E ,1)(*=X D .方差性质: 设C 是常数,X 和Y 是随机变量,则: 1.D (C )=0. 2.D (CX )=C 2D (X ),D (X +C )=D (X ).3.D (X +Y )=D (X )+D (Y )+2E {(X -E (X ))(Y -E (Y ))},若X ,Y 相互独立D (X +Y )=D (X )+D (Y ).4.D (X )=0的充要条件是P {X =E (X )}=1.正态线性变换: 若),(~2i i i N X σμ,i C 是不全为0的常数,则),(~22112211i i n i i i n i n n C C N X C X C X C σμ∑∑+++== .切比雪夫不等式: 22}{εσεμ≤≥-X P 或221}{εσεμ-≥<-X P ,其中)(X E =μ,)(2X D =σ,ε为任意正数.协方差:记)]}()][({[),Cov(Y E Y X E X E Y X --=.X 与Y的相关系数:)()(),Cov(Y D X D Y X XY =ρ.D (X +Y )=D (X )+D (Y )+2Cov(X ,Y ),Cov(X ,Y )=E (XY )-E (X )E (Y ).性质: 1.Cov(aX ,bY )=ab Cov(X ,Y ),a ,b 是常数.2.Cov(X 1+X 2,Y )=Cov(X 1,Y )+Cov(X 2,Y ). 系数性质: 令e =E [(Y -(a +bX ))2],则e 取最小值时有)()1(]))([(2200min Y D X b a Y E e XY ρ-=+-=,其中)()(00X E b Y E a -=,)(),Cov(0X D Y X b =.1.|ρXY |≤1.2.|ρXY |=1的充要条件是:存在常数a ,b 使P {Y =a +bX }=1.)(x D|ρXY|越大e越小X和Y线性关系越明显,当|ρXY|=1时,Y=a+bX;反之亦然,当ρXY=0时,X和Y不相关.X和Y相互对立,则X和Y不相关;但X和Y不相关,X和Y不一定相互独立.定义:k阶矩(k阶原点矩):E(X k ).n维随机变量X i的协方差矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛=nnnnnnccccccccc212222111211C,),Cov(jiijXXc==E{[X i-E(X i)][X j-E(X j)]}.k+l阶混合矩:E(X k Y l ).k阶中心矩:E{[X-E(X)] k }.k+l阶混合中心矩:E{[X-E(X)]k[Y-E(Y)]l}.n维正态分布:)}()(21ex p{det)2(1),,,(1T221μXCμXC---=-nnxxxfπ,T21T21),,,(),,,(nnxxxμμμ==μX.性质:1.n维正态随机变量(X1,X2,…,X n)的每一个分量X i (i=1,2,…,n)都是正态随机变量,反之,亦成立.2.n维随机变量(X1,X2,…,X n)服从n维正态分布的充要条件是X1,X2,…,X n的任意线性组合l1X1+l2X2+…+l n X n服从一维正态分布(其中l1,l2,…,l n不全为零).3.若(X1,X2,…,X n)服从n维正态分布,且Y1,Y2,…,Y k是X j (j=1,2,…,n)的线性函数,则(Y1,Y2,…,Y k)也服从多维正态分布.4.若(X1,X2,…,X n)服从n维正态分布,则“X i 相互独立”与“X i 两两不相关”等价.第五章大数定律及中心极限定理弱大数定理:若X1,X2,…是相互独立并服从同一分布的随机变量序列,且E(X k)=μ,则对任意ε>0有11lim1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμknknXnP或→μPX,knkXnX11=∑=.定义:Y1,Y2,…,Y n ,…是一个随机变量序列,a是一个常数.若对任意ε>0,有1}|{|lim=<-∞→εaYPnn则称序列Y1,Y2,…,Yn,…依概率收敛于a.记aY Pn−→−伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或0lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,X n ,…相互独立并服从同一分布,且E(Xk)=μ,D(Xk)=σ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(X k)=σk2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.~ 近似的箱线图:x p 选择: 记⎪⎩⎪⎨⎧∈+∉=++N np x x N np x x np np np p 当,当,][211)()()1]([. 分位数x 0.5,记为Q 2或M ,称为样本中位数.分位数x 0.25,记为Q 1,称为第一四分位数. 分位数x 0.75,记为Q 3,称为第三四分位数.图形:图形特点:M 为数据中心,区间[min ,Q 1],[Q 1,M ],[M ,Q 3],[Q 3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR =Q 3-Q 1;若数据X<Q 1-1.5IQR 或X>Q 3+1.5IQR ,就认为X 是疑似异常值.抽样分布:样本平均值: i ni X n X 11=∑=样本方差: )(11)(11221212X n X n X X n S i n i i n i -∑-=-∑-=== 样本标准差: 2S S =样本k 阶(原点)矩: k i n i k X n A 11=∑=,k ≥1样本k 阶中心矩: k i n i k X X n B )(11-∑==,k ≥2 经验分布函数: )(1)(x S nx F n =,∞<<∞-x . )(x S 表示F 的一个样本X 1,X 2,…,X n 中不大于x 的随机变量的个数.自由度为n 的χ2分布:记χ2~χ2(n ),222212n X X X +++= χ,其中X 1,X 2,…,X n 是来自总体N (0,1)的样本.E (χ2 )=n ,D (χ2)=2n . χ12+χ22~χ2(n 1+n 2). ⎪⎩⎪⎨⎧>Γ=--其他,,00)2(21)(2122y e x n y f y n n .χ2分布的分位点:对于0<α<1,满足αχχαχα==>⎰∞y y f n P n )(222d )()}({,则称)(2n αχ为)(2n χ的上α分位点. 当n 充分大时(n >40),22)12(21)(-+≈n z n ααχ,其中αz 是标准正态分布的上α分位点. 自由度为n的t 分布: 记t ~t (n ),nY Xt /=, 其中X~N (0,1),Y~χ2(n ),X ,Y 相互独立.2)1(2)1(]2[]2)1([)(+-+Γ+Γ=n n t n n n t h π h (t )图形关于t =0对称;当n 充分大时,t 分布近似于N (0,1)分布.t 分布的分位点:对于0<α<1,满足ααα==>⎰∞t t h n t t P n t )(d )()}({,则称)(n t α为)(n t 的上α分位点.由h (t )对称性可知t 1-α(n )=-t α(n ).当n >45时,t α(n )≈z α,z α是标准正态分布的上α分位点.自由度为(n 1,n 2)的F分布:记F ~F (n 1,n 2),21n V n U F =,其中U~χ2(n 1),V~χ2(n 2),X ,Y 相互独立.1/F ~F (n 2,n 1)⎪⎩⎪⎨⎧>+ΓΓ+Γ=+-其他,,00]1)[2()2()](2)([)(2)(21211)2(221212111x n y n n n y n n n n y n n n n ψF 分布的分位点:对于0<α<1,满足αψαα==>⎰∞y y n n F F P n n F ),(2121d )()},({,则称),(21n n F α为),(21n n F 的上α分位点.重要性质:F 1-α(n 1,n 2)=1/F α(n 1,n 2).定理一: 设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,则有),(~2n N X σμ,其中X 是样本均值.定理二:设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,样本均值和样本方差分别记为 X ,2S ,则有1.)1(~)1(222--n S n χσ;2.X 与2S 相互独立.定理三:设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,样本均值和样本方差分别记为X ,2S ,则有)1(~--n t nS X μ.定理四: 设X 1,X 2,…,X n 1 与Y 1,Y 2,…,Y n 2分别是来自N (μ1,σ12)和N (μ2,σ22)的样本,且相互独立.设这两个样本的样本均值和样本方差分别记为X ,Y ,21S ,22S ,则有1.)1,1(~2122212221--n n F S S σσ.min Q 1 M Q 3 max2.当σ12=σ22=σ2时,)2(~)()(21121121-++-----n n t n n S Y X w μμ,其中2)1()1(212222112-+-+-=n n S n S n S w,2w w S S =. 第七章 参数估计定义: 估计量:),,,(ˆ21n X X X θ,估计值:),,,(ˆ21nx x x θ,统称为估计. 矩估计法: 令)(ll X E =μ=li n i l X n A 11=∑=(k l ,,2,1 =)(k 为未知数个数)联立方程组,求出估计θˆ. 设总体X 均值μ及方差σ2都存在,则有X A ==1ˆμ,212212122)(11ˆX X n X X n A A i n i i n i -∑=-∑=-===σ. 最大似然估计法: 似然函数:离散:);()(1θθi n i x p L =∏=或连续:);()(1θθi ni x f L =∏=,)(θL 化简可去掉与θ无关的因式项.θˆ即为)(θL 最大值,可由方程0)(d d=θθL 或0)(ln d d =θθL 求得. 当多个未知参数θ1,θ1,…,θk 时:可由方程组 0d d =L i θ或0ln d d =L i θ(k i ,,2,1 =)求得. 最大似然估计的不变性:若u =u (θ)有单值反函数θ=θ(u ),则有)ˆ(ˆθu u=,其中θˆ为最大似然估计. 截尾样本取样: 定时截尾样本:抽样n 件产品,固定时间段t 0内记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ≤t 0)和失效产品数量. 定数截尾样本:抽样n 件产品,固定失效产品数量数量m 记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ).结尾样本最大似然估计: 定数截尾样本:设产品寿命服从指数分布X~e (θ),θ即产品平均寿命.产品t i 时失效概率P {t =t i }≈f (t i )d t i ,寿命超过t m 的概率θm t m et t F -=>}{,则)(}){()(1i mi mn m mnt P t t F C L =-∏>=θ,化简得)(1)(m t s m e L ---=θθθ,由0)(ln d d =θθL 得:mt s m )(ˆ=θ,其中s (t m )=t 1+t 2+…+t m +(n -m )t m ,称为实验总时间. 定时截尾样本:与定数结尾样本讨论类似有s (t 0)=t 1+t 2+…+t m +(n -m )t 0,)(01)(t s m e L ---=θθθ,mt s )(ˆ0=θ,. 无偏性: 估计量),,,(ˆ21nX X X θ的)ˆ(θE 存在且θθ=)ˆ(E ,则称θˆ是θ的无偏估计量. 有效性:),,,(ˆ211n X X X θ与),,,(ˆ212n X X X θ都是θ的无偏估计量,若)ˆ()ˆ(21θθD D ≤,则1ˆθ较2ˆθ有效. 相合性: 设),,,(ˆ21nX X X θθ的估计量,若对于任意0>ε有1}|ˆ{|lim =<-∞→εθθP n ,则称θˆ是θ的相合估计量. 置信区间:αθθθ-≥<<1)},,,(),,,({2121n n X X X X X X P ,θ和θ分别为置信下限和置信上限,则),(θθ是θ的一个置信水平为α-1置信区间,α-1称为置信水平,10<<α.正态样本置信区间: 设X 1,X 2,…,X n 是来自总体X ~N (μ,σ2)的样本,则有μ的置信区间:枢轴量W W 分布 a ,b 不等式 置信水平 置信区间)1,0(~N n X σμ-⇒ασμα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-12z n X P ⇒)(2ασz n X ± 其中z α/2为上α分位点θ置信区间的求解: 1.先求枢轴量:即函数W =W (X 1,X 2,…,X n ;θ),且函数W 的分布不依赖未知参数. 如上讨论标注 2.对于给定置信水平α-1,定出两常数a ,b 使P {a <W <b }=α-1,从而得到置信区间. (0-1)分布p 的区间估计:样本容量n >50时,⇒--∞→)1,0(~)1()(lim N p np np X n n {}⇒-≈<--αα1)1()(2z p np np X n P0)2()(222222<++-+X n p z X n p z n αα⇒若令22αz n a +=,)2(22αz X n b +-=,2X n c =,则有置信区间(a ac b b 2)4(2---,a ac b b 2)4(2-+-).单侧置信区间:若αθθ-≥>1}{P 或αθθ-≥<1}{P ,称(θ,∞)或(∞-,θ)是θ的置信水平为α-1的单侧置信区间.正态总体均值、方差的置信区间与单侧置信限(置信水平为α-1)待估 其他 枢轴量W 的分布置信区间单侧置信限一个正态总体μσ2已知)1,0(~N nX Z σμ-=)(2ασz nX ±ασμz nX +=,ασμz nX -=μσ2未知 )1(~--=n t nS X t μ⎪⎭⎫ ⎝⎛±2αt n S X αμt n S X +=,αμt nSX -= σ2μ未知)1(~)1(2222--=n S n χσχ⎪⎪⎭⎫⎝⎛---2212222)1(,)1(ααχχS n S n 2122)1(αχσ--=S n ,222)1(αχσS n -=两个正态总体μ1-μ2σ12,σ22已知)1,0(~)(22212121N n n Y X Z σσμμ+---=⎪⎪⎭⎫ ⎝⎛+±-2221212n n z Y X σσα2221212122212121n n z Y X n n z Y X σσμμσσμμαα+--=-++-=-μ1-μ2σ12=σ22=σ2 未知)2(~)()(21121121-++---=--n n t n n S Y X t w μμ2)1()1(212222112-+-+-=n n Sn S n S w()12112--+±-nn S tY X wα2w w S S =121121121121----+--=-++-=-n n S t Y X n n S t Y X w w ααμμμμσ12/σ22μ1,μ2未知)1,1(~2122212221--=n n F S S F σσ⎪⎪⎭⎫ ⎝⎛-212221222211,1ααF S S F S S ασσ-=1222122211F S S ,ασσF S S 122212221=单个总体X ~N (μ,σ2),两个总体X ~N (μ1,σ12),Y ~N (μ2,σ22).第八章 假设实验定义: H 0:原假设或零假设,为理想结果假设;H 1:备择假设,原假设被拒绝后可供选择的假设. 第Ⅰ类错误:H 0实际为真时,却拒绝H 0.第Ⅱ类错误:H 0实际为假时,却接受H 0.显著性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P {当H 0为真拒绝H 0}≤α,α称为显著水平.拒绝域:取值拒绝H 0.临界点:拒绝域边界.双边假设检验:H 0:θ=θ0,H 1:θ≠θ0.右边检验:H 0:θ≤θ0,H 1:θ>θ0.左边检验:H 0:θ≥θ0,H 1:θ<θ0.正态总体均值、方差的检验法(显著性水平为α)原假设H 0备择假设H 1检验统计量拒绝域 1 σ2已知μ≤μ0 μ>μ0 nX Z σμ0-=z ≥z α μ≥μ0μ<μ0z ≤-z αμ=μ0μ≠μ0|z|≥zα/22 σ2未知μ≤μ0μ>μ0nSXt0μ-=t≥tα(n-1) μ≥μ0μ<μ0t≤-tα(n-1) μ=μ0μ≠μ0|t|≥tα/2(n-1)3 σ1,σ2已知μ1-μ2≤δμ1-μ2>δ222121nnYXZσσδ+--=z≥zαμ1-μ2≥δμ1-μ2<δz≤-zαμ1-μ2=δμ1-μ2≠δ|z|≥zα/24 σ12=σ22=σ2未知μ1-μ2≤δμ1-μ2>δ1211--+--=nnSYXtwδ2)1()1(212222112-+-+-=nnSnSnSwt≥tα(n1+n2-2) μ1-μ2≥δμ1-μ2<δt≤-tα(n1+n2-2)μ1-μ2=δμ1-μ2≠δ|t|≥tα/2(n1+n2-2)5 μ未知σ2≤σ02σ2>σ02222)1(σχSn-=χ2≥χα2(n-1)σ2≥σ02σ2<σ02χ2≤χ21-α(n-1)σ2=σ02σ2≠σ02χ2≥χ2α/2(n-1)或χ2≤χ21-α/2(n-1)6 μ1,μ2未知σ12≤σ22σ12>σ222221SSF=F≥Fα(n1-1,n2-1) σ12≥σ22σ12<σ22F≤F1-α(n1-1,n2-1)σ12=σ22σ12≠σ22F≥Fα/2(n1-1,n2-1)或F≤F1-α/2(n1-1,n2-1)7 成对数据μD≤0 μD>0nSDtD-=t≥tα(n-1) μD≥0 μD<0 t≤-tα(n-1)μD=0 μD≠0 |t|≥tα-2(n-1)检验方法选择:主要是逐对比较法(成对数据)跟两个正态总体均值差的检验的区别,如上表即7跟3、4的区别,成对数据指两样本X和Y之间存在一一对应关系,而3和4一般指X和Y相互对立,但针对同一实体.关系:置信区间与假设检验之间的关系:未知参数的置信水平为1-α的置信区间与显著水平为α的接受域相同.定义:施行特征函数(OC函数):β(θ)=Pθ(接受H0).功效函数:1-β(θ).功效:当θ*∈H1时,1-β(θ*)的值.。

概率论与数理统计笔记

概率论与数理统计笔记

第一章 概率论的基本概念1 随机试验1.对随机现象的观察、记录、试验统称为随机试验.2.随机试验E 的所有结果构成的集合称为E 的样本空间,记为{}S e =, 称S 中的元素e 为基本事件或样本点.3.可以在相同的条件下进行相同的实验;每次实验的可能结果不止一个,并且能事先明确试验的所有可能结果;进行一次试验之前不能确定哪一个结果会实现.2.样本空间、随机事件1.对于随机试验,尽管在每次试验之前不能预知试验结果,但试验的所有可能结果组成的集合是已知的.我们将随机试验E 的所有可能结果组成的集合称为E 的样本空间,记为S 样本空间的元素,即E 的每个结果称为样本点.2.一般我们称S 的子集A 为E 的随机事件A ,当且仅当A 所包含的一个样本点发生称事件A 发生.如果将S 亦视作事件,则每次试验S 总是发生,故又称S 为必然事件。

为方便起见,记φ为不可能事件,φ不包含任何样本点.3.若A B ⊂,则称事件B 包含事件A ,这指的是事件A 发生必导致事件的发生。

若A B ⊂且B A ⊂,即A B =,则称事件A 与事件B 相等.4.和事件{}AB x x A x A A B =∈∈或:与至少有一发生.5.当AB φ=时,称事件A 与B 不相容的,或互斥的.这指事件A 与事件B 不能同时发生.基本事件是两两互不相容的.,{,{,,A A S A A SA A AB AA AB ===∅=∅的逆事件记为若则称互逆,互斥.6.,A B A B A B AB 当且仅当同时发生时,事件发生.也记作.,A B A B A B AB 当且仅当同时发生时,事件发生,也记作.7. 事件 A 的对立事件:设 A 表示事件 “A 出现”, 则“事件 A 不出现”称为事件 A 的对立事件或逆事件. 事件间的运算规律:,,, A B C 设为事件则有,A B B A AB BA ==(1)交换律:()(),A B C A B C =(2)结合律:()()AB C A BC = ()()()A B C A C B C ACBC ==(3)分配律:,de Morgan AB AB AB AB ==(4)律:3.频率和概率1.记()An n f A n=()A n A f A A n --其中n 发生的次数(频数);n 总试验次数.称为在这次试验中发生的频率.频率 反映了事件A 发生的频繁程度. 2.频率的性质:10()12()1n n kkf A f S ≤≤=。

概率论与数理统计知识点总结(PDF)

概率论与数理统计知识点总结(PDF)

概率论与数理统计 知识点总结一、随机事件与概率1.随机事件(1)事件间的关系与运算● 事件的差:A B A AB AB -=-= ● 对立事件:,AA A A =∅⋃=Ω ● 完备事件组:设12,,,,n A A A 是有限或可数个事件,如果其满足:① ,,,1,2,i j A A i j i j =∅≠=; ②i iA =Ω,则称12,,,,n A A A 是一个完备事件组.(2)随机事件的运算律 ● 求和运算:①A B B A +=+(交换律)②()()A B C A B C A B C ++=++=++(结合律) ● 求交运算:①AB BA =(交换律)②()()AB C A BC ABC ==(结合律) ● 求和运算与求交运算的混合:①()()()A B C AB AC +=+(第一分配律) ②()()()A BC A B A C +=++(第二分配律) ● 求对立事件的运算:()A A =(自反律) ● 和及交事件的对立事件:①A B AB +=(第一对偶律) ②AB A B =+(第二对偶律)2.随机事件的概率(1)概率的公理化定义● 公理1:()1P Ω=;公理2:对任意事件A ,有()0P A ≥;公理3:对任意可数个两两不相容的事件12,,,,n A A A ,有11()()i i i i P A P A ∞∞===∑.(2)概率测度的其他性质 ● 性质1:()0P ∅=性质2(有限可加性):12,,,n A A A 是两两互不相容的,则有11()()nni i i i P A P A ===∑性质3:()1()P A P A =-性质4:()()()P A B P A P AB -=-特别地,若A B ⊃,则①()()()P A B P A P B -=-;②()()P A P B ≥ 性质5:0()1P A ≤≤性质6:()()()()P A B P A P B P AB +=+-推论:()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+3.古典概型与几何概型(1)古典概型● 古典概型的概率测度:()==A A P A Ω中元素个数使发生的基本事件数中元素个数基本事件总数(2)几何概型● 几何概型的概率测度:()()()S A P A S =Ω 4.条件概率(1)条件概率的数学定义 ●()()(()0)()P AB P B A P A P A =>● ()1()P B A P B A =- ●()1()P B A P B A =-● 条件概率测度满足概率的三条公理:公理1:()1P A Ω=;公理2:对任意事件B ,有()0P B A ≥;公理3:对任意可数个两两不相容的事件12,,,,n A A A ,有11()()i i i i P A A P A A ∞∞===∑.(2)乘法公式 ● ()()(),()0P AB P A P B A P A => ● ()()(),()0P AB P B P A B P B => ● ()()()()P ABC P A P B A P C AB = ●12121312121()()()()()n n n P A A A P A P A A P A A A P A A A A -=(3)全概率公式● 设{}i A 是一列有限或可数无穷个两两不相容的非零概率事件,且i iA =Ω,则对任意事件B ,有()()()i i iP B P A P B A =∑.(4)贝叶斯公式● 设{}i A 是一列有限或可数无穷个两两不相容的非零概率事件,且1i i A ∞==Ω,则对任意事件B , ()0P B >,有()()()()()()()i i i i j j jP A P B A P A B P A B P B P A P B A ==∑. 5.事件的独立性(1)两个事件的独立性 ●()()()P AB P A P B =(2)有限个事件的独立性● 两两独立:()()()i j i j P A A P A P A = ● 相互独立:1212()()()()k k i i i i i i P A A A P A P A P A =(3)相互独立性的性质 ● 性质1:如果n 个事件12,,,n A A A 相互独立,则将其中任何(1)m m n ≤≤个事件改为相应的对立事件,形成的新的n 个事件仍然相互独立. 性质2:如果n 个事件12,,,n A A A 相互独立,则有1111()1(1())n n ni i i i i i P A P A P A ===⎛⎫=-=-- ⎪⎝⎭∏∏(4)伯努利概型● 伯努利定理:在一次试验中,事件A 发生的概率为(01)p p <<,则在n 重伯努利试验中,事件A 恰好发生k 次的概率为:(;,)C k k n kn b k n p p q-=,其中1q p =-. ● 在伯努利试验序列中,设每次试验中事件A 发生的概率为p ,“事件A 在第k 次试验中才首次发生”(1)k ≥,这一事件的概率为1(,)k g k p q p -=.二、随机变量的分布与数字特征1.随机变量及其分布(1)离散型随机变量的概率分布● 离散型随机变量的概率分布满足性质:①()0,1,2,i p x i ≥=②()1iip x =∑● 一旦知道一个离散型随机变量X 的概率分布{}i p x (),便可求得X 所生成的任何事件的概率.特别地,对任意a b ≤,有{}({}){}()i i i i i i a x ba x ba x bP a X b P X x P X x p x ≤≤≤≤≤≤≤≤=====∑∑.一般地,若I 是一个区间,则{}=()i ix IP X I p x ∈∈∑.(2)分布函数● 随机变量的分布函数性质:①单调性,若12x x <,则12()()F x F x ≤; ②()lim ()0x F F x →-∞-∞==,()lim ()1x F F x →+∞+∞==;③右连续性,(0)()F x F x +=. (3)连续型随机变量及其概率密度 ●(){}()xF x P X x f t dt -∞=≤=⎰,()f x 为X 的概率密度函数.● 密度函数性质:①()0,(,)f x x ≥∈-∞+∞; ②()1f x dx +∞-∞=⎰.● {}()()()b aP a X b F b F a f x dx <≤=-=⎰● {}0P X x ==(连续型)●'()()F x f x =2.随机变量的数字特征(1)离散型随机变量的数学期望 ●1=i i i EX x p ∞=∑(2)连续型随机变量的数学期望 ●()EX xf x dx +∞-∞=⎰(3)随机变量函数的数学期望● 设X 是一个随机变量,()g x 是一个实函数.①若X 为离散型随机变量,概率分布为{},1,2,i i P X x p i ===.且1()iii g x p∞=<∞∑,则()Eg X 存在,且1()()i i i Eg X g x p ∞==∑.②若X 为连续型随机变量,()f x 是其密度函数,且()()g x f x dx +∞-∞<∞⎰,则()Eg X 存在,且()()()Eg X g x f x dx +∞-∞=⎰.(4)数学期望的性质● ①对任意常数a ,有Ea a =;②设12,αα为任意实数,12(),()g x g x 为任意实函数,如果12(),()Eg X Eg X 均存在,则11221122[()()]()()E g X g X Eg X Eg X αααα+=+;③如果EX 存在,则对任意实数a ,有()E X a EX a +=+. (5)随机变量的方差 ● 离差:X EX -● 方差:2()DX E X EX =-● ● ①若X 为离散型随机变量,其概率分布为{},1,2,i i P X x p i ===,则22()()i i iDX E X EX x EX p =-=-∑②若X 为连续型随机变量,()f x 为其密度函数,则22()()()DX E X EX x EX f x dx +∞-∞=-=-⎰③22()DX EX EX =-● 方差的基本性质:设X 的方差DX 存在,a 为任意常数,则 ①0Da =;②()D X a DX +=; ③2()D aX a DX =.(6)随机变量的矩与切比雪夫不等式● 矩定义:X 为一个随机变量,k 为正整数,如果kEX 存在(即kE X<∞),则称kEX 为X的k 阶原点矩,称kE X 为X 的k 阶绝对矩.定理:随机变量X 的t 阶矩存在,则其s 阶矩(s t <为正整数)也存在. 推论:设k 为正整数,C 为常数,如果kEX 存在,则()kE X C +存在,特别地,)k E X EX -(存在.● 中心矩定义:X 为一个随机变量,k 为正整数,如果k EX 存在,则称()kE X EX -为X 的k阶中心矩,称kE X EX -为X 的k 阶绝对中心矩.● 定理:设()h x 是x 的一个非负函数,X 是一个随机变量,且()Eh X 存在,则对任意0ε>,有(){()}Eh X P h X εε≥≤.推论1(马尔可夫不等式):设X 的k 阶矩存在(k 为正整数),即kE X <∞,则对任意0ε>有{}kkE XP X εε≥≤.推论2(切比雪夫不等式):设X 的方差存在,则对任意0ε>有2{}DXP X EX εε-≥≤.推论3:随机变量X 的方差为0当且仅当存在一个常数a ,使得{}=1P X a =.3.常用的离散型分布,n),n kp -,ndef(,),g k p k =几何分布的无记忆性:设{P X二项分布可作为超几何分布的近似,即1212C C Ck n kk n kN N k n nNN N C N N --⎛⎫⎛⎫≈ ⎪ ⎪⎝⎭⎝⎭.这一近似关系的严格数学表述是:当N →∞时,1N →∞,2N →∞,且1N p N →,21Np N→-,则对任意给定的n 和k ,有()12C C lim1Ck n kn kN N k kn nN NC p p --→∞=-.泊松定理:在n 重伯努利试验中,事件A 在每次试验中发生的概率为n p (注意这与试验的次数n 有关),如果n →∞时,n np λ→(0λ>为常数),则对任意给定的k ,有lim (;,)e !kn n b k n p k λλ-→∞=.当二项分布(,)b n p 的参数n 很大,而p 很小时,可以将它用参数为np λ=的泊松分布来近似,即有()(;,)e !k npnp b k n p k -≈.4.常用的连续型分布正态分布● 定理:设2~(,),,,X N Y aX b a b μσ=+为常数,且0a ≠,则22~(,)Y N a b aμσ+.推论1:如果2~(,)X N μσ,则~(0,1)X N μξσ-=.ξ通常称为X 的标准化.推论2:2~(,)X N μσ的充要条件是存在一个随机变量~(0,1)N ξ,使得X σξμ=+. 推论3:设2~(,),(),()X N x x μσϕΦ分别为其分布函数与密度函数,00(),()x x ϕΦ是标准正态分布的分布函数和密度函数,则有00()(),1()().x x x x μσμϕϕσσ-Φ=Φ-=● 一般正态分布的概率计算:【例】已知2~(,)X N μσ,求()a Φ. 解 0(){}{}{}()X a X a P X a P P b b μμμσσσ---Φ=≤=≤=≤=Φ5.随机变量函数的分布(1)离散型随机变量函数的分布● 离散型随机变量函数的概率分布的一般方法:先根据自变量X 的可能取值确定因变量Y 的所有可能取值,然后对Y 的每一个可能取值(1,2,)i y i =确定相应的{()}i j j i C x g x y ==,则有{}{()}{},{}{}{},j ii i i i i jx C Y y g X y X C P Y y P X C P X x ∈====∈==∈==∑从而求得Y 的概率分布. (2)连续型随机变量函数的分布● 连续型随机变量函数的概率分布的一般方法:一般地,已知X 的分布函数()X F x 或密度函数()X f x ,为求()Y g X =的分布函数,有()(){()}{},Y x F x P Y x P g X x P X C =≤=≤=∈其中{()}x C t g t x =≤.而{}x P X C ∈往往可由X 的分布函数()X F x 来表达或用其密度函数()X f x 的积分来表达:{}()xx X C P X C f t dt ∈=⎰.进而,Y 的密度函数,可直接从()Y F x 导出.三、随机向量1.随机向量的分布(1)随机向量及其分布函数 ●1212{,}P x X x y Y y <≤<≤22122111(,)(,)(,)(,)F x y F x y F x y F x y =--+● 由(联合)分布函数的定义得出性质:①0(,)1F x y ≤≤;②(,)F x y 关于x 和y 均单调非降、右连续; ③(,)lim (,)0,x F y F x y →-∞-∞==(,)lim (,)0,y F x F x y →-∞-∞==(,)(,)(,)lim (,)0,x y F F x y →-∞-∞-∞-∞== (,)(,)(+,+)lim(,) 1.x y F F x y →+∞+∞∞∞==●(,)F x y 的边缘分布函数:(){}{,}(,)X F x P X x P X x Y F x =≤=≤<+∞=+∞, (){}{,}(,)Y F y P Y y P X Y y F y =≤=<+∞≤=+∞.(2)离散型随机向量的概率分布● 离散型随机向量的概率分布{,},,1,2,i i ij P X x Y y p i j ====,ij p 满足性质:①0,,1,2,ij p i j ≥=;②1ijijp=∑∑.● 边缘概率分布:{},1,2,X i i ij jp P X x p i ====∑ {},1,2,Y j j ij ip P Y y p j ====∑(3)连续型随机向量的概率密度函数 ● 二维连续型随机向量(,)(,)x yF x y f s t dsdt -∞-∞=⎰⎰,(,)f x y 为(),X Y 的概率密度函数或X 与Y 的联合密度函数. (,)f x y 具有性质:①(,)0f x y ≥; ②(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;③若D 是平面上的一个区域,则(){,}(,)DP X Y D f x y dxdy ∈=⎰⎰● 边缘密度函数:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰● 均匀分布的密度函数:1,(,)()(,)0,x y G S G f x y ⎧∈⎪=⎨⎪⎩其他,若(),X Y 服从G 上的均匀分布,则对任何平面区域D ,有()1(){,}(,)=()()DD GS D G P X Y D f x y dxdy dxdy S G S G ⋂⋂∈==⎰⎰⎰⎰. (4)二元正态分布 ● 密度函数:()2211222221212()()()()122(1),x x y y x y μμμμρσσρσσϕ⎡⎤------+⎢⎥-⎢⎥⎣⎦=,记作()221212,~(,;,;)X Y N μμσσρ.● 边缘密度函数分布:()2121()2()=,x X x x y dy μσϕϕ--+∞-∞⎰,()2222()2()=,y Y y x y dx μσϕϕ--+∞-∞⎰.注意:比较联合密度函数(),x y ϕ和边缘密度函数()X x ϕ,()Y y ϕ,当且仅当0ρ=时,对一切(),x y ,有(),()()X Y x y x y ϕϕϕ=.2.条件分布与随机变量的独立性(1)条件分布与独立性的一般概念● 随机变量X 和Y 相互独立:(,)()()X Y F x y F x F y =● 定理1:随机变量X 和Y 相互独立的充要条件是X 所生成的任何事件与Y 生成的任何事件独立,即对任意实数集A 和B ,有{,}{}{}P X A Y B P X A P Y B ∈∈=∈∈.定理2:如果随机变量X 和Y 相互独立,则对任意函数12(),()g x g y ,均有1()g X 与2()g Y 相互独立. ● 相互独立:12,,,n X X X 相互独立,()121122,,,()()()n n n F x x x F x F x F x =.(2)离散型随机变量的条件概率分布与独立性 ● 概率分布:{,},,1,2,i j ij P X x Y y p i j ====●i j p (当{}0i P Y y =>时):{,}{}{}iji i i j Y i jP P X x Y y P X x Y y P Y y P =======性质:①0i j p ≥;②1i jip=∑.● 已知j Y y =的条件下X 的条件概率分布:{},1,2,i i i j P X x Y y p i ====; 已知i X x =的条件下Y 的条件概率分布:{},1,2,i i j i P Y y X x p j ====.●X Y ij i j j i i j p p p p p =⋅=⋅● 定理:设,X Y 是离散型随机变量,其联合概率分布为{,}(,1,2,)i j ij P X x Y y p i j ====,边缘概率分布分别为X i p 和Yj p (,1,2,)i j =,则X 与Y 相互独立的充要条件是,,1,2,X Y ij i j p p p i j ==.(3)连续型随机变量的条件密度函数与独立性● 在Y y =的条件下X 的条件分布:0(,){,}{}lim {}()xy Y f u y du P X x y y Y y P X x Y y P y y Y y f y -∞∆→≤-∆<≤≤===-∆<≤⎰● 条件分布和条件密度函数● (,)()()()()X Y Y X X Y f x y f x f y x f y f x y ==● 定理:设连续型随机向量(),X Y 的密度函数为(,)f x y ,边缘密度函数分别为()X f x 和()Y f y ,则X 与Y 相互独立的充要条件是(,)()()X Y f x y f x f y =.3.随机向量的函数的分布与数学期望(1)离散型随机向量的函数分布 ●(,){}{(,)}{,},1,2,i j kk k i j g x y z P Z z P g X Y z P X x Y y k ========∑● 设,X Y 是两个相互独立的随机变量,分别服从参数为1λ和2λ的泊松分布,则X Y ξ=+的分布为()()1212e ,0,1,2,!kk k λλλλ-++=,可见X Y ξ=+服从参数为()12λλ+的泊松分布.结论:泊松分布具有独立可加性.2,(2)连续型随机向量的函数分布● 分布函数:(){}{(,)}{(,)}(,)zZ z D F z P Z z P g X Y z P X Y D f x y dxdy =≤=≤=∈=⎰⎰,其中z D ={(,)(,)}x y g x y z ≤. ● 密度函数:'()=()Z Z f z F z .● 随机变量的和:设(,)X Y 的联合密度函数为(,)f x y ,则X Y +的密度函数为()=(,)Z f z f z y y dy +∞-∞-⎰或 ()=(,)Z f z f x z x dx +∞-∞-⎰特别地,如果X 和Y 是相互独立的随机变量,则有(卷积公式)()=()()Z X Y f z f x f z x dx +∞-∞-⎰或 ()=()()Z X Y f z f z y f y dy +∞-∞-⎰即,()=*()*()Z X Y Y X f z f f z f f z =.● 独立正态随机变量之和:设随机变量221122~(,),~(,)X N Y N μσμσ,且X 与Y 独立,则221212~(,)X Y N μμσσ+++,即2122212()2()()z X Y f z μμσσ⎡⎤---⎢⎥+⎢⎥⎣⎦+=,结论:独立正态分布的和服从正态分布.推论:X 与Y 相互独立且分别服从正态分布211(,)N μσ和222(,)N μσ,则其任意非零线性组合仍服从正态分布,且22221212~(,)aX bY N a b a b μμσσ+++.进一步地,12,,n X X X 相互独立,2~(,)i i iX N μσ,则22111~(,)n n ni i i i i i i i i a X N a a μσ===∑∑∑.● 随机变量的商:设二维随机向量(,)X Y 的密度函数为(,)f x y ,则XZ Y=的密度函数为'()=()(,)Z Z f z F z y f zy y dy +∞-∞=⎰.● 最大值与最小值:设,X Y 的分布函数分别为(),()F x G x ,密度函数分别为(),()f x g x ,且X与Y 相互独立,令max{,},min{,}M X Y N X Y ==,则有(3)随机向量函数的数学期望● 二维离散型随机向量的数学期望:,(,)(,)ijiji jEZ Eg X Y g x y p==∑.● 二维连续型随机向量的数学期望:(,)(,)(,)EZ Eg X Y g x y f x y dxdy +∞+∞-∞-∞==⎰⎰.●(,)g X Y XY =型:()(),,,(,),,i j ij i jx y p X Y EXY xyf x y dxdy X Y +∞+∞-∞-∞⎧⎪=⎨⎪⎩∑⎰⎰若为离散型若为连续型 (4)数学期望的进一步性质● (1)对任意两个随机变量,X Y ,如果其数学期望均存在,则()E X Y +存在,且()=E X Y EX EY ++(2)设,X Y 为任意两个相互独立的随机变量,数学期望均存在,则EXY 存在,且=EXY EXEY推广: (1)12,,,n X X X 是任意n 个随机变量,数学期望均存在,则()12n E X X X +++存在,且()1212n n E X X X EX EX EX +++=+++(2)设12,,,n X X X 是个相互独立的随机变量,且数学期望均存在,则()12n E X X X 存在,且()1212n n E X X X EX EX EX =.4.随机变量的数字特征(1)协方差● 协方差:()()()cov ,X Y E X EX Y EY =--⎡⎤⎣⎦1,2,)●()cov ,X Y EXY EXEY =-● 定理:(1)()cov ,X X DX = (2)()()cov ,cov ,X Y Y X =(3)()()cov ,cov ,,,aX bY ab X Y a b =为任意常数 (4)()cov ,0,C X C =为任意常数(5)()()()1212cov ,cov ,cov ,X X Y X Y X Y +=+ (6)如果X 与Y 相互独立,则()cov ,0X Y =推论:设,X Y 为任意两个随机变量,如果其方差均存在,则X Y +的方差也存在,且()()2cov ,D X Y DX DY X Y +=++.()()2cov ,D X Y DX DY X Y -=+-特别地,如果X 与Y 相互独立,则()D X Y DX DY +=+.● 定理:设()12,,,n X X X 是n 维随机向量,如果()1,2,,i X i n =的方差均存在,则对任意实向量()12,,,n λλλ,1ni i i X λ=∑的方差必存在,且()21112cov ,n n i i i i i j i j i i i j n D X DX X X λλλλ==≤<≤⎛⎫=+ ⎪⎝⎭∑∑∑.特别地,如果12,,,n X X X 两两独立,则211n n i i i i i i D X DX λλ==⎛⎫= ⎪⎝⎭∑∑. (2)协方差矩阵 ● 记()T 12,,,n X X X =X ,其协差阵通常记作D X .对任意实向量()T12,,,n λλλ=λ,有()T T D D =λX λX λ.对任意实向量()T12,,,n λλλ=λ,()T T 0D D =≥λX λλX .(3)相关系数 ●,cov ,X Y X Y ρ,,1X Y ρ≤● 定理:设(),X Y 是一个二维随机向量,,DX DY 均存在且为正,则,1X Y ρ=的充要条件是X 与Y 具有线性关系,即存在常数0a ≠及常数b ,使得{}1P Y ax b =+=.而且,当0a >时,,1X Y ρ=;当0a <时,,1X Y ρ=-.● 如果,DX DY 均存在且为正,那么X 与Y 不相关等价以下条件:①()cov ,0X Y =; ②EXY EXEY =;③()D X Y DX DY +=+; ④,0X Y ρ=.5.大数定律与中心极限定理(1)依概率收敛 ● 定义:设12,,,,,n X X X X 是一列随机变量,如果对任意0ε>,恒有{}lim 0n n P X X ε→∞->=,则称{}n X 依概率收敛到X ,记作Pn X X −−→或lim n n P X X →∞-=.(2)大数定律 ● 定理:①伯努利大数定律:设n μ是n 重伯努利试验中事件A 发生的次数,已知在每次试验中A 发生的概率为()01p p <<,则对任意0ε>,有lim 0n n P p n με→∞⎧⎫->=⎨⎬⎩⎭, 即Pnp nμ−−→或limnn P p nμ→∞-=.②切比雪夫大数定律:设12,,,n ξξξ是一列两两不相关的随机变量,它们的数学期望iE ξ和方差i D ξ均存在,且方差有界,即存在常数C ,使得()1,2,i D C i ξ≤=,则对任意0ε>,有1111lim 1n ni i n i i P E n n ξξε→∞==⎧⎫-<=⎨⎬⎩⎭∑∑. 推论:设12,,,nξξξ是一列独立同分布的随机变量,其数学期望和方差均存在,记=i E ξμ,则对任意0ε>,有11lim 1n i n i P n ξμε→∞=⎧⎫-<=⎨⎬⎩⎭∑. 即11n Pi i n ξμ=−−→∑.③辛钦大数定律:设12,,,nξξξ是一列相互独立同分布的随机变量,且数学期望存在,记=i E ξμ,则有11lim 1n i n i P n ξμε→∞=⎧⎫-<=⎨⎬⎩⎭∑. (3)中心极限定理● 定理:林德伯格-列维 设12,,,n ξξξ是一列相互独立同分布的随机变量,且=i E ξμ,2=0,1,2,,i D i ξσ>=则有22lim en t i xn n P x dt ξμ--∞→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑.● 定理:设()~,,01,n X b n p p <<则22lim et xn P x dt --∞→∞⎧⎫⎪≤=⎬⎪⎭.四、数理统计的基础知识1.总体与样本样本与样本分布● 总体X 的分布函数为()F x ,则样本()12,,,n X X X 的分布函数为:()()121,,,nn n i i F x x x F x ==∏,称之为样本分布.特别地,若总体X 为连续型随机变量,其密度函数为()f x ,则样本的密度函数为()()121,,,nn n i i f x x x f x ==∏.若总体X 为离散型随机变量,概率分布为(){}p x P X x ==,x 取遍X 所有可能取值,则样本的概率分布为()()()1211221,,,,,,nn n n n i i p x x x P X x X x X x p x ======∏.),n i x =∏为伯努利总体,如果它服从以}{,p P X =)12,,,n X X X 的概率分布为,n n X i =取1或0,而n i +,它恰等于样本中取值为服从参数为λ的泊松分布,)12,,,n X X 为其样本,则样本的概率分布为)21,,ee !!!!kinn n n k k k n i X i X i i i i i λλλλ--======∏,其中取非负整数,而n i ++.2.统计量常用的统计量)n X +2)X -1(ni i X X =-∑3.常用的统计分布(1)分位数● 上侧分位数:设随机变量X 的分布函数为()F x ,对给定的实数(01)αα<<,如果实数F α满足{}P X F αα>=,即()1F F αα-=或()1F F αα=-,则称F α为随机变量X 的分布的水平α上的上侧分位数. ● 有关等式:{}1P X F αα-≤= 1221P F X F ααα-⎧⎫<≤=-⎨⎬⎩⎭推论:()()122,,P X F m n X F m n ααα-⎛⎫⎧⎫⎧⎫<⋃>= ⎪⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭或()()122,,1P F m n X F m n ααα-⎧⎫<<-⎨⎬⎩⎭. ● 双侧分位数:设X 是对称分布的连续型随机变量,其分布函数为()F x ,对给定的实数(01)αα<<,如果正实数T α满足{}P X T αα>=,即()()1F T F T ααα--=-.则称T α为随机变量X 的分布的水平α的双侧分位数. 注意:由于对称性,上式可改写为:()12F T αα=-或{}()12P X T F T ααα>=-=.对于具有对称密度函数的分布函数的上侧分位数,恒有1F F αα-=-. (2)2χ分布 ● 命题:设()12,,,n X X X 是n 个相互独立的随机变量,且()~0,1,1,2,,i X N i n =,则22212n X X X X=+++的密度函数为()1122221;e,022n x n x n xx n χ--=>⎛⎫Γ ⎪⎝⎭.● Γ函数:()()10e 0a x a x dx a +∞--Γ=>⎰.●2χ分布:一个随机变量X 称为服从以n 为自由度的2χ分布,如果其密度函数由()1122221;e,022n x n x n xx n χ--=>⎛⎫Γ ⎪⎝⎭给出,记作()2~X n χ.● 命题:①若()()22~,~X m Y n χχ,且X 与Y 相互独立,则()2~X Y m n χ++. ②若()2~X n χ,则,2EX n DX n ==.(3)F 分布 ● 命题:设Z 由/=/X m n X Z Y n m Y=(设()()22~,~X m Y n χχ,且X 与Y 相互独立.)所定义,则Z 的密度函数为()()11221;,1,0,22m m n m m m f x m n x x x m n n n n --+⎛⎫⎛⎫⎛⎫=+> ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭B ⎪⎝⎭.● B 函数:()()()1110,=10,0q p p q x x dx p q --B ->>⎰.●F 分布:如果一个随机变量X 的密度函数由()()11221;,1,0,22m m n m m m f x m n x x x m n n n n --+⎛⎫⎛⎫⎛⎫=+> ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭B ⎪⎝⎭给出,则称其服从第一自由度为m ,第二自由度为n 的F 分布,记作()~,X F m n . ● 若()~,X F m n ,则()1~,XF n m -.● 当α接近1时,可利用()()11,=,F m n F n m αα-求出所需上侧分位数.(3)t 分布● 定义式:设()()2~0,1,~X N Y n χ,且X 与Y相互独立,记T =,则()2~1,/X T F n Y n=.● 命题:T 的密度函数为()122;1,n x t x n x n +-⎫=+-∞<<+∞⎪⎭⎝⎭.●t 分布:如果一个随机变量X 的密度函数由()122;1,n x t x n x n +-⎫=+-∞<<+∞⎪⎭⎝⎭给出,则称其为服从自由度为n 的t 分布,记作()~X t n .注意:当自由度n 很大时,t 分布接近于标准正态分布,因为2+11222lim 1=en x n x n --→∞⎛⎫+ ⎪⎝⎭.●当α接近1时,()()1t n t n αα-=-.4.抽样分布(1)正态总体的抽样分布● 定理:设总体()()212~,,,,,n X N X X X μσ是其容量为n 的一个样本,X 与2S 分别为此样本的样本均值与样本方差,则有①2~,X N n σμ⎛⎫⎪⎝⎭;②()2221~1n S n χσ--;③X 与2S 相互独立. ● 单正态总体的抽样分布定理:设()12,,,n X X X 为正态总体()2~,X N μσ的样本,X 与2S 分别为该样本的样本均值与样本方差,则有①()~0,1X U N =;②()2221~1n S n χσ--;③()~1X T t n =-.● 双正态总体的抽样分布定理:设()211~,X N μσ与()222~,Y N μσ是两个相互独立的正态总体.又设()112,,n X X X是总体X 的容量为1n 的样本,X 与21S 分别为该样本的样本均值与样本方差.再设()212,,n Y Y Y 是总体Y 的容量为2n 的样本,Y 与22S 分别为此样本的样本均值与样本方差.记2S 是21S 与22S 的加权平均:222121212121122n n S S S n n n n --=++-+-,则有 ①()()~0,1X Y U N μμ---=;②()222112212~1,1S F F n n S σσ⎛⎫=-- ⎪⎝⎭;③当22212==σσσ时,()12~2X Y T t n n μμ---=+-.(2)一般总体抽样分布的极限分布 ● 定理:设()12,,,n X X X 为总体X 的样本,并设总体X 的数学期望与方差均存在,分别记为2,EX DXμσ==.再记n n X X U T ==X 与S 分别表示上述样本的样本均值与样本方差,则有①()()0n dU F x x −−→Φ; ②()()0n dT F x x =−−→Φ.以上()n U F x ,n T F 与()0x Φ分别表示n U ,n T 及标准正态分布的分布函数.五、参数估计与假设检验1.点估计概述评价估计量的标准 ),n X 为参数的有偏估计量.若),n X 为未知参数}-<=θε),n X 为取自总体①样本均值X 是μ的无偏估计量;②样本方差2S 是σ③未修正的样本方差,即样本二阶中心矩),n X 是取自总体,n .则1n 的相合估计量,,n .(~,X N μ),n X 为其样本,则样本方差2S 是2σ的相合估计2.参数的最大似然估计与矩估计(1)最大似然估计 ● ),n x ,存在),n x ,使()*1,,n x x θ为θ的最大似然估计值,称相应的统),n X 为的最大似然估计量.它们统称为θ的最大似然估计,可MLE . 如果未知参数为12,,,r θθθ,那么似然函数是多元函数(,,)r L θθ.若对任意),n x 存在),,,1,2,=n x i r ,使1*1(,,),,)max (,,)∈Θ=r r r L θθθθθ,则称*i θ为i θ的,1,2,,=MLE i r .当似然函数关于未知参数可微时,一般可通过求导数得到MLE ,其主要步骤①写出似然函数1(,,)r L θθ;0∂=∂L θ或ln 0,1,,∂==∂L i r θ,从中求得驻点注意,函数L 与ln L有相同的最值点,而使用后者往往更方便;③判断驻点为最大值点; MLE .● 最大似然估计的不变性:如果ˆθ为θ的最大似然估计,()=u g θ是θ的函数且存在单值反函数()=h u θ.那么()ˆg θ是()g θ的最大似然估计. (2)矩估计 ● 1,2,,ˆ2,3,=k B β.这种求点估计的方用矩法确定的估计量称为矩估计量,相应的估计值为矩估计值,矩估计量. 表示为总体矩的函数,即)2,;,l s αββ; k B 分别替换g 中的k α,)()1212ˆˆˆˆ,,;,,;,,=l s l sg A A B B ααββ即为θ的3.置信区间(1)寻求置信区间的方法● ①选取θ的一个较优的点估计ˆθ; ②围绕ˆθ寻找一个依赖于样本与θ的函数()1,,;=n u u X X θ.u 的分布为已知分布.像u 这样的函数,称为枢轴量;③对给定的置信水平1-α,确定1λ与2λ,使{}121<<=-P u λλα,一般可选取满足{}{}122≤=≥=P u P u αλλ的1λ与2λ;④利用不等式变形导出套住θ的置信区间(),θθ. (2)正态总体参数的置信区间4.假设检验概述假设检验的一般步骤 ①建立零假设0H ;②构造一个含待检验参数θ(不含其他未知参数)且分布已知的枢轴量()12,,,;n u X X X θ,并确定其分布;③对给定的显著性水平α,由上述枢轴量及其分布,结合零假设0H ,确定拒绝域C ,使得(){}120,,,∈≤n P X X X C H α;④根据样本值()12,,,n x x x 是否落在C 中做出是否拒绝0H 的统计决断:如果()12,,,∈n x x x C ,则拒绝0H ,如果()12,,,∉n x x x C ,则不能拒绝0H .5.单正态总体的参数假设检验编辑:李雪伟 2013年5月25日。

(浙大第四版)概率论与数理统计知识点总结.pdf

(浙大第四版)概率论与数理统计知识点总结.pdf


设任一事件 A ,它是由1,2 m 组成的,则有
P(A)= (1) (2 ) (m ) = P(1) + P(2 ) + + P(m )
=
m n
=
A所包含的基本事件数 基本事件总数
(9)几何 概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀, 同时样本空间中的每一个基本事件可以使用一个有界区域来描述, 则称此随机试验为几何概型。对任一事件 A,
这样一组事件中的每一个事件称为基本事件,用 来表示。
基本事件的全体,称为试验的样本空间,用 表示。
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用
大写字母 A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø 为不可能事件。 不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事 件;同理,必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定 是必然事件。 ①关系:
(5)基本 事件、样 本空间和 事件
(6)事件 的关系与 运算
加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种 方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个 步骤可由 n 种方法来完成,则这件事可由 m×n 种方法来完成。 重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果 不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则 称这种试验为随机试验。 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事 件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。

考研数学概率论与数理统计笔记知识点(全)

考研数学概率论与数理统计笔记知识点(全)
2)在离散型上的体现(1.出现0,一一定不不独立立;2.行行行或列列成比比例例)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
步骤:1)画图(为了了解不不等式)
2)讨论
3)代入入(注意端点)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 二二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
要注意是一一维的(是用用一一个变量量表示)
4.离散+连续(一一定是使用用全概率公式的)
定义:X为离散型,Y为连续型,且相互独立立
六 全概率公式与⻉贝叶斯公式(关键在于完备事件组)
1.完备事件组:互斥是对立立的前提条件
2.全概率公式:由因到果(推导,画图)(全部路路径)
3.⻉贝叶斯公式:由果到因(推导,画图)(所占的比比例例)
Note:关键是1.完备事件组必须完备;2.要画图3注意抽签原理理
题型一一:概率的基本计算
1.事件决定概率,但是概率推不不出事件
3.边缘概率密度
1)具体就是边缘分布函数求导(详⻅见笔记)
Note:注意边缘的公式,在求时,注意取值范围,以及上下限(一一根直线传过去)(类似于 二二重积分的先积部分——后积先定限,限内画条线)
2)G是从几几何看出来的,不不要死记公式,要结合图像(G为非非零区域)
Note:1.在写公式之前要先保证分⺟母不不为0,即要先确定范围

《概率论与数理统计》笔记(考研特别版)

《概率论与数理统计》笔记(考研特别版)

《概率论与数理统计》笔记(考研版)一、课程导读“概率论与数理统计”是研究随机现象的规律性的一门学科 Ø 统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面 朝上和反面朝上的次数几乎相等;朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,对某个靶进行多次射击,对某个靶进行多次射击,虽然各次虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.l 应用例子Ø 摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,个,88个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:结果(比数) A (8:0) B (7:1) C (6:2) D (5:3) E(4:4)奖金(元)奖金(元) 10 1 0.5 0.2 -2注:表中“注:表中“-2-2-2”表示受罚”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.因此就吸引了许多人特别是好奇的青少年参加.结果却结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体应用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:分别是:3807048730121800099460000155404848385828681878.C C C P(E);.C C 2C P(D);.C C 2C P(C);.C C 2CP(B);.C 2P(A)816816816816816==========假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、1010、、122122、、487487、、381次,经营游戏者预期可得次,经营游戏者预期可得2×381-(10381-(10××0+1×1010++0.50.5××122122++0.20.2××487) =593.6487) =593.6(元).(元).(元). 这个例子的结论可能会使我们大吃一惊,这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.然而正是在这一惊之中.然而正是在这一惊之中.获获得了对古典概率更具体、更生动的知识得了对古典概率更具体、更生动的知识. .Ø 戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。

笔记整理:概率论与数理统计

笔记整理:概率论与数理统计

笔记整理:概率论与数理统计数学笔记中公式较多,导致⽆法渲染在单篇⽂章中,被我按照章节放⼊了多篇⽂章中,⽬录如下:
本笔记包含有且不限于以下内容:
随机事件,概率,条件概率,全概率公式、贝叶斯公式
古典概型、伯努利概型
随机变量
离散型随机变量的分布函数,0-1 分布、⼆项分布、泊松分布、⼏何分布、超⼏何分布
连续型随机变量的分布函数,均匀分布、指数分布、正态分布
(随机变量的函数)的分布
⼆维随机变量及其分布,⼆维均匀分布,⼆维正态分布
(两个随机变量的函数)的分布
数学期望,⽅差,协⽅差,相关系数
⼤数定律和中⼼极限定理
样本数字特征
统计抽样分布:\chi^2分布,t分布,F分布
⼀个正态总体的抽样分布,两个正态总体的抽样分布
参数估计,点估计法(矩估计法、最⼤似然估计法),区间估计,正态总体的区间估计
假设检验的步骤,正态总体的假设检验
Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js。

概率论与数理统计pdf版

概率论与数理统计pdf版

试验人
n
nA
fn(A)
摩根
2048
1061
0.5181
蒲丰
4040
2048
0.5069
皮尔逊
12000
6019
0.5016
从上表可见,当试验次数 n 大量增加时,事件 A 发生的频率 fn(A)会稳定某一常数,我们称这一常数为频率的稳定值。 例如从上表可见抛硬币试验,正面出现的事件 A 的频率 fn(A)的稳定值大约是 0.5。
③AA=A
(3)差事件:事件 A 发生而且事件 B 不发生的事件叫事件 A 与事件 B 的差事件,记作(A-B)
例如,掷一次骰子,A={1,3,5};B={1,2,3},则 A-B={5}
显然有性质:

②若
,则有 A-B=Φ
③A-B=A-AB
(4)互不相容事件:若事件 A 与事件 B 不能都发生,就说事件 A 与事件 B 互不相容(或互斥)即 AB=Φ
不可能事件:在一次试验中,一定不出现的事件叫不可能事件,而习惯用 φ 表示不可能事件。
例如,掷一次骰子,点数>6 的事件一定不出现,它是不可能事件。
(二)基本(随机)事件
随机试验的每一个可能出现的结果,叫基本随机事件,简称基本事件,也叫样本点,习惯用 ω 表示基本事件。
例如,掷一次骰子,点数 1,2,3,4,5,6 分别是基本事件,或叫样本点。
全部基本事件叫基本事件组或叫样本空间,记作 Ω,当然 Ω 是必然事件。
(三)随机事件的关系
(1)事件的包含:若事件 A 发生则必然导致事件 B 发生,就说事件 B 包含事件 A,记作

例如,掷一次骰子,A 表示掷出的点数≤2,B 表示掷出的点数≤3。∴A={1,2},B={1,2,3}。

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结

第一章概率论的基本概念第五章ﻩ大数定律及中心极限定理伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,Xn,…相互独立并服从同一分布,且E(X k)=μ,D(Xk)=σ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(Xk)=σ k2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤xp.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,Xn是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.~近似的min Q1 M Q3 max第七章ﻩ参数估计正态总体均值、方差的置信区间与单侧置信限(置信水平为)1122。

概率论与数理统计重点笔记

概率论与数理统计重点笔记

概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果.随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件.二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率.(1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+…2.性质(1) P(Φ) = 0 , 注意: A P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理)(3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) .(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) .对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 11121 …+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==n i i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件.(1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()k k i i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2).(3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1).二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为:(1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()k n k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx e x f 00≤>x x 若若 (θ>0). (3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--x t dt e x 2221)(π , Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律.2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法:(1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f k y X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y 其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数.2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) .(4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i j ij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x y y ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度.2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f . (3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2 (4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) .(X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 },{j i j i p y Y x X P ==P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律.同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X离散型随机变量 连续型随机变量 分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛) 方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2 =E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p),}{},{•=====i j i i j i p p x X P y Y x X P2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,…随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如: 样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i k i k X X n B 1)(1( k=1,2,…) 二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) . 2.χ2分布 (1)定义 若X ~N (0,1 ) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1 ),Y~ χ2(n),且X,Y 相互独立,则t=n Y X ~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时,n S X μ-~ t (n-1) . ③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③) 22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值.2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iL θ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效.(3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定.(2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间 μ σ2已知 n X σμ-~N (0,1) (2/ασz n X ±) μ σ2未知n S X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体(1)均值差μ 1-μ 2 其它参数 W 及其分布 置信区间已知2221,σσ 22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③. (2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为 ))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。

概率论与数理统计 笔记

概率论与数理统计 笔记

概率论与数理统计笔记概率论的公理化定义1. 相关基本概念:我们首先定义以下概念:至此,我们将试验、事件等概念与集合的概念相联系,显然,我们会有以下的运算性质:2. 事件之间的关系以及运算(本质为集合运算)经过简单的推导可以得出以下运算性质:3. 事件的运算性质经过以上铺垫,我们可以引出频率、概率的定义:4. 频率 (frequency)定义:设随机事件a在n次重复试验中发生了m次,则称比值为事件a在n次重复试验中发生的「频率」。

频率越大,事件a发生就越频繁,可以用频率来预测事件a的发生的可能性大小。

当重复试验次数越多,n越大时,频率越逐渐趋于稳定于某个常数。

5. 概率的公理化定义(前苏联柯尔莫哥洛夫首次提出)设是随机试验的样本空间,对于每个事件,赋予一个实数,记为,称为事件a的「概率」,如果集合函数满足一下三个条件:理解:概率的本质一种映射,是一种将每个事件映射给一个实数的映射。

并且满足以上三个性质。

另外,注意一个常记的技巧:由以上概率的公理化定义推导出的性质:1.不可能事件的概率为02.有限可加性3.逆事件有4.减法公式5.单调性6.容斥原理,可推广至多个事件古典概型与几何概型古典概型是概率论的经典研究内容。

古典概型是指,如果一个随机试验,其中包含有限个样本点,并且所有样本点的概率都相等,那么我们就称该随机试验为古典概型。

而几何概型与以上定义基本相同,只不过包含了无限个样本点(对于几何图形来说,一块区域也包含了无穷个点)我们很容易就能够得到古典概型的计算公式(由可列可加性)关于古典概型的具体例题与技巧在此不再赘述。

如何定性认识古典概型的概率?我们可以认为,这种概率代表了一个试验中事件发生的可能性,可以认为是“ 进行无穷次试验之后事件发生频率的趋近值”。

利用这种可能性,我们可以最优化实际的决策。

条件概率与乘法公式条件概率的引入,是为了解决在某事件已经发生(或者指定某条件)的情况下具体事件的概率。

《概率论与数理统计》学习笔记

《概率论与数理统计》学习笔记

《概率论与数理统计》(19)电子科技大学应用数学学院,徐全智吕恕主编。

2004版第6章数理统计的基本概念概率论与数理统计是两个紧密联系的姊妹学科,概率论是数理统计学的理论基础,而数理统计学则是概率论的重要应用.数理统计学是使用概率论和数学的方法,研究如何用有效的方式收集带有随机误差的数据,并在设定的模型下,对收集的数据进行分析,提取数据中的有用信息,形成统计结论,为决策提供依据. 这就不难理解,数理统计应用的广泛性,几乎渗透到人类活动的一切领域! 如:农业、生物和医学领域的“生物统计”,教育心理学领域的“教育统计”,管理领域的“计量经济”,金融领域的“保险统计”等等,这些统计方法的共同基础都是数理统计.数理统计学的内容十分丰富,概括起来可以分为两大类:其一是研究如何用有效的方式去收集随机数据,即抽样理论和试验设计;其二是研究如何有效地使用随机数据对所关心的问题做出合理的、尽可能精确和可靠的结论,即统计推断.本书主要介绍统计推断的基本内容和基本方法. 在这一章中先给出数理统计中一些必要的基本概念,然后给出正态总体抽样分布的一些重要结论.6.1总体、样本与统计量一、总体在数理统计中,我们将研究对象的全体称为总体或母体,而把组成总体的每个基本元素称为个体.二、样本样本是按一定的规定从总体中抽出的一部分个体" 这里的“按一定的规定”,是指为保证总体中的每一个个体有同等的被抽出的机会而采取的一些措施" 取得样本的过程,称为抽样.三、统计量6.2抽样分布统计量是我们对总体的分布规律或数字特征进行推断的基础. 由于统计量是随机变量,所以在使用统计量进行统计推断时必须要知道它的分布. 统计量的分布称为抽样分布.一、三个重要分布二、抽样分布定理6.3应用一、顺序统计量及其应用二、极值的分布及其应用。

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结引言《概率论与数理统计》是考研数学中的一个重要分支,它不仅要求学生掌握理论知识,还要求能够运用这些知识解决实际问题。

本文档旨在对《概率论与数理统计》的核心知识点进行总结,帮助考生系统复习。

第一部分:概率论基础1. 随机事件与样本空间随机事件:在一定条件下可能发生也可能不发生的事件。

样本空间:所有可能结果的集合。

2. 概率的定义古典定义:适用于有限样本空间,每个样本点等可能发生。

频率定义:长期频率的极限。

主观定义:基于个人信念或偏好。

3. 概率的性质非负性:概率值非负。

归一性:所有事件的概率之和为1。

加法定理:互斥事件概率的和。

4. 条件概率与独立性条件概率:已知一个事件发生的情况下,另一个事件发生的概率。

独立性:两个事件同时发生的概率等于各自概率的乘积。

5. 随机变量及其分布离散型随机变量:可能取有限个或可数无限个值。

连续型随机变量:可能取无限连续区间内的任何值。

分布函数:随机变量取值小于或等于某个值的概率。

第二部分:随机变量及其分布1. 离散型随机变量的分布概率质量函数:描述离散型随机变量取特定值的概率。

常见分布:二项分布、泊松分布、几何分布等。

2. 连续型随机变量的分布概率密度函数:描述连续型随机变量在某区间的概率密度。

常见分布:均匀分布、正态分布、指数分布等。

3. 多维随机变量及其分布联合分布:描述多个随机变量联合取值的概率。

边缘分布:从联合分布中得到的单一随机变量的分布。

条件分布:给定一个随机变量的条件下,另一个随机变量的分布。

第三部分:数理统计基础1. 数理统计的基本概念总体与样本:总体是研究对象的全体,样本是总体中所抽取的一部分。

统计量:根据样本数据计算得到的量。

2. 参数估计点估计:用样本统计量估计总体参数的单个值。

区间估计:在一定概率下,总体参数落在某个区间的估计。

3. 假设检验原假设与备择假设:研究问题中的两个对立假设。

检验统计量:用于决定是否拒绝原假设的量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档