高中平面向量知识点详细归纳总结附带练习

合集下载

高中数学必修二第六章平面向量及其应用重点知识点大全(带答案)

高中数学必修二第六章平面向量及其应用重点知识点大全(带答案)

高中数学必修二第六章平面向量及其应用重点知识点大全单选题1、若M 为△ABC 的边AB 上一点,且AB⃑⃑⃑⃑⃑ =3AM ⃑⃑⃑⃑⃑⃑ ,则CB ⃑⃑⃑⃑⃑ =( ) A .3CM⃑⃑⃑⃑⃑⃑ −2CA ⃑⃑⃑⃑⃑ B .3CA ⃑⃑⃑⃑⃑ −2CM ⃑⃑⃑⃑⃑⃑ C .3CM ⃑⃑⃑⃑⃑⃑ +2CA ⃑⃑⃑⃑⃑ D .3CA ⃑⃑⃑⃑⃑ +2CM ⃑⃑⃑⃑⃑⃑ 答案:A解析:先用向量CB →,CA →表示向量CM →,再转化为用CA →,CM →表示CB →即可得答案.解:根据题意做出图形,如图,所以CM →=CB →+BM →=CB →+23BA →=CB →+23(CA →−CB →)=13CB →+23CA →,所以CB →= 3CM →−2CA →.故选:A.小提示:关键点睛:解题关键在于利用向量的线性运算进行求解,属于基础题2、已知向量a ,b ⃑ 满足|a |⃑⃑⃑⃑⃑ =1,a ⊥b ⃑ ,则向量a −2b ⃑ 在向量a 方向上的投影向量为( )A .aB .1C .-1D .−a答案:A分析:根据给定条件,求出(a −2b ⃑ )⋅a ,再借助投影向量的意义计算作答.因|a |⃑⃑⃑⃑⃑ =1,a ⊥b ⃑ ,则(a −2b ⃑ )⋅a =a 2−2b ⃑ ⋅a =1,令向量a −2b ⃑ 与向量a 的夹角为θ,于是得|a −2b ⃑ |cosθ⋅a ⃑ |a ⃑ |=(a ⃑ −2b ⃑ )⋅a ⃑ |a ⃑ |⋅a⃑ |a ⃑ |=a ,所以向量a −2b ⃑ 在向量a 方向上的投影向量为a .故选:A3、如图,四边形ABCD 是平行四边形,则12AC ⃑⃑⃑⃑⃑ +12BD ⃑⃑⃑⃑⃑⃑ =( )A .AB ⃑⃑⃑⃑⃑ B .CD ⃑⃑⃑⃑⃑C .CB ⃑⃑⃑⃑⃑D .AD ⃑⃑⃑⃑⃑答案:D分析:由平面向量的加减法法则进行计算.由题意得AC ⃑⃑⃑⃑⃑ =AB ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ ,BD ⃑⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ ,所以12AC ⃑⃑⃑⃑⃑ +12BD ⃑⃑⃑⃑⃑⃑ =12(AB ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ )=AD ⃑⃑⃑⃑⃑ .故选:D.4、下列条件中能得到a ⃗=b ⃑⃗的是( )A .|a ⃗|=|b ⃑⃗|B .a ⃗与b ⃑⃗的方向相同;C .a ⃗=0⃑⃗,b ⃑⃗为任意向量D .a ⃗=0⃑⃗且b ⃑⃗=0⃑⃗答案:D分析:根据相等向量的概念,即可得到结果.由于a ⃗=b ⃑⃗,所以a ⃗与b ⃑⃗的大小相等,方向相同,故D 正确.故选:D.5、向量a ⃗,b ⃑⃗满足a ⃗=(1,√3),|b ⃑⃗|=1,|a ⃗+b ⃑⃗|=√3,则b ⃑⃗在a ⃗方向上的投影为()A .-1B .−12C .12D .1答案:B解析:根据题条件,先求出a ⃗⋅b ⃑⃗,再由向量数量积的几何意义,即可求出结果.因为向量a ⃗,b ⃑⃗满足a ⃗=(1,√3),|b ⃑⃗|=1,|a ⃗+b ⃑⃗|=√3,所以|a ⃗|2+2a ⃗⋅b ⃑⃗+|b ⃑⃗|2=3,即4+2a ⃗⋅b ⃑⃗+1=3,则a ⃗⋅b⃑⃗=−1, 所以b ⃑⃗在a ⃗方向上的投影为|b →|cos <a →,b →>=a →⋅b →|a →|=−12. 故选:B.6、在△ABC 中,内角A,B,C 的对边分别为a,b,c ,且a (sin A −sin B )+b sin B =c sin C,a +b =2c =2,则△ABC 的面积为( )A .3√38B .√34C .√32D .3√32 答案:B分析:由正弦定理化角为边结合余弦定理可求出C =π3,再由已知可求出ab =1,即可求出面积.因为a (sin A −sin B )+b sin B =c sin C ,由正弦定理得a (a −b )+b 2=c 2,即a 2+b 2−c 2=ab ,所以cos C =a 2+b 2−c 22ab =12, 又C ∈(0,π),所以C =π3.又a +b =2c =2,则c =1,a +b =2,由a 2+b 2−c 2=a 2+b 2−1= ab,(a +b)2−3ab =1,得ab =1.所以S △ABC =12ab sin C =12×1×1×sin π3=√34. 故选:B.7、在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( )A .14B .34C .√24D .√23答案:B分析:利用余弦定理求得cosB .b 2=ac,c =2a ,则b 2=2a 2,由余弦定理得cosB =a 2+c 2−b 22ac =a 2+4a 2−2a 22a⋅2a =34. 故选:B8、在△ABC 中,若AB⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ 2=0,则△ABC 的形状一定是( ) A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形答案:B分析:先利用数量积运算化简得到accosB =c 2,再利用余弦定理化简得解.因为AB ⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ +AB⃑⃑⃑⃑⃑ 2=0,所以accos(π−B)+c 2=0, 所以accosB =c 2,所以ac ×a 2+c 2−b 22ac =c 2,所以b 2+c 2=a 2,所以三角形是直角三角形.故选:B多选题9、下列结果为零向量的是( )A .AB ⃑⃑⃑⃑⃑ −(BC ⃑⃑⃑⃑⃑ +CA ⃑⃑⃑⃑⃑ )B .AB ⃑⃑⃑⃑⃑ −AC ⃑⃑⃑⃑⃑ +BD⃑⃑⃑⃑⃑⃑ −CD ⃑⃑⃑⃑⃑ C .OA ⃑⃑⃑⃑⃑ −OD ⃑⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ D .NO ⃑⃑⃑⃑⃑⃑ +OP ⃑⃑⃑⃑⃑ +MN ⃑⃑⃑⃑⃑⃑⃑ −MP⃑⃑⃑⃑⃑⃑ 答案:BCD分析:根据向量加减法的运算方法即可逐项判断.A 项,AB⃑⃑⃑⃑⃑⃗−(BC ⃑⃑⃑⃑⃑⃗+CA ⃑⃑⃑⃑⃑⃗)=AB ⃑⃑⃑⃑⃑⃗−BA ⃑⃑⃑⃑⃑⃗=2AB ⃑⃑⃑⃑⃑⃗; B 项,AB ⃑⃑⃑⃑⃑⃗−AC ⃑⃑⃑⃑⃑⃗+BD ⃑⃑⃑⃑⃑⃑⃗−CD ⃑⃑⃑⃑⃑⃗=CB ⃑⃑⃑⃑⃑⃗+BC ⃑⃑⃑⃑⃑⃗=0⃑⃗;C 项,OA ⃑⃑⃑⃑⃑⃗−OD ⃑⃑⃑⃑⃑⃑⃗+AD ⃑⃑⃑⃑⃑⃗=DA ⃑⃑⃑⃑⃑⃗+AD ⃑⃑⃑⃑⃑⃗=0⃑⃗;D 项,NO ⃑⃑⃑⃑⃑⃑⃗+OP ⃑⃑⃑⃑⃑⃗+MN ⃑⃑⃑⃑⃑⃑⃑⃗−MP ⃑⃑⃑⃑⃑⃑⃗=NP ⃑⃑⃑⃑⃑⃑⃗+PN ⃑⃑⃑⃑⃑⃑⃗=0⃑⃗.故选:BCD.10、已知向量a ⃗=(1,−2),b⃑⃗=(−1,m),则( ) A .若a ⃗与b ⃑⃗垂直,则m =−1B .若a ⃗//b⃑⃗,则m =2 C .若m =1,则|a ⃗−b ⃑⃗|=√13D .若m =−2,则a ⃗与b⃑⃗的夹角为60° 答案:BC分析:利用向量垂直、平行的坐标表示求参数m ,即可判断A 、B 的正误;由m 的值写出b⃑⃗的坐标,再由向量坐标的线性运算及模长的坐标求法、夹角的坐标求法求|a ⃗−b ⃑⃗|、a ⃗与b⃑⃗的夹角,即可判断C 、D 正误. A :a ⃗与b ⃑⃗垂直,则−1−2m =0,可得m =−12,故错误;B:a⃗//b⃑⃗,则m−2=0,可得m=2,故正确;C:m=1有b⃑⃗=(−1,1),则a⃗−b⃑⃗=(2,−3),可得|a⃗−b⃑⃗|=√13,故正确;D:m=−2时,有b⃑⃗=(−1,−2),所以cos<a⃗,b⃑⃗>=a⃑⃗⋅b⃑⃗|a⃑⃗||b⃑⃗|=√5×√5=35,即a⃗与b⃑⃗的夹角不为60°,故错误.故选:BC11、(多选)已知向量a⃗,b⃑⃗,在下列命题中正确的是()A.若|a⃗|>|b⃑⃗|,则a⃗>b⃑⃗B.若|a⃗|=|b⃑⃗|,则a⃗=b⃑⃗C.若a⃗=b⃑⃗,则a⃗//b⃑⃗D.若|a⃗|=0,则a⃗=0答案:CD分析:根据向量相等和模值相等的区别分析四个选项便可得出答案.解:向量的模值可以比较大小,但是向量不能比较大小,故A错;向量的模值相等,只能证明大小相等并不能说明方向也相同,故B错;两个向量相等,这两个向量平行,所以C正确;模值为零的向量为零向量,故D正确故选:CD填空题12、《后汉书·张衡传》:“阳嘉元年,复造候风地动仪.以精铜铸成,员径八尺,合盖隆起,形似酒尊,饰以篆文山龟鸟兽之形.中有都柱,傍行八道,施关发机.外有八龙,首衔铜丸,下有蟾蜍,张口承之.其牙机巧制,皆隐在尊中,覆盖周密无际.如有地动,尊则振龙,机发吐丸,而蟾蜍衔之.振声激扬,伺者因此觉知.虽一龙发机,而七首不动,寻其方面,乃知震之所在.验之以事,合契若神.”如图,为张衡地动仪的结构图,现要在相距200km的A,B两地各放置一个地动仪,B在A的东偏北60°方向,若A地动仪正东方向的铜丸落下,B地东南方向的铜丸落下,则地震的位置在A地正东________________km.答案:100(√3+1)分析:依题意画出图象,即可得到A=60∘,B=75∘,C=45∘,AB=200,再利用正弦定理计算可得;解:如图,设震源在C处,则AB=200km,则由题意可得A=60∘,B=75∘,C=45∘,根据正弦定理可得200 sin45∘=ACsin75∘,又sin75∘=sin(45∘+30∘)=sin45∘cos30∘+cos45∘sin30∘=√22×√32+√22×12=√6+√24所以AC=200sin75∘sin45∘=200×√6+√24√22=100(√3+1),所以震源在A地正东100(√3+1)km处.所以答案是:100(√3+1)13、已知向量a⃗,b⃑⃗的夹角为120°,|a⃗|=2,|b⃑⃗|=1,若(a⃗+3b⃑⃗)⊥(2a⃗+λb⃑⃗),则实数λ=___________. 答案:−1分析:由(a⃗+3b⃑⃗)⊥(2a⃗+λb⃑⃗),可得(a⃗+3b⃑⃗)⋅(2a⃗+λb⃑⃗)=0,化简后结已知条件可求得答案解:因为向量a⃗,b⃑⃗的夹角为120°,|a⃗|=2,|b⃑⃗|=1,且(a⃗+3b⃑⃗)⊥(2a⃗+λb⃑⃗),所以(a ⃗+3b ⃑⃗)⋅(2a ⃗+λb ⃑⃗)=0,即2a ⃗2+(6+λ)a ⃗⋅b⃑⃗+3λb ⃑⃗2=0, 所以8+(6+λ)×2×1×(−12)+3λ=0,解得λ=−1,所以答案是:−114、设向量m ⃑⃑ =2a −3b ⃑ ,n ⃑ =4a −2b ⃑ ,p =3a +2b ⃑ ,若用m ⃑⃑ ,n ⃑ 表示p ,则p =________.答案:−74m ⃑⃑ +138n ⃑分析:根据平面向量基本定理进行求解即可.设p ⃗=xm ⃑⃑⃗+yn ⃑⃗,则有p ⃗=3a ⃗+2b ⃑⃗=x(2a ⃗−3b ⃑⃗)+y(4a ⃗−2b ⃑⃗)=(2x +4y)a ⃗+(−3x −2y)b⃑⃗, 得{2x +4y =3−3x −2y =2⇒{x =−74,y =138.,所以p ⃗=−74m ⃑⃑⃗+138n ⃑⃗, 所以答案是:−74m ⃑⃑⃗+138n ⃑⃗解答题 15、△ABC 的内角A,B,C 的对边分别为a,b,c ,已知asinAsinB +ccosA =(acosA +2b )cosB(1)求B ;(2)若b =2√3,AB⃑⃑⃑⃑⃑ ⋅CB ⃑⃑⃑⃑⃑ =6,求△ABC 的周长 答案:(1)B =π3;(2)6√3. 分析:(1)根据asinAsinB +ccosA =(acosA +2b )cosB ,利用正弦定理结合两角和与差的三角函数化简为2sinBcosB =sinB 求解;(2)利用余弦定理得到(a +c )2−3ac =12,然后由AB⃑⃑⃑⃑⃑ ⋅CB ⃑⃑⃑⃑⃑ =6求得ac 代入即可. (1)因为 asinAsinB +ccosA =(acosA +2b )cosB ,所以a (sinAsinB −cosAcosB )+ccosA =2bcosB ,所以−acos(A +B)+ccosA =2bcosB所以acosC +ccosA =2bcosB由正弦定理得sinAcosC +sinCcosA =2sinBcosB整理得sin (A +C )=2sinBcosB =sinB因为在△ABC 中,所以sinB ≠0,则2cosB =1所以B =π3 (2)由余弦定理得b 2=a 2+c 2−2accosB ,即(a +c )2−3ac =12,因为AB ⃑⃑⃑⃑⃑ ⋅CB ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ =accosB =12ac =6, 所以ac =12,所以(a +c )2−36=12,解得a +c =4√3.所以△ABC 的周长是6√3小提示:方法点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.。

必修四平面向量知识点整理+例题+练习+答案

必修四平面向量知识点整理+例题+练习+答案

平面向量知识点整理1、概念向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 相反向量:0a b b a a b =-⇔=-⇔+=向量表示:几何表示法AB ;字母a 表示;坐标表示:a =xi+yj =(x,y).向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a .( 222222||,||a x y a a x y =+==+。

) 零向量:长度为0的向量。

a =O ⇔|a |=O .【例题】1.下列命题:(1)若a b =,则a b =。

(2)两个向量相等的充要条件是它们的起点相同,终点相同。

(3)若AB DC =,则ABCD 是平行四边形。

(4)若ABCD 是平行四边形,则AB DC =。

(5)若,a b b c ==,则a c =。

(6)若//,//a b b c ,则//a c 。

其中正确的是_______2.已知,a b 均为单位向量,它们的夹角为60,那么|3|a b +=_____ 2、向量加法运算:⑴三角形法则的特点:首尾相接连端点. ⑵平行四边形法则的特点:起点相同连对角.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++; ③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 【例题】(1)①AB BC CD ++=___;②AB AD DC --=____; ③()()AB CD AC BD ---=_____(2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===,则||a b c ++=_____ 4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.【例题】(1)若M (-3,-2),N (6,-1),且1MP MN 3--→--→=-,则点P 的坐标为_______baCBAa b C C -=A -AB =B5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,(0b ≠)22()(||||)a b a b ⇔⋅=。

高中数学必修二第六章平面向量及其应用知识点归纳超级精简版(带答案)

高中数学必修二第六章平面向量及其应用知识点归纳超级精简版(带答案)

高中数学必修二第六章平面向量及其应用知识点归纳超级精简版单选题1、已知向量a ⃑,b ⃑⃑满足|a ⃑|=√3,|b ⃑⃑|=2,且a ⃑⊥(a ⃑−b ⃑⃑),则a ⃑与b ⃑⃑的夹角为( ) A .30°B .60°C .120°D .150° 答案:A分析:利用数量积的定义,即可求解.解:a ⃑⊥(a ⃑−b ⃑⃑),所以a ⃑⋅(a ⃑−b ⃑⃑)=0,即|a →|2−|a →||b →|cos <a →,b →>=0,解得cos <a →,b →>=√32,又因为向量夹角的范围为[0°,180°],则a ⃑与b ⃑⃑的夹角为30°,故选:A.2、“黄金三角形”是几何历史上的瑰宝,它有两种类型,其中一种是顶角为36°的等腰三角形,暂且称为“黄金三角形A ”.如图所示,已知五角星是由5个“黄金三角形A ”与1个正五边形组成,其中sin18°=√5−14,则阴影部分面积与五角形面积的比值为( ).A .√5−14B .√55C .√5+16D .3√520答案:B分析:在三角形ABC 中,由sin18°值,可得BCAC =√5−12,即BD AB=√5−12,设△ABC 的面积为x ,由此可知△BCD 和△CEF 的面积均为√5−12x ,△CDE 的面积为x ,由此即可求出结果.如图所示,依题意,在三角形ABC 中,sin18°=BC 2AC=√5−14,故BC AC=√5−12; 所以BDAB =√5−12, 设△ABC 的面积为x ,则△BCD 面积为√5−12x ,同理△CEF 的面积为√5−12x , △CDE 的面积为x ,则阴影部分面积与五角形面积的比值为2x+2⋅√5−12x 2⋅√5−12x+6x=√55. 故选:B .3、在△ABC 中,已知AB =6,AC =2,且满足DB ⃑⃑⃑⃑⃑⃑⃑=2AD ⃑⃑⃑⃑⃑⃑,AE ⃑⃑⃑⃑⃑⃑=EC ⃑⃑⃑⃑⃑⃑,若线段CD 和线段BE 的交点为P ,则AP⃑⃑⃑⃑⃑⃑⋅(CA ⃑⃑⃑⃑⃑⃑+CB ⃑⃑⃑⃑⃑⃑)=( ). A .3B .4C .5D .6 答案:B分析:待定系数法将AP ⃑⃑⃑⃑⃑⃑向量分解,由平面向量共线定理求出系数,然后代回原式计算 设AP⃑⃑⃑⃑⃑⃑=xAB ⃑⃑⃑⃑⃑⃑+yAC ⃑⃑⃑⃑⃑⃑, 由DB ⃑⃑⃑⃑⃑⃑⃑=2AD ⃑⃑⃑⃑⃑⃑知AB ⃑⃑⃑⃑⃑⃑=3AD ⃑⃑⃑⃑⃑⃑,∴AP ⃑⃑⃑⃑⃑⃑=3xAD ⃑⃑⃑⃑⃑⃑+yAC ⃑⃑⃑⃑⃑⃑,∵D ,P ,C 三点共线,∴3x +y =1①, 由AE⃑⃑⃑⃑⃑⃑=EC ⃑⃑⃑⃑⃑⃑知AC ⃑⃑⃑⃑⃑⃑=2AE ⃑⃑⃑⃑⃑⃑,∴AP ⃑⃑⃑⃑⃑⃑=xAB ⃑⃑⃑⃑⃑⃑+2yAE ⃑⃑⃑⃑⃑⃑,∵B ,P ,E 三点共线,∴x +2y =1②, 由①②得:x =15.y =25,∴AP ⃑⃑⃑⃑⃑⃑=15AB⃑⃑⃑⃑⃑⃑+25AC ⃑⃑⃑⃑⃑⃑, 而CA⃑⃑⃑⃑⃑⃑+CB ⃑⃑⃑⃑⃑⃑=−AC ⃑⃑⃑⃑⃑⃑+AB ⃑⃑⃑⃑⃑⃑−AC ⃑⃑⃑⃑⃑⃑=AB ⃑⃑⃑⃑⃑⃑−2AC ⃑⃑⃑⃑⃑⃑, ∴AP ⃑⃑⃑⃑⃑⃑⋅(CA ⃑⃑⃑⃑⃑⃑+CB ⃑⃑⃑⃑⃑⃑)=(15AB ⃑⃑⃑⃑⃑⃑+25AC ⃑⃑⃑⃑⃑⃑)(AB ⃑⃑⃑⃑⃑⃑−2AC ⃑⃑⃑⃑⃑⃑)=15(AB ⃑⃑⃑⃑⃑⃑2−4AC ⃑⃑⃑⃑⃑⃑2)=15×(62−4×22)=4 故选:B4、已知平面向量a ⃑=(1,2),b ⃑⃑=(-2,m ),且a ⃑∥b ⃑⃑,则2a ⃑+3b ⃑⃑=( ) A .(-4,-8)B .(-8,-16) C .(4,8)D .(8,16) 答案:A分析:根据向量平行的坐标表示求出m ,再根据向量线性运算得坐标表示即可求解. ∵a ⃑∥b ⃑⃑,∴1×m =2×(-2),∴m =-4,∴b ⃑⃑=(-2,-4), ∴2a ⃑+3b ⃑⃑=(2,4)+(-6,-12)=(-4,-8). 故选:A.5、已知向量a ⃑=(−1,m ),b ⃑⃑=(m +1,2),且a ⃑⊥b ⃑⃑,则m =( ) A .2B .−2C .1D .−1 答案:C分析:由向量垂直的坐标表示计算.由题意得a ⃑⋅b ⃑⃑=−m −1+2m =0,解得m =1 故选:C .6、在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A .19B .13C .12D .23答案:A分析:根据已知条件结合余弦定理求得AB ,再根据cosB =AB 2+BC 2−AC 22AB⋅BC,即可求得答案.∵在△ABC 中,cosC =23,AC =4,BC =3根据余弦定理:AB 2=AC 2+BC 2−2AC ⋅BC ⋅cosCAB 2=42+32−2×4×3×23可得AB 2=9 ,即AB =3 由∵ cosB =AB 2+BC 2−AC 22AB⋅BC=9+9−162×3×3=19故cosB =19.故选:A.小提示:本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题. 7、在△ABC 中,角A,B,C 的对边分别是a,b,c ,若A =45°,B =60°,b =2√3,则c 等于( ) A .√6−√24B .√6+√24C .√6−√2D .√6+√2答案:D分析:先求出C ,再由正弦定理求解即可. 解:在△ABC 中,C =180°−45°−60°=75°. 由正弦定理可知csinC =bsinB ,所 以csin75°=2√3sin60°, 故c =2√3sin75°sin60°=4sin75°=4sin(30°+45°)=4×√6+√24=√6+√2.故选:D.8、已知向量|a ⃑|=2,|b ⃑⃑|=4,且a ⃑,b ⃑⃑不是方向相反的向量,则|a ⃑−b ⃑⃑|的取值范围是( ) A .(2,6)B .[2,6) C .(2,6]D .[2,6] 答案:B分析:直接由||a ⃑|−|b ⃑⃑||≤|a ⃑−b ⃑⃑|<|a ⃑|+|b⃑⃑|求解即可. 由已知必有||a ⃑|−|b ⃑⃑||≤|a ⃑−b ⃑⃑|<|a ⃑|+|b ⃑⃑|,则所求的取值范围是[2,6). 故选:B. 多选题9、如果平面向量a ⃗=(2,−4),b ⃑⃗=(−6,12),那么下列结论中正确的是( ) A .|b ⃑⃗|=3|a ⃗|B .a ⃗//b⃑⃗ C .a ⃗与b ⃑⃗的夹角为30°D .a ⃗在b ⃑⃗方向上的投影为2√5 答案:AB分析:根据向量坐标运算及向量共线的意义可得解.因为a ⃗=(2,−4),b ⃑⃗=(−6,12),所以b ⃑⃗=−3a ⃗. 在A 中,由b ⃑⃗=−3a ⃗,可得|b ⃑⃗|=3|a ⃗|,故A 正确; 在B 中,由b ⃑⃗=−3a ⃗,可得a ⃗//b⃑⃗,故B 正确; 在C 中,由b ⃑⃗=−3a ⃗,可得a ⃗与b⃑⃗的夹角为180°,故C 错误; 在D 中,a ⃗在b ⃑⃗方向上的投影为a ⃑⃗⋅b ⃑⃗|b ⃑⃗|=22=−2√5,故D 错误. 故选:AB .10、ΔABC 是边长为3的等边三角形,已知向量a ⃑、b ⃑⃑满足AB ⃑⃑⃑⃑⃑⃑=3a ⃑,AC ⃑⃑⃑⃑⃑⃑=3a ⃑+b ⃑⃑,则下列结论中正确的有( ) A .a ⃑为单位向量B .b ⃑⃑//BC ⃑⃑⃑⃑⃑⃑C .a ⃑⊥b ⃑⃑D .(6a ⃑+b ⃑⃑)⊥BC ⃑⃑⃑⃑⃑⃑ 答案:ABD解析:求出|a ⃑|可判断A 选项的正误;利用向量的减法法则求出b ⃑⃑,利用共线向量的基本定理可判断B 选项的正误;计算出a ⃑⋅b ⃑⃑,可判断C 选项的正误;计算出(6a ⃑+b⃑⃑)⋅BC ⃑⃑⃑⃑⃑⃑,可判断D 选项的正误.综合可得出结论. 对于A 选项,∵AB ⃑⃑⃑⃑⃑⃑=3a ⃑,∴a ⃑=13AB ⃑⃑⃑⃑⃑⃑,则|a ⃑|=13|AB⃑⃑⃑⃑⃑⃑|=1,A 选项正确; 对于B 选项,∵AC ⃑⃑⃑⃑⃑⃑=3a ⃑+b ⃑⃑=AB ⃑⃑⃑⃑⃑⃑+b ⃑⃑,∴b ⃑⃑=AC ⃑⃑⃑⃑⃑⃑−AB ⃑⃑⃑⃑⃑⃑=BC ⃑⃑⃑⃑⃑⃑,∴b ⃑⃑//BC ⃑⃑⃑⃑⃑⃑,B 选项正确; 对于C 选项,a ⃑⋅b ⃑⃑=13AB ⃑⃑⃑⃑⃑⃑⋅BC ⃑⃑⃑⃑⃑⃑=13×32×cos 2π3≠0,所以a ⃑与b ⃑⃑不垂直,C 选项错误; 对于D 选项,(6a ⃑+b ⃑⃑)⋅BC ⃑⃑⃑⃑⃑⃑=(AB ⃑⃑⃑⃑⃑⃑+AC ⃑⃑⃑⃑⃑⃑)⋅(AC ⃑⃑⃑⃑⃑⃑−AB ⃑⃑⃑⃑⃑⃑)=AC ⃑⃑⃑⃑⃑⃑2−AB ⃑⃑⃑⃑⃑⃑2=0,所以,(6a ⃑+b ⃑⃑)⊥BC ⃑⃑⃑⃑⃑⃑,D 选项正确. 故选:ABD.小提示:本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题.11、在△ABC 中,D ,E ,F 分别是边BC ,CA ,AB 的中点,点G 为△ABC 的重心,则下述结论中正确的是( ) A .AB ⃑⃑⃑⃑⃑⃑+BC ⃑⃑⃑⃑⃑⃑=CA ⃑⃑⃑⃑⃑⃑B .AG⃑⃑⃑⃑⃑⃑=12(AB ⃑⃑⃑⃑⃑⃑+AC ⃑⃑⃑⃑⃑⃑) C .AF ⃑⃑⃑⃑⃑⃑+BD ⃑⃑⃑⃑⃑⃑⃑+CE ⃑⃑⃑⃑⃑⃑=0⃑⃑D .GA ⃑⃑⃑⃑⃑⃑+GB ⃑⃑⃑⃑⃑⃑+GC ⃑⃑⃑⃑⃑⃑=0⃑⃑ 答案:CD分析:根据向量的加法运算、相反向量、中线的向量表示,重心的性质分别计算求解. 由D ,E ,F 分别是边BC ,CA ,AB 的中点,点G 为△ABC 的重心,因为AB⃑⃑⃑⃑⃑⃑+BC ⃑⃑⃑⃑⃑⃑=AC →≠CA ⃑⃑⃑⃑⃑⃑,故A 错误; 由12(AB⃑⃑⃑⃑⃑⃑+AC ⃑⃑⃑⃑⃑⃑)=AD →≠AG →, 故B 错误; 因为AF ⃑+BD ⃑+CE ⃑=12(AB →+BC →+CA →)=0⃑, 故C 正确;因为GA ⃑⃑⃑⃑⃑⃑+GB⃑⃑⃑⃑⃑⃑+GC ⃑⃑⃑⃑⃑⃑=−23[12(AB →+AC →)+12(BA →+BC →)+12(CA →+CB →)] =−13(AB →+BA →+BC →+CB →+AC →+CA →)=0→, 故D 正确. 故选:CD 填空题12、在△ABC 中, a =5,b =5√3,A =30°,则B =________. 答案:60°或120°分析:利用正弦定理求得sinB ,由此求得B . 由正弦定理得asinA=b sinB,即5sin30°=5√3sinB ⇒sinB =√32, 由于0°<B <180°,所以B =60°或B =120°. 所以答案是:60°或120°13、在△ABC 中,cos∠BAC =−13,AC =2,D 是边BC 上的点,且BD =2DC ,AD =DC ,则AB 等于 ___.答案:3分析:运用余弦定理,通过解方程组进行求解即可. 设DC =x,AB =y ,因为BD =2DC ,AD =DC ,所以BC =3x,AD =DC =x , 在△ADC 中,由余弦定理可知:cosC =AC 2+CD 2−AD 22AC⋅DC =4+x 2−x 24x=1x , 在△ABC 中,由余弦定理可知:cosC =AC 2+CB 2−AB 22AC⋅BC=4+9x 2−y 212x,于是有4+9x 2−y 212x=1x ⇒9x 2−y 2=8(1),在△ABC 中,由余弦定理可知:cosA =AB 2+CA 2−CB 22AB⋅AC=y 2+4−9x 24y=−13,⇒27x 2−3y 2−4y =12(2),把(1)代入(2)中得,y =3, 所以答案是:314、在△ABC 中,P 是BC 上一点,若BP ⃑⃑⃑⃑⃑⃑=2PC ⃑⃑⃑⃑⃑⃑,AP ⃑⃑⃑⃑⃑⃑=λAB ⃑⃑⃑⃑⃑⃑+μAC ⃑⃑⃑⃑⃑⃑,则2λ+μ=___________. 答案:43##113分析:根据给定条件,用向量AB ⃑⃑⃑⃑⃑⃑,AC ⃑⃑⃑⃑⃑⃑表示向量AP ⃑⃑⃑⃑⃑⃑,再利用平面向量基本定理求解作答. 在△ABC 中,BP ⃑⃑⃑⃑⃑⃑=2PC ⃑⃑⃑⃑⃑⃑,则AP ⃑⃑⃑⃑⃑⃑=AB ⃑⃑⃑⃑⃑⃑+BP ⃑⃑⃑⃑⃑⃑=AB⃑⃑⃑⃑⃑⃑+23BC ⃑⃑⃑⃑⃑⃑=AB ⃑⃑⃑⃑⃑⃑+23(AC ⃑⃑⃑⃑⃑⃑−AB ⃑⃑⃑⃑⃑⃑) =13AB ⃑⃑⃑⃑⃑⃑+23AC ⃑⃑⃑⃑⃑⃑, 又AP ⃑⃑⃑⃑⃑⃑=λAB ⃑⃑⃑⃑⃑⃑+μAC ⃑⃑⃑⃑⃑⃑,且AB ⃑⃑⃑⃑⃑⃑,AC ⃑⃑⃑⃑⃑⃑不共线,则λ=13,μ=23,所以2λ+μ=43. 所以答案是:43解答题15、已知函数f (x )=4cosxsin (x −π3)+√3. (Ⅰ)求函数f (x )在区间[π4,π2]上的值域.(Ⅱ)在△ABC 中,角A ,B ,C ,所对的边分别是a ,b ,c ,若角C 为锐角,f (C )=√3,且c =2,求△ABC 面积的最大值.答案:(Ⅰ)[1,2];(Ⅱ)√3分析:(Ⅰ)利用差角的正弦公式、辅助角公式化简函数,结合正弦函数的性质,可得函数f(x)在区间[π4,π2]上的值域;(Ⅱ)先求出C ,再利用余弦定理,结合基本不等式,即可求得△ABC 面积的最大值. 解:(Ⅰ)f(x)=4cosxsin(x −π3)+√3=4cosx (sinxcos π3−cosxsin π3)+√3=4cosx (12sinx −√32cosx)+√3=2sinxcosx −2√3cos 2x +√3=sin2x −√3cos2x =2sin(2x −π3),由π4⩽x⩽π2,有π6⩽2x−π3⩽2π3,所以12≤sin(2x−π3)≤1∴函数f(x)的值域为[1,2].(Ⅱ)由f(C)=√3,有sin(2C−π3)=√32,∵C为锐角,∴2C−π3=π3,∴C=π3.∵c=2,∴由余弦定理得:a2+b2−ab=4,∵a2+b2⩾2ab,∴4=a2+b2−ab⩾ab.∴S△ABC=12absinC=√34ab⩽√3,∴当a=b,即△ABC为正三角形时,△ABC的面积有最大值√3.。

高中平面向量知识点详细归纳总结(附带练习)

高中平面向量知识点详细归纳总结(附带练习)

向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。

高中数学必修4平面向量知识点与典型例题总结(理)

高中数学必修4平面向量知识点与典型例题总结(理)

平面向量【基本概念与公式】 【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。

记作:AB 或a 。

2.向量的模:向量的大小(或长度),记作:||AB 或||a 。

3.单位向量:长度为1的向量。

若e 是单位向量,则||1e =。

4.零向量:长度为0的向量。

记作:0。

【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。

6.相等向量:长度和方向都相同的向量。

7.相反向量:长度相等,方向相反的向量。

AB BA =-。

8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)9.平行四边形法则:以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。

10.共线定理://a b a b λ=⇔。

当0λ>时,a b 与同向;当0λ<时,a b 与反向。

11.基底:任意不共线的两个向量称为一组基底。

12.向量的模:若(,)a x y =,则2||a x y =+22||a a =,2||()a b a b +=+13.数量积与夹角公式:||||cos a b a b θ⋅=⋅; cos ||||a b a b θ⋅=⋅ 14.平行与垂直:1221//a b a b x y x y λ⇔=⇔=;121200a b a b x x y y ⊥⇔⋅=⇔+= 题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。

(2)若两个向量不相等,则它们的终点不可能是同一点。

(3)与已知向量共线的单位向量是唯一的。

(4)四边形ABCD 是平行四边形的条件是AB CD =。

(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。

(6)因为向量就是有向线段,所以数轴是向量。

(7)若a 与b 共线, b 与c 共线,则a 与c 共线。

(8)若ma mb =,则a b =。

(9)若ma na =,则m n =。

平面向量知识点+例题+练习+答案

平面向量知识点+例题+练习+答案

五、平面向量1.向量的概念①向量 既有大小又有方向的量。

向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。

向量不能比较大小,但向量的模可以比较大小。

向量表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。

如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

向量和数量的区别:向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。

如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。

由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。

(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。

(与AB 共线的单位向量是||AB AB ±);④平行向量(共线向量)方向相同或相反的非零向量。

任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b ,规定零向量和任何向量平行。

由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。

提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线;数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。

(精选试题附答案)高中数学第六章平面向量及其应用知识点总结归纳

(精选试题附答案)高中数学第六章平面向量及其应用知识点总结归纳

(名师选题)(精选试题附答案)高中数学第六章平面向量及其应用知识点总结归纳单选题1、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc = A .6B .5C .4D .3 答案:A分析:利用余弦定理推论得出a ,b ,c 关系,在结合正弦定理边角互换列出方程,解出结果. 详解:由已知及正弦定理可得a 2−b 2=4c 2,由余弦定理推论可得 −14=cosA =b 2+c 2−a 22bc , ∴c 2−4c 22bc=−14 , ∴3c 2b =14 , ∴b c =32×4=6,故选A .小提示:本题考查正弦定理及余弦定理推论的应用.2、已知向量a ⃑,b ⃑⃑满足|a ⃑|=√3,|b ⃑⃑|=2,且a ⃑⊥(a ⃑−b ⃑⃑),则a ⃑与b ⃑⃑的夹角为( ) A .30°B .60°C .120°D .150° 答案:A分析:利用数量积的定义,即可求解.解:a ⃑⊥(a ⃑−b ⃑⃑),所以a ⃑⋅(a ⃑−b⃑⃑)=0,即|a →|2−|a →||b →|cos <a →,b →>=0, 解得cos <a →,b →>=√32,又因为向量夹角的范围为[0°,180°],则a ⃑与b ⃑⃑的夹角为30°,故选:A.3、向量PA ⃑⃑⃑⃑⃑⃑=(k,12),PB ⃑⃑⃑⃑⃑⃑=(4,5),PC ⃑⃑⃑⃑⃑⃑=(10,k).若A,B,C 三点共线,则k 的值为( ) A .−2B .1C .−2或11D .2或−11答案:C分析:求得BA⃑⃑⃑⃑⃑⃑,CA ⃑⃑⃑⃑⃑⃑,利用向量共线的充要条件,可得关于k 的方程,求解即可. 解:由题可得:BA⃑⃑⃑⃑⃑⃑=PA ⃑⃑⃑⃑⃑⃑−PB ⃑⃑⃑⃑⃑⃑=(k,12)−(4,5)=(k −4,7), CA⃑⃑⃑⃑⃑⃑=PA ⃑⃑⃑⃑⃑⃑−PC ⃑⃑⃑⃑⃑⃑=(k,12)−(10,k )=(k −10,12−k ). 因为A,B,C 三点共线,所以BA ⃑⃑⃑⃑⃑⃑∥CA ⃑⃑⃑⃑⃑⃑,所以(k −4)(12−k )−7(k −10)=0,整理得k 2−9k −22=0,解得k =−2或k =11. 故选:C.4、在△ABC 中,已知B =120°,AC =√19,AB =2,则BC =( ) A .1B .√2C .√5D .3 答案:D分析:利用余弦定理得到关于BC 长度的方程,解方程即可求得边长. 设AB =c,AC =b,BC =a ,结合余弦定理:b 2=a 2+c 2−2accosB 可得:19=a 2+4−2×a ×c ×cos120∘, 即:a 2+2a −15=0,解得:a =3(a =−5舍去), 故BC =3. 故选:D.小提示:利用余弦定理及其推论解三角形的类型: (1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角; (3)已知三角形的两边与其中一边的对角,解三角形.5、魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A.表高×表距表目距的差+表高B.表高×表距表目距的差−表高C.表高×表距表目距的差+表距D.表高×表距表目距的差−表距答案:A分析:利用平面相似的有关知识以及合分比性质即可解出.如图所示:由平面相似可知,DEAB =EHAH,FGAB=CGAC,而DE=FG,所以DE AB =EHAH=CGAC=CG−EHAC−AH=CG−EHCH,而CH=CE−EH=CG−EH+EG,即AB=CG−EH+EGCG−EH ×DE=EG×DECG−EH+DE=表高×表距表目距的差+表高.故选:A.小提示:本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出.6、已知向量a⃑=(−1,m),b⃑⃑=(2,4),若a⃑与b⃑⃑共线,则m=()A.−1B.1C.−2D.2答案:C分析:根据平面向量共线坐标表示可得答案.由题意得2m=−4,即m=−2.故选:C7、在正方形ABCD 中,BC ⃑⃑⃑⃑⃑⃑−DC ⃑⃑⃑⃑⃑⃑+AB ⃑⃑⃑⃑⃑⃑=( ) A .BD ⃑⃑⃑⃑⃑⃑⃑B .DB ⃑⃑⃑⃑⃑⃑⃑C .AD ⃑⃑⃑⃑⃑⃑D .DA ⃑⃑⃑⃑⃑⃑ 答案:C分析:根据平面向量加减运算法则计算可得.解:BC ⃑⃑⃑⃑⃑⃑−DC ⃑⃑⃑⃑⃑⃑+AB ⃑⃑⃑⃑⃑⃑=BC ⃑⃑⃑⃑⃑⃑+CD ⃑⃑⃑⃑⃑⃑+AB ⃑⃑⃑⃑⃑⃑=BD ⃑⃑⃑⃑⃑⃑⃑+AB ⃑⃑⃑⃑⃑⃑=AD ⃑⃑⃑⃑⃑⃑. 故选:C.8、已知边长为1的正方形ABCD ,设AB ⃑⃑⃑⃑⃑⃑=a ⃑,AD ⃑⃑⃑⃑⃑⃑=b ⃑⃑,AC ⃑⃑⃑⃑⃑⃑=c ⃑,则|a ⃑−b ⃑⃑+c ⃑|=( ) A .1B .2C .3D .4 答案:B分析:根据向量加法的平行四边形法则,结合正方形的性质可得答案. 因为ABCD 是边长为1的正方形,AB ⃑⃑⃑⃑⃑⃑=a ⃑,AD ⃑⃑⃑⃑⃑⃑=b ⃑⃑,AC ⃑⃑⃑⃑⃑⃑=c ⃑, 所以a ⃑−b ⃑⃑+c ⃑=AB ⃑⃑⃑⃑⃑⃑−AD ⃑⃑⃑⃑⃑⃑+AC ⃑⃑⃑⃑⃑⃑=AB ⃑⃑⃑⃑⃑⃑−AD ⃑⃑⃑⃑⃑⃑+(AB ⃑⃑⃑⃑⃑⃑+AD ⃑⃑⃑⃑⃑⃑)=2AB ⃑⃑⃑⃑⃑⃑ 又|AB ⃑⃑⃑⃑⃑⃑|=1,所以|a ⃑−b ⃑⃑+c ⃑|=|2AB ⃑⃑⃑⃑⃑⃑|=2 故选:B9、已知非零平面向量a ⃗,b ⃑⃗,c ⃗,下列结论中正确的是( ) (1)若a ⃗⋅c ⃗=b ⃑⃗⋅c ⃗,则a ⃗=b ⃑⃗;(2)若|a ⃗+b ⃑⃗|=|a ⃗|+|b ⃑⃗|,则a ⃗//b⃑⃗ (3)若|a ⃗+b ⃑⃗|=|a ⃗−b ⃑⃗|,则a ⃗⊥b ⃑⃗(4)若(a ⃗+b ⃑⃗)⋅(a ⃗−b ⃑⃗)=0,则a ⃗=b ⃑⃗或a ⃗=−b ⃑⃗ A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(3)(4) 答案:B解析:根据向量的数量积运算,以及向量模的计算公式,逐项判断,即可得出结果. 已知非零平面向量a ⃗,b ⃑⃗,c ⃗,(1)若a⃗⋅c⃗=b⃑⃗⋅c⃗,则(a⃗−b⃑⃗)⋅c⃗=0,所以a⃗=b⃑⃗或(a⃗−b⃑⃗)⊥c⃗,即(1)错;(2)若|a⃗+b⃑⃗|=|a⃗|+|b⃑⃗|,则a⃗与b⃑⃗同向,所以a⃗//b⃑⃗,即(2)正确;(3)若|a⃗+b⃑⃗|=|a⃗−b⃑⃗|,则|a⃗|2+|b⃑⃗|2+2a⃗⋅b⃑⃗=|a⃗|2+|b⃑⃗|2−2a⃗⋅b⃑⃗,所以2a⃗⋅b⃑⃗=0,则a⃗⊥b⃑⃗;即(3)正确;(4)若(a⃗+b⃑⃗)⋅(a⃗−b⃑⃗)=0,则|a⃗|2−|b⃑⃗|2=0,所以|a⃗|=|b⃑⃗|,不能得出向量共线,故(4)错;故选:B.小提示:本题主要考查向量数量积的运算,考查向量有关的判定,属于基础题型.10、已知不共线的平面向量a⃗,b⃑⃗,c⃗两两所成的角相等,且|a⃗|=1,|b⃑⃗|=4,|a⃗+b⃑⃗+c⃗|=√7,则|c⃗|=()A.√2B.2C.3D.2或3答案:D分析:先求出θ=2π3,转化|a⃗+b⃑⃗+c⃗|=√(a⃗+b⃑⃗+c⃗)2=√7,列方程即可求出.由不共线的平面向量a⃗,b⃑⃑,c⃑两两所成的角相等,可设为θ,则θ=2π3.设|c⃑|=m.因为|a⃗|=1,|b⃑⃗|=4,|a⃗+b⃑⃗+c⃗|=√7,所以|a⃗+b⃑⃗+c⃗|2=7,即a⃗2+2a⃗⋅b⃑⃗+b⃑⃗2+2b⃑⃗⋅c⃗+2a⃗⋅c⃗+c⃗2=7,所以12+2×1×4cos2π3+42+2×4×mcos2π3+2×1×mcos2π3+m2=7即m2−5m+6=0,解得:m=2或3.所以|c⃑|=2或3故选:D填空题11、已知向量a⃑=(3,1),b⃑⃑=(1,0),c⃑=a⃑+kb⃑⃑.若a⃑⊥c⃑,则k=________.答案:−103.分析:利用向量的坐标运算法则求得向量c⃗的坐标,利用向量的数量积为零求得k的值∵a ⃗=(3,1),b ⃑⃗=(1,0),∴c ⃗=a ⃗+kb ⃑⃗=(3+k,1), ∵a ⃗⊥c ⃗,∴a ⃗⋅c ⃗=3(3+k )+1×1=0,解得k =−103, 所以答案是:−103.小提示:本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量p ⃗=(x 1,y 1),q ⃗=(x 2,y 2)垂直的充分必要条件是其数量积x 1x 2+y 1y 2=0.12、若向量a →=(1,1)与向量b →=(1,x )的夹角为锐角,则x 的取值范围是___________. 答案:(−1,1)∪(1,+∞)解析:设向量a →与向量b →的夹角为θ,由cosθ=a⃑⃗⋅b ⃑⃗|a⃑⃗||b ⃑⃗|=√2×√1+x 2,.设向量a →与向量b →的夹角为θ,则cosθ=a⃑⃗⋅b ⃑⃗|a⃑⃗||b ⃑⃗|=√2×√1+x 2因为夹角为锐角, 所以0<cos θ<1,即 0<√2×√1+x 2<1,所以x >−1 且(1+x)2<2(1+x 2), 解得 −1<x <1 或 x >1, 所以答案是:(−1,1)∪(1,+∞)13、已知向量a ⃗,b ⃑⃗的夹角为120°,|a ⃗|=2,|b ⃑⃗|=1,若(a ⃗+3b ⃑⃗)⊥(2a ⃗+λb ⃑⃗),则实数λ=___________. 答案:−1分析:由(a ⃗+3b ⃑⃗)⊥(2a ⃗+λb ⃑⃗),可得(a ⃗+3b ⃑⃗)⋅(2a ⃗+λb ⃑⃗)=0,化简后结已知条件可求得答案 解:因为向量a ⃗,b ⃑⃗的夹角为120°,|a ⃗|=2,|b ⃑⃗|=1,且(a ⃗+3b ⃑⃗)⊥(2a ⃗+λb ⃑⃗), 所以(a ⃗+3b ⃑⃗)⋅(2a ⃗+λb ⃑⃗)=0,即2a ⃗2+(6+λ)a ⃗⋅b ⃑⃗+3λb ⃑⃗2=0, 所以8+(6+λ)×2×1×(−12)+3λ=0,解得λ=−1, 所以答案是:−114、已知点A (3,−4)与B (−1,2),点P 在直线AB 上,且|AP ⃑⃑⃑⃑⃑⃑|=|PB ⃑⃑⃑⃑⃑⃑|,则点P 的坐标为________. 答案:(1,−1)分析:根据模长相等关系可确定P 为线段AB 中点,由中点坐标公式计算得到结果. ∵P 在直线AB 上,且|AP⃑⃑⃑⃑⃑⃑|=|PB ⃑⃑⃑⃑⃑⃑|,∴P 为线段AB 中点, 又A (3,−4),B (−1,2),∴P (1,−1). 所以答案是:(1,−1).15、已知|b ⃑⃑|=3,向量a ⃑在向量b ⃑⃑上的投影向量为2b ⃑⃑,则a ⃑·b ⃑⃑=____________. 答案:18解析:由题意向量a ⃑在向量b ⃑⃑上的投影向量为2b ⃑⃑,分析可得|a ⃑|cos <a ⃑,b ⃑⃑>=2|b ⃑⃑|,代入公式,即可得答案. 因为向量a ⃑在向量b ⃑⃑上的投影向量为2b ⃑⃑,则可得|a ⃑|cos <a ⃑,b ⃑⃑>=2|b ⃑⃑|, 所以a ⃑·b ⃑⃑=|a ⃑||b ⃑⃑|cos <a ⃑,b ⃑⃑>=2|b ⃑⃑|·|b ⃑⃑|=2|b ⃑⃑|2=18, 所以答案是:18.小提示:本题考查向量投影的应用,考查分析理解的能力,属基础题. 解答题16、已知函数f (x )=2cosxsin (x +π6).(1)求f (x )的最小正周期及f (x )在区间[−π6,π4]上的最大值(2)在锐角△ABC 中,f (A 2)=32,且a =√3,求b +c 取值范围.答案:(1)最小正周期为π,最大值32;(2)(3,2√3].分析:(1)先利用三角恒等变换对函数进行化简,进而通过三角函数的图像和性质的应用得到答案; (2)利用正弦定理进行边化角,然后借助三角恒等变换进行化简,最后通过三角函数的图像和性质的应用求出结果.(1)f(x)=2cosx ⋅(sinx ⋅√32+cosx ⋅12) =√32sin2x +1+cos2x2=sin(2x +π6)+12,所以f (x )的最小正周期为π.因为−π6≤x ≤π4,所以−π6≤2x +π6≤2π3于是,当2x +π6=π2,即x =π6时,f (x )取得最大值32(2)在△ABC 中,A +B +C =πf(A2)=sin(A +π6)+12=32,∴sin(A +π6)=1,A ∈(0,π2),∴A +π6∈(π6,23π),∴A +π6=π2,∴A =π3.由正弦定理asinA=b sinB=c sinC=2,∴b =2sinB,c =2sinC ,∴b +c =2sinB +2sinC =2sinB +2sin (A +B )=2sinB +2sin (π3+B)=2sinB +√3cosB +sinB =3sinB +√3cosB =2√3sin(B +π6),∵{0<B <π20<C <π2⇒{0<B <π20<23π−B <π2⇒π6<B <π2,∴B +π6∈(π3,2π3),∴sin(B +π6)∈(√32,1], ∴b +c =2√3sin(B +π6)∈(3,2√3].17、平面内给定三个向量a ⃗=(3,2),b ⃑⃗=(−1,2),c ⃗=(4,1). (1)求满足a ⃗=mb ⃑⃗−nc ⃗的实数m ,n ; (2)若(a ⃗+kc ⃗)//(2b ⃑⃗−a ⃗),求实数k 的值. 答案:(1)m =59,n =−89;(2)k =−1613.分析:(1)依题意求出mb ⃑⃗−nc ⃗的坐标,再根据向量相等得到方程组,解得即可; (2)首先求出a ⃗+kc ⃗与2b ⃑⃗−a ⃗的坐标,再根据向量共线的坐标表示计算可得; 解:(1)因为a ⃗=(3,2),b ⃑⃗=(−1,2),c ⃗=(4,1),且a ⃗=mb ⃑⃗−nc ⃗ (3,2)=a ⃗=mb ⃑⃗−nc ⃗=m(−1,2)−n(4,1)=(−m −4n ,2m −n).∴ {−m −4n =32m −n =2,解得m =59,n =−89.(2)a ⃗+kc ⃗=(3,2)+k(4,1)=(3+4k ,2+k). 2b ⃑⃗−a ⃗=2(−1,2)−(3,2)=(−5,2). ∴−5(2+k)−2(3+4k)=0,解得k =−1613.18、如图,已知ΔABC 中,D 为BC 的中点,AE =12EC ,AD ,BE 交于点F ,设AC ⃑⃑⃑⃑⃑⃑=a ⃑,AD ⃑⃑⃑⃑⃑⃑=b⃑⃑.(1)用a ⃑,b ⃑⃑分别表示向量AB ⃑⃑⃑⃑⃑⃑,EB ⃑⃑⃑⃑⃑⃑; (2)若AF⃑⃑⃑⃑⃑⃑=tAD ⃑⃑⃑⃑⃑⃑,求实数t 的值. 答案:(1)AB ⃑⃑⃑⃑⃑⃑=2b ⃑⃑−a ⃑,EB ⃑⃑⃑⃑⃑⃑=−43a ⃑+2b⃑⃑;(2)t =12. 解析:(1)根据向量线性运算,结合线段关系,即可用a ⃑,b ⃑⃑分别表示向量AB ⃑⃑⃑⃑⃑⃑,EB ⃑⃑⃑⃑⃑⃑; (2)用a ⃑,b ⃑⃑分别表示向量FB ⃑⃑⃑⃑⃑⃑,EB⃑⃑⃑⃑⃑⃑,由平面向量共线基本定理,即可求得t 的值. (1)由题意,D 为BC 的中点,AE =12EC ,可得AE ⃑⃑⃑⃑⃑⃑=13AC ⃑⃑⃑⃑⃑⃑,AC ⃑⃑⃑⃑⃑⃑=a ⃑,AD ⃑⃑⃑⃑⃑⃑=b ⃑⃑. ∵AB ⃑⃑⃑⃑⃑⃑+AC ⃑⃑⃑⃑⃑⃑=2AD ⃑⃑⃑⃑⃑⃑, ∴AB ⃑⃑⃑⃑⃑⃑=2b ⃑⃑−a ⃑, ∴EB ⃑⃑⃑⃑⃑⃑=AB ⃑⃑⃑⃑⃑⃑–AE⃑⃑⃑⃑⃑⃑ =2b ⃑⃑−a ⃑−13a ⃑=−43a ⃑+2b⃑⃑ (2)∵AF ⃑⃑⃑⃑⃑⃑=tAD ⃑⃑⃑⃑⃑⃑=tb ⃑⃑, ∴FB ⃑⃑⃑⃑⃑⃑=AB ⃑⃑⃑⃑⃑⃑–AF ⃑⃑⃑⃑⃑⃑ =−a ⃑+(2−t )b⃑⃑∵EB ⃑⃑⃑⃑⃑⃑=−43a ⃑+2b ⃑⃑,FB ⃑⃑⃑⃑⃑⃑,EB⃑⃑⃑⃑⃑⃑共线, 由平面向量共线基本定理可知满足−1−43=2−t 2,解得t =12.小提示:本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题. 19、在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知a =√6,b =2c,cosA =−14. (1)求c 的值; (2)求sinB 的值; (3)求sin(2A −B)的值. 答案:(1)c =1(2)sinB =√104(3)sin(2A −B)=√108分析:(1)根据余弦定理a 2=b 2+c 2−2bccosA 以及b =2c 解方程组即可求出; (2)由(1)可求出b =2,再根据正弦定理即可解出;(3)先根据二倍角公式求出sin2A,cos2A ,再根据两角差的正弦公式即可求出.(1)因为a 2=b 2+c 2−2bccosA ,即6=b 2+c 2+12bc ,而b =2c ,代入得6=4c 2+c 2+c 2,解得:c =1. (2)由(1)可求出b =2,而0<A <π,所以sinA =√1−cos 2A =√154,又a sinA=b sinB ,所以sinB =bsinA a=2×√154√6=√104. (3)因为cosA =−14,所以π2<A <π,故0<B <π2,又sinA =√1−cos 2A =√154, 所以sin2A =2sinAcosA =2×(−14)×√154=−√158,cos2A =2cos 2A −1=2×116−1=−78,而sinB =√104,所以cosB =√1−sin 2B =√64, 故sin(2A −B)=sin2AcosB −cos2AsinB =(−√158)×√64+78×√104=√108.。

高一平面向量知识点及典例

高一平面向量知识点及典例

高一平面向量知识点及典例平面向量是高一数学学习中的重要内容,它不仅在数学中有着广泛的应用,还在物理、工程等领域发挥着重要作用。

本文将介绍高一平面向量的基本概念、性质和典型例题,希望能帮助同学们更好地理解和应用平面向量。

一、平面向量的概念平面向量是由大小和方向共同确定的有向线段,通常用大写字母表示。

平面向量AB可以记作→AB,其中A称为起点,B称为终点。

平面向量还可以用坐标表示,例如向量→AB可以表示为AB的坐标 (x, y)。

二、平面向量的性质1. 平面向量的加法与减法给定两个平面向量→AB和→CD,可以进行向量的加法和减法运算。

向量加法的结果是一个新的向量→EF,满足→EF = →AB +→CD;向量减法的结果是一个新的向量→GH,满足→GH =→AB - →CD。

2. 平面向量的数量积平面向量→AB和→CD的数量积记作→AB·→CD,表示两个向量的数量积等于向量→AB的模长乘以向量→CD在→AB上的投影长度。

若→AB·→CD = 0,则称向量→AB与→CD垂直。

3. 平面向量的数量积性质平面向量的数量积具有以下性质:交换律(→AB·→CD =→CD·→AB)、分配律(→AB·(→CD +→EF) = →AB·→CD +→AB·→EF)以及数量积与平移无关等。

三、平面向量的典型例题1. 例题一已知向量→AB = (3, 4),→CD = (5, -2),求→AB +→CD的坐标。

解:向量→AB +→CD的坐标为(3+5, 4+(-2)) = (8, 2)。

2. 例题二设向量→AB = (2, -3),→CD = (4, 1),求→AB·→CD的值。

解:→AB·→CD = (2*4)+(-3*1) = 5。

3. 例题三如图所示,在△ABC中,向量→AB = (2, 3),向量→BC = (4, 1),求向量→AC的坐标。

平面向量知识点与基础练习

平面向量知识点与基础练习

§平面向量知识点一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。

向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。

2.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。

提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0); ④三点A B C 、、共线⇔ AB AC 、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。

a 的相反向量是-a 。

二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如,,等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为(),a xi y j x y =+=,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。

三.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

四.实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:()()1,2a a λλ=当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ=,注意:λ≠0。

(完整版)高中平面向量知识点总结.doc

(完整版)高中平面向量知识点总结.doc
r
r
uuur
r
uuur
r
,则∠AOB=
(0
0
180
0
)叫做向
29、已知两个非零向量a与b,作OA=a,
OB=b
r
r
量a与b的夹角
rr
r
?
r
x x
y y
b
2
2
cos =cos a,b
a
=
1
1
r
r
2
2
x2
22
(可用此公式求两向量夹角)
a ? b
x1
y1
y2
当x1x2
y1y2< 0,?(
??
2
,π];
当x1x2
则把有序数对(x,y)叫做向量a的坐标。
(2)坐标表示
在向量a的直角坐标中,x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,a=(x,y)
叫做向量的坐标表示。
(3)在向量的直角坐标中,
i=(1,0)j=(0,1)
0=(0,0)
r
r
x2, y2
20、若a
x1, y1,b
和实数 λ
rr
x2, y1
y2
(1)a bx1
L1:A1x+B1y+C1=0
与直线L2:A2x+B2y+C2=0
的夹角,则只要求与两直线平
行的向量的夹角, 再取这两个向量的夹角或补角,
即与直线L1

2
分别平行的向量
1

L
m=(A
??·??
??·??+??·??
1
2
2
=︱??︱·︱??︱

(完整版)高一数学向量知识点归纳练习题

(完整版)高一数学向量知识点归纳练习题

向量一、平面向量的加法和乘积1、向量加法的交换律:a b b a +=+2、向量加法的结合律:()()a b c a b c ++=++3、向量乘积的结合律:()()a a λμλμ=4、向量乘积的第一分配律:()a a a λμλμ+=+5、向量乘积的第二分配律:()a b a b λλλ+=+二、平面向量的基本定理如果1e 、2e 是同一平面内的两个不是共线的向量,那么对于这一平面内的任一a ,有且只有一对实数1λ、2λ,使得1122a e e λλ=+。

(1)我们把不是共线的1e 、2e 叫做表示这一平面内所有向量的一组基底;(2)基底不是唯一的,关键是不是共线;(3)由定理可以将平面内任一a 在给出基底1e 、2e 的条件下进行分解;(4)基底给定时,分解形式是唯一的,1λ、2λ是被a 、1e 、2e 唯一确定的数量。

三、平面向量的直角坐标运算1、已知11(,)a x y =,22(,)b x y =,则1212(,)a b x x y y +=++,1212(,)a b x x y y -=--,1212(,)a b x x y y ⋅=.2、已知11(,)A x y ,22(,)B x y ,则22112121(,)(,)(,)AB OB OA x y x y x x y y =-=-=--。

3、已知11(,)a x y =和实数λ,则1111(,)(,)a x y x y λλλλ==。

四、两平面向量平行和垂直的充要条件1、平行(共线):基本定理:a 、b 互相平行的充要条件是存在一个实数λ,使得a b λ=。

定理:已知11(,)a x y =,22(,)b x y =,则a ∥b 的充要条件是01221=-y x y x .2、垂直:基本定理:a 、b 互相垂直的充要条件是0a b ⋅=。

定理:已知11(,)a x y =,22(,)b x y =,则a ⊥b 的充要条件是02121=+y y x x 。

3平面向量知识点与练习(含答案)

3平面向量知识点与练习(含答案)

3. 平面向量知识网络结构几何方法坐标方法运算性质加法1.平行四边形法则2.三角形法则1212(,)a b x x y y+=++r r a b b a+=+r r r r()()a b c a b c++=++r r r r r rACBCAB=+减法1.平行四边形法则2.三角形法则1212(,)a b x x y y-=--r r()a b a b-=+-r r r rAB BA=-u u u r u u u r,ABOAOB=-数乘向量1.aλr是一个向量,满足:||||||a aλλ=r r2.λ>0时, a aλr r与同向;λ<0时, a aλr r与异向;λ=0时, 0aλ=r r.(,)a x yλλλ=r()()a aλμλμ=r r()a a aλμλμ+=+r r r()a b a bλλλ+=+r r r r//a b a bλ⇔=r r r r向量的数量积a b⋅r r是一个数1.0a=r或0b=r时,0a b⋅=r r2. .0a≠r或0b≠r时,||||cos,a b a b a b⋅=<>r r r r1212a b x x y y•=+r ra b b a•=•r r r r()()()a b a b a bλλλ•=•=•r r r r r r()a b c a c b c+•=•+•r r r r r r r2222||||=a a a x y=+r r u r即||||||a b a b•≤r r r r1.向量的概念(1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法;字母表示:a;坐标表示法a=xi+yj=(x,y)(3)向量的长度:即向量的大小,记作|a |.(4)特殊的向量:零向量a =O ⇔|a |=O .单位向量a O 为单位向量⇔|a O |=1. (5)相等的向量:大小相等,方向相同:(x1,y1)=(x2,y2)⎩⎨⎧==⇔2121y y x x(6) 相反向量:a =-b ⇔b =-a ⇔a +b =0(7)平行(共线)向量:方向相同或相反的向量,称为平行向量.记作a ∥b . 2.重要定理、公式(1)平面向量基本定理e 1,e 2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)两个向量平行的充要条件: a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=O. (3)两个向量垂直的充要条件: a ⊥b ⇔a ·b =O ⇔x 1x 2+y 1y 2=O.(4)线段的定比分点公式: 设点P 分有向线段21P P 所成的比为λ,即P P 1=λ2PP ,则OP =λ+111OP +λ+112OP (线段的定比分点的向量公式) ⎪⎪⎩⎪⎪⎨⎧++=++=.1,12121λλλλy y y x x x (线段定比分点的坐标公式) 当λ=1时,得中点公式:OP =21(1OP +2OP )或⎪⎪⎩⎪⎪⎨⎧+=+=.2,22121y y y x x x (5)平移公式: 设点P (x ,y )按向量a =(h,k)平移后得到点P ′(x ′,y ′),则P O '=OP +a 或⎩⎨⎧+='+='.,k y y h x x曲线y =f (x )按向量a =(h,k)平移后所得的曲线的函数解析式为:y -k=f (x -h) (6)正弦定理:.2sin sin sin R Cc B b A a === 余弦定理:a 2=b 2+c 2-2bc cos A ,b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .(7)三角形面积计算公式: 设△ABC 的三边为a ,b ,c ,其高分别为h a ,h b ,h c ,半周长为P ,外接圆、内切圆的半径为R ,r .①S △=1/2ah a =1/2bh b =1/2ch c ②S △=Pr ③S △=abc/4R④S △=1/2sin C ·ab=1/2ac ·sin B=1/2cb ·sin A ⑤S △=()()()c P b P a P P --- [海伦公式] ⑥S △=1/2(b+c-a )r a [如下图]=1/2(b+a-c )r c =1/2(a+c-b )r b[注]:到三角形三边的距离相等的点有4个,一个是内心,其余3个是旁心. 如图:图1中的I 为S △ABC 的内心, S △=Pr图2中的I 为S △ABC 的一个旁心,S △=1/2(b+c-a )r a附:三角形的五个“心”; 重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点.旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点. ⑻△ABC 的判定:⇔+=222b a c △ABC 为直角△⇔∠A + ∠B =2π2c <⇔+22b a △ABC 为钝角△⇔∠A + ∠B <2π 2c >⇔+22b a △ABC 为锐角△⇔∠A + ∠B >2π附:证明:abc b a C 2cos 222-+=,得在钝角△ABC 中,222222,00cos c b a c b a C πππ+⇔-+⇔⑼平行四边形对角线定理:对角线的平方和等于四边的平方和. 二。

平面向量高考一轮总复习完整版(含全部知识点习题)

平面向量高考一轮总复习完整版(含全部知识点习题)

第一课时 向量的基本概念及基本运算C【知识要点】1.向量的基本概念(1)定义:既有大小又有方向的量叫做向量;向量的大小叫做向量的模 (2)特定大小或关系的向量①零向量:模为0的向量,记作→0,其方向是任意的②单位向量:模为1个单位长度的向量 ③共线向量(平行向量):方向相同或相反的非零向量。

规定:零向量与任何向量共线 ④相等向量:模长相等且方向相同的向量⑤相反向量:模长相等但方向相反的向量。

规定:零向量的相反向量是它本身 2.向量的表示法①字母表示法:如小写字母a , b , c 等,或AB ,CD 等 ②几何表示法:用一条有向线段表示 ③代数表示法:即向量的坐标表示法1.向量的加法、减法(1)法则:平行四边形法则、三角形法则 (2)运算律:交换律、结合律 (3)几何意义:2.向量的数乘(实数与向量的积) (1)定义与法则:(2)运算律:交换律、结合律、分配律 1.共线定理:向量与非零向量共线的充要条件是:有且只有一个实数λ,使得λ=2.平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数221121,,e e a λλλλ+=使3.三点共线定理:平面上三点A 、B 、C 共线的充要条件是:存在实数βα,,使得βα+=,其中1=+βα ,O 为平面上任意一点4.①平面内有任意三点O 、A 、B ,若M 是线段AB 的中点,则()+=21②ABC ∆中,M 为BC 边的中点,G 为重心,则=++,=++ ③向量加法的多边形法则 【自主练习】1. 以下命题中,正确命题的序号是 (1=,则b a = (2)b a b a =则都是单位向量若,, (3)===则若,,(4)==则,//(5)若四边形ABCD 是平行四边形,则==,2.已知直线a y x =+与圆422=+y x 交于AB两点,且-=+。

其中O 为坐标原点,则实数a 的值为3.已知向量,53=-=+=,则= 4.已知()-=+-=+=3,82,5 ,则( ) A. 点A 、B 、D 共线 B. 点A 、B 、C 共线 C. 点B 、C 、D 共线 D. 点A 、C 、D 共线 【典例解析】例1.对于非零向量b a ,,“=+”是“//”的( )A. 充分非必要B. 必要不充分C. 充要条件D.既不充分也不必要知识突破:如图,四边形ABCD ,其中A. 与B. 与C. DB AC 与D. OB DO 与例2.如图所示,D 、E 是△ABC 中AB ,AC 边的中点, M 、N 分别是DE ,BC 的中点。

高中的数学平面向量专题复习(含例题练习)

高中的数学平面向量专题复习(含例题练习)

标准实用平面向量专题复习一.向量有关概念:1. 向量的概念:既有大小又有方向的量,注意向量和数量的区别。

向量常用有向线段来表示,注意 不能说向量就是有向线段,为什么?(向量可以平移) 。

如:2•零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;3 .单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是-AB ); 一|AB|4 •相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量 a 、b 叫做平行向量,记作: a // b ,规定零向量和任何向量平行。

提醒:① 相等向量一定是共线向量,但共线向量不一定相等;② 两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线 平行不包含两条直线重合; *③ 平行向量无传递性!(因为有0)$ ④ 三点A B C 共线 AB AC 共线;a 的相反向量是一a 。

女口 =b ,则a =b 。

(2)两个向量相等的充要条件是它们的起点相同,终点相同。

(4)若ABCD 是平行四边形,则 AB = DC 。

( 5)若a = b,b= c ,则、向量的表示1•几何表示法:用带箭头的有向线段表示,如 AB ,注意起点在前,终点在后;2 •符号表示法:用一个小写的英文字母来表示,如 a , b , c 等;坐标表示。

如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

三. 平面向量的基本定理:如果 e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数 ■ 1、 ’2,使a= \ 8+ '2e 2。

女口卄片 片 ■+4例 2 (1)若 a =(1,1)b =(1,-1),c=(—1,2),则 c= _________(2) 下列向量组中,能作为平面内所有向量基底的是A. 2 =(0,0),e 2 =(1,-2)B. e =(-1,2)© =(5,7)13 C. e = (3,5)6 =(6,10) D. e =(2,-3)© =(—,-—)24(3) 已知AD,BE 分别是 ABC 的边BC,AC 上的中线,且AD =a,BE =b ,则BC 可用向量a,b 表示为 _____但两条直线6 .相反向量:长度相等方向相反的向量叫做相反向量。

平面向量知识点总结及基础练习知识分享

平面向量知识点总结及基础练习知识分享

知识点梳理:一.向量的基本概念与基本运算 1向量的概念:①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a;坐标表示法),(y x yj xi a向量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行零向量a =0 |a|=由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别)③单位向量:模为1个单位长度的向量向量0a 为单位向量 |0a|=④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量a ∥b量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的.⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a大小相等,方向相同),(),(2211y x y x 2121y y x x2向量加法求两个向量和的运算叫做向量的加法设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u ur u u u r =AC u u u r(1)a a a00;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”.3向量的减法① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a,零向量的相反向量仍是零向量关于相反向量有: (i ))(a =a; (ii) a +(a )=(a )+a =0 ;(iii)若a 、b是互为相反向量,则a =b ,b =a ,a +b =0②向量减法:向量a 加上b 的相反向量叫做a 与b的差,记作:)(b a b a求两个向量差的运算,叫做向量的减法③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)4实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa的方向与a的方向相反;当0 时,0 a ,方向是任意的②数乘向量满足交换律、结合律与分配律5两个向量共线定理:向量b 与非零向量a共线 有且只有一个实数 ,使得b =a6平面向量的基本定理:如果21,e e是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底7 特别注意:(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件(3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关例1 给出下列命题:① 若|a r |=|b r |,则a r =b r;② 若A ,B ,C ,D 是不共线的四点,则AB DC u u u r u u u r是四边形ABCD 为平行四边形的充要条件;③ 若a r =b r ,b r =c r ,则a r =c r ,④a r =b r 的充要条件是|a r |=|b r |且a r //b r;⑤ 若a r //b r ,b r //c r ,则a r //c r ,例2 设A 、B 、C 、D 、O 是平面上的任意五点,试化简:① AB BC CD u u u r u u u r u u u r ,②DB AC BD u u u r u u u r u u u r ③OA OC OB CO u u u r u u u r u u u r u u u r② 例3设非零向量a r 、b r 不共线,c r =k a r +b r ,d r =a r +k b r (k R),若c r∥d r ,试求k二.平面向量的坐标表示1平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j r r 作为基底由平面向量的基本定理知,该平面内的任一向量a r可表示成a xi yj r r r,由于a r 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a r 的坐标,记作a r =(x,y),其中x 叫作a r在x 轴上的坐标,y 叫做在y 轴上的坐标(1)相等的向量坐标相同,坐标相同的向量是相等的向量(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1)若 1122,,,a x y b x y r r ,则 1212,a b x x y y rr(2)若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3)若a r =(x,y),则 a r=( x, y)(4)若 1122,,,a x y b x y r r ,则1221//0a b x y x y rr(5)若 1122,,,a x y b x y r r,则1212a b x x y y r r若a b rr ,则02121 y y x x例1 已知向量(1,2),(,1),2a b x u a b r r r r r,2v a b r r r ,且//u v r r ,求实数x 的值例2已知点)6,2(),4,4(),0,4(C B A ,试用向量方法求直线AC 和OB (O 为坐标原点)交点P 的坐标三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r︱·︱b r ︱cos叫做a r 与b r的数量积(或内积) 规定00a r r2向量的投影:︱b r ︱cos =||a ba r r r ∈R ,称为向量b r 在a r 方向上的投影投影的绝对值称为射影3数量积的几何意义: a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r5乘法公式成立:2222a b a b a b a b r r r r r r r r ;2222a b a a b b r r r r r r 222a a b b r r r r6平面向量数量积的运算律:①交换律成立:a b b a r r r r②对实数的结合律成立: a b a b a b R r r r r r r③分配律成立:a b c a c b c r r r r r r rc a b rr r特别注意:(1)结合律不成立:a b c a b c r r r r r r;(2)消去律不成立a b a c r r r r不能得到b c r r(3)a b r r =0不能得到a r =0r或b r =0r7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y r r,则a r ·b r =1212x x y y8向量的夹角:已知两个非零向量a r 与b r,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(001800 )叫做向量a r 与b r 的夹角cos =cos ,a ba ba b • •r r r r r r 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r 与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r ⊥b r10两个非零向量垂直的充要条件: a ⊥b a ·b=O 02121 y y x x例1 判断下列各命题正确与否:(1)00a r;(2)00a r r ;(3)若0,a a b a c r r r r r,则b c r r ;⑷若a b a c r r r r ,则b c r r 当且仅当0a rr 时成立;(5)()()a b c a b c r r r r r r 对任意,,a b c r r r向量都成立;(6)对任意向量a r ,有22a a r r例2已知两单位向量a r 与b r 的夹角为0120,若2,3c a b d b a r r r r r r ,试求c r 与d r 的夹角例3 已知 4,3a r , 1,2b r ,,m a b r r r2n a b r r r ,按下列条件求实数 的值(1)m n r r ;(2)//m n r r ;(3)m n r r课堂练习: 一、选择题1.下列命题中正确的是( )A .OA OB AB u u u r u u u r u u u r B .0AB BA u u u r u u u rC .00AB r u u u r rD .AB BC CD AD u u u r u u u r u u u r u u u r2.设点(2,0)A ,(4,2)B ,若点P 在直线AB 上,且AB u u u r 2AP u u u r,则点P 的坐标为( ) A .(3,1) B .(1,1) C .(3,1)或(1,1) D .无数多个3.若平面向量b 与向量)2,1( a 的夹角是o 180,且53|| b ,则 b ( ) A .)6,3( B .)6,3( C .)3,6( D .)3,6(4.向量(2,3)a r ,(1,2)b r,若ma b r r 与2a b r r 平行,则m 等于A .2B .2C .21D .125.若,a b r r 是非零向量且满足(2)a b a r r r,(2)b a b r r r ,则a r 与b r 的夹角是( )A .B .C .D . 6.设3(,sin )2a r,1(cos ,)3b r ,且//a r b ,则锐角 为( )A .030B .060C .075D .045二、填空题1.若||1,||2,a b c a b r r r r r,且c a r r ,则向量a r 与b r 的夹角为 . 2.已知向量(1,2)a,(2,3)b,(4,1)c,若用 a 和 b 表示 c ,则c =____。

(完整版)高中数学必修4平面向量知识点总结与典型例题归纳.docx

(完整版)高中数学必修4平面向量知识点总结与典型例题归纳.docx

平面向量【基本概念与公式】【任何时候写向量时都要带箭头】1. 向量:既有大小又有方向的量。

记作:uuur rAB 或 a 。

uuur r2.向量的模:向量的大小(或长度),记作: | AB |或 | a |。

r r3. 单位向量:长度为 1 的向量。

若e是单位向量,则| e| 1。

r r4.零向量:长度为 0 的向量。

记作:0。

【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。

6.相等向量:长度和方向都相同的向量。

7.相反向量:长度相等,方向相反的向量。

8.三角形法则:uuur uuur AB BA。

uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur uuurAB BC AC;AB BC CD DE AE; AB AC CB (指向被减数)9.平行四边形法则:r r r r r r以 a, b 为临边的平行四边形的两条对角线分别为a b , a b 。

r r r r r r r r10. 共线定理:a b a / /b 。

当0 时,a与b同向;当0 时,a与b反向。

11.基底:任意不共线的两个向量称为一组基底。

12.r rx2y 2r 2r r r r r2向量的模:若 a(x, y) ,则| a |, a| a |2, | a b |( a b)r r r rr rcos ra br13.数量积与夹角公式: a b| a | | b | cos;| a || b |r r r r r r r r14.平行与垂直: a / / b a b x1 y2x2 y1; a b a b0x1 x2y1 y2 0题型 1. 基本概念判断正误:(1)共线向量就是在同一条直线上的向量。

(2)若两个向量不相等,则它们的终点不可能是同一点。

( 3)与已知向量共线的单位向量是唯一的。

( 4)四边形 ABCD是平行四边形的条件是uuur uuurAB CD 。

高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案

高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案

1.平面向量基本定理如果e 1、e 2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2) (a ≠0),如果a ∥b ,那么x 1y 2-x 2y 1=0;反过来,如果x 1y 2-x 2y 1=0,那么a ∥b . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么下列说法正确的是________(填序号). ①若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0;②空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数); ③对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内;④对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对. 答案 ①2.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s =________. 答案 0解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝⎛⎭⎫-23=0. 3.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2 θ=0, ∴2sin θcos θ-cos 2 θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 答案 (1)45 (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.(2)设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.(1)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)(2)如图,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为________.答案 (1)-23e 1+512e 2 (2)13解析 (1)如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.(2)易知AG →=13AB →+13AC →,MN →=-xAB →+yAC →,故MG →=⎝⎛⎭⎫13-x AB →+13AC →.由于MG →与MN →共线,所以⎝⎛⎭⎫13-x y =-13x , 即xy =13(x +y ),因此xy x +y =13.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =________. (2)已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为__________. 答案 (1)⎝⎛⎭⎫-133,-43 (2)⎝⎛⎭⎫35,-45 解析 (1)由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝⎛⎭⎫-133,-43. (2)A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B→|A B →|=⎝⎛⎭⎫35,-45. 思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为__________.(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=________.答案 (1)(5,14) (2)(-6,21)解析 (1)设点B 的坐标为(x ,y ),则AB →=(x +1,y -5).由AB →=3a ,得⎩⎪⎨⎪⎧ x +1=6,y -5=9,解得⎩⎪⎨⎪⎧x =5,y =14.(2)BC →=3PC →=3(2PQ →-P A →)=6PQ →-3P A →=(6,30)-(12,9)=(-6,21).题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 答案 (1)(-4,-8) (2)(2,4)解析 (1)由a =(1,2),b =(-2,m ),且a ∥b , 得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8). (2)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 命题点2 利用向量共线求参数例4 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -54解析 AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5, ∴a =-54.命题点3 求交点坐标例5 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ). 又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP→=34OB →=(3,3),所以点P 的坐标为(3,3). 方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________.答案3+222解析 由题意得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (14分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思维点拨 可以建立平面直角坐标系,将向量坐标化,求出点A ,B 的坐标,用三角函数表示出点C 的坐标,最后转化为三角函数求最值. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[11分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[14分]温馨提醒 本题首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x +y 的最大值.引入向量的坐标运算使得本题比较容易解决,体现了解析法(坐标法)解决问题的优势,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.[方法与技巧]1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值. [失误与防范]1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练 (时间:40分钟)1.如图,设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内其他向量的基底的是________. 答案 ①③解析 ①中AD →,AB →不共线;③中CA →,DC →不共线.2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =________.答案 (-1,2)解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2). 3.已知a =(1,1),b =(1,-1),c =(-1,2),则c =________. 答案 12a -32b解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=________. 答案 12解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12.5.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为________.答案 3解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即mn=3. 6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.答案 2解析 设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.7.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.答案 (-2,-4)解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →=(-2,-4).8.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________. 答案 m ≠54解析 由题意得AB →=(-3,1),AC →=(2-m,1-m ),若A ,B ,C 能构成三角形,则AB →,AC →不共线,则-3×(1-m )≠1×(2-m ),解得m ≠54. 9.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).10.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0, 故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴AM →与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.B 组 专项能力提升(时间:15分钟)11.在△ABC 中,点P 是AB 上的一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则t 的值为________.答案 34解析 ∵CP →=23CA →+13CB →, ∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →.∴2AP →=PB →,因此P 为AB 的一个三等分点.∵A ,M ,Q 三点共线,∴CM →=xCQ →+(1-x )CA →=x 2CB →+(x -1)AC → (0<x <1). ∵CB →=AB →-AC →,∴CM →=x 2AB →+⎝⎛⎭⎫x 2-1AC →. ∵CP →=CA →-P A →=-AC →+13AB →, 且CM →=tCP →(0<t <1),∴x 2AB →+⎝⎛⎭⎫x 2-1AC →=t ⎝⎛⎭⎫-AC →+13AB →. ∴x 2=t 3且x 2-1=-t ,解得t =34. 12.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为________.答案 -12解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12. 13.已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________.答案 16解析 由m a +n b =c ,可得⎩⎪⎨⎪⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为OP +1=3+1=4,故(m -3)2+n 2的最大值为42=16.14.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.答案 3解析 ∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.如图所示,连结AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →. 又AD →=12(AB →+AC →), ∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.15.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).。

高一向量知识点总结及例题

高一向量知识点总结及例题

高一向量知识点总结及例题一、向量的概念1. 向量的定义:有向线段叫做向量向量的定义:具有大小和方向的量称为向量2. 向量的表示:一般用小写英文字母加上上方有箭头的符号表示向量,如a→(读作“a矢”)表示一个向量3. 特殊向量:零向量,单位向量零向量:方向任意,但模长为零的向量称为零向量,用0→表示单位向量:模长为1的向量称为单位向量4. 向量的性质:平行向量,共线向量二、向量的运算1. 向量的加法:平行四边形法则平行四边形法则:以向量的起点为顶点,则向量和为以这些向量为对角线的平行四边形的对角线。

2. 向量的减法:a-b=a+(-b)为a的负向量3. 向量的数乘:数c与向量a的积c倍c→4. 向量的夹角:若两向量a→和b→不共线,那么定义a→与b→的夹角α为0°≤α≤180°5. 向量的数量积:a•b=|a|•|b|•cosα6. 向量的数量积性质:(1)交换律:a•b=b•a(2)数量积的分配律:a•(b+c)=a•b+a•c(3)数量积的数乘结合律:(ca)•b=c(a•b)(4)|a•b|=|a|•|b|•cosα三、向量的坐标表示1,平面直角坐标系中的向量:(x1,y1)和(x2,y2)两点的向量为向量(x2-x1,y2-y1)2,向量的坐标与分解3,向量的坐标方向四、向量的应用1. 向量的应用:力,速度,位移2. 大小及方向的确定3. 用向量平行四边形的基本性质判定四边形的形状4. 向量的共线和共面例题:例1. 设向量a=(3,5)和向量b=(-2,4),求向量a-b和向量b-a的坐标。

解:a-b=a+(-b)=(3,5)+(-2,-4) =(3-(-2),5-4)=(5,1)同理,b-a=b+(-a)=(-2,4)+(3,5)=(-2-3,4-5)=(-5,-1)例2:设a和b是非零向量,若|a•b|=|a|•|b|,则a、b的夹角取值为()。

A. 45°B. 90°C. 135°D. 180°解:|a•b|=|a|•|b|cosα ,|a•b|=|a|•|b|时,cosα=1,所以α=0°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥[]l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。

错误的说法有.9. 下列命题中: (1)单位向量都相等 (2)单位向量都共线 (3)共线的单位向量必相等(4)与一非零向量共线的单位向量有且只有一个.中正确的命题的个数有个.10. 下列命题中: (1)若a ∣∣=0,则a =0. (2)若a b ∣∣=∣∣,则a b =或a b =-.(3)若a 与b 是平行向量,则a b ∣∣=∣∣. (4)若0a =,则0a -=.其中正确的命题是(只填序号). (三)解答题:11. 如图,四边形ABCD 于ABDE 都是平行四边形.(1) 若AE a =,求DB ;(2) 若CE b =,求AB ;(3) 写出和AB 相等的所有向量;(4) 写出和AB 共线的所有向量.向量的加法与减法运算一、高考要求:掌握求向量和与差的三角形法则和平行四边形法则.掌握向量加法的交换律与结合律.二、知识要点:1. 已知向量a 、b ,在平面上任取一点A,作AB a =,BC b =,作向量AC ,则向量AC叫做向量a 与b 的和(或和向量),记作a +b ,即a b AB BC AC +=+=.这种求两个向量和的作图法则,叫做向量求和的三角形法则.2. 已知向量a 、b ,在平面上任取一点A,作AB a =,AD b =,如果A 、B 、D 不共线,则以AB 、AD 为邻边作平行四边形ABCD,则对角线上的向量AC =a +b =AB +AD .这种求两个向量和的作图法则,叫做向量求和的平行四边形法则.3. 已知向量a 、b ,在平面上任取一点O,作OA a =,OB b =,则b +BA =a ,向量BA叫做向量a 与b 的差,并记作a -b ,即BA =a b OA OB -=-.由此推知:(1) 如果把两个向量的始点放在一起,则这两个向量的差是减向量的终点到被减向量的终点的向量;(2) 一个向量BA 等于它的终点相对于点O 的位置向量OA 减去它的始点相对于点O 的位置向量OB ;(3) 一个向量减去另一个向量,等于加上这个向量的相反向量.4. 向量加法满足如下运算律: (1)a b b a +=+; (2)()()a b c a b c ++=++.三、典型例题:例1:已知任意两个向量a 、b ,不等式a b +│ │ ≤a b +│ │ │ │ 是否正确?为什么? 例2:作图验证:()a b a b -+=--.四、归纳小结:1. 向量的加法有三角形法则(AB BC AC +=)或平行四边形法则(AB +AD =AC ),向量的减法法则(AB OB OA =-).2. 向量的加减法完全不同于数量的加减法.向量加法的三角形法则的特点是,各个加向量的首尾相接,和向量是首指向尾.向量减法的三角形法则的特点是,减向量和被减向量同起点,差向量是由减向量指向被减向量.3. 任一向量等于它的终点向量减去它的起点向量(相对于一个基点).五、基础知识训练:(一)选择题:1. 化简AB AC BD DC -++的结果为( )A.ACB.ADC.0D.02. 在△ABC 中,,BC a CA b ==,则AB 等于( )A.a b +B.()a b -+C.a b -D.b a -3. 下列四式中不能化简为AD 的是( )A.()AB CD BC ++B.()()AD MB BC CM +++C.MB AD BM +-D.OC OA CD -+4. 如图,平行四边形ABCD 中,下列等式错误的是( )A.AD AB BD =+B.AD AC CD =+C.AD AB BC CD =++D.AD DC CA =+5. 下列命题中,错误的是( )A.对任意两个向量a 、b ,都有a b ∣+∣ ≤a b ∣ ∣ +∣ ∣ B.在△ABC 中,0AB BC CA ++= C.已知向量AB ,对平面上任意一点O,都有AB OB OA =-D.若三个非零向量a 、b 、c 满足条件0a b c ++=,则表示它们的有向线段一定能构成三角形6.下列等式中,正确的个数是( )①0a a +=;②b a a b +=+;③()a a --=;④()0a a +-=;⑤()a b a b +-=-.A.2B.3C.4D.5(二)填空题:6. 在△ABC 中,AB CA +=,BC AC -=.7. 化简:AB AC BD CD -+-=,01122330A A A A A A A A +++=.(三)解答题:8. 若某人从点A 向东位移60m 到达点B,又从点B 向东偏北30方向位移50m 到达点C,再从点C 向北偏西60方向位移30m 到达点D,试作出点A 到点D 的位移图示.数乘向量一、高考要求:掌握数乘向量的运算及其运算律.二、知识要点:1. 数乘向量的一般定义:实数λ和向量a 的乘积是一个向量,记作a λ.当0λ>时,a λ与a 同方向,aa λλ││ =│ ∣│ │ ; 当0λ<时,a λ与a 反方向,aa λλ││ =│ ∣│ │ ; 当0λ=或0a =时,000a λ⋅=⋅=.2. 数乘向量满足以下运算律: (1)1a =a ,(-1)a =a -; (2)()()a a λμλμ=;(3)()a a a λμλμ+=+; (4)()a b a b λλλ+=+.三、典型例题:例1:化简: 111(2)(52)463a b a b b +--+例2:求向量x :112()(3)42x a b x c c -=-+- 四、归纳小结:向量的加法、减法与倍积的综合运算,通常叫做向量的线性运算.五、基础知识训练:(一)选择题:1. 下列关于数乘向量的运算律错误的一个是( )A.()()a a λμλμ=B.()a a a λμλμ+=+C.()a b a b λλλ+=+D.()a b a b λλ+=+2. D,E,F 分别为△ABC 的边BC,CA,AB 上的中点,且,BC a CA b ==,给出下列命题,其中正确命题的个数是() ①12AD a b =--;②12BE a b =+;③1122CF a b =-+;④0AD BE CF ++=. A.1 B.2 C.3 D.43. 已知AM 是△ABC 的BC 边上的中线,若,AB a AC b ==,则AM 等于( )A.1()2a b -B.1()2b a -C.1()2a b + D.1()2a b -+ 4. 设四边形ABCD 中,有12DC AB =,且AD BC =∣∣∣∣,则这个四边形是( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形(二)填空题:5. 化简:2(34)3(23)a b c a b c -+-+-=.6. 若向量x 满足等式: 2()0x a x ++=,则x =.7. 数乘向量a λ的几何意义是.(三)解答题:8. 已知向量(也称矢量),a b ,求作向量122x a b =-.9. 已知a 、b 不平行,求实数x 、y 使向量等式3(10)(47)2xa y b y a xa +-=++恒成立.10. 任意四边形ABCD 中,E 是AD 的中点,F 是BC 的中点,求证:1()2EF AB DC =+.平行向量和轴上向量的坐标运算一、高考要求: a b掌握向量平行的条件,理解平行向量基本定理和轴上向量的坐标及其运算.二、知识要点:1. 平行向量基本定理:如果向量0b ≠,则a b ∥的充分必要条件是,存在唯一的实数λ,使a b λ=.该定理是验证两向量是否平行的标准.2. 已知轴,取单位向量e ,使e 与同方向,对轴上任意向量a ,一定存在唯一实数x,使a xe =.这里的x 叫做a 在轴上的坐标(或数量),x 的绝对值等于a 的长,当a 与e 同方向时,x 是正数,当a 与e 反方向时,x 是负数.(1) 设1a x e =,2b x e =,则①a b =当且仅当12x x =;②a b +=12()x x e +.这就是说,轴上两个向量相等的充要条件是它们的坐标相等;轴上两个向量和的坐标等于两个向量的坐标的和.(2) 向量AB 的坐标通常用AB 表示,常把轴上向量运算转化为它们的坐标运算,得著名的沙尔公式:AB+BC=AC.(3) 轴上向量的坐标运算:起点和终点在轴上的向量的坐标等于它的终点坐标减去起点坐标.即在轴x 上,若点A 的坐标为1x ,点B 的坐标为2x ,则AB=21x x -.可得到数轴上两点的距离公式:21AB x x -│ │ =.三、典型例题:例1:已知:MN 是△ABC 的中位线,求证:1,2MN BC MN BC =∥. 例2:已知:13,3a eb e ==-,试问向量a 与b 是否平行?并求a b │ │ │: │ . 例3:已知:A 、B 、C 、D 是轴上任意四点,求证:0AB BC CD DA +++=四、归纳小结:1. 平面向量基本定理给出了平行向量的另一等价的代换式,可以通过向量的运算解决几何中的平行问题.即判断两个向量平行的基本方法是,一个向量是否能写成另一向量的数乘形式.2. 数轴上任一点P 相对于原点O 的位置向量OP 的坐标,就是点P 的坐标,它建立了点的坐标与向量坐标之间的联系.五、基础知识训练:(一)选择题:1. 如果(,0)a mb m R b =∈≠,那么a 与b 的关系一定是( )A.相等B.平行C.平行且同向D.平行且反向2. 若3,5AB e CD e ==-,且AD CB │ │ =│ │ ,则四边形ABCD 是( ) A.平行四边形 B.梯形 C.等腰梯形 D.菱形3. “11220a e a e +=”是“10a =且20a =”的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件(二)填空题:4. 若3,6a e b e ==-,那么a 与b 的关系是.5. 在轴上,若8,23AB BC =-=,则AC =.6. 已知:数轴上三点A 、B 、C 的坐标分别是-5、-2、6,则AB =,CA =, CB ││ =. (三)解答题:7. 已知:点E 、F 、G 、H 分别是四边形ABCD 的边AB 、BC 、CD 、DA 的中点,求证:EF=HG.向量的分解一、高考要求:理解平面向量的分解定理.二、知识要点:1. 平面向量的分解定理:设1a ,2a 是平面上的两个不共线的向量,则平面上任意一个向量c 能唯一地表示成1a ,2a 的线性组合,即112212(,)c x a x a x x R =+∈.2. 直线的向量参数方程:(t 为参数):①AP t AB =;②OP OA t AB =+;③(1)OP t OA tOB =-+.特别地,当12t =时,1()2OP OA OB =+,此为中点向量表达式. 三、典型例题:例1:如图,在△ABC 中,M 是AB 的中点,E 是中线CM 的中点,AE 的延长线交BC 于F,MH ∥AF,交BC 于点H,设,AB a AC b ==,试用基底a 、b 表示BH 、MH 、EC .例2:如图,A 、B 是直线上任意两点,O 是外一点,求证:点P 在直线上的充要条件是:存在实数t,使(1)OP t OA tOB =-+.四、归纳小结:平面向量分解定理告诉我们:平面上取定两个不平行的向量作为基向量,则平面上的任一向量都可以表示为基向量的线性组合.于是,向量之间的运算转化为对两个向量的线性运算.五、基础知识训练:(一)选择题:1. 如图,用基底向量1e 、2e 表示向量a 、b 、c 、d ,不正确的一个是( )A.a =1e -+22eB.b =21e +32eC.c =31e +2eD.d =1e +32e2. 在平行四边形ABCD 中,O 是对角线AC 和BD 的交点,122,4AB e BC e ==,则212e e -等于( )A.AOB.BOC.COD.DO3. 已知平行四边形ABCD 的两条对角线AC 和BD 相交于点M,设,AB a AD b ==,则用基底向量a 、b 分别表示MA 、MB 、MC 、MD 中,错误的一个是( )A.1122a b --B.1122a b -C.1122a b +D.1122a b - 4. 若点P 满足向量方程AP t AB =,当t 在R 内任意取值时,点P 的轨迹是( )A.直线OAB.直线OBC.直线ABD.一条抛物线(二)填空题:5. 已知O 、A 、B 三点不共线,则用向量OA 、OB 分别表示线段AB 的三等分点P 、Q 相对于点O 的位置向量为.6. 在△ABC 中,DE ∥BC,并分别与边AB 、AC 交于点D 、E,如果AD=13AB,,AB a AC b ==,则用a 、b 表示向量DE 为.7. 正方形ABCD 中,E 为DC 的中点,,AB a AD b ==,则BE =.8. 平行四边形的边BC 和CD 的中点分别为E 、F,把向量EF 表示成AB 、AD 的线性组合为.(三)解答题:9. ABCD 是梯形,AB ∥CD 且AB=2CD,M 、N 分别是DC 和AB 的中点,,AB a AD b ==,求BC 和MN .向量的直角坐标一、高考要求:掌握向量的直角坐标和点的坐标之间的关系,熟练掌握向量的直角坐标运算,会求满足一定条件的点的坐标,掌握平行向量坐标间的关系.二、知识要点:1. 在直角坐标系XOY 内,分别取与x 轴、与y 轴方向相同的两个单位向量1e 、2e ,在XOY 平面上任作一向量a ,由平面向量分解定理可知,存在唯一的有序实数对12(,)x x ,使得1122a x e x e =+,则12(,)x x 叫做向量a 在直角坐标系XOY 中的坐标,记作12(,)a x x =.2. 向量的直角坐标:任意向量AB 的坐标等于终点B 的坐标减去起点A 的坐标,即若A 11(,)x y 、B 22(,)x y ,则22112121(,)(,)(,)AB OB OA x y x y x x y y =-=-=--.向量a 的直角坐标12(,)a a ,也常根据向量的长度和方向来求:12a a a a θθ==∣∣cos ,∣∣s i n .3. 向量的坐标运算公式:设1212(,),(,)a a a b b b ==,则:12121122(,)(,)(,)a b a a b b a b a b +=+=++;12121122(,)(,)(,)a b a a b b a b a b +=-=--;1212(,)(,)a a a a a λλλλ==.三、典型例题:例1:已知A(-2,1)、B(1,3),求线段AB 的中点M 和三等分点P 、Q 的坐标及向量PQ 的坐标.例2:若向量(1,1)(1,1)(1,2)a b c ==-=-、、,把向量c 表示为a 和b 的线性组合. 四、归纳小结:1. 向量在直角坐标系中的坐标分别是向量在x 轴和y 轴上投影的数量,向量的直角坐标运算公式是通过对基向量的运算得到的.2. 要求平面上一点的坐标,只须求出该点的位置向量的坐标.五、基础知识训练:(一)选择题:1. 已知向量(2,3)a =,向量(1,1)b =-,下列式子中错误的是( )A.(1,4)a b +=B.(3,2)a b -=C.5(10,15)a =D.2(4,6)a -=2. 已知1212(,),(,)a a a b b b ==,则a b =的充要条件是( )A.11a b =B.22a b =C.11a b =且22a b =D.11a b =或22a b =3. 已知点A(-1,1),B(-4,5),若3BC BA =,则点C 的坐标是( )A.(-10,13)B.(9,-12)C.(-5,7)D.(5,-7)4. 已知点A(1,2),B(-1,3),2OA OA '=,3OB OB '=,则A B ''的坐标是( )A.(-5,5)B.(5,-5)C.(-1,13)D.(1,-13)5. 已知A(1,5),B(-3,3),则△AOB 的重心的坐标为( )A.1(,2)2-B.14(,)33-C.28(,)33D.28(,)33- 6. 已知向量(1,2)a =-,向量(2,3)b =-,则32a b -等于( )A.(-1,-12)B.(3,-5)C.(7,-12)D.(7,0)7. 已知a =(-4,4),点A(1,-1),B(2,-2),那么( )A.a AB =B.a AB ⊥C.a AB =||||D.a AB ∥8. 已知点A(1,2),B(k,-10),C(3,8),且A,B,C 三点共线,则k=( )A.-2B.-3C.-4D.-59. 已知(3,2),(,4)m n x ==,m n ∥,则x=( )A.6B.-6C.83-D.83(二)填空题:10. 设平行四边形ABCD 的对角线交于点O,(3,7)AD =,(2,1)AB =-,则OB 的坐标是.11. 已知(1,2)(1,1)(3,2)a b c =-=-=-,,,且c pa qb =+,则p,q 的值分别为. 12. 若向量(2,)a m =与(,8)b m =是方向相反的向量,则m=.(三)解答题:13. 已知(1,2)a =,(2,3)b =--,实数x,y 满足等式(3,4)xa yb +=-,求x,y.14. 已知向量(3,4)OA =,将向量OA 的长度保持不变绕原点O 沿逆时针方向旋转34π到OA '的位置,求点A '的坐标.(1) 向量a =(-3,4)、b =(-1,1),点A 的坐标为(1,0).求32a b +;(2)若13AB a =-,求B 点的坐标.向量的长度和中点公式一、高考要求:熟练掌握向量的长度(模)的计算公式(即两点间的距离公式)、中点公式.二、知识要点:1. 向量的长度(模)公式:若12(,)a a a =,则21a a a =+∣∣若A 11(,)x y ,B 22(,)x y ,则2(AB x =∣∣2. 中点公式:若A 11(,)x y ,B 22(,)x y ,点M(x,y)是线段AB 的中点,则1212,22x x y y x y ++==. 三、典型例题:例1:已知平行四边形ABCD 的顶点A(-1,-2),B(3,1),C(0,2),求顶点D 的坐标.例2:已知A(3,8),B(-11,3),C(-8,-2),求证:△ABC 为等腰三角形.四、归纳小结:向量的长度公式、距离公式是几何度量的最基本公式,中点公式是中心对称的坐标表示.五、基础知识训练:(一)选择题:1. 已知向量a =(3,m)的长度是5,则m 的值为( )A.4B.-4C.±4D.162. 若A(1 , 3),B(2 , 5),C(4 ,2),D(6,6),则( )A.AB CD =B.AB CD =∣∣∣∣C.AB CD ∥D.AB CD ⊥3. 已知平行四边形ABCD 的顶点A(-3,0),B(2,-2),C(5,2),则顶点D 的坐标是( )A.(0,4)B.(2,2)C.(-1,5)D.(1,5)4. 已知点P 的横坐标是7,点P 到点N(-1,5)的距离是10,则点P 的坐标是( )A.(7,11)B.(7,-1)C.(7,11)或(7,-1)D.(7,-11)或(7,1)(二)填空题:5. 已知A(-3 , 4),B(4 , -3),则AB =,AB ∣∣=,线段AB 的中点坐标是.6. 已知点P(x,2),Q(-2,-3),M(1,1),且PQ PM ∣∣=∣∣,则x 的值是.(三)解答题:7. 已知平行四边形ABCD 的顶点A(-1,-2),B(3,-1),C(3,1),求顶点D 的坐标.8. 已知点A(5,1),B(1,3),及13OA OA '=,13OB OB '=,求A B ''的坐标和长度.平移公式一、高考要求:掌握平移公式,会求满足一定条件的点的坐标.二、知识要点:1. 平移是一种基本的几何(保距)变换,它本身就是一个向量.教材中有点的平移和坐标轴的平移2. 在图形F 上任取一点P(x,y),设平移向量12(,)a a a =到图形F '上的点(,)P x y ''',则点的平移公式为:12,x x a y y a ''=+=+.三、典型例题:例1:一种函数2y x =的图象F 平移向量(2,3)a =-到F '的位置,求图象F '的函数解析式. 例2:已知抛物线F:2611y x x =++经一平移变换为F ':2y x =,求平移变换公式.四、归纳小结:点的平移法则:函数y=f(x)的图象平移向量12(,)a a a =后,得到新图形的方程是:y-2a =f(x-1a ).这就是说,在方程y=f(x)中,把x,y 分别换成x-1a ,y-2a ,即可得到图象F '的方程.五、基础知识训练:(一)选择题:1. 点A(-2,1)平移向量a =(3,2)后,得到对应点A '的坐标是( )A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)2. 将函数22y x =的图象F,平移向量a =(-3,1)到图象F ',则F '对应的解析式是( )A.22(3)1y x =++B.22(3)1y x =+-C.22(3)1y x =-+D.22(3)1y x =--3. 将函数y=2x 的图象,平移向量a =(0,3)到',则'的方程是( )A.y=23x B.y=2(x+3) C.y=6x D.y=2x+3 4. 将函数sin y x π=的图象右移12个单位,平移后对应的函数为( ) A.1sin()2y x π=+ B.1sin()2y x π=- C.cos y x π= D.cos y x π=- 5. 将函数y=sin2x 的图象平移向量a 得到函数sin(2)3y x π=+的图象,则a 为( ) A.(6π-,0) B.(6π,0) C. (3π-,0) D. (3π,0) 6. 将方程x 2-4x-4y-8=0表示的图形经过平移向量a 变换到x 2=4y 的图形,则a =( )A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)7. 函数22(2)1y x =+-的图象平移向量a 后得到函数22y x =的图象,则a 为( )A.(2,1)B.(-2,1)C.(2,-1)D.(-2,-1)(二)填空题:8. 在平移变换下,点A(1,0)变为A '(4,3),则平移向量a =.9. F:抛物线21457y x x =-+经一平移变换到2:F y x '=,其平移变换公式为.10. 把图形F 平移向量a =(2,3)后得到图象F ',已知F '的解析式为2614y x x =-+,则F 对应的函数解析式为.(三)解答题:11. 已知函数1y x=的图象为F,把F 平移向量a =(3,2)到图象F ',求图象F '的表达式.向量的射影与内积一、高考要求:了解向量在轴上投影的概念,掌握向量在轴上投影的数量计算,熟练掌握向量内积的概念及其运算性质,初步掌握向量的应用.二、知识要点:1. 以x 轴的正半轴为始边,以射线OA 为终边的角θ,叫做向量a 的方向角.向量a 在轴上的投影数量为a a θ=∣∣cos .2. 两个向量a ,b 的内积揭示了长度、角度与向量投影之间的深刻联系:(1) 两个向量的内积等于一个向量的长与另一个向量在这个方向上正投影数量的乘积,即,,a b a b a b b a a b ⋅=∣∣(∣∣cos<>)=∣∣(∣∣cos<>);(2) 两个向量的内积等于这两个向量的模与它们夹角的余弦的积,即,a b a b a b ⋅=∣∣│∣cos<>; (3) 两个向量的内积是数量而不是向量.3. 内积运算的性质:(1)如果e 是单位向量,则,a e e a a a e ⋅=⋅=∣∣cos<>; (2)0a b a b ⊥⇔⋅=; (3)a a a ⋅=2∣∣或a a a ⋅∣∣=; (4),a b a b a b ⋅=cos<>∣∣│∣; (5)a b a b ⋅≤⋅∣∣∣∣∣∣. 4. 向量内积的坐标运算与运算律:(1) 向量内积的坐标运算:已知1212(,),(,)a a a b b b ==,则1122a b a b a b ⋅=+; (2) 内积的运算律:交换律a b b a ⋅=⋅;结合律()()()a b a b b a λλλ⋅=⋅=⋅;(3) 分配律()a b c a c b c +⋅=⋅+⋅. 三、典型例题:例1:在直角坐标系xOy 中,已知OA 的方向角为60,OB 的方向角为180,OC 的方向角为300,且它们的长度都等于2.(1)求OA ,OB ,OC 的坐标; (2)求证:OA +OB +OC =0.例2:已知(3,1)a =-,(1,2)b =-,求a b ⋅、a ∣∣、b ∣∣、,a b <>. 四、归纳小结:要求会根据已知条件,求向量在轴上的投影数量;能直接用向量的内积公式,求两向量的内积或夹角;会证明两向量互相垂直.五、基础知识训练:(一)选择题:1. 下面命题正确的是( )A.向量的方向角在[0,π]之间B.向量在x 轴的正投影的数量总是正数C.0≤≤,a b <>≤π,(,a b 是两个非零向量)D.两个向量的内积仍是向量2. 若a b ⋅=0,则( )A.0a =B.0b =C.0a =或0b =D.a b ⊥3. 四边形ABCD 中,0AB BC ⋅=,AB DC =,则四边形ABCD 是( )A.平行四边形B.菱形C.矩形D.正方形(二)填空题:4. 已知a ∣∣=6,b 在a 方向上的正投影数量为-8,则a b ⋅=.5. 若(3,4)a =,(1,7)b =-,则a b ⋅=, ,a b <>=.6. 已知a ∣∣=50,a 的方向与轴的正方向转角为135,则a 在上的正射影的数量是. (三)解答题:7. 在直角坐标系xOy 中,已知OA 的方向角为0,OB 的方向角为120,OC 的方向角为240,且它们的长度都等于5.(1)求OA ,OB ,OC 的坐标; (2)求证:OA +OB +OC =0.8. 已知点A(2 , 1),B(3 , 5),C(-2 ,2),求证△ABC 为等腰直角三角形.。

相关文档
最新文档