高一数学必修一函数的基本性练习题
必修一函数测试题及答案
必修一函数测试题及答案一、选择题(每题5分,共20分)1. 函数y=f(x)的定义域是:A. {x|x≠0}B. {x|x≠1}C. {x|x≠2}D. {x|x≠3}答案:A2. 函数y=2x+3的值域是:A. {y|y≠3}B. RC. {y|y≠2}D. {y|y≠0}答案:B3. 函数y=x^2-4x+4的最小值是:A. 0B. 1C. 4D. -1答案:A4. 函数y=1/x的奇偶性是:A. 奇函数B. 偶函数C. 非奇非偶函数D. 既是奇函数又是偶函数答案:A二、填空题(每题5分,共20分)1. 函数y=x^3-3x+1在x=______处取得极值。
答案:12. 函数y=x^2-6x+8的对称轴方程是x=______。
答案:33. 函数y=2sin(x)+1的周期是______。
答案:2π4. 函数y=ln(x)的定义域是______。
答案:(0, +∞)三、解答题(共60分)1. 求函数y=x^2-6x+8的零点。
(15分)答案:函数y=x^2-6x+8的零点为x=2和x=4。
2. 求函数y=x^3-3x+1的导数。
(15分)答案:y'=3x^2-3。
3. 判断函数y=x^2-4x+4的单调性,并求出单调区间。
(15分)答案:函数y=x^2-4x+4在(-∞, 2)区间内单调递减,在(2, +∞)区间内单调递增。
4. 已知函数y=f(x)=x^2+2x+1,求f(-1)的值。
(15分)答案:f(-1)=(-1)^2+2*(-1)+1=0。
高一数学必修一函数的基本性练习题
高一数学必修一函数的基本性练习题函数的基本性质综合练一.选择题:(本大题共10题,每小题5分,共50分)1.若函数 y = ax 与 y = -bx 在(0.+∞) 上都是减函数,则 y = ax + bx 在(0.+∞) 上是()A。
增函数 B。
减函数 C。
先增后减 D。
先减后增2.已知函数 f(x) = (m-1)x² + (m-2)x + (m-7m+12) 为偶函数,则 m 的值是()A。
1 B。
2 C。
3 D。
43.设 f(x) 是 (-∞。
+∞) 上的增函数,a 为实数,则有()A。
f(a)。
f(a)4.如果奇函数 f(x) 在区间 [3,7] 上是增函数且最大值为 5,那么 f(x) 在区间 [-7,-3] 上是()A。
增函数且最小值是 -5 B。
增函数且最大值是 -5 C。
减函数且最大值是 -5 D。
减函数且最小值是 -55.已知定义域为{x|x ≠ 0} 的函数 f(x) 为偶函数,且 f(x) 在区间 (-∞,0) 上是增函数,若 f(-3) = 2,则 f(x)/x < 0 的解集为()A。
(-3,0)∪(0,3) B。
(-∞,-3)∪(0,3) C。
(-∞,-3)∪(3.+∞) D。
(-3,0)∪(3.+∞)6.当 x ∈ [0,5] 时,函数 f(x) = 3x² - 4x + c 的值域为()A。
[c,5+5c] B。
[-c,c] C。
[-5+c,5+c] D。
[c,20+c]7.设 f(x) 为定义在 R 上的奇函数。
当x ≥ 1 时,f(x) = 2x +b (b 为常数),则 f(-1) 等于()A。
3 B。
1 C。
-1 D。
-38.下列函数在 (0,1) 上是增函数的是()A。
y = 1-2x B。
y = x-1 C。
y = -x²+2x D。
y = 59.下列四个集合:① A = {x ∈ R | y = x+1} ② B = {y | y =x+1.x ∈ R} ③ C = {(x,y) | y = x²+1.x ∈ R} ④ D = {不小于 1 的实数}。
函数的基本性质练习题(重要)
(高中数学必修1)函数的基本性质[B 组]一、选择题1.下列判断正确的是( )A .函数22)(2--=x x x x f 是奇函数 B.函数()(1f x x =- C.函数()f x x = D .函数1)(=x f 既是奇函数又是偶函数2.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( )A .(],40-∞B .[40,64]C .(][),4064,-∞+∞UD .[)64,+∞3.函数y = )A .(]2,∞- B .(]2,0 C .[)+∞,2 D .[)+∞,04.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( )A .3a ≤-B .3a ≥-C .5a ≤D .3a ≥5.下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数;(2)若函数2()2f x ax bx =++与x 轴没有交点,则280b a -<且0a >;(3) 223y x x =--的递增区间为[)1,+∞;(4) 1y x =+和y =表示相等函数。
其中正确命题的个数是( )A .0B .1C .2D .36.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( )二、填空题1.函数x x x f -=2)(的单调递减区间是____________________。
2.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x = . 3.若函数2()1x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________. 4.奇函数()f x 在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为1-,则2(6)(3)f f -+-=__________。
高中数学必修一第三章函数的概念与性质基本知识过关训练(带答案)
高中数学必修一第三章函数的概念与性质基本知识过关训练单选题1、下列函数为奇函数的是( ) A .y =x 2B .y =x 3C .y =|x|D .y =√x 答案:B分析:根据奇偶函数的定义判断即可;解:对于A :y =f (x )=x 2定义域为R ,且f (−x )=(−x )2=x 2=f (x ), 所以y =x 2为偶函数,故A 错误;对于B :y =g (x )=x 3定义域为R ,且g (−x )=(−x )3=−x 3=−g (x ), 所以y =x 3为奇函数,故B 正确;对于C :y =ℎ(x )=|x |定义域为R ,且ℎ(−x )=|−x |=|x |=ℎ(x ), 所以y =|x |为偶函数,故C 错误;对于D :y =√x 定义域为[0,+∞),定义域不关于原点对称, 故y =√x 为非奇非偶函数,故D 错误; 故选:B 2、函数y =3√x 4−13的图像大致是( )A .B .C .D .答案:A分析:利用x =2时y >0排除选项D ,利用x =−2时y <0排除选项C ,利用x =12时y <0排除选项B ,所以选项A 正确. 函数y =3√x 4−13的定义域为{x |x ≠±1 }当x =2时,y =3√24−13=√153>0,可知选项D 错误;当x =−2时,y =3()43=√153<0,可知选项C 错误;当x =12时,y =(12)3√(2)4−13=−12√603<0,可知选项B 错误,选项A 正确.故选:A3、若函数f (x )=x(2x−1)(x+a )为奇函数,则a=( )A .12B .23C .34D .1 答案:A分析:根据奇函数的定义可得−x(−2x−1)(−x+a )=−x(2x−1)(x+a ),整理化简可求得a 的值,即得答案. 由函数f (x )=x(2x−1)(x+a )为奇函数,可得f (−x )=−f (x ), 所以−x(−2x−1)(−x+a )=−x(2x−1)(x+a ),所以−x (2x −1)(x +a )=−x (−2x −1)(−x +a ),化简得2(2a −1)⋅x 2=0恒成立, 所以2a −1=0,即a =12,经验证f(x)=x(2x−1)(x+12)=2x4x2−1,定义域关于原点对称,且满足f(−x)=−f(x),故a=12;故选:A.4、已知函数f(x)=(m2−m−1)x m3−1是幂函数,对任意的x1,x2∈(0,+∞)且x1≠x2,满足f(x1)−f(x2)x1−x2>0,若a,b∈R,a+b<0,则f(a)+f(b)的值()A.恒大于0B.恒小于0C.等于0D.无法判断答案:B解析:根据函数为幂函数以及函数在(0,+∞)的单调性,可得m,然后可得函数的奇偶性,结合函数的单调性以及奇偶性,可得结果.由题可知:函数f(x)=(m2−m−1)x m3−1是幂函数则m2−m−1=1⇒m=2或m=−1又对任意的x1,x2∈(0,+∞)且x1≠x2,满足f(x1)−f(x2)x1−x2>0所以函数f(x)为(0,+∞)的增函数,故m=2所以f(x)=x7,又f(−x)=−f(x),所以f(x)为R单调递增的奇函数由a+b<0,则a<−b,所以f(a)<f(−b)=−f(b)则f(a)+f(b)<0故选:B小提示:本题考查幂函数的概念以及函数性质的应用,熟悉函数单调递增的几种表示,比如f(x1)−f(x2)x1−x2>0,[f(x1)−f(x2)]⋅(x1−x2)>0,属中档题.5、设a为实数,定义在R上的偶函数f(x)满足:①f(x)在[0,+∞)上为增函数;②f(2a)<f(a+1),则实数a 的取值范围为()A.(−∞,1)B.(−13,1)C.(−1,13)D.(−∞,−13)∪(1,+∞)答案:B分析:利用函数的奇偶性及单调性可得|2a |<|a +1|,进而即得. 因为f (x )为定义在R 上的偶函数,在[0,+∞)上为增函数, 由f (2a )<f (a +1)可得f (|2a |)<f (|a +1|), ∴|2a |<|a +1|, 解得−13<a <1. 故选:B.6、函数y =√x +4+1x+1的定义域为( )A .[−4,−1)B .[−4,−1)∪(−1,+∞)C .(−1,+∞)D .[−4,+∞) 答案:B分析:偶次开根根号下为非负,分式分母不为零,据此列出不等式组即可求解. 依题意{x +4≥0x +1≠0 ,解得{x ≥−4x ≠−1,所以函数的定义域为[−4,−1)∪(−1,+∞). 故选:B .7、已知函数f (x )对于任意x 、y ∈R ,总有f (x )+f (y )=f (x +y )+2,且当x >0时,f (x )>2,若已知f (2)=3,则不等式f (x )+f (2x −2)>6的解集为( ) A .(2,+∞)B .(1,+∞)C .(3,+∞)D .(4,+∞) 答案:A分析:设g (x )=f (x )−2,分析出函数g (x )为R 上的增函数,将所求不等式变形为g (3x −2)>g (4),可得出3x −2>4,即可求得原不等式的解集. 令g (x )=f (x )−2,则f (x )=g (x )+2,对任意的x 、y ∈R ,总有f (x )+f (y )=f (x +y )+2,则g (x )+g (y )=g (x +y ), 令y =0,可得g (x )+g (0)=g (x ),可得g (0)=0,令y =−x 时,则由g (x )+g (−x )=g (0)=0,即g (−x )=−g (x ), 当x >0时,f (x )>2,即g (x )>0,任取x 1、x 2∈R 且x 1>x 2,则g (x 1)+g (−x 2)=g (x 1−x 2)>0,即g (x 1)−g (x 2)>0,即g (x 1)>g (x 2), 所以,函数g (x )在R 上为增函数,且有g (2)=f (2)−2=1,由f (x )+f (2x −2)>6,可得g (x )+g (2x −2)+4>6,即g (x )+g (2x −2)>2g (2), 所以,g (3x −2)>2g (2)=g (4),所以,3x −2>4,解得x >2. 因此,不等式f (x )+f (2x −2)>6的解集为(2,+∞). 故选:A. 8、函数f(x)=0√x−2定义域为( )A .[2,+∞)B .(2,+∞)C .(2,3)∪(3,+∞)D .[2,3)∪(3,+∞) 答案:C分析:要使函数有意义,分母不为零,底数不为零且偶次方根被开方数大于等于零. 要使函数f(x)=0√x−2有意义,则{x −3≠0x −2>0,解得x >2且x ≠3, 所以f(x)的定义域为(2,3)∪(3,+∞). 故选:C.小提示:具体函数定义域的常见类型: (1)分式型函数,分母不为零;(2)无理型函数,偶次方根被开方数大于等于零; (3)对数型函数,真数大于零;(4)正切型函数,角的终边不能落在y 轴上; (5)实际问题中的函数,要具有实际意义. 多选题9、(多选题)下列函数中,定义域是其值域子集的有( ) A .y =85x +6B .y =−x 2−2x +5C .y =√x −1D .y =1x −1 答案:AC分析:分别求得函数的定义域和值域,利用子集的定义判断. A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为y =−x 2−2x +5=−(x +1)2+6≤6,所以函数值域为(−∞,6],值域是定义域的真子集不符合题意;C.易得定义域为[1,+∞),值域为[0,+∞),定义域是值域的真子集;D.定义域为{x|x ≠0},值域为{x|x ≠−1},两个集合只有交集; 故选:AC10、定义运算a ⊕b ={a(a ≥b)b(a <b),设函数f(x)=1⊕2−x ,则下列命题正确的有( )A .f(x)的值域为 [1,+∞)B .f(x)的值域为 (0,1]C .不等式f(x +1)<f(2x)成立的范围是(−∞,0)D .不等式f(x +1)<f(2x)成立的范围是(0,+∞) 答案:AC分析:求得f (x )的解析式,画出f (x )的图象,由此判断f (x )的值域,并求得不等式f(x +1)<f(2x)的解. 由函数f(x)=1⊕2−x ,有f(x)={1(1≥2−x )2−x(1<2−x ),即f(x)={2−x(x <0)1(x ≥0),作出函数f(x)的图像如下,根据函数图像有f(x)的值域为[1,+∞),所以A 选项正确,B 选项错误. 若不等式f(x +1)<f(2x)成立,由函数图像有 当2x <x +1≤0即x ≤−1时成立,当{2x <0x +1>0即−1<x <0时也成立. 所以不等式f(x +1)<f(2x)成立时,x <0.所以C 选项正确,D 选项错误. 故选:AC.小提示:本小题主要考查分段函数图象与性质,属于中档题.11、已知函数f(x)={log 12(x +1),x ≥0,f(x +1),x <0,若函数g(x)=f(x)−x −a 有且只有两个不同的零点,则实数a 的取值可以是( ) A .-1B .0C .1D .2 答案:BCD分析:作出函数f(x)的图象如下图所示,将原问题转化为函数f(x)的图象与直线y =x +a 有两个不同的交点,根据图示可得实数a 的取值范围. 根据题意,作出f(x)的图像如下所示:令g(x)=0,得f(x)=x +a ,所以要使函数g(x)=f(x)−x −a 有且只有两个不同的零点, 所以只需函数f(x)的图像与直线y =x +a 有两个不同的交点, 根据图形可得实数a 的取值范围为(−1,+∞), 故选:BCD .小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 填空题12、若函数f (x )={−x 2+x,x >00,x =0ax 2+x,x <0 是奇函数,则实数a 的值为___________.答案:1分析:利用奇函数的性质进行求解. 若f(x)是奇函数,则有f (−x )=−f (x ).当x >0时,−x <0,则f (−x )=a (−x )2+(−x )=ax 2−x , 又当x >0时,f (x )=−x 2+x ,所以−f (x )=x 2−x , 由f (−x )=−f (x ),得ax 2−x =x 2−x ,解得a =1. 所以答案是:1.13、已知a >0,b >0,且a +b =1,则1a+2b−3ab 的最大值是______. 答案:32分析:利用a >0,b >0,且a +b =1,求出a 的范围,将1a+2b−3ab 消元得13a 2−4a+2,利用二次函数的最值及倒数法则即可求得1a+2b−3ab 的最大值.解:因为a >0,b >0,且a +b =1,所以a ∈(0,1),b ∈(0,1),1a +2b −3ab =11+b −3ab=11+(1−a )(1−3a )=13a 2−4a+2,当a =23时,3a 2−4a +2取最小值23, 所以13a 2−4a+2取最大值32, 故1a+2b−3ab 的最大值是32.所以答案是:32.14、设函数f (x )={x,x ≤1,(x −1)2+1,x >1, 则不等式f (1−|x |)+f (2)>0的解集为________. 答案:(−3,3)分析:根据分段函数的单调性,把问题中的函数值大小比较转化为自变量大小比较,从而求得解集. 由函数解析式知f(x)在R 上单调递增,且−f(2)=−2=f(−2), 则f (1−|x |)+f (2)>0⇒f (1−|x |)>−f (2)=f(−2), 由单调性知1−|x |>−2,解得x ∈(−3,3) 所以答案是:(−3,3)小提示:关键点点睛:找到函数单调性,将函数值大小比较转化为自变量大小比较即可. 解答题15、已知函数f (x )=−x 2+mx −m .(1)若函数f (x )的最大值为0,求实数m 的值.(2)若函数f (x )在[−1,0]上单调递减,求实数m 的取值范围.(3)是否存在实数m ,使得f (x )在[2,3]上的值域恰好是[2,3]?若存在,求出实数m 的值;若不存在,说明理由.答案:(1)m =0或m =4;(2)m ⩽−2;(3)存在,m =6 分析:(1)配方后得最大值,由最大值为0可解得m 的值; (2)由对称轴在区间的左侧可得;(3)分类讨论求函数f(x)在[2,3]上的最大值和最小值,由最大值为3最小值为2求解m 的值. (1)f(x)=−(x −m 2)2−m +m 24,则最大值−m +m 24=0,即m 2−4m =0,解得m =0或m =4.(2)函数f(x)图象的对称轴是x =m 2,要使f(x)在[−1,0]上单调递减,应满足m 2⩽−1,解得m ⩽−2. (3)①当m2⩽2,即m ⩽4时,f(x)在[2,3]上递减,若存在实数m ,使f(x)在[2,3]上的值域是[2,3],则{f(2)=3,f(3)=2,即{−4+2m −m =3,−9+3m −m =2,,此时m 无解. ②当m2⩾3,即m ⩾6时,f(x)在[2,3]上递增,则{f(2)=2,f(3)=3, 即{−4+2m −m =2,−9+3m −m =3, 解得m =6.③当2<m 2<3,即4<m <6时,f(x)在[2,3]上先递增,再递减,所以f(x)在x =m2处取得最大值,则f (m2)=−(m 2)2+m ⋅m 2−m =3,解得m =−2或6,舍去.综上可得,存在实数m =6,使得f(x)在[2,3]上的值域恰好是[2,3].小提示:本题考查二次函数的性质,考查二次函数的最值,对称轴,单调性等性质,掌握二次函数的图象与性质是解题关键.。
高一数学函数的基本性质试题答案及解析
高一数学函数的基本性质试题答案及解析1.下列幂函数中过点(0,0),(1,1)的偶函数是()A.B.C.D.【答案】B【解析】A中函数的定义域是,不关于原点对称,不具有奇偶性;B中函数经验证过这两个点,又定义域为,且;C中函数不过(0,0);D中函数,∵,∴是奇函数,故选B.【考点】幂函数的性质与函数的奇偶性.2.已知函数的定义域为,为奇函数,当时,,则当时,的递减区间是.【答案】【解析】因为为奇函数,所以的图象关于对称,当时,,所以当时,函数的单调递减区间为,因为图象关于对称,所以当时,的递减区间是.【考点】本小题主要考查函数图象和性质的应用,考查学生数形结合思想的应用和推理能力.点评:解决本小题的关键是分析出函数的图象关于对称,在关于对称的两个区间上单调性相同.3.设函数,若,则实数=()A.-4或-2B.-4或2C.-2或4D.-2或2【答案】B【解析】当时,;当时,.【考点】本小题主要考查分段函数的求值,考查学生的运算求解能力.点评:分段函数求值,分别代入求解即可.4.函数的单调增区间是_______.【答案】【解析】由,所以此函数的定义域为,根据复合函数的单调性,所以此函数的单调增区间为.5.(本小题满分12分)已知函数 (为常数)在上的最小值为,试将用表示出来,并求出的最大值.【答案】【解析】(1)因为抛物线y=x2-2ax+1的对称轴方程是,本题属于轴动区间定的问题,然后分轴在区间左侧,在区间内,在区间右侧三种情况分别得到其最小值,得到最小值h(a),然后再求出h(a)的最大值.∵y=(x-a)2+1-a2,∴抛物线y=x2-2ax+1的对称轴方程是.(1)当时,,当时,该函数取最小值;(2) 当时, , 当时,该函数取最小值;(3) 当a>1时, , 当时,该函数取最小值综上,函数的最小值为6.证明:函数是偶函数,且在上是减少的。
(本小题满分12分)【答案】见解析。
【解析】本试题主要是考查了函数的奇偶性的定义以及单调性的性质。
完整版)高一数学函数经典习题及答案
完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。
2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。
3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。
5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。
高中数学必修一函数练习题及答案
高中数学必修一函数试题一、选择题: 1、若()f x =(3)f = ( )A 、2B 、4 C、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4) 7、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、()1()f x f x =-- 8、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 9、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )(1)(2)(3)(4)A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 10、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高一必修一函数练习题
2017年10月14日高中数学作业1.集合{}{}2|1,|20A y y x B x x x ==-=--≤,则A B ⋂=( ) A. [)2+∞, B. []0,1 C. []1,2 D. []0,2【答案】D 2.已知函数f (x )=20{ 210x x x x ≤-,,>,若f (x )≥1,则x 的取值范围是( ) A. (-∞,-1] B. [1,+∞)C. (-∞,0]∪[1,+∞)D. (-∞,-1]∪[1,+∞)【答案】D3.已知函数f (x )=|x -1|,则与y =f (x )相等的函数是( )A. g (x )=x -1B. g ()11{ 11x x x x x -=-,>,<C. ()2(1)s x x =-D. ()2(1)t x x =-【答案】D4.若函数()y f x =的定义域是[]0,2,则函数()()21f x g x x =-的定义域是( )A. []0,1B. [)0,1C. [)(]0,11,4⋃ D. ()0,1【答案】B 5.设函数()()()1102{ 10x x f x x x-≥=<若()()12f f a =-,则实数a = ( ) A. 4 B. -2 C. 4或12-D. 4或-2 【答案】C6.已知()[)[]2110{ 101x x f x x x +∈-=+∈,,,则下列选项错误的是( )A. ①是f (x -1)的图象B. ②是f (-x )的图象C. ③是f (|x |)的图象D. ④是|f (x )|的图象【答案】D7.已知函数f (x )是定义在R 上的偶函数,在(-∞,0]上有单调性,且f (-2)<f (1),则下列不等式成立的是( )A. f (-1)<f (2)<f (3)B. f (2)<f (3)<f (-4)C. f (-2)<f (0)<f (12)D. f (5)<f (-3)<f (-1) 【答案】D8.函数()f x 是定义在R 上的奇函数,当0x ≥时, ()f x 为减函数,且()11f -=,若()21f x -≥-,则x 的取值范围是( )A. (],3-∞B. (],1-∞C. [)3,+∞D. [)1,+∞【答案】A9.函数()()224f x x R x =∈+的最小值为( )A. 2B. 3C. 22D. 2.5【答案】D10.下列函数中,是偶函数,且在区间()0,1上为增函数的是( ) A. B. C. D.【答案】A11.设()f x 是(),-∞+∞上的奇函数, ()()2f x f x +=-,当01x ≤≤时, ()f x x =,则()47.5f 等于( )A. 0.5B. -0.5C. 1.5D. -1.5【答案】B12.已知函数是奇函数,且在区间上满足任意的,都有,则实数的取值范围是( ) A. B. C. D.【答案】A13.函数211x x y x ++=-的值域是__________. 【答案】][(),233233-∞-⋃+∞ 14.已知函数()221{ 11x ax x f x ax x -+≤=+,,>,若∃x 1,x 2∈R,x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是 ______ .【答案】(-∞,1)∪(2,+∞)【解析】若∃x 1,x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则说明f (x )在R 上不单调。
高一数学复习考点知识与题型专题讲解29---函数的基本性质必刷题-
高一数学复习考点知识与题型专题讲解专题强化一:函数的基本性质必刷题一、单选题1.若函数()()2211f x x a x =+-+在(],2-∞上是单调递减函数,则实数a 的取值范围是( )A .3,2⎡⎫-+∞⎪⎢⎣⎭B .3,2⎛⎤-∞- ⎥⎝⎦C .)5,2⎡-+∞⎢⎣D .5,2⎛⎤-∞- ⎥⎝⎦2.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足1(21)3f x f ⎛⎫-< ⎪⎝⎭的x 的取值范围是( )A .12,33⎛⎫ ⎪⎝⎭B .12,33⎡⎫⎪⎢⎣⎭C .12,23⎛⎫ ⎪⎝⎭D .12,23⎡⎫⎪⎢⎣⎭ 3.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,则( )A .()()()202120202019f f f <-<B .()()()201920202021f f f <-<C .()()()202020192021f f f -<<D .()()()202020212019f f f -<<-4.已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.则实数m 的值是( )A .0B .2C .4D .-25.已知()f x 为R 上奇函数,()g x 为R 上偶函数,且(0)(2)(0)(2)4f f g g +-++=,(2)(0)(2)2f g g ++-=-,则()2f 的值为( )A .-3B .1C .2D .36.已知函数()1f x +是偶函数,当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦ 恒成立,设1 2a f ⎛⎫=- ⎪⎝⎭,()2b f =,()3c f =,则a ,b ,c 的大小关系为( )A .b a c <<B .c b a <<C .b c a <<D .a b c <<7.已知()f x 是R 上的偶函数,()g x 是R 上的奇函数,它们的部分图像如图,则()()⋅f x g x 的图像大致是( )A .B .C .D .8.已知函数()f x 是定义R 上的减函数,()0,2A ,()2,2B -是其图象上的两点,那么()12f x +<的解集的补集是( )A .(][),11,-∞-+∞B .()1,1-C .(][),13,-∞-⋃+∞D .()1,39.函数()f x 是定义在R 上的偶函数,且当0x ≥时,()2xf x =,若对任意[]0,21x t ∈+,均有()()3f x t f x ≥⎡⎤⎣⎦+,则实数t 的最大值是( ) A .49-B .13-C .0D .1610.已知函数()()f x g x 、是定义在R 上的函数,其中()f x 是奇函数,()g x 是偶函数,且()()22f x g x ax x +=++,若对于任意1212x x <<<,都有()()12122g x g x x x ->--,则实数a 的取值范围是( )A .1(,][0,)2-∞-⋃+∞B .(0,)+∞C .1[,)2-+∞D .1[,0)2-二、多选题11.有下列几个命题,其中正确的命题是( ) A .函数y =11x +在(-∞,-1)∪(-1,+∞)上是减函数; B .函数y =254x x +-的单调区间是[-2,+∞);C .已知f (x )在R 上是增函数,若a +b >0,则有f (a )+f (b )>f (-a )+f (-b );D .已知函数g (x )=23,0,(),0x x f x x ->⎧⎨<⎩是奇函数,则f (x )=2x +3.12.如果函数()f x 在[],a b 上是增函数,对于任意的[]()1212,,x x a b x x ∈≠,则下列结论中正确的是( ) A .()()12120f x f x x x ->-B .()()()12120x x f x f x -->⎡⎤⎣⎦C .()()()()12f a f x f x f b ≤<≤D .()()12f x f x >13.已知函数)(21x f x x+=,则下列结论正确的是( )A .)(f x 为奇函数B .)(f x 为偶函数C .)(f x 在区间)1,⎡+∞⎣上单调递增D .)(f x 的值域为](),22,⎡-∞-⋃+∞⎣ 14.已知函数()f x 满足x R ∀∈,()()f x f x -=-,且当0x >时,22()f x x x=-,则( )A .()00f =B .()11f -=C .()f x 在[2,0)-单调递减D .(1,0)x ∃∈-,()2f x >15.关于函数()()1xf x x R x =∈+,下面结论正确的是( ) A .函数()f x 是奇函数B .函数()f x 的值域为(1,1)-C .函数()f x 在R 上是增函数D .函数()f x 在R 上是减函数16.已知函数()228,142,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为()1f ,则实数a 的值可以是( )A .1B .54C .2D .417.若函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=;②对于定义域上的任意1x ,2x ,当12x x ≠时,恒有1212()[()()]0x x f x f x -⋅-<,则称该函数为“七彩函数”.下列函数中是“七彩函数”的有( )A .222,0()2,0x x f x x x ⎧-≥=⎨<⎩B .15()f x x =-C .2()||f x x x =+D .3()f x x x =--三、填空题18.若函数是奇函数,()()2,,221x af x x b b x +=∈++,则a b +=__________ . 19.已知定义在R 上的奇函数,当0x <时有3()2x f x x =-+,则()f x =__________. 20.已知定义在R 上的奇函数()f x 在(,0]-∞上是减函数,若(1)(32)0f m f m ++-<,则实数m 的取值范围是________.21.已知函数()y f x =,()y g x =的定义域为R ,且()()y f x g x =+为偶函数,()()y f x g x =-为奇函数,若()2f 2=,则(2)g -=__.22.21,1()lg ,1x x f x x x ⎧-<⎪=⎨-⎪⎩…,则不等式(2)()f x f x -<的解集为__.23.若f (x )为R 上的奇函数,给出下列四个说法: ①f (x )+f (-x )=0; ②f (x )-f (-x )=2f (x ); ③f (x )·f (-x )<0; ④()()f x f x -=-1. 其中一定正确的为___________.(填序号)四、解答题24.()y f x =是定义在R 上的奇函数,且当0x ≥时,2()4f x x x =-; (1)求0x <时,()f x 的解析式; (2)求()y f x =的单调减区间.25.已知二次函数2()1()f x x mx m m R =-+-∈. (1)若()f x 是偶函数,求m 的值;(2)函数在区间[]1,1-上的最小值记为()g m ,求()g m 的最大值; (3)若函数|()|y f x =在[]2,4上是单调增函数,求实数m 的取值范围.26.已知函数()f x 对于一切x 、y R ∈,都有()()()f xy f x y f x y =++-. (1)求证:()f x 在R 上是偶函数;(2)若()f x 在区间(,0)-∞上是减函数,且有22(21)(243)f a a f a a ++<-+-,求实数a 的取值范围.27.已知函数2()1ax b f x x +=+是定义在(1,1)-上的奇函数,且3(3)10f =.(1)确定函数()f x 的解析式;(2)当(1,1)x ∈-时判断函数()f x 的单调性,并证明; (3)解不等式1(1)()02f x f x -+<. 28.已知函数()21x bf x ax +=+是定义在[1-,1]上的奇函数,且()112f =.(1)求a ,b 的值;(2)判断()f x 在[1-,1]上的单调性,并用定义证明;(3)设()52g x kx k =+-,若对任意的[]111x ∈-,,总存在[]201x ∈,,使得()()12f x g x ≤成立,求实数k 的取值范围.29.函数()f x 对任意x ,y R ∈,总有()()()f x y f x f y +=+,当0x <时,()0f x <,且()113f =. (1)证明()f x 是奇函数;(2)证明()f x 在R 上是单调递增函数;(3)若()()31f x f x +-≥-,求实数x 的取值范围.30.若函数()y f x =对定义域内的每一个值1x ,在其定义域内都存在唯一的2x ,使12()()1f x f x ⋅=成立,则称函数()y f x =为“依赖函数”.(1)判断函数()2x f x =是否为“依赖函数”,并说明理由;(2)若函数211()22f x x x =-+在定义域[,](,m n m n N +∈且1)m >上为“依赖函数”,求m n +的值;(3)已知函数24()(),3f x x a a ⎛⎫=-< ⎪⎝⎭在定义域4,43⎡⎤⎢⎥⎣⎦上为“依赖函数”.若存在实数4,43x ⎡⎤∈⎢⎥⎣⎦,使得对任意的t R ∈,不等式2()8f x t st ≥-++都成立,求实数s 的取值范围.参考答案1.B 【详解】函数()()2211f x x a x =+-+的单调递减区间是21(,]2a --∞-, 依题意得(]21,2(,]2a --∞⊆-∞-,于是得2122a --≥,解得32a ≤-,所以实数a 的取值范围是3(,]2-∞-. 故选:B 2.A 【详解】∵f (x )为偶函数,∴f (x )=f (|x |).则f (|2x -1|)<13f ⎛⎫ ⎪⎝⎭,又∵f (x )在[0,+∞)上单调递增,∴1213x -<,解得1233x <<. 故选:A. 3.A 【详解】因为对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,所以函数()f x 在[)0,+∞上单调递减,又函数()f x 为偶函数,所以()()20202020f f -=,()()20192019f f -=, 所以()()()202120202019f f f <<即()()()202120202019f f f <-<. 故选:A. 4.B【详解】取0x >,则0x -<,因为函数为奇函数,则()()f x f x -=-,即()()()222x m x x x -+-=--+,整理可得2mx x -=-,即2m =. 故选:B 5.A 【详解】()f x 为R 上的奇函数,∴()00f =,()()f x f x -=-,()g x 是R 上的偶函数,()()g x g x -=,由()()()()()()()020242022f fg g f g g ⎧+-++=⎪⎨++-=-⎪⎩, ()()()()()()20242022f g g f g g ⎧-++=⎪⇒⎨++=-⎪⎩①②,②-①得()2224f =--,()23f =-.故选:A . 6.A 【详解】当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦,则()()21f x f x >, 所以,函数()f x 为()1,+∞上的增函数,由于函数()1f x +是偶函数,可得()()11f x f x +=-,1335112222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫∴=-=-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,53212>>>,因此,b a c <<. 故选:A. 7.C 【详解】又()f x 是R 上的偶函数,()g x 是R 上的奇函数, ∴ ()()f x f x -=,()()g x g x -=-, ∴()()()()f x g x f x g x -⋅-=-∴ 函数()()⋅f x g x 为奇函数,其图象关于原点对称,A,B 错, 由图可得当0x >时,()0f x >,()0>g x , ∴ ()()0f x g x ⋅>,D 错, 故选:C. 8.A 【详解】解:不等式()12f x +<可变形为2(1)2f x -<+<,()0,2A ,()2,2B -是函数()f x 图象上的两点,()02f ∴=,()22f =-, 2(1)2f x ∴-<+<等价于不等式()()2(1)0f f x f <+<,又函数()f x 是R 上的减函数,()()2(1)0f f x f ∴<+<等价于012x <+<,解得11x -<<,∴不等式()12f x +<的解集为()1,1-.那么()12f x +<的解集的补集是(][),11,-∞-+∞. 故选:A .9.A 【详解】易知,函数()f x 在[0,)+∞上单调递增,∴12102t t +>⇒>-,又∵()()()33f x t f x f x ⎡⎤+≥=⎣⎦,且函数为偶函数,∴|||3|x t x +≥,两边平方化简,则22820x xt t --≤在[0,21]t +恒成立,令()2282g x x xt t =--,则()()002421039g t g t ⎧≤⎪⇒-≤≤-⎨+≤⎪⎩. 综上:t 的最大值为49-. 故选:A. 10.C 【详解】由题得:()f x 是奇函数,所以()()f x f x -=-;()g x 是偶函数,所以()()g x g x -= 将x -代入2()()2f x g x ax x +=++得:2()()2f x g x ax x +=--+联立22()()2()()2f xg x ax x f x g x ax x +=++-+-=+⎧⎪⎨⎪⎩ 解得:()22g x ax =+ 1212()()2g x g x x x ->--,1212x x <<<等价于()1212()()2g x g x x x -<--,即:1122()2()2g x x g x x +<+,令()()2222h x g x x ax x =+=++,则()h x 在()1,2单增①当0a >时,函数的对称轴为2102x a a=-=-<,所以()h x 在()1,2单增 ②当0a <时,函数的对称轴为2102x a a=-=->,若()h x 在()1,2单增,则12a -≥,得:102a -≤< ③当0a =时,()h x 单增,满足题意 综上可得:12a ≥-故选:C 11.CD 【详解】对于A ,函数的定义域为(-∞,-1)∪(-1,+∞), 令1t x =+在定义域上递增, 又1y t=在(),0-∞和()0,∞+是减函数, 所以函数y =11x +在(-∞,-1)和(-1,+∞)每个区间上递减,故A 错误;对于B ,由函数y =254x x +-,则2540x x +-≥,解得15x -≤≤, 令254t x x =+-在()1,2-上递增,()2,5上递减, 又y t =在定义域内是增函数,所以函数y =254x x +-在()1,2-上递增,()2,5上递减,故B 错误;对于C ,因为f (x )在R 上是增函数,若a +b >0,则a b >-,故()()f a f b >-;b a >-,故()()f b f a >-,所以f (a )+f (b )>f (-a )+f (-b ),故C 正确;对于D ,当0x >时,()23g x x =-, 则当0x <时,0x ->,则()23g x x -=--, 因为()g x 为奇函数,所以()()23g x g x x =--=+, 所以f (x )=2x +3,故D 正确. 故选:CD. 12.AB 【详解】由函数单调性的定义可知,若函数()f x 在给定的区间上是增函数,则12x x -与()()12f x f x -同号,由此可知,选项A ,B 正确; 对于选项C ,D ,因为12,x x 的大小关系无法判断,则()()12,f x f x 的大小关系确定也无法判断,故C ,D 不正确. 故选:AB 13.ACD 【详解】由题意,函数)(21x f x x+=的定义域为)()(,00,-∞⋃+∞,且)()(f x f x -=-,故)(f x 为奇函数, 任取)12,1,x x ⎡∈+∞⎣,且12x x <,则)()(222221121************ x x x x x x x f x f x x x x x ++⋅+-⋅--=-=)()(1221121x x x x x x --=, 因为121xx ≤<,所以210x x ->且121x x >,可得)()(210f x f x ->,所以)(f x 在)1,⎡+∞⎣上单调递增,当0x >时,)(2112x f x x x x+==+≥(当且仅当1x =时,取“=”), 又由结合)(f x 为奇函数,可得)(f x 的值域为](),22,⎡-∞-⋃+∞⎣. 故选:ACD 14.ABD 【详解】因为x R ∀∈,()()f x f x -=-,所以函数()f x 为奇函数. 对选项A ,0R ∈,所以()00f =,故A 正确. 对选项B ,()()()21111f f -=-=--=,故B 正确.对选项C ,因为当0x >时,22()f x x x=-为增函数,又因为函数()f x 为奇函数,所以当0x <时,函数()f x 也为增函数,故C 错误.对选项D ,因为11115422244f f ⎛⎫⎛⎫-=-=-+=> ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:ABD 15.ABC对于A :因为()()11x xf x f x x x ---===--++,所以()f x 在R 上为奇函数,故A 正确; 对于B :当0x >时,1()1+11x f x x x ==-+,因为0x >,所以11x +>,1011x <<+, 所以1101x -<-<+,所以10111x <-<+, 又()f x 为奇函数,所以当0x <时,()(1,0)1xf x x=∈--,且(0)0f =, 所以函数()f x 的值域为(1,1)-,故B 正确. 对于C :当0x >时,1()1+11x f x x x ==-+,所以()f x 在(0,)+∞上为增函数, 又()f x 为奇函数,左右两侧单调性相同,所以函数()f x 在R 上是增函数,故C 正确,D 错误 故选:ABC 16.BCD 【详解】由题意可得二次函数228y x ax =-+的对称轴x a =1≥,且42(1)128x a f a x++≥=-+在(1,)+∞上恒成立,所以494x a x+≥-在(1,)+∞上恒成立,因为4424x x x x+≥⋅=,当且仅当2x =时,等号成立,即4x x +在(1,)+∞上的最小值为4, 所以494a ≥-,解得54a ≥. 故选:BCD 17.ABD 【详解】由①②得:“七彩函数”既是奇函数又是减函数, 对于选项A :当0x >时,0x -<,()22f x x =-,()22f x x -=,得()()0f x f x +-=; 当0x <时,0x ->,()22f x x =,()22f x x -=-,得()()0f x f x +-=; 所以函数是奇函数,当0x >时,()22f x x =-,所以函数在()0,∞+上单调递减, 故选项A 正确;对于选项B :()15f x x =-定义域为R ,()()15f x x f x -==-,所以函数()f x 为奇函数,且在R 上单调递减; 故选项B 正确;对于选项C :()2f x x x =+,定义域为R ,()()2f x x x f x -=+=,则函数函数()f x 为偶函数, 故选项C 不正确;对于选项D :()1f x x x=-定义域为{}0x x ≠,()()1f x x f x x-=-+=-,则函数()f x 为奇函数,且在定义域上单调递减; 故选项D 正确; 故选:ABD. 18.1- 【详解】根据题意可得20b b ++=,解得1b =-, 又()00f =,代入解得0a =, 当0a =时,()()221xf x f x x --==-+,满足题意, 所以1a b +=-. 故答案为:1-19.332,00,02,0x x x x x x x -⎧+>⎪=⎨⎪-+<⎩【详解】当0x >时,0x -<时,由奇函数性质知,33()()[]22()x x f x f x x x --=--=-=-+-+,又(0)0f =,则332,0()0,02,0x x x x f x x x x -⎧+>⎪==⎨⎪-+<⎩故答案为:332,00,02,0x x x x x x x -⎧+>⎪=⎨⎪-+<⎩20.1,4⎛⎫+∞ ⎪⎝⎭【详解】因为()f x 是奇函数,在(],0-∞上是减函数, 所以()f x 在R 上单调递减, 因为(1)(32)0f m f m ++-<, 所以(1)(32)f m f m +<--, 即(1)(23)f m f m +<-, 所以123m m +>-,解得14m >.故答案为:1,4⎛⎫+∞ ⎪⎝⎭.21.2 【详解】解:因为()()y f x g x =+为偶函数,()()y f x g x =-为奇函数, 所以()(2)(2)2f g f -+-=()2g +,()()(2)(2)22f g g f ---=-, 两式相减可得,()2f (2)g =-, 若()2f 2=,则(2)2g -=. 故答案为:2. 22.{|1}<x x【详解】解:由函数的解析式绘制函数图象如图所示, 易知函数为偶函数,且在区间(0,)+∞上单调递减,故题中的不等式等价于:(2)()f x f x -<,则|2|||x x ->,平方可得:2244x x x -+>,解得1x <, 不等式的解集为:{|1}<x x . 23.①② 【详解】∵f (x )在R 上为奇函数, ∴f (-x )=-f (x ).∴f (x )+f (-x )=f (x )-f (x )=0,故①正确.f (x )-f (-x )=f (x )+f (x )=2f (x ),故②正确. 当0x =时,f (x )·f (-x )=0,故③不正确. 当0x =时,()()f x f x -分母为0,无意义,故④不正确.故答案为:①②24.(1)2()4f x x x =+;(2)(,2)-∞-和(2,)+∞. 【详解】(1)设0x <,则0x ->,2()4f x x x ∴-=--又()y f x =是定义在R 上的奇函数,()22()()44f x f x x x x x ∴=--=---=+所以当0x <时,2()4f x x x =+;(2)当0x ≥时,22()4(2)4f x x x x =-=--+, 当0x <时,22()4(2)4f x x x x =+=+-则当(,2)x ∈-∞-时,函数单调递减;当(2,2)x ∈-时,函数单调递增;当(2,)x ∈+∞时,函数单调递减;所以()y f x =的单调减区间为(,2)-∞-和(2,)+∞. 25.(1)0m =;(2)最大值为0;(3)3m ≤或8m ≥. 【详解】 (1)()f x 是偶函数,()()f x f x ∴=-,(1)(1)f f ∴=-即1111m m m m -+-=++-,解得:0m = (2)2()1f x x mx m =-+-,二次函数对称轴为2mx =,开口向上 ①若12m<-,即2m <-,此时函数()f x 在区间[]1,1-上单调递增,所以最小值()(1)2g m f m =-=.②若112m-≤≤,即22m -≤≤,此时当2m x =时,函数()f x 最小,最小值2()124m m g m f m ⎛⎫==-+- ⎪⎝⎭.③若12m>,即2m >,此时函数()f x 在区间[]1,1-上单调递减,所以最小值()(1)0g m f ==.综上22,2()1,2240,2m m mg m m m m <-⎧⎪⎪=-+--≤≤⎨⎪>⎪⎩,作出分段函数的图像如下,由图可知,()g m 的最大值为0.(3)要使函数|()|y f x =在[]2,4上是单调增函数,则()f x 在[]2,4上单调递增且恒非负,或单调递减且恒非正,22(2)0m f ⎧≤⎪∴⎨⎪≥⎩或42(2)0mf ⎧≥⎪⎨⎪≤⎩,即430m m ≤⎧⎨-≥⎩或830m m ≥⎧⎨-≤⎩,解得3m ≤或8m ≥.所以实数m 的取值范围是:3m ≤或8m ≥. 26.(1)证明:函数()f x 对于一切x 、y R ∈,都有()()()f xy f x y f x y =++-, 令0x =,得(0)()()f f y f y =+-,再令y x =,得(0)()()f f x f x =+-.⋯①令0y =,得(0)()()f f x f x =+.⋯② ①-②得()()0f x f x --=,()()f x f x ∴-=.故()f x 在R 上是偶函数.(2)解:因为()f x 在R 上是偶函数,所以()f x的图象关于y轴对称.又因为()f x在区间(,0)-∞上是减函数,所以()f x在区间(0,)+∞上是增函数.22211117212()12()02161648a a a a a++=++-+=++>,2222432(211)32(1)10a a a a a-+-=--+--=---<,22430a a∴-+>.22(243)(243)f a a f a a-+-=-+.原不等式可化为22(21)(243)f a a f a a++<-+,2221243a a a a∴++<-+.解之得25a<.故实数a的取值范围是25a<.27.(1)2()1xf xx=+;(2)()f x在区间()1,1-上是增函数,证明见解析;(3)20,3⎛⎫⎪⎝⎭. 【详解】(1)∵()()f x f x-=-,∴221()1ax b ax bx x-+--=+-+,即b b-=,∴0b=.∴2()1axf xx=+,又()3310f=,1a=,∴2()1xf xx=+.(2)对区间()1,1-上得任意两个值1x,2x,且12x x<,22121221121212222222121212(1)(1)()(1)()()11(1)(1)(1)(1)x x x x x x x x x xf x f xx x x x x x+-+---=-==++++++,∵1211x x -<<<,∴120x x -<,1210x x ->,2110x +>,2210x +>, ∴12())0(f x f x -<,∴12()()f x f x <, ∴()f x 在区间()1,1-上是增函数. (3)∵1(1)()02f x f x -+<,∴1(1)()2f x f x -<-,1111211211x x x x ⎧-<-<⎪⎪⎪-<-⎨⎪-<<⎪⎪⎩,解得203x <<,∴实数x 得取值范围为20,3⎛⎫⎪⎝⎭.28.(1)1,0a b ==;(2)()f x 在[]1,1-上递增,证明详见解析;(3)92k ≤. 【详解】(1)依题意函数()21x bf x ax +=+是定义在[1-,1]上的奇函数, 所以()00f b ==,()111112f a a ==⇒=+, 所以()21xf x x =+,经检验,该函数为奇函数. (2)()f x 在[]1,1-上递增,证明如下: 任取1211x x -??,()()()()()()221221121222221212111111x x x x x x f x f x x x x x +-+-=-=++++()()22121212221211x x x x x x x x +--=++()()()()()()()()12212112212222121211111x x x x x x x x x x x x x x -----==++++,其中122110,0x x x x -<->,所以()()()()12120f x f x f x f x -<⇒<, 故()f x 在[]1,1-上递增.(3)由于对任意的[]111x ∈-,,总存在[]201x ∈,,使得()()12f x g x ≤成立, 所以()()max max f x g x ≤.()()max 112f x f ==. 当0k ≥时,()52g x kx k =+-在[]0,1上递增,()()max 15g x g k ==-, 所以195022k k ≤-⇒≤≤.当0k <时,()52g x kx k =+-在[]0,1上递减,()()max 052g x g k ==-, 所以15202k k ≤-⇒<.综上所述,92k ≤. 29.(1)令0x y ==,则()()()000f f f =+,解得()00f =,令y x =-,则()()()0f f x f x =+-,即()()0f x f x +-=,即()()f x f x -=-, 易知()f x 的定义域为R ,关于原点对称,所以函数()f x 是奇函数; (2)任取1x ,2x R ∈,且12x x <,则120x x -<, 因为当0x <时,()0f x <,所以()120f x x -<,则()()()()()1212120f x f x f x f x f x x -=+-=-<,即()()12f x f x <,所以函数()f x 是R 上的增函数;(3)由()113f =,得()223f =,()31f =,又由()f x 是奇函数得()31f -=-. 由()()31f x f x +-≥-,得()()233f x f -≥-,因为函数()f x 是R 上的增函数, 所以233x -?,解得0x ≥,故实数x 的取值范围为[)0,+∞. 30.解:()1对于函数()2x f x =的定义域R 内任意的1x ,取21x x =-,则12()()1f x f x ⋅=, 且由()2x f x =是R 上的严格增函数,可知2x 的取值唯一, 故()2x f x =是“依赖函数”.()2因为1m >,()()2112f x x =-在[]m n ,是严格增函数,故()()1f m f n ⋅=,即()()2211114m n --=,由1n m >>,得(1)(1)2m n --=, 又m n N ∈,,所以1112m n -=⎧⎨-=⎩,解得23m n =⎧⎨=⎩故5m n +=()3因43a <,故()()2f x x a =-在443⎡⎤⎢⎥⎣⎦,上单调递增, 从而()4413f f ⎛⎫⋅= ⎪⎝⎭,即()224413a a ⎛⎫--= ⎪⎝⎭,进而()4413a a ⎛⎫--= ⎪⎝⎭,解得1a =或13(3a =舍), 从而,存在443x ⎡⎤∈⎢⎥⎣⎦,,使得对任意的R t ∈,有不等式()2218x t s t -≥-+⋅+都成立, 故()22max18x t s t ⎡⎤-≥-+⋅+⎣⎦,即298t s t ≥-+⋅+, 整理,得210t s t +⋅+≥对任意的R t ∈恒成立.由240s ∆=-≤,得22s -≤≤,即实数s 的取值范围是[]22-,.。
高一数学函数经典练习题(含答案详细)
《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:答案:x²又⑵y =答案:2111x x -⎛⎫≤ ⎪+⎝⎭, ()()22111x x -≤+, ()()2211x x -≤+,222121x x x x -+≤++,-4x ≤0, ∴x ≥0{|0}x x ≥⑶01(21)111y x x =+-+-答案:211011011210210104022x x x x x x x x x ⎧+≠⇒-≠-⇒≠⎪-⎪⎪-≠⇒≠⎨⎪-≠⇒≠⎪≥⇒-≥⇒-≤≤∴1{|220,,1}2x x x x x -≤≤≠≠≠且2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _2 f x ()-2的定义域为________;答案:函数f(x)的定义域为[0.1], 则0≤x ≤1于是0≤x ²≤1 解得-1≤x ≤1所以函数f x ()2的定义域为[-1,1]f∴4≤x ≤93、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1x 1(2)f x+的定义域为 。
答案:y=f(x+1)的定义域是【-2,3】注:y=f(x+1)的定义域是【-2,3】 指的是里面X 的定义域 不是括号内整体的定义域 即-2<=x<=3∴-1<=x+1<=4 ∴x+1 的范围为 [-1,4] f(x)括号内的范围相等y=f(2x-1)f(4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
答案解1:知函数f(x)的定义域为[-1.1],则对函数F (X )=f(m+x)-f(x-m)来说 -1≤m+x ≤1 -1≤x-m ≤11. 由-1≤m+x 和x-m ≤1 两式相加-1+x-m ≤m+x+1 解得2m ≥-2 m ≥-12. 由m+x ≤1和-1≤x-m 两式相加 m+x-1≤x-m+12m ≤2 解得m ≤1综上:-1≤m ≤1答案解2: -1<x+m<1 →→-1-m < x<1-m-1<x-m<1 → -1+m<x<1+m定义域存在,两者的交集不为空集,(注:则只需(-m-1,1-m )与(m-1,1-m )有交集即可。
高一数学《函数的基本性质》知识点及对应练习(详细答案)
函数的基本性质一、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.概念重点疑点:对于定义域中任何x,都有唯一确定的y=f(x)与x相对应。
即在直角坐标系中的图像,对于任意一条x=a(a是函数的定义域)的直线与函数y=f(x)只有一个交点;例1、下列对应关系中,x为定义域,y为值域,不是函数的是()A.y=x²+x³B.y=C.|y|=xD.y=8x解:对于|y|=x,对于任意非零x,都有两个y与x对应,所以|y|=x不是函数。
图像如下图,x=2的直线与|y|=x的图像有两个交点。
故答案选C例2、下列图象中表示函数图象的是()解析:对于任意x=a的直线,只有C选项的图形与x=a的直线只有一个交点,即对于定义域中任何x,都有唯一确定的y=f(x)与x相对应。
故选C。
注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式.定义域补充:能使函数式有意义的实数x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零 (7)实际问题中的函数的定义域还要保证实际问题有意义.(注意:求出不等式组的解集即为函数的定义域。
高中数学必修一函数性质专项习题及答案
高中数学必修一函数性质专项习题及答案必修1函数的性质1.在区间(0,+∞)上不是增函数的函数是A.y=2x+1B.y=3x2+1C.y=1/xD.y=2x2+x+12.函数f(x)=4x2-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数。
则f(1)等于()A.-7B.1C.17D.253.函数f(x)在区间(-2,3)上是增函数,则y=f(x+5)的递增区间是()A.(3,8)B.(-7,-2)C.(3,8)D.(0,5)4.函数f(x)=ax+1在区间(-2,+∞)上单调递增,则实数a的取值范围是()x+2A.(0,11/22)B.(11/22,+∞)C.(-2,+∞)D.(-∞,-1)∪(1,+∞)5.函数f(x)在区间[a,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]内()A.至少有一实根B.至多有一实根C.没有实根D.必有唯一的实根6.若f(x)=x+px+q满足f(1)=f(2)=5,则f(1)的值是()A.5B.-5C.6D.-67.若集合A={x|1<x<2},B={x|x≤a},且A∩B≠Ø,则实数a的集合()A.{a|a<2}B.{a|a≥1}C.{a|a>1}D.{a|1≤a≤2}8.已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是()A.f(-1)<f(9)<f(13)B.f(13)<f(9)<f(-1)C.f(9)<f(-1)<f(13)D.f(13)<f(-1)<f(9)9.函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是()A.(-∞,0],[2,∞)B.(-∞,0],[0,2]C.[0,2],[2,∞)D.[0,2],[-∞,0)10.若函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围()A.a≤3B.a≥-3C.a≤5D.a≥311.函数y=x+4x+c,则()A.f(1)<c<f(-2)B.f(1)>c>f(-2)C.c>f(1)>f(-2)D.c<f(-2)<f(1)12.已知定义在R上的偶函数f(x)满足f(x+4)=-f(x),且在区间[0,4]上是减函数,则f(2)的符号为()A.正数B.负数C.零一、文章格式已经修正,删除了明显有问题的段落,并对每段话进行了小幅度改写。
人教A版高中数学必修一《函数的基本性质》试题
人教A版高中数学必修一《函数的基本性质》试题【夯实基础】一、单选题1.(2022·全国·高一课时练习)函数的单调递增区间是()A. B.C. D.【答案】B【分析】直接由二次函数的单调性求解即可.【详解】由知,函数为开口向上,对称轴为的二次函数,则单调递增区间是.故选:B.2.(2022·全国·高一课时练习)定义在区间上的函数的图象如图所示,则的单调递减区间为()A. B. C. D.【答案】B【分析】根据函数图象直接确定单调递减区间即可.【详解】由题图知:在上的单调递减,在上的单调递增,所以的单调递减区间为.故选:B3.(2022·全国·高一课时练习)已知函数在上是增函数,则实数的取值范围为()A. B. C. D.【答案】D【分析】利用二次函数单调性,列式求解作答.【详解】函数的单调递增区间是,依题意,,所以,即实数的取值范围是.故选:D4.(2022·全国·高一)已知在为单调函数,则a的取值范围为()A. B. C. D.【答案】D【分析】求出的单调性,从而得到.【详解】在上单调递减,在上单调递增,故要想在为单调函数,需满足,故选:D5.(2022·湖北武汉·高一期末)已知二次函数在区间内是单调函数,则实数a的取值范围是()A. B.C. D.【答案】A【分析】结合图像讨论对称轴位置可得.【详解】由题知,当或,即或时,满足题意.故选:A6.(2022·甘肃庆阳·高一期末)若函数在上单调递增,且,则实数的取值范围是()A. B. C. D.【答案】C【分析】由单调性可直接得到,解不等式即可求得结果.【详解】在上单调递增,,,解得:,实数的取值范围为.故选:C.7.(2022·全国·高一课时练习)下列四个函数在是增函数的为()A. B.C. D.【答案】D【分析】根据各个函数的性质逐个判断即可【详解】对A,二次函数开口向上,对称轴为轴,在是减函数,故A不对.对B,为一次函数,,在是减函数,故B不对.对C,,二次函数,开口向下,对称轴为,在是增函数,故C不对.对D,为反比例类型,,在是增函数,故D对.故选:D8.(2021·河南南阳·高一阶段练习)已知函数,对于任意的恒成立,则实数的最小值是()A.0B.1C.2D.3【答案】D【分析】利用换元法将函数的最值转化为二次函数的最值,即可求得实数的最小值.【详解】对于任意的使恒成立,令(),则,即,设,则,故,即实数m的最小值是.故选:.二、多选题9.(2022·全国·高一课时练习)下列函数中,在上单调递增的是()A. B. C. D.【答案】AD【分析】画出各选项的函数图像,利用函数的图象来研究函数的单调性判断即可.【详解】画出函数图象如图所示,由图可得A,D中的函数在上单调递增,B,C中的函数在上不单调.故选:AD.10.(2021·江西·高一期中)如图是函数的图象,则函数在下列区间单调递增的是( )A. B. C. D.【答案】BC【分析】根据单调性的定义即可由图知道f(x)的增区间﹒【详解】图像从左往右上升的区间有:(-6,-4),(-1,2),(5,8),∴f(x)在(-6,-4),(-1,2),(5,8)上单调递增﹒故选:BC﹒三、填空题11.(2022·全国·高一课时练习)写出一个同时具有性质①对任意,都有;②的函数___________.【答案】(答案不唯一)【分析】根据题意可得函数在为减函数,且再写出即可.【详解】因为对任意,都有,所以函数在上减函数.又,故函数可以为.(注:满足题目条件的函数表达式均可.)故答案为:(答案不唯一)12.(2022·浙江丽水·高一开学考试)设函数,其中,.若在上不单调,则实数的一个可能的值为______.【答案】内的任意一个数.【分析】由对勾函数的性质判断出函数的单调区间,假设在上单调,即可求出的取值范围,其补集即为在上不单调时实数的取值范围.【详解】函数的定义域为,由对勾函数的性质可得函数在和上是单调递增,在和上是单调递减,若在上单调,则或,解得或,则在上不单调,实数的范围是,故答案为:内的任意一个数.13.(2022·全国·高一课时练习)函数的单调减区间为__________.【答案】##【分析】优先考虑定义域,在研究复合函数的单调性时,要弄清楚它由什么函数复合而成的,再根据“同增异减”可求解.【详解】函数是由函数和组成的复合函数,,解得或,函数的定义域是或,因为函数在单调递减,在单调递增,而在上单调递增,由复合函数单调性的“同增异减”,可得函数的单调减区间.故答案为:.四、解答题14.(2022·全国·高一)已知,函数.(1)指出在上的单调性(不需说明理由);(2)若在上的值域是,求的值.【答案】(1)在上是增函数(2)2【分析】(1)由于,利用反比例函数的性质,即可得到结果;(2)根据(1)的函数单调性,可知,,解方程即可求出结果.(1)解:因为,所以在上是增函数.(2)解:易知,由(1)可知在上为增函数.,解得,由得,解得.15.(2022·湖南·高一课时练习)设函数的定义域为,如果在上是减函数,在上也是减函数,能不能断定它在上是减函数?如果在上是增函数,在上也是增函数,能不能断定它在上是增函数?【分析】根据反例可判断两个结论的正误.【详解】取,则在上是减函数,在上也是减函数,但,,因此不能断定在上是减函数.若取,则在上是增函数,在上也是增函数,但,,因此不能断定在上是增函数.16.(2022·全国·高一专题练习)已知函数的定义域为.(1)求的定义域;(2)对于(1)中的集合,若,使得成立,求实数的取值范围.【答案】(1)(2)【分析】(1)的定义域可以求出,即的定义域;(2)令,若,使得成立,即可转化为成立,求出即可.(1)∵的定义域为,∴.∴,则.(2)令,,使得成立,即大于在上的最小值.∵,∴在上的最小值为,∴实数的取值范围是.【能力提升】一、单选题1.(2022·全国·高一课时练习)已知函数的定义域为R,满足,且当时,恒成立,设,,(其中),则a,b,c的大小关系为()A. B.C. D.【答案】B【分析】根据函数单调性的定义判断出在上单调递减,再利用把转化为,最后利用的单调性判断即可.【详解】因为,所以,因此,即,所以在上单调递减,又因为,所以,又因为,所以,所以.故选:B.2.(2021·江苏·盐城市大丰区新丰中学高一期中)函数的大致图象是()A. B.C. D.【答案】A【分析】探讨函数的定义域、单调性,再逐一分析各选项判断作答.【详解】函数的定义域为,选项C,D不满足,因,则函数在,上都单调递增,B不满足,则A满足.故选:A【点睛】方法点睛:函数图象的识别途径:(1)由函数的定义域,判断图象的左右位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性.3.(2022·全国·高一课时练习)设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A. B. C. D.【答案】B【分析】根据函数关系式可知,由此可确定在上的解析式,并确定每段区间上的最小值;由时,可确定在此区间内的两根,结合函数图象可确定的范围.【详解】由知:,;当时,,则;当时,,,则;当时,,,则;令,解得:或;作出函数的大致图象如图所示.对任意恒成立,,则,即实数的取值范围为.故选:B.二、多选题4.(2021·安徽·高一期中)下列命题正确的是()A.的定义城为,则的定义域为B.函数的值域为C.函数的值域为D.函数的单调增区间为【答案】AB【分析】根据抽象函数的定义域求法,可判断A;利用换元法求得函数值域,可判断B;利用基本不等式可判断C;单调区间之间不能用并集符号,可判断D.【详解】对于A选项,由于函数的定义域为,对于函数,,解得,所以函数的定义域为,A选项正确;对于B选项,令,则,,且时,取得等号,所以函数的值域为,B选项正确;对于C选项,,当且仅当时,即等号取得,但等号取不到,所以C选项错误;对于D选项,,所以函数的单调增区间为和,单调区间之间不能用并集符号,D选项错误,故选:AB.5.(2021·辽宁实验中学高一期中)下列命题,其中正确的命题是()A.函数在上是增函数B.函数在上是减函数C.函数的单调区间是D.已知在上是增函数,若,则有【答案】AD【分析】根据函数单调性的定义和复合函数单调性法则依次讨论各选项即可得答案.【详解】对于A选项,函数的对称轴为,开口向上,所以函数在上单调递增,故A正确;对于B选项,因为当时,,当时,,所以函数在上不是减函数,故B错误;对于C选项,解不等式得,函数的定义域为,故C错误;对于D选项,由得,由于在上是增函数,故,所以,故D正确.故选:AD6.(2022·全国·高一课时练习)已知函数的定义域是,且,当时,,,则下列说法正确的是()A.B.函数在上是减函数C.D.不等式的解集为【答案】ABD【分析】利用赋值法求得,判断A;根据函数的单调性定义结合抽象函数的性质,可判断函数的单调性,判断B;利用,可求得C中式子的值,判断C;求出,将转化为,即可解不等式组求出其解集,判断D.【详解】对于A,令,得,所以,故A正确;对于B,令,得,所以,任取,且,则,因为,所以,所以,所以在上是减函数,故B正确;对于C,,故C错误;对于D,因为,且,所以,所以,所以等价于,又在上是减函数,且,所以,解得,故D正确,故选:ABD.7.(2022·广东深圳·高一期末)(多选)世界公认的三大著名数学家为阿基米德、牛顿、高斯,其中享有“数学王子”美誉的高斯提出了取整函数,表示不超过x的最大整数,例如.已知,,则函数的值可能为()A.0B.1C.2D.3【答案】BCD【分析】利用常数分离法知,根据x的取值范围结合不等式的性质求出的取值范围,进而得到函数的值.【详解】,当时,,,,此时的取值为1;当时,,,,此时的取值为2,3.综上,函数的值可能为.故选:BCD.三、填空题8.(2022·全国·高一专题练习)点、均在抛物线(,a、b为常数)上,若,则t的取值范围为________.【答案】【分析】根据,可知抛物线开口向下,根据抛物线解析式可知抛物线的对称轴为,当P、Q 两点关于抛物线对称轴对称时,可求出,根据根据,,即可求出t的取值范围.【详解】根据,可知抛物线开口向下,根据抛物线解析式可知抛物线的对称轴为,则有时,y随x的增大而增大;当P、Q两点关于抛物线对称轴对称时,则有,解得,∵,,又∵时,y随x的增大而增大;∴可知当P、Q在对称轴的左侧是肯定满足要求,P、Q均在对称轴的右侧时肯定不满足要求,当P、Q分别在对称轴x=1的两侧时,随着P、Q向x轴正向移动,P的纵坐标在逐渐增大,Q的纵坐标逐渐减小,当P、Q两点关于抛物线对称轴对称时有,继续正方向移动,则有,∴满足的t的取值范围:,故答案为:.四、解答题9.(2022·全国·高一课时练习)已知函数,判断并证明在区间上的单调性.【答案】单调递增,证明见解析【分析】利用单调性的定义证明,先任取,,且,然后作差,变形,判断符号,即可得结论. 【详解】在区间上单调递增,理由如下:任取,,且,.因为,所以,,,所以所以,所以,即,所以函数在区间上单调递增.10.(2022·全国·高一课时练习)已知函数的定义域为,对任意正实数、都有,且当时,.求证:函数是上的增函数.【分析】任取、,且,可得出,结合已知条件可出、的大小关系,即可证得结论成立.【详解】证明:任取、,且,则.因为,所以,所以,即,所以函数是上的增函数.11.(2022·全国·高一课时练习)画出下列函数的图象,并写出单调区间:(1);(2).【答案】(1)图象见解析;单调递增区间为和,无单调递减区间(2)图象见解析;单调递增区间为,单调递减区间为和【分析】(1)根据函数的解析式可作出其图象,即可得单调区间;(2)化简函数的解析式为,结合二次函数性质可作出其图象,即可得单调区间.(1)画出的图象如图所示,可得其单调递增区间为和,无单调递减区间.(2),作出该函数的图象如图所示,观察图象,知该函数的单调递增区间为,单调递减区间为和.12.(2020·陕西·榆林市第十中学高一阶段练习)已知函数.(1)求证:在上是增函数;(2)当时,求不等式的解集.【答案】(1)证明见解析;(2)【分析】(1)利用函数单调性的定义与作差法即可证明;(2)将代入,然后求解不等式即可(1)任取,且,则,所以,所以,所以在区间上单调递增;(2)当时,,由可得,解得,故不等式的解集为13.(2021·广东广雅中学花都校区高一期中)设函数.(1)当时,求函数的单调递减区间;(2)若函数在R上单调递增,求a的取值范围;(3)若对,不等式恒成立,求a的取值范围.【答案】(1);(2);(3).【解析】(1)去掉绝对值符号后根据一次函数、二次函数的单调性可得所求的单调减区间. (2)去掉绝对值符号可得,根据函数在R上单调递增可得关于的不等式组,从而可得其取值范围.(3)等价于且恒成立,前者可分类讨论,后者可结合一次函数的图象和性质,两者结合可得a的取值范围.【详解】(1)时,,故在上为增函数,在上为减函数,在为增函数,故函数的单调递减区间为.(2)因为函数在R上单调递增,故,解得.(3)等价于且恒成立,先考虑恒成立,则,故.再考虑恒成立,又,故,故,解得,综上,的取值范围为.【点睛】方法点睛:对于含绝对值符号的函数,可先去掉绝对值符号,从而把问题题转化为常见的一次函数、二次函数在给定范围上的恒成立问题,注意先讨论简单的一次函数的性质,从而参数的初步范围后再讨论二次函数的性质.14.(2021·重庆市清华中学校高一阶段练习)对于定义域为的函数,如果存在区间,同时满足下列两个条件:①在区间上是单调的;②当定义域是时,的值域也是.则称是函数的一个“黄金区间”.(1)请证明:函数不存在“黄金区间”.(2)已知函数在上存在“黄金区间”,请求出它的“黄金区间”.(3)如果是函数的一个“黄金区间”,请求出的最大值.【答案】(1)证明见解析;(2);(3).【分析】(1)由为上的增函数和方程的解的情况可得证;(2)由可得出,再由二次函数的对称轴和方程,可求出函数的“黄金区间”;(3)化简得函数的单调性,由已知是方程的两个同号的实数根,再由根的判别式和根与系数的关系可表示,由或,可得的最大值.【详解】解:(1)证明:由为上的增函数,则有,∴,无解,∴不存在“黄金区间”;(2)记是函数的一个“黄金区间”,由及此时函数值域为,可知而其对称轴为,∴在上必为增函数,令,∴,∴故该函数有唯一一个“黄金区间”;(3)由在和上均为增函数,已知在“黄金区间”上单调,所以或,且在上为单调递增,则同理可得,,即是方程的两个同号的实数根,等价于方程有两个同号的实数根,又,则只要,∴或,而由韦达定理知,,所以,其中或,所以当时,取得最大值.【点睛】关键点点睛:本题考查函数的新定义,对于解决此类问题的关键在于紧扣函数的新定义,注意将值域问题转化为方程的根的情况得以解决.15.(2022·广东·普宁市第二中学高一期中)已知函数,,. 若不等式的解集为(1)求的值及;(2)判断函数在区间上的单调性,并利用定义证明你的结论.(3)已知且,若.试证:.【答案】(1);(2)函数在区间上的单调递增,证明见解析(3)见解析【分析】(1)根据二次不等式的解集可以得到二次函数的零点,回代即可求出参数的值(2)定义法证明单调性,假设,若,则单调递增,若,则单调递减(3)单调性的逆应用,可以通过证明函数值的大小,反推变量的大小,难度较大(1),即,因为不等式解集为,所以,解得:,所以(2)函数在区间上的单调递增,证明如下:假设,则因为,所以,所以,即当时,,所以函数在区间上的单调递增(3)由(2)可得:函数在区间上的单调递增,在区间上的单调递减,因为,且,,所以,,证明,即证明,即证明,因为,所以即证明,代入解析式得:,即,令,因为在区间上的单调递增,根据复合函数同增异减的性质可知,在区间上的单调递减,所以单调递增,即,所以在区间上恒成立,即,得证:【点睛】小问1求解析式,较易;小问2考察定义法证明单调性,按照常规方法求解即可;小问3难度较大,解题过程中应用到以下知识点:(1)可以通过证明函数值的大小,结合函数的单调性,反推出变量的大小,即若,且单减,则;解题过程(2)单调性的性质,复合函数同增异减以及增函数减去减函数为增函数16.(2021·江苏·高一单元测试)已知函数,(1)对任意的,函数在区间上的最大值为,试求实数的取值范围;(2)对任意的,若不等式任意()恒成立,求实数的取值范围.【答案】(1)(2)【分析】(1)由已知可得,结合对勾函数的单调性与最值情况求参数范围;(2)由题意不等式可转化为函数在上单调递增,结合分段函数的单调性,分情况讨论. (1)由,由对勾函数的性质得函数在上单调递减,在上单调递增,所以,又,所以,又函数在区间上的最大值为,所以,即,解得,所以;(2)不等式任意()恒成立,即,设,在上单调递增,即在上单调递增,当时,,①当时,单调递增,成立;②当时,单调递增,成立,③当时,只需,即,当时,,①当时,在上递减,所以不成立;②当时,在上递减,所以不成立;③当时,只需,即,综上所述,.17.(2021·全国·高一专题练习)已知函数对一切实数都有成立,且(1)求的解析式;(2),若存在,使得,有成立,求的取值范围.【答案】(1)(2)【分析】(1)赋值法,令y=1,求出,进而求出;(2)根据题干中的条件,只需,先求出函数的最大值,然后利用二次函数的性质求最值,进而求出a的取值范围.(1)∵函数对一切实数都有成立,且,令y=1,则,(2)由题意,有,则,对于g(x),当x=0时,g(0)=0,当时,,设,则在(0,1)单调递减,在单调递增,在x=1处取到最小值,所以,所以,综上,,当且仅当x=1时取到,所以;设,则h(x)为开口向上的二次函数,其对称轴为x=a,下面通过对称轴的位置对h(x)的最值情况进行分类讨论:当时,对称轴距离区间右侧x=2更远,故,∴,即;2)当时,对称轴距离区间左侧x=-1更远,故,∴,即;综上,.。
人教版高中数学必修一《函数的基本性质》练习题含答案
人教版高中数学必修一《函数的基本性质》练习题含答案一、选择题1.B2.B3.D4.B5.A6.D二、填空题1.x∈(-5,-1)∪(0,1)2.(-∞,∞)3.(-∞,∞)4.(-∞,0)5.2三、解答题1.一次函数y=kx+b的单调性取决于k的正负性。
当k>0时,函数单调递增;当k0时,函数在(0,∞)上单调递减;当k<0时,函数在(-∞,0)上单调递减。
2.因为f(x)是奇函数,所以f(1-a)+f(-(1-a))=0,即f(1-a)=-f(1+a)。
由于f(x)在定义域上单调递减,所以f(1-a)f(1-a)>f(1),即f(0)>-f(1+a)>f(1)。
又因为f(1-a)=-f(1+a),所以f(0)>f(1+a)>f(1)。
由此可得1+a<0,即a<-1.3.函数y=x+1+2x的定义域为(-∞,∞),因为x+1的单调性为单调递增,2x的单调性为单调递增,所以y的单调性为单调递增。
因此,y的值域为(-∞,∞)。
已知函数$f(x)=x+2ax+2,x\in[-5,5]$,二次函数$y=ax^2+bx+c$,其中:①当$a=-1$时,求函数的最大值和最小值;当$a=-1$时,二次函数为$y=-x^2+bx+c$,由于$a<0$,所以开口向下,最大值为顶点,顶点横坐标为$x_0=-\frac{b}{2a}=0$,代入得$y_{\max}=c$,最小值为区间端点处的值,即$f(-5)$和$f(5)$中的较小值。
因此,函数$f(x)$的最大值为$c$,最小值为$\min\{f(-5),f(5)\}$。
②求实数$a$的取值范围,使$y=f(x)$在区间$[-5,5]$上是单调函数。
二次函数$y=ax^2+bx+c$在开口方向上单调递增的充分必要条件是$a>0$,在开口方向上单调递减的充分必要条件是$a0$时,$y=f(x)$在$[-5,5]$上是单调递增函数;当$a<0$时,$y=f(x)$在$[-5,5]$上是单调递减函数。
高一数学集合函数概念、函数的基本性质测试题(含答案与解析)
高一数学集合函数概念、函数的基本性质测试题一、选择题(本大题共12小题,共60.0分)1.已知集合M满足,则集合M的个数是()A. 4B. 3C. 2D. 12.设A={x|-1<x<1},B={x|x-a>0},若A⊆B,则a的取值范围是()A. (−∞,−1)B. (−∞,−1]C. [1,+∞)D. (1,+∞)3.设全集U=R,集合A={x∈N|x2<6x},B={x∈N|3<x<8},则如图阴影部分表示的集合是()A. {1,2,3,4,5}B. {1,2,3}C. {3,4}D. {4,5,6,7}4.设集合A={x|x(x+1)≤0},集合B={x|2x>1},则集合A∪B等于()A. {x|x≥0}B. {x|x≥−1}C. {x|x>0}D. {x|x>−1}5.设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁R B)=()A. (−3,0)B. (−3,−1)C. (−3,−1]D. (−3,3)6.下列各组函数表示同一函数的是()A. f(x)=x,g(x)=(√x)2B. f(x)=x2+1,g(t)=t2+1C. f(x)=1,g(x)=xxD. f(x)=x,g(x)=|x|7.给出函数f(x),g(x)如表,则f[g(x)]的值域为()x 1 2 3 4f(x) 4 3 2 1x 1 2 3 4g(x) 1 1 3 3A. {4,2}B. {1,3}C. {1,2,3,4}D. 以上情况都有可能8.已知f(2x+3)=3x+2,则f(9)的值为()A. 1B. 5C. 9D. 119.函数f(x)={x2+1,x≤12x,x>1,则f(f(3))的值为()A. 15B. 3 C. 23D. 13910.根据图表分析不恰当的一项是()A. 王伟同学的数学学习成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀;B. 张城同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大;C. 赵磊同学的数学学习成绩低于班级平均水平,但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高.D. 第一次考试均分最高,说明第一次考试试题难度低于其它次考试试题的难度. 二、多项选择题(本大题共2小题,共10.0分)11. 设函数f (x ),g (x )分别是R 上的奇函数和偶函数,则以下结论不正确的是( )A. f (x )g(x)是偶函数B. f (x )|g(x)|是奇函数C. |f (x )|g(x)是奇函数D. f (x )−g(x)偶函数 12. 已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x-x 2,则下列说法正确的是()A. f(x)的最大值为B. f(x)在(−1,0)上是增函数C. f(x)>0的解集为(−1,1)D. f(x)+2x ≥0的解集为[0,3]三、填空题(本大题共4小题,共20.0分) 13. 函数)1(21)(-++=x xx f 的定义域是______ . 14. 已知f (x )=ax 3+bx -2,若f (2015)=7,则f (-2015)的值为______ . 15. 已知函数f (x )满足)5()(+=x f x f ,当x ∈[-1,4)时,f (x )=2x +1-5, 则f (17)=______.16. (1)函数f(x)=−x 2+2x +2,x ∈[−1,2]的值域是______ .(2)函数))(1()(a x x x f ++=为偶函数,则实数a 的值为______.四、解答题(本大题共6小题,共70.0分)17. (12分)已知函数f(x)=√x +1√4−2x 的定义域为A ,g(x)=−x 2+1的值域为B.设全集U =R .(I)求A ,B ; (II)求A ∩(∁U B).18. (6+6=12分)(1)84)(2--=kx x x f 在]20,5[不具单调性,求k 取值范围(2 )化简:(2a 14b−13)(−3a −12b 23)÷(−14a −14b −23).19. (12分) 已知函数f(x)={−x +2(x >1)x 2(−1≤x ≤1)x +2(x <−1).(1)求f(f(52))的值;(2)画出函数的图象,并根据图象写出函数的值域和单调区间;20. (12分)已知函数f(x)=x +1x .(1)用定义证明f (x )在[1,+∞)上是增函数; (2)求f (x )在[1,4]上的最大值及最小值.21. (12分)已知函数f(x)=x2−2|x|.(1)写出f(x)的分段解析式,(2)画出函数f(x)的图象.22. (10分) 2018年1月8日,中共中央、国务院隆重举行国家科学技术奖励大会,在科技界引发热烈反响,自主创新正成为引领经济社会发展的强劲动力.某科研单位在研发新产品的过程中发现了一种新材料,由大数据测得该产品的性能指标值y与这种新)x−t.材料的含量x(单位:克)的关系为:当0≤x<6时,y是x的二次函数;当x≥6时,y=(13测得数据如表(部分)(I)求y关于x的函数关系式y=f(x);(II)求函数f(x)的最大值.答案和解析1.【答案】B【解析】【分析】本题考查真子集和子集的概念,属于基础题.由真子集、子集的概念即可确定集合M,从而可得结果.【解答】解:∵集合M满足,∴集合M={1,2},{1,2,3},{1,2,4},∴满足要求的集合M的个数是3.故选B.2.【答案】B【解析】解:集合B=(a,+∞),A⊆B,则只要a≤-1即可,即a的取值范围是(-∞,-1].故选B.求出集合B,由A⊆B即可找到a所满足的不等式,解出它的取值范围.考本题考查集合的关系的参数取值的问题,解题的关键是正确理解包含的含义,根据其关系转化出关于参数的不等式,求解本题可以借助数轴的直观帮助判断.3.【答案】B【解析】【分析】根据题意,图中阴影部分表示的区域为只属于A的部分,即A∩(∁R B),计算可得集合A与∁R B,对其求交集可得答案.本题考查集合的Venn表示法,关键是分析出阴影部分表示的集合.【解答】∵A={x∈N|x2<6x}={x∈N|0<x<6}={1,2,3,4,5},B={x∈N|3<x<8}={4,5,6,7}∴∁R B={x|x≠4,5,6,7|},∴A∩(∁R B)={1,2,3}.故选B.4.【答案】B【解析】解:A={x|x(x+1)≤0}=[-1,0],B={x|2x>1}=(0,+∞),∴A∪B=[-1,+∞)故选:B.先求出集合A,B的对应元素,根据集合关系和运算即可得到结论.本题主要考查集合的基本运算,利用不等式的解法求出集合A,B是解决本题的关键,比较基础.5.【答案】C【解析】【分析】根据补集的定义求得∁R B,再根据两个集合的交集的定义,求得A∩(∁R B).本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.【解答】解:∵集合A={x|x2-9<0}={x|-3<x<3},B={x|-1<x≤5},∴∁R B={x|x≤-1,或x >5},则A∩(∁R B)={x|-3<x≤-1},故选C.6.【答案】B【解析】【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是相同函数.本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.【解答】解:对于A,f(x)=x(x∈R),与g(x)==x(x≥0)的定义域不同,所以不是同一函数;对于B,f(x)=x2+1(x∈R),与g(t)=t2+1(t∈R)的定义域相同,对应关系也相同,是同一函数;对于C,f(x)=1(x∈R),与g(x)==1(x≠0)的定义域不同,所以不是同一函数;对于D,f(x)=x(x∈R),与g(x)=|x|(x∈R)的对应关系不同,所以不是同一函数.故选B.7.【答案】A【解析】【分析】本题考查函数的表示方法,关键在于理解图表中表达的函数,属于基础题.当x=1或x=2时,;当x=3或x=4时,,可得答案.【解答】解:∵当x=1或x=2时,,∴;当x=3或x=4时,,∴.故的值域为.故选A.8.【答案】D【解析】【分析】题x.解:由题意得,.故选D.9.【答案】D【解析】【分析】本题主要考查了求函数值,先求的值,再求.【解答】解:函数,则,所以.故选D.10.【答案】D【解析】【分析】本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.【解答】解:由图象可知,王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大;赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高.11.【答案】ACD【解析】【分析】根据奇函数和偶函数的定义进行判断即可;【解答】解:由奇函数和偶函数的定义可知是奇函数,故不正确的是A,C,D;故选ACD.12.【答案】ACD【解析】【分析】本题考查函数的奇偶性,考查学生的计算能力,比较基础.对四个命题分别进行判断,即可得出结论.【解答】解:x≥0时,f(x)=x﹣x2=﹣(x﹣)2+,∴f(x)的最大值为,故A正确;f(x)在(﹣,0)上是增函数,故B不正确;当x≥0时,f(x)=x﹣x2,f(x)>0的解集为(0,1),函数f(x)是定义在R上的偶函数,∴f(x)>0的解集为(﹣1,1),故C正确;x≥0时,f(x)+2x=3x﹣x2≥0的解集为[0,3],x<0时,f(x)+2x=x﹣x2≥0无解,故D正确.故选:ACD.13.【答案】{x|x>-2且x≠1}【解析】解:由题意得:,解得:x>-2且x≠1,故答案为:{x|x>-2且x≠1}.根据二次根式的性质以及幂函数的性质得到关于x的不等式组,解出即可.本题考查了求函数的定义域问题,考查二次根式以及幂函数的性质,是一道基础题.14.【答案】-11【解析】解:∵f(x)=ax3+bx-2,∴f(x)+2=ax3+bx是奇函数,设g(x)=f(x)+2,则g(-x)=-g(x),即f(-x)+2=-(f(x)+2)=-2-f(x),即f(-x)=-4-f(x),f(2015)=7,f(-2015)=-4-f(2015)=-4-7=-11,故答案为:-11.根据条件构造函数g(x)=f(x)+2,判断函数的奇偶性,进行求解即可.本题主要考查函数值的计算,根据条件构造函数,判断函数的奇偶性是解决本题的关键.15.【答案】3【解析】解:根据题意,)5xff,则f(17)=f(12)=f(7)= f(2)()(+=x又由当x∈[-1,4)时,f(x)=2x+1-5,则f(2)=23-5=3,故f(17)=3;故答案为:3.根据题意,由函数的周期可得f(17)=f(2),结合函数的解析式求出f(2)的值,即可得答案.本题考查函数的周期性的应用,涉及函数值的计算,属于基础题.16.【答案】(1)[−1,3] 方法:画图!!!!(2)1-17.【答案】【答案】解:(I)由题意得:{x+1≥04−2x>0,解得−1≤x<2,所以函数g(x)的值域B ={y|y ≤1};(II)由(I)知B ={x|x ≤1},所以C U B ={x|x >1},所以A ∩(C U B)={x|1<x <2}.【解析】本题考查集合的混合运算,同时考查函数的定义域和值域的求法,考查运算能力,属于基础题.(I)运用偶次根式被开方数非负和分式分母不为0,可得集合A ;由二次函数的值域可得集合B ;(II)运用补集和交集的定义,即可得到所求集合.18. 【答案】解:(1)(40,160)19. (2)(2a 14b −13)(−3a −12b 23)÷(−14a −14b −23) = 24a14−12+14b −13+23+23 = 24b .19.【答案】解:(1)f(f(52))=f(−12)=14.(2)由图象可知,函数的值域是(−∞,1],单调增区间(−∞,−1]和[0,1],减区间[−1,0]和[1,+∞).【解析】(1)利用分段函数,直接代入求值即可.(2)根据分段函数,作出函数的图象,结合图象确定函数的值域和单调区间.20.【答案】解:(1)设1≤x 1<x 2,f (x 2)-f (x 1)=x 2+1x 2-x 1-1x 1=。
人教版高中数学必修一函数的基本性质专题习题
人教版高中数学必修一函数的基本性质专题习题高考复专题:函数的基本性质定义域函数的定义域是指所有可以输入的自变量的取值范围。
求函数定义域的常用方法有:1.无论什么函数,优先考虑定义域是偶次根式的被开方式非负;分母不为零;指数幂底数不为零;对数真数大于且底数大于不等于1;tanx定义域为{x|x≠(2k+1)π/2,k∈Z}。
2.复合函数的定义域是x的范围,f的作用范围不变。
例如,下面是一些函数的定义域:1.y = log0.5(4x2-3x),定义域为x>3/4或x<0.2.f(x)的定义域是[-1,1],则f(x+1)的定义域是[-2,0]。
3.若函数f(x)的定义域是[-1,1],则函数f(log2x)的定义域是(1/4,1]。
4.已知f(x2)的定义域为[1,1],则f(x)的定义域为[-1,1]或[0,1]。
5.已知函数y = f(x+1)3,定义域是[-5,4]。
值域和最值函数的值域是指函数所有可能的输出值的集合。
求函数值域的常用方法有:1.对于一次函数y = kx+b,当k>0时,值域为[XXX,ymax],其中ymin = b,ymax = kx+b;当k<0时,值域为[XXX,XXX]。
2.对于二次函数y = ax2+bx+c,当a>0时,值域为[XXX,ymax],其中ymin = c-Δ/4a,ymax = c;当a<0时,值域为[XXX,XXX]。
3.对于指数函数y = a^x,当a>1时,值域为(0,+∞);当0<a<1时,值域为(0,1]。
4.对于对数函数y = loga(x),当a>1时,值域为(-∞,+∞);当0<a<1时,值域为(-∞,0]。
最值是函数在定义域内取得的最大值或最小值。
求函数最值的常用方法有:1.对于一次函数y = kx+b,当k>0时,最小值为b,最大值为无穷;当k<0时,最小值为无穷,最大值为b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的基本性质综合练习
一.选择题:(本大题共10题,每小题5分,共50分)
1.若函数ax y =与x b y -=在(0,+∞)上都是减函数,则bx ax y +=2在),0(∞上是( ) A .增函数 B .减函数 C .先增后减 D .先减后增
2.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是 ( )
A .1
B .2
C .3
D .4
3.设)(x f 是(-∞,+∞)上的增函数a 为实数,则有 ( )
A .)2()(a f a f <
B .)()(2a f a f <
C .)()(2a f a a f <+
D .)()1(2
a f a f >+ 4.如果奇函数)(x f 在区间[3,7]上是增函数且最大值为5,那么)(x f 在区间[-7,-3]上是( )
A .增函数且最小值是-5
B .增函数且最大值是-5
C .减函数且最大值是-5
D .减函数且最小值是-5
5.已知定义域为}0|{≠x x 的函数)(x f 为偶函数,且)(x f 在区间(-∞,0)上是增函数,若0)3(=-f ,则0)(<x
x f 的解集为( ) A .(-3,0)∪(0,3) B .(-∞,-3)∪(0,3) C .(-∞,-3)∪(3,+∞) D .(-3,0)∪(3,+∞) 6.当]5,0[∈x 时,函数c x x x f +-=43)(2的值域为( )
A .[c,55+c ]
B .[-43+c ,c ]
C .[-43
+c,55+c ] D .[c,20+c ] 7.设)(x f 为定义在R 上的奇函数.当0≥x 时,b x x f x ++=22)((b 为常数),则)1(-f 等于( )
A .3
B .1
C .-1
D .-3
8.下列函数在(0,1)上是增函数的是( )
A .x y 21-=
B .1-=x y
C .x x y 22+-=
D .5=y
9.下列四个集合:①}1|{2+=∈=x y R x A ;②
},1|{2R x x y y B ∈+==;③},1|),{(2R x x y y x C ∈+==;④}1{的实数不小于=D .其中相同的集合是( )
A .①与②
B .①与④
C .②与③
D .②与④ 10.给出下列命题:
①x
y 1=在定义域内为减函数;②2)1(-=x y 在),0(∞ 上是增函数;③x y 1-=在)0,(-∞上为增函数;④kx y =不是增函数就是减函数。
其中错误的有 ( )
A.0个
B.1个
C.2个
D.3个
二、填空题(本大每题5分,共20分)
11.设函数()()()1f x x x a =++为偶函数,则a =______.
12.已知函数582++=ax x y 在),1[+∞上递增,那么a 的取值范围是__________________.
13.函数1
2+=x y 在[]3,0上的最大值为 __________ 14.如果奇函数()f x 在区间[]1,2上是减函数,且最大值为3,那么()f x 在区间[]2,1-- 上有 值,其最值为_____.
三、解答题(本大题共5小题,共80分)
15.(本小题12分)求证:函数11-=
x y 在区间),1(+∞上为单调递减函数。
16.(本小题12分)画出函数|6|2--=x x y 的图像,并写出此函数的单调区间.
17.(本小题14分)已知()x f 是定义在R 上的奇函数,且当0>x 时,()13++=x x x f ,求()x f 的解析式。
18.(本小题14分)已知)(x f =,,342
R x x x ∈++用函数))((R t t g ∈表示函数)(x f 在区间[]1,+t t 上的最小值,求)(t g 的表达式。
19.(本小题14分)(1)判断函数4y x x
=+
在(0,)+∞上的单调性,并进行证明,然后画出其图像。
(2)对于(0,)x ∈+∞,1y x x =+,呢?2y x x
=+呢? (3)你能由此推出a y x x =+(0)a >(0,)x ∈+∞的图像性质吗?
20.(本小题满分14分)已知函x
a x x f +=2)(,且2)1(-=f , (1)证明函数)(x f 是奇函数;
(2)证明)(x f 在(1,+∞)上是增函数;
(3)求函数)(x f 在[2,5]上的最大值与最小值.。