七年级数学竞赛讲座15 容斥原理
奥数容斥原理

雪
4
6+6+4-(3+1)-(0+1)-(1+1)+1=10人
?人
❖ 例3. 某校六年级二班有49
人参加了数学、英语、语文
学习小组,其中数学有30
人参加,英语有20人参加,
语文小组有10人。老师告 诉同学既参加数学小组又参
数
英
加语文小组的有3人,既参
30 质 20
加数学又参加英语和既参加 英语又参加语文的人数均为 质数,而三种全参加的只有
69+52-30=91人 91+12=103人
❖ 5、全班有50人,不会骑车的有23人,不会 滑旱冰的有35人,两样都会的有5人。问: 两样都不会的有多少人?
50-5=45人 23+35-45=15人
❖ 6、六年级(2)班有48名学生,其中会骑自 行车的有27个,会游泳的有18人,既会骑自 行车又会游泳的有10人。问两样都不会的有 多少人?
不能被3或5整除的个数: 1000-467=533个
试一试:
❖ 某校选出50名学生参加区作文比赛和 数学竞赛,作文比赛获奖的有16人, 数学比赛获奖的有12人,有5人两项比 赛都获奖了。
❖ (1)共有多少人获奖? ❖ 16+12-5=23人 ❖ (2)两项比赛都没获奖的有多少人? ❖ 50-23=27人
1
3
质
1人,求既参加英语又参加 数学小组的人数。
语
10
❖ 分析与解:根据已知条 件画出图。
49人
❖ 三圆盖住的总体为49人,假设既参加数学又 参加英语的有x人,既参加语文又参加英语的 有y人,可以列出这样的方程:30 20 10 x y 31 49 整理后得:x y 9 由于x、y均为质数,因而 这两个质数中必有一个偶质数2,另一个质数 为7。
2月15日容斥原理

容斥原理一、知识点包含与排除问题也叫容斥原理。
“容”是容纳、包含的意思,“斥”是排斥、排除的意思,下面我们结合具体实例来说明这种问题的思考方法。
思考方法。
1、如下图,桌面上放着两个正方形,求盖住桌面的面积。
(单位:厘米)2、四(1)班同学中有37人喜欢打乒乓球,26人喜欢打羽毛球,21人既爱打乒乓球又爱打羽毛球。
问全班喜欢打乒乓球或羽毛球活动的有多少人?3、四年级一班在期末考试中,语文得“优”的有15人,数学得“优”的有17人,老师请得“优”的同学都站起来,数了数有24人。
两科都得“优”的有几人? 4 图新小学四年级二班有24人参加了美术小组,有18人参加了音乐小组,其中11人两个小组都参加,还有5人什么组都没参加。
这个班共有学生多少人?5:某班学生参加音乐组的有11人,参加美术组的有8人,参加英语组的有12人,既参加音乐组又参加美术组的有5人,既参加音乐组又参加英语组的有3人,既参加美术组又参加英语组的有4人,三个组都参加的只有1人,问:至少参加一个组的有多少人?6. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。
问订阅《少年文摘》或《学与玩》的有多少人?7. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?7528. 1至100的自然数中:1)是2的倍数又是3的倍数的数有多少个?2)是2的倍数或是3的倍数的数有多少个?3)是2的倍数但不是3的倍数的数有多少个?9. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功课都得100分的有3人,两门功课都未得100分的有26人。
这个班共有学生多少人?10. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?11. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。
容斥原理讲义

容斥原理例题在很多计数问题中常用到数学上的一个包含与排除原理,也称为容斥原理。
为了说明这个原理,我们先介绍一些集合的初步知识。
在讨论问题时,常常需要把具有某种性质的同类事物放在一起考虑。
如:A={五(1)班全体同学}。
我们称一些事物的全体为一个集合。
A={五(1)班全体同学}就是一个集合。
例1. B={全体自然数}={1,2,3,4,…}是一个具体的有无限多个元素的集合。
例2. C={在1,2,3,…,100 中能被3 整除的数}={3,6,9,12,…,99}是一个具有有限多个元素的集合。
例3. 通常集合用大写的英文字母A、B、C、…表示。
构成这个集合的事物称为这个集合的元素。
如上面例子中五(1)班的每一位同学均是集合A 的一个元素。
又如在例1 中任何一个自然数都是集合B 的元素。
像集合B 这种含有无限多个元素的集合称为无限集。
像集合C 这样含有有限多个元素的集合称为有限集。
有限集合所含元素的个数常用符合︱A︱、︱B︱、︱C︱、…表示。
例4. 记号A∪B 表示所有属于集合A 或属于集合B 的元素所组成的集合,就是下边示意图中两个圆所覆盖的部分。
集合A∪B 叫做集合A与的并集。
“∪”读作“并”,“A∪B”读例5. 设集合A={1,2,3,4},集合B={2,4,6,8},则A∪B={1,2,3,4,6,8}。
元素2,4 在集合A、B 中都有,在并集中只写一个。
记号A∩B 表示所有既属于集合A 也属于集合B 中的元素的全体。
就是上面图中阴影部分所表示的集合。
即是由集合A、B 的公共元素所组成的集合。
它称为集合A、B 的交集。
符号“∩”读作“交”,“A∩B”读作“A 交B”。
如例3 中的集合A、B,则A∩B={2,4}。
例6. 设集合I={1,3,5,7,9},集合A={3,5,7},A={属于集合,但不属于集合A 的全体元素}={1,9}。
我们称属于集合I 但不属于集合A 的元素的集合为集合A 在集合I 中的补集(或余集),如下图中阴影部分表示的集合(整个长方形表示集合I),常记作A。
实用的计数原理之容斥原理(内含大量实例和详细分析)

在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
容斥原理(1)如果被计数的事物有A、B两类,那么,A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。
例1 、一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类或B类元素个数”的总和。
试一试:某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?(并说一说你的想法。
)容斥原理(2)如果被计数的事物有A、B、C三类,那么,A类或B类或C类元素个数= A类元素个数+B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。
例2某校六(1)班有学生54人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有34人,足球、排球都参加的有12人,足球、游泳都参加的有18人,排球、游泳都参加的有14人,问:三项都参加的有多少人?分析:仿照例1的分析,你能先说一说吗?例3 在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个?分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数)。
我们可以把“能被3或5整除的数”分别看成A类元素和B类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是A类又是B类的元素”。
容斥原理(数学技巧点拨系列)

容斥原理【知识点讲解】1、原理容斥原理指把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
2、解释由图可以直接看出各部分之间的关系由Venn图可知:(A∪B=A+B-A∩B)由Venn图可知:(A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C)3、应用两类如果被计数的事物有A、B两类,那么,A类B类元素个数总和=属于A类元素个数+属于B类元素个数—既是A类又是B类的元素个数。
三类如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和=A类元素个数+B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。
4、解题导语使用容斥原理一般用于集合相关问题中,但是此类思想在数学学习中仍有巨大作用。
例如在计数原理中使用间接法等等。
因此学习此类问题对数学能力的提升是有很大帮助的,它可以帮助你换一个角度看数学题,从而找到更简单的办法。
【例题详析】例1、(2020宁夏)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,六盘水市第七中学为了解我校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则在调查的100位同学中阅读过《西游记》的学生人数为()A .80B .70C .60D .50【参考答案】B【详解】因为阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,所以《西游记》与《红楼梦》两本书中只阅读了一本的学生共有90-60=30位,因为阅读过《红楼梦》的学生共有80位,所以只阅读过《红楼梦》的学生共有80-60=20位,所以只阅读过《西游记》的学生共有30-20=10位,故阅读过《西游记》的学生人数为10+60=70位,【方法解析】由两类的容斥原理得:总人数=阅读过《西游记》+阅读过《红楼梦》-阅读过《红楼梦》和《西游记》的,由此得阅读过《西游记》的学生人数=90+60-80=70(位)例2:某中学的学生积极参加体育锻炼,其中有96名学生喜欢足球或游泳,60名学生喜欢足球,82名学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生有()名.A .62B .56C .46D .42【参考答案】C【详解】喜欢足球的学生、喜欢游泳的学生形成的集合分别记为A ,B ,依题意,集合A ,B ,A B 中元素个数分别为:()60,()82,()96n A n B n A B ==⋃=,则()()()()60829646n A B n A n B n A B ⋂=+-⋃=+-=,所以中学既喜欢足球又喜欢游泳的学生有46名.例3.某小学对小学生的课外活动进行了调查.调查结果显示:参加舞蹈课外活动的有63人,参加唱歌课外活动的有89人,参加体育课外活动的有47人,三种课外活动都参加的有24人,只选择两种课外活动参加的有46人,不参加其中任何一种课外活动的有15人.问接受调查的小学生共有多少人?()A .120B .144C .177D .192【参考答案】A 【详解】如图所示,用韦恩图表示题设中的集合关系,不妨将参加舞蹈、唱歌、体育课外活动的小学生分别用集合,,A B C 表示,则()63,()89,()47,()24card A card B card C card A B C ===⋂⋂=不妨设总人数为n ,韦恩图中三块区域的人数分别为,,x y z即()24,()24,()24card A B x card A C y card B C z ⋂=+⋂=+⋂=+46x y z ++=,由容斥原理:15()()()()()()()n card A card B card C card A B card A C card B C card A B C -=++-⋂-⋂-⋂+⋂⋂638947(24)(24)(24)24x y z =++-+-+-++解得:120n =【跟踪训练】一、单选题1.某校高三(1)班有50名学生,春季运动会上,有15名学生参加了田赛项目,有20名学生参加了径赛项目,已知田赛和径赛都参加的有8名同学,则该班学生中田赛和径赛都没有参加的人数为()A .27B .23C .15D .72.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店这三天售出的商品最少有().A.25种B.27种C.29种D.31种3.为了丰富同学们的课外生活,某班58名同学在选课外兴趣小组时,选择篮球小组的有28人,选择乒乓球小组的有36人,既没有选择篮球小组又没有选择乒乓球小组的有12人,那么选择篮球小组但没有选择乒乓球小组的人数为()A.8B.10C.18D.204.某班有50名同学,有20名同学既不选修足球课程也不选修篮球课程,有18名同学选修了足球课程,28名同学选修了篮球课程,则既选修了足球课程也选修了篮球课程的同学有()名A.10B.12C.14D.165.中共一大会址、江西井冈山、贵州遵义、陕西延安是中学生的几个重要的研学旅行地.某中学在校学生3000人,学校团委为了了解本校学生到上述红色基地研学旅行的情况,随机调查了500名学生,其中到过中共一大会址或井冈山研学旅行的共有40人,到过井冈山研学旅行的20人,到过中共一大会址并且到过井冈山研学旅行的恰有10人,根据这项调查,估计该学校到过中共一大会址研学旅行的学生大约有()人A.240B.180C.120D.606.某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”、“合格”2个等级,结果如下表:等级优秀合格合计项目除草301545植树202545若在两个项目中都“合格”的学生最多有10人,则在两个项目中都“优秀”的人数最多为()A.5B.10C.15D.207.高考“33 ”模式指考生总成绩由语文、数学、外语3个科目成绩和高中学业水平考试3个科目成绩组成.计入总成绩的高中学业水平考试科目,由考生根据报考高校要求和自身特长,在思想政治、历史、地理、物理、化学、生物6个科目中自主选择.某中学为了解本校学生的选择情况,随机调查了100位学生的选择意向,其中选择物理或化学的学生共有40位,选择化学的学生共有30位,选择物理也选择化学的学生共有10位,则该校选择物理的学生人数与该校学生总人数比值的估计值为()A.0.1B.0.2C.0.3D.0.48.移动支付、高铁、网购与共享单车被称为中国的新“四大发明”,某中学为了解本校学生中新“四大发明”的普及情况,随机调查了100位学生,共中使用过移动支付或共享单车的学生共90位,使用过移动支付的学生共有80位,使用过共享单车的学生且使用过移动支付的学生共有60位,则该校使用共享单车的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.89.某地对农户抽样调查,结果如下:电冰箱拥有率为45%,电视机拥有率为55%,洗衣机拥有率为65%,拥有上述三种电器的任意两种的占35%,三种电器齐全的为25%,那么一种电器也没有的农户所占比例是()A.20%B.10%C.15%D.12%10.某学校高三教师周一、周二、周三开车上班的人数分别是8,10,14,若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是()A.8B.7C.6D.5二、填空题11.学校运动会,某班所有同学都参加了羽毛球或乒乓球比赛,已知该班共有23人参加羽毛球赛,35人参加乒乓球赛,既参加羽毛球又参加乒乓球赛有6人,则该班学生数为______.12.某校高三(1)班有50名学生,春季运动会上,有15名学生参加了田赛项目,有20名学生参加了径赛项目,已知田赛和径赛都参加的有8名同学,则该班学生中田赛和径赛都没有参加的人数为__________.13.某单位共有员工85人,其中68人会骑车,62人会驾车,既会骑车也会驾车的人有57人,则既不会骑车也不会驾车的人有___________人.14.高一某班有学生45人,其中参加数学竞赛的有32人,参加物理竞赛的有28人,另外有5人两项竞赛均不参加,则该班既参加数学竞赛又参加物理竞赛的有___.人.15.某班有学生48人,经调查发现,喜欢打羽毛球的学生有35人,喜欢打篮球的学生有20人.设既喜欢打羽毛球,又喜欢打篮球的学生的人数为x,则x的最小值是_________.16.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________. 17.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________. 18.某班共40人,其中24人喜欢篮球运动,16人喜欢乒乓球运动,6人这两项运动都不喜欢,则只喜欢其中一项运动的人数为________19.某班有45名同学参加语文、数学、英语兴趣小组.已知仅参加一个兴趣小组的同学有20人,同时参加语文和数学兴趣小组的同学有9人,同时参加数学和英语兴趣小组的同学有15人,同时参加语文和英语兴趣小组的同学有11人,则同时参加这三个兴趣小组的同学有人___________.20.某班进行集体活动,为活跃气氛,班主任要求班上60名同学从唱歌、跳舞、讲故事三个节目中至少选择一个节目、至多选两个节目为大家表演,已知报名参加唱歌、跳舞、讲故事的人数分别为40,20,30,同时参加唱歌和讲故事的有15人,同时参加唱歌和跳舞的有10人,则同时只参加跳舞和讲故事的人数为__________.21.对班级40名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成,另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人,问对A、B都赞成的学生有________人. 22.2021年是中国共产党成立100周年,电影频道推出“经典频传:看电影,学党史”系列短视频,传扬中国共产党的伟大精神,为广大青年群体带来精神感召.现有《青春之歌》《建党伟业》《开国大典》三支短视频,某大学社团有50人,观看了《青春之歌》的有21人,观看了《建党伟业》的有23人,观看了《开国大典》的有26人.其中,只观看了《青春之歌》和《建党伟业》的有4人,只观看了《建党伟业》和《开国大典》的有7人,只观看了《青春之歌》和《开国大典》的有6人,三支短视频全观看了的有3人,则没有观看任何一支短视频的人数为________【参考答案】1.B【详解】设高三(1)班有50名学生组成的集合为U ,参加田赛项目的学生组成的集合为A ,参加径赛项目的学生组成的集合为B由题意集合A 有15个元素,B 有20个元素,A B 中有8个元素所以A B 有15+20827-=个元素.所以该班学生中田赛和径赛都没有参加的人数为5027=23-故选:B2.C【详解】解:因为前两天都售出的商品有3种,因此第一天售出且第二天没有售出的商品有19316-=(种);同理第三天售出的商品中有14种第二天未售出,有1种商品第一天未售出;所以三天商品种数最少时,是第三天中14种第二天未售出的商品都是第一天售出过的,此时商品总数是1416129+-=(种);分别用集合A 、B 、C 表示第一、第二和第三天售出的商品,则商品数最少时,如图所示.故选:C .3.B【详解】设既选择篮球小组又选择乒乓球小组的有x 人,则选择篮球小组但没有选择乒乓球小组的有()28x -人,选择乒乓球小组但没有选择篮球小组的有()36x -人.由题意可得()()12283658x x x +-+-+=,解得18x =,所以选择篮球小组但没有选择乒乓球小组的人数为2810x -=.【详解】设既选修了足球课程也选修了篮球课程的同学有x 名,由容斥原理得20182850x ++-=,解得16x =.故选:D.5.B【详解】如下图所示,设调查的学生中去过中共一大会址研学旅行的学生人数为x ,由题意可得()102040x -+=,解的30x =,因此,该学校到过中共一大会址研学旅行的学生的人数为303000180500⨯=.6.C【详解】用集合A 表示除草优秀的学生,B 表示植树优秀的学生,全班学生用全集U 表示,则U A ð表示除草合格的学生,则U B ð表示植树合格的学生,作出Venn 图,如图,设两个项目都优秀的人数为x ,两个项目都是合格的人数为y ,由图可得203045x x x y -++-+=,5x y =+,因为max 10y =,所以max 10515x =+=.故选:C .【详解】选择物理的学生人数为40301020-+=,即该校选择物理的学生人数与该校学生总人数比值的估计值为200.2100=.故选:B8.C【详解】根据题意使用过移动支付、共享单车的人数用韦恩图表示如下图,因此,该校使用共享单车的学生人数与该校学生总数比值的估计值700.7100=,故选C.9.A【详解】解:设农户总共为100家,则有55家农户有电视机,45家农户有电冰箱,65家农户有洗衣机,有25家农户同时拥有这三种电器,另外75家只有其中两种或一种或没有电器.设只有电冰箱和电视机的农户有a 家,只有电冰箱和洗衣机的农户有b 家,只有洗衣机和电视机的农户有c 家,只有电视机、电冰箱、洗衣机的分别有d 、e 、f 家,没有任何电器的农户有x 家.那么对于拥有电冰箱的农户可得出:2545a b e +++=①那么对于拥有电视机的农户可得出:2555a c d +++=②那么对于拥有洗衣机的农户可得出:2565b c f +++=③把上面三个式子相加可得:()290a b c d e f +++++=④对于拥有上述三种电器的任意两种的占35%,得到:35a b c ++=⑤把⑤代入④可得到20d e f ++=⑥因为农户共有100家,所以25100a b c d e f x +++++++=,把⑤和⑥代入上式得到20x =,即一种电器也没有的农户所占比例为20%,10.C【详解】解:设周三,周二,周一开车上班的职工组成的集合分别为A ,B ,C ,集合A ,B ,C 中元素个数分别为n A .,n B .,n C .,则n A .14=,n B .10=,n C .8=,()20n A B C ⋃⋃=,因为()n A B C n ⋃⋃=A .n +B .n +C .()()()()n A B n A C n B C n A B C -⋂-⋂-⋂+⋂⋂,且()()n A B n A B C ⋂⋂⋂ ,()()n A C n A B C ⋂⋂⋂ ,()()n B C n A B C ⋂⋂⋂ ,所以1410820()3()n A B C n A B C ++-+⋂⋂⋂⋂ ,即1410820()62n A B C ++-⋂⋂= .故选:C .11.52【详解】解:设参加羽毛球赛为集合A ,参加乒乓球赛为集合B ,依题意可得如下韦恩图:所以该班一共有1762952++=人;故答案为:5212.23【详解】由题意,15名参加田赛的同学中有7名没有参加径赛,20名参加径赛的同学中有12名没有参加田赛,所以参加田赛和径赛的同学共有781227++=人,综上,该班学生中田赛和径赛都没有参加的人数为502723-=人.13.12【详解】设会骑车的人组合的集合为A ,会驾车的人组成的集合为B ,既会骑车也会驾车的人组成的集合为集合C ,易知A B C = ,记card()A 表示集合A 中的元素个数,则有()()()()68625773card A B card A card B card A B =+-=+-= ,所以既不会骑车也不会驾车的人为857312-=.故答案为:1214.20【详解】设该班既参加数学竞赛又参加物理竞赛的学生人数为x ,以集合U 表示该班集体,集合A 表示参加数学竞赛的学生组成的集合,集合B 表示参加物理竞赛的学生组成的集合,如下图所示:由题意可得()()322856545x x x x -++-+=-=,解得20x =.故答案为:20.15.7【详解】设既不喜欢打羽毛球,又不喜欢打篮球的学生的人数为y ,则352048x y +-+=,即7x y -=,因为0y,所以7x .因为20x ,所以720x .故答案为:7.16.710##0.7【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=.故答案为:710.17.5【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =,所以同时参加数学和化学小组有5人.故答案为:5.18.28【详解】6 人这两项运动都不喜欢,∴喜欢一项或两项运动的人数为40634-=人;∴喜欢两项运动的人数为:2416346+-=人,∴喜欢篮球的人数为24618-=人;喜欢乒乓球的人数为16610-=人;∴只喜欢其中一项运动的人数为181028+=人.故答案为:28.19.5【详解】以集合A 、B 、C 表示分别参加语文、数学、英语兴趣小组的学生,如下图所示:设同时参加这三个兴趣小组的同学有x 人,由图可得()()()209111555245x x x x x +-+-+-+=-=,解得5x =.故答案为:5.20.5【详解】参加唱歌、跳舞、讲故事的人分别用集合,,A B C 表示,作出Venn 图,如图,图中字母表示相应区域人数,则0n =,又40a b m ++=,20b c d ++=,30d e m ++=,15m =,10b =,60a b c d e m +++++=,则()()()a b m b c d d e m b m ++++++++--2a b c d e m =+++++,∴4020301510605d =++---=,∴同时只参加跳舞和讲故事的人数为5人.故答案为:5.21.18【详解】赞成A 的人数为340245⨯=,赞成B 的人数为24327+=,设对A 、B 都赞成的学生有x ,则112724403x x x x ++-++-=,解得18x =.故答案为:18.22.3【详解】把大学社团50人形成的集合记为全集U ,观看了《青春之歌》《建党伟业》《开国大典》三支短视频的人形成的集合分别记为A,B,C,依题意,作出韦恩图,如图,观察韦恩图:因观看了《青春之歌》的有21人,则只看了《青春之歌》的有214638---=(人),因观看了《建党伟业》的有23人,则只看了《建党伟业》的有234739---=(人),因观看了《开国大典》的有26人,则只看了《开国大典》的有2667310---=(人),因此,至少看了一支短视频的有3467891047++++++=(人),-=所以没有观看任何一支短视频的人数为50473。
七年级数学竞赛讲座15 容斥原理

七年级数学竞赛系列讲座(15)容斥原理一、一、知识要点1、容斥原理在计数时,常常遇到这样的情况,作合并运算时会把重复的部分多算,需要减去;作排除运算时会把重复部分多减,需要加上,这就是容斥原理。
它的基本形式是: 记A 、B 是两个集合,属于集合A 的东西有A 个,属于集合B 的东西有B 个,既属于集合A 又属于集合B 的东西记为B A ,有B A 个;属于集合A 或属于集合B 的东西记为B A ,有B A 个,则有:B A =A +B -BA 容斥原理可以用一个直观的图形来解释。
如图,左圆表示集合A ,右圆表示集合B ,两圆的公共部分表示B A ,两圆合起来的部分表示B A , 由图可知:B A =A +B -B A容斥原理又被称作包含排除原理或逐步淘汰原则。
二、二、例题精讲例1 在1到200的整数中,既不能被2整除,又不能被3整除的整数有多少个?分析:根据容斥原理,应是200减去能被2整除的整数个数,减去能被3整除的整数个数,还要加上既能被2整除又能被3整除,即能被6整除的整数个数。
解:在1到200的整数中,能被2整除的整数个数为:2⨯1,2⨯2,…,2⨯100,共100个;在1到200的整数中,能被3整除的整数个数为:3⨯1,3⨯2,…,3⨯66,共66个; 在1到200的整数中,既能被2整除又能被3整除,即能被6整除的整数个数为: 6⨯1,6⨯2,…,6⨯33,共33个;所以,在1到200的整数中,既不能被2整除,又不能被3整除的整数个数为:200-100-66+33=67(个)例2 求1到100的自然数中,所有既不是2的倍数又不是3的倍数的整数之和S 。
解:1到100的自然数中,所有自然数的和是:1+2+3+…+100=50501到100的自然数中,所有2的倍数的自然数和是:2⨯1+2⨯2+…+2⨯50=2⨯(1+2+3+…+50)= 2⨯1275=25501到100的自然数中,所有3的倍数的自然数和是:3⨯1+3⨯2+…+3⨯33=3⨯(1+2+3+…+33)= 3⨯561=16831到100的自然数中,所有既是2的倍数又是3的倍数,即是6的倍数的自然数和是:6⨯1+6⨯2+…+6⨯16=6⨯(1+2+3+…+16)= 6⨯136=816所以,1到100的自然数中,所有既不是2的倍数又不是3的倍数的整数之和S=5050-2550-1683+816=1633例3求不大于500而至少能被2、3、5中一个整除的自然数的个数。
初一数学竞赛系列训练(15)Microsoft Word 文档 (2)

初一数学竞赛系列训练(15)一、选择题1、在1到40这四十个自然数中选一些数组成数集,使其中任何一个数不是另一个数的2倍,则这个数集最多有( )个数。
A 、20B 、26C 、30D 、402、甲、乙、丙、丁四人排成一排照相,甲不排在首位,丁不排在末位,有( )种不同的排法。
A 、14B 、13C 、12D 、113、从1到1000中,能被2,3,5之一整除的整数有( )个A 、767B 、734C 、701D 、6984、从1到200中,能被7整除但不能被14整除的整数有( )个A 、12B 、13C 、14D 、155、A 、B 、C 是面积分别为150、170、230的三张不同形状的纸片,它们重叠放在一起的覆盖面积是350,且A 与B 、B 与C 、A 与C 的公共部分面积分别是100、70、90。
则A 、B 、C 的公共部分面积是( )A 、12B 、13C 、60D 、156、50束鲜花中,有16束插放着月季花,有15束插放着马蹄莲,有21束插放着白兰花,有7束中既有月季花又有马蹄莲,有8束中既有马蹄莲又有白兰花,有10束中既有月季花又有白兰花,还有5束鲜花中,月季花、马蹄莲、白兰花都有。
则50束鲜花中,这三种花都没有的花束有( )A 、17B 、18C 、19D 、20二、填空题7、一张正方形的纸片面积是50平方厘米,一张圆形的纸片面积是40平方厘米。
两张纸片覆盖在桌面上的面积是60平方厘米,则这两张纸片重合部分的面积是 。
8、某班有学生45人,已知其次考试数学30人优秀,物理28人优秀,数理两科都优秀的有20人。
则数理两科至少有一科优秀的有 人,一科都未达到优秀的有 人。
9、某班有学生50人,参加数学兴趣小组的有35人,参加语文兴趣小组的有30人,每人至少参加一个组,则两个组都参加的有 人。
10、一个数除以3余2,除以4余111、每边长是10厘米的正方形纸片,成为一个边宽是1厘米的方框。
容斥原理之最值问题

7-7-5.容斥原理之最值问题教学目标1.了解容斥原理二量重叠和三量重叠的内容;2.掌握容斥原理的在组合计数等各个方面的应用.知识要点一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A U B=A+B-A I B(其中符号“U”读作“并”,相当于中文“和”或者“或”的意思;符号“I”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A I B,即阴影面积.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A I B,即阴影面积.1.先包含——A+B重叠部分A I B计算了2次,多加了1次;包含与排除原理告诉我们,要计算两个集合A、B的并集A U B的元素的个数,可分以下两步进行:第一步:分别计算集合A、B的元素个数,然后加起来,即先求A+B(意思是把A、B的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C=A I B(意思是“排除”了重复计算的元素个数).二、三量重叠问题A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数-既是A类又是B类的元素个数-既是B类又是C类的元素个数-既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数.用符号表示为:A U B U C=A+B+C-A I B-B I C-A I C+A I B I C.图示如下:图中小圆表示A的元素的个数,中圆表示B的元素的个数,1.先包含:A+B+C重叠部分A I B、B I C、C I A重叠了2次,多加了1次.2.再排除:A+B+C-A I B-B I C-A I C在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.例题精讲【例1】“走美”主试委员会为三~八年级准备决赛试题。
容斥原理课

9、六年级一班有45名同学,每人都参加暑假体育培训班,其中足球班报25人,篮球班报20人,游泳班报30人,足球、篮球都报者有10人,足球、篮球都报者有12人。问三项都报的有多少人?
10、向50名同学调查春游去颐和园还是去动物园的态度,赞成去颐和园的人数是全体的 3/5,其余不赞成;赞成去动物园的比赞成去颐和园的学生多3人,其余不赞成,另外对去两处都不赞成的学生数比对去两处都赞成的学生数的1/3多1人,同时去颐和园和去动物园都赞成和都不赞成的学生各有多少人?
例9:甲、乙、丙同时给100盆花浇水。已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?
例10:某班同学参加期末测试,得优秀成绩的人数如下:数学20人,语文20人,英语20人,数学、英语两科都是优秀成绩的有8人,数学、语文两科成绩都是优秀的有7人,语文、英语两科成绩都是优秀的有9人,三科都没得优秀成绩的有3人。请问:这个班最多有多少人?最少有多少人?
例1:一个班有学生48人,每人至少参加跑步、跳高两项比赛中的一项。已知参加跑步的有37人,参加跳高的有40人,请问:这两项比赛都参加的学生有多少人?
例2:一次数学小测验只有两道题,结果全班有10人全对,第一题有25人做对,第二题有18人做错。问:两题都做错的有多少人?
例3:李老师出Biblioteka 两道题,全班40人中,第一道题有30人对,第2题有12人未做对,两题都做对的有20人。请问:
例6.六一班有学生46人,其中会骑自行车的有19人,会游泳的有25人,既会骑车又会游泳的有7人,既不会骑自行车又不会游泳的有多少人?
例7.有128位旅客,其中25人既不懂英语、又不懂法语,有98人懂英语,75人懂法语,请问:既懂英语、又懂法语的有多少人?
奥数容斥问题课件

示例:有五个班级,分别有30人、40人、50人、60人和70人,其中两个班级共有10人既是第一班也是第二班的人,同时是第二班和第三班的人有15人,同时是第二班和第四班的人有20人,同时是第三班和第四班的人有25人,同时是第三班和第五班的人有30人,同时是第四班和第五班的人有35人。求五个班级总共有多少人
进阶练习题在难度上有所提升,需要学生灵活运用容斥原理解决较为复杂的问题,提高解题技巧。
题目4
一个班级有45名学生,每人至少参加一项体育活动。其中,28人参加篮球,30人参加足球。问同时参加两项体育活动的学生有多少人?
题目3
一个班级有35名学生,每人至少参加一项课外活动。其中,18人参加音乐小组,21人参加美术小组。问同时参加两项课外活动的学生有多少人?
奥数容斥问题课件
目录
容斥问题简介容斥问题的基本解法容斥问题的进阶解法容斥问题的实际应用容斥问题的常见题型及解析练习题及答案解析
CONTENTS
容斥问题简介
容斥问题是一种数学问题,涉及到集合和集合之间的关系。它主要考察的是如何正确地理解和处理集合之间的关系,以及如何通过已知的集合信息来推导出未知的集合信息。
题目2:一个班有40名学生,每人至少参加一个运动项目。其中,25人参加篮球,20人参加足球。问同时参加两个运动项目的人数是多少?
答案及解析:通过容斥原理,我们可以得出同时参加两个运动项目的人数为10人。
总结词
提高解题技巧
答案及解析
通过容斥原理,我们可以得出同时参加两项课外活动的学生有9人。
详细描述
详细描述:对于n个集合,它们的并集的元素数量可以通过以下公式计算:|A∪B∪C...∪n| = Σ(i=1 to n) |Ai| - Σ(i=2 to n) Σ(j=i+1 to n) |Ai∩Aj| + Σ(i=3 to n) Σ(j=i+1 to n) Σ(k=i+1 to n) |Ai∩Aj∩Ak| - ... + (-1)^(n-1) * Σ(i=n to 2) Σ(j=i+1 to n) ... Σ(k=i+1 to n) |Ai∩Aj∩Ak...∩An|,其中Σ表示求和符号,Ai、Aj、Ak...An分别表示第i个、第j个、第k个...第n个集合的元素数量,Ai∩Aj、Ai∩Aj∩Ak、Ai∩Aj∩Ak...∩An等分别表示第i个和第j个、第i个和第j个以及第k个...第n个集合的交集的元素数量。
七年级下数学培优:容斥原理于归纳思维

在我们解决数学问题时,经常遇到探索规律或者方案确定问题。
这是一类非常重要的问题,无论是在平时考试中还是在数学竞赛中,都是一个重点内容。
它涉及到统筹法的应用、容斥原理和归纳的数学思想方法,本篇文章就分类来讲解这类问题的思路和方法:1.统筹法的应用——生活中会遇到这样一些问题:完成一件事怎样合理安排,才能做到所用的时间最少;把一批货物从一个地方运到另一个地方去,选择什么样的运输方案,才能运费最省;车站设在什么地方,才最方便附近工作的乘客等.此类问题都涉及到如何统筹,目标是选择最佳.2.容斥原理的应用:(1)数集:把若干个数聚在一起叫数的集合,简称数集.例如0,1,2三个数,可写成集合{0,1,2},其中0,1,2叫做这个集合的元素,一般集合用A、B、C等表示,用a、b、c等表示集合的元素,用|A|、|B|分别表示集合A、B元素的个数,用A∩B表示A和B的公共部分(即交集),用A∪B表示A或B的部分(即并集).如设集合A={0,1,2,3,4},B={2,3,4,5},则|A|=5,|B|=4,A∩B={2,3,4},A∪B={0,1,2,3,4,5}.(2)容斥原理公式:|A∪B|=|A|+|B|-|A∩B|;|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C|;解决原理公式有关问题的图形,通常使用“韦恩图”的方法.如图,其中A、B、C分别表示具有A、B、C三种性质的集合,而A、B的公共部分表示具有A、B两种性质的集合,A、B、C的公共部分具有A、B、C性质的集合.3.归纳思维——通过特例的观察、实验、抽象概括,引起直觉上的共鸣,发现事物的共性,这种规律性的思维过程称为归纳思维(即不完全归纳法).【点拔】关注分析等待修理时间长的机床数的多少,哪一种更有利?【解答】7x5+8x4+10x3+15x2+29x1=156(分钟)156x5=780(元)【反思与小结】一般地,哪一个修理的时间最短,下修理哪一个.从整体上来说,先修理用时最短的,其他等待的总时间最短,从整体的经济效益来说,损失最小。
七年级数学竞赛 第30讲 容斥原理

第30讲 容斥原理知能概述:在计数时,我们常遇到这样的情况:作合并运算时会把重复部分多算了,需要减去;作排除运算时,会把重复部分多减了,需要补上。
我们把这种"应该有的"包含进来,“不该有的(或重复的)”排斥出去的思想方法称为容斥原理。
设A 、B 为两类物体,属于A 的物体有|A |个,属于B 的物体有|B |个,既属于A 又属于B 的物体记为A ∩B (读作A 交B ),有|A ∩B |个,把属于A 或属于B的物体记作A ∪B (读作A 并B ),则|A ∪B |=|A | +|B |−|A ∩B |。
问题解决:例1.在1~100的整数中,既不能被2整除,又不能被3整除的整数有 个。
(“五羊杯”竞赛题)解题思路:设 |I |=100表示I 中能被2整除的整数,B 表示I 中能被3整除的整数,A ∩B 表示I 中能被6整除的整数,则所求的整数个数(阴影部分)=|I |− |A ∪B |=|I |−|A |−|B | +|A ∩B |。
例2.十个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这十个有理数的和是( )。
A .12B .1118C .76D .59(江苏省竞赛题)解题思路:将未知的十个互不相等的有理数。
转化为已知的十个互不相等的和式135791315171921,,,,,,,,,22222222222222222222。
例3.求出分母是111的最简真分数的和。
(陕西省西安市竞赛题)解题思路:要得到真分数,分子只能从1 到110之中取,因111=3×37,又由分子分母既约知,分子不能是3或37的倍数,从1到110中有36个3的倍数,有2个37的信数,这样所求最简真分数共有110 −36−2=72(个).例4.解放路中学初二(1)班有50个学生,其中有37人参加科技兴趣小组,有25人参加舞蹈兴趣小组,有10人没有参加任何一个兴趣小组,问同时参加两个兴趣小组的人数占全班人数的百分之几?(浙江省竞赛题)A∩B B AI B A解法1:要求同时参加两个兴趣小组的人数占全班人数的百分之几,只需求出同时参加两个兴趣小组的人数。
组合数学之容斥原理

在一些计数问题中, 经常遇到间接计算一个集合 中具有某种性质的元素个数比起直接计算来得简 单.
例如: 计算1到700之间不能被7整除的整 数个数.
先计算1到700之间能被7整除的整数个数=700/ 7=100, 所以1到700之间不能被7整除的整数个数 =700-100=600.
4
上面举的间接计数的例子是利用了如下原 理:如果A是集合S的子集, 则A中的元素 个数等于S中的元素个数减去不在A中的元 素个数, 这个原理可写成:
组合数学
容斥原理
1
一. 引言
●容斥原理所研究的问题是与若干有 限集的交、并或差有关的计数. ●在实际中, 有时要计算具有某种性质 的元素个数. 例如: 某单位举办一个外语培训班, 开设 英语, 法语两门课.
2
●设U为该单位所有人集合, A,B分别为
学英语, 法语人的集合, 如图所示.
●学两门外语的人数为|AB|, 只学一门外语的人数为|AB|-|AB|, 没有参加学习的人数为|U|-|AB|.
15
Aj=(n-1)!, j=1,2,3,,n. AiAj=(n-2)!, i,j=1,2,3,,n, 但ij. 对于任意整数k且1kn, 则有
| Ai1 Ai2 Aik | ( n k )!
因为{1,2,3,,n}的k组合为C(n,k)个, 应用容斥原理得到:
| A || S | | A | 或 | A || S | | A |
其中A表示A在S中的补集或余集 .
5
● 原理的重要推广, 称之为容斥原理,
并且将它运用到若干问题上去, 其 中包括: 错位排列、 有限制的排列、 禁位排列和 棋阵多项式等.
6
二. 容斥原理
数学竞赛中容斥原理的应用

数学竞赛中容斥原理的应用1. 容斥原理概述容斥原理是组合数学中重要的计数原理之一,常被用于解决重叠计数问题。
数学竞赛中,容斥原理常常应用于排列组合、概率与计数等方面的问题。
2. 容斥原理的基本思想容斥原理的基本思想是通过减去重合部分来计算两个或多个集合的并集的元素个数。
在数学竞赛中,需要正确理解并掌握容斥原理的应用方法,才能在题目中灵活运用。
3. 容斥原理的一般表述对于n个集合$A_1,A_2,\\ldots,A_n$,容斥原理可以表述如下:$|\\bigcup_{i=1}^{n}A_i|=\\sum_{i=1}^{n}|A_i|-\\sum_{1 \\leq i < j \\leq n}|A_i\\cap A_j|+\\sum_{1 \\leq i < j < k \\leq n}|A_i \\cap A_j \\cap A_k|-\\ldots+(-1)^{n-1}|A_1 \\cap A_2 \\cap \\ldots \\cap A_n|$4. 容斥原理的应用方法4.1 两个集合的容斥对于两个集合A和B,根据容斥原理,可以得到以下关系式: $|A \\cup B| = |A| + |B| - |A \\cap B|$4.2 三个集合的容斥对于三个集合A、B和C,根据容斥原理,可以得到以下关系式: $|A \\cup B \\cup C| = |A| + |B| + |C| - |A \\cap B| - |A \\cap C| - |B \\cap C| + |A \\cap B \\cap C|$4.3 多个集合的容斥对于更多个集合的情况,容斥原理的应用方法与前面的方法类似,可以通过逐步加减交集的方式计算并集的元素个数。
5. 容斥原理的示例题目5.1 示例题目一有一个集合S,其中包含1至100的整数。
求能被2或3整除的数的个数。
解答:根据容斥原理的应用,可以使用以下计算公式: $|A \\cup B| = |A| + |B| - |A \\cap B|$其中,A表示能被2整除的数的集合,B表示能被3整除的数的集合。
数学归纳法证明容斥原理

数学归纳法证明容斥原理数学归纳法证明的是与自然数有关的命题,它的依据是皮亚诺提出的自然数的序数理论,就是通常所说的自然数的皮亚诺公理,内容是:(1)l就是自然数。
(2)每个自然数a有一个确定的“直接后继”数a’,a也是自然数。
(2)a’≠1,即为1不是任何自然数的“轻易后继”数。
(4)由a’=b’,推得a=b,即每个自然数只能是另外的唯一自然的“直直奔后继”数。
(5)任一自然数的集合,如果包含1,并且假设包含a,也一定包含a的“轻易后继”数a’,则这个子集涵盖所有的自然数。
皮亚诺公理中的(5)是数学归纳法的依据,又叫归纳公理因为由假设言42k+1+3k+2能够被13相乘,k+1也能够被13相乘,这就是说,当n=k+1时,f(k+l)能被13整除。
根据(1)、(2),可知命题对任何n∈n都设立。
下面按归纳步中归纳假设的形式向读者介绍数学归纳法的几种不同形式以及它们的应用领域。
(l)简单归纳法。
即在归纳步中,归纳假设为“n=k时待证命题成立”。
这就是最常用的一种归纳法,称作直观归纳法,大家都比较熟识,这里不再赘述。
(2)弱归纳法。
这种数学归纳法,在概括步中,其概括假设为“n≥k时待证命题成立”。
我们称之为强归纳法,又叫串值归纳法。
通常,如果在证明p(n+l)设立时,不仅依赖p(n)设立,而且还可能依赖于以前各步时,一般应选用强归纳法,下面举例说明其应用。
基准存有数目成正比的两堆棋子,两人轮流从任一堆里挑几项棋子,但无法不取也不能同时从两堆里取,规定凡取得最后一项者胜。
求证后者必胜。
证:概括元n为每堆棋子的数目。
设甲为先取者,乙为后取者。
奠基n=l,易证乙必胜。
概括设立nn≤k时,乙破釜沉舟。
现证n=k+l时也就是乙破釜沉舟。
设甲在某堆中先取r颗,o<r≤k。
乙的对策是在另一堆中也取r颗。
有二种可能将:(1)若r<k,经过两人各取一次之后,两堆都只有k-r颗,k-r<k,现在又落跑甲先取,依概括假设,乙破釜沉舟。
5.1容斥原理

• 7.在一个有容剂刻度的瓶子里装水300毫升.把瓶倒放后, 瓶里水的水平面在250毫升刻度线处,这瓶子的容积是多少 毫升?
4.在1到100的自然数中,既不是3的倍数也不是 5的倍数的数有多少个?
5.如图,三角形纸板、正方形纸板、圆形纸板的 面积相等,都等于60平方厘米.阴影部分的面 积总和是40平方厘米,3张板盖住的总面积是 100平方厘米,3张纸板重叠部分的面积是多少 平方厘米?
6.在四边形ABCD中,E、F、C、H分别是四边 的中点,分别连接AE、BF、CG、DH,已知图中 四个角上的阴影小三角面积分别为a、b、c、d, 求中间阴影四边形的面积.
开心课间: 下图是由9枚硬币摆成一个“大”字,
请你移动2枚硬币把它变成“人”字.
组二: *图形中的重叠问题 *容斥原理在一半模型中 的应用
*1.有三个面积各为20平方厘米的圆纸片放在 桌上,见下图.三个纸片共同重叠的面积是8平 方厘米,三个纸片盖住桌面的总面积是36平方 厘米.问:图中阴影部分的面积之和是多少?
**7.甲、乙、丙同时给100盆花浇水.已知甲 浇了78盆,乙浇了68盆,丙浇了58盆,那么 3人都浇过的花最少有多少盆?
**8.某班共有学生48人,其中27人会游泳,33 人会骑自行车,40人会打乒乓球.那么,这个班 至少有多少学生这三项运动都会?
**9.甲、乙、丙三人共解出100道数学题,每 人都解出了其中60道题,现将其中只有一人 解出的题叫做难题,三人都能解出的题叫做 容易题,容易题与难题相差多少题?
1.某山区的村落有人口2476人,全村落的人 都会说普通话或广东话.调查所得,会说普通 话的有1765人,会说广东话的有987人.问会 说普通话和广东话两种语言的有多少人?
2.五(二)班有48名学生,在一节自习课上,写 完语文作业的有30人,写完数学作业的有20 人,语文数学都没写完的有6人. ⑴ 问语文数学都写完的有多少人? ⑵ 只写完语文作业的有多少人?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学竞赛系列讲座(15)容斥原理一、一、知识要点1、容斥原理在计数时,常常遇到这样的情况,作合并运算时会把重复的部分多算,需要减去;作排除运算时会把重复部分多减,需要加上,这就是容斥原理。
它的基本形式是: 记A 、B 是两个集合,属于集合A 的东西有A 个,属于集合B 的东西有B 个,既属于集合A 又属于集合B 的东西记为B A ,有B A 个;属于集合A 或属于集合B 的东西记为B A ,有B A 个,则有:B A =A +B -BA 容斥原理可以用一个直观的图形来解释。
如图,左圆表示集合A ,右圆表示集合B ,两圆的公共部分表示B A ,两圆合起来的部分表示B A , 由图可知:B A =A +B -B A容斥原理又被称作包含排除原理或逐步淘汰原则。
二、二、例题精讲例1 在1到200的整数中,既不能被2整除,又不能被3整除的整数有多少个?分析:根据容斥原理,应是200减去能被2整除的整数个数,减去能被3整除的整数个数,还要加上既能被2整除又能被3整除,即能被6整除的整数个数。
解:在1到200的整数中,能被2整除的整数个数为:2⨯1,2⨯2,…,2⨯100,共100个;在1到200的整数中,能被3整除的整数个数为:3⨯1,3⨯2,…,3⨯66,共66个; 在1到200的整数中,既能被2整除又能被3整除,即能被6整除的整数个数为: 6⨯1,6⨯2,…,6⨯33,共33个;所以,在1到200的整数中,既不能被2整除,又不能被3整除的整数个数为:200-100-66+33=67(个)例2 求1到100的自然数中,所有既不是2的倍数又不是3的倍数的整数之和S 。
解:1到100的自然数中,所有自然数的和是:1+2+3+…+100=50501到100的自然数中,所有2的倍数的自然数和是:2⨯1+2⨯2+…+2⨯50=2⨯(1+2+3+…+50)= 2⨯1275=25501到100的自然数中,所有3的倍数的自然数和是:3⨯1+3⨯2+…+3⨯33=3⨯(1+2+3+…+33)= 3⨯561=16831到100的自然数中,所有既是2的倍数又是3的倍数,即是6的倍数的自然数和是:6⨯1+6⨯2+…+6⨯16=6⨯(1+2+3+…+16)= 6⨯136=816所以,1到100的自然数中,所有既不是2的倍数又不是3的倍数的整数之和S=5050-2550-1683+816=1633例3求不大于500而至少能被2、3、5中一个整除的自然数的个数。
分析:如图,用3个圆A 、B 、C 分别表示不大于500而能被2、3、5整除的自然数, B A 表示既能被2整除又能被3整除的自然数C A 表示既能被2整除又能被5整除的自然数C B 表示既能被3整除又能被5整除的自然数C B A 表示既能被2整除又能被3整除,还能被5整除的自然数由图可看出:属于A 、B 、C 之一的数的个数为: A +B +C -(B A +C A +C B )+C B A解:不大于500且能被2整除的自然数的个数是:250不大于500且能被3整除的自然数的个数是:166不大于500且能被5整除的自然数的个数是:100不大于500既能被2整除又能被3整除,即能被6整除的自然数的个数是:83不大于500既能被2整除又能被5整除,即能被10整除的自然数的个数是:50不大于500既能被3整除又能被5整除,即能被15整除的自然数的个数是:33不大于500既能被2整除又能被3整除,还能被5整除,即能被30整除的自然数的个数是:16由容斥原理得:不大于500而至少能被2、3、5中一个整除的自然数的个数是:250+166+100-(83+50+33)+16=366例4 求前200个正整数中,所有非2、非3、非5的倍数的数之和。
解:前200个正整数的和是:1+2+3+…+200=20100前200个正整数中,所有2的倍数的正整数和是:2⨯1+2⨯2+…+2⨯100=2⨯(1+2+3+…+100)= 2⨯5050=10100前200个正整数中,所有3的倍数的正整数和是:3⨯1+3⨯2+…+3⨯66=3⨯(1+2+3+…+66)= 6633前200个正整数中,所有5的倍数的正整数和是:5⨯1+5⨯2+…+5⨯40=5⨯(1+2+3+…+40)= 4100前200个正整数中,所有既是2的倍数又是3的倍数,即是6的倍数的正整数和是:6⨯1+6⨯2+…+6⨯33=6⨯(1+2+3+…+33)= 3366前200个正整数中,所有既是2的倍数又是5的倍数,即是10的倍数的正整数和是:10⨯1+10⨯2+…+10⨯33=10⨯(1+2+3+…+20)= 2100前200个正整数中,所有既是3的倍数又是5的倍数,即是15的倍数的正整数和是:15⨯1+15⨯2+…+15⨯13=15⨯(1+2+3+…+13)= 1365前200个正整数中,所有既是2的倍数又是3的倍数还是5的倍数,即是30的倍数的正整数和是:30⨯1+30⨯2+…+30⨯6=30⨯(1+2+3+4+5+6)= 630所以,前200个正整数中,所有非2、非3、非5的倍数的数之和是AB CS=20100-(10100+6633+4100)+(3366+2100+1365)-630=630例5 某班的全体学生进行了短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目都没有达到优秀,其余每人至少有一个项目达到优秀,这部分学生达到优秀的项目、人求这个班的学生数。
(第三届华杯赛复赛试题)解:有4名学生在这三个项目都没有达到优秀,在每个单项上达到优秀的人数分别是17、18、15,因而,总人数是17+18+15+4=54。
但其中有人获得两项优秀,所以上面的计数产生了重复,重复人数应当减去,即总人数变为:54-6-6-5=37又考虑到获得三项优秀的人,他们一开始被重复计算了三次,但在后来又被重复减去了三次,所以最后还要将他们加进去。
即这个班学生数为:37+2=39。
例6 从1到1000000这一百万个自然数中,能被11整除而不能被13整除的数多还是能被13整除而不能被11整除的数多?(第20届全俄九年级试题)解:设1到1000000这一百万个自然数中,能被11整除而不能被13整除的数有m个,能被13整除而不能被11整除的数有n个,既能被11又能被13整除的数有p个。
而在1到1000000这一百万个自然数中,能被11整除数有90909个,∴m+p=90909 在1到1000000这一百万个自然数中,能被13整除数有76923个,∴n+p=76923 ∴m+p> n+p ∴m>n,即能被11整除而不能被13整除的数比能被13整除而不能被11整除的数多。
例7 50名学生面向老师站成一行,老师先让大家从左到右按1,2,3,…依次报数,再让报数是4的倍数的同学向后转,接着又让报数是6的倍数同学向后转,问此时还有多少同学面向老师?(1995年华杯赛试题)分析:首先没有转的同学仍面向老师,即报数既不是4的倍数,也不是6的倍数的同学仍面向老师,其次,报数既是4的倍数,也是6的倍数,即是12的倍数同学连续转了两次,仍面向老师。
解:报数是4的倍数的同学有12个,报数是6的倍数的同学有8个,报数是12的倍数的同学有4个,所以根据容斥原理得:报数既不是4的倍数,也不是6的倍数的同学有50-12-8+4=34个。
报数既是4的倍数,也是6的倍数,即是12的倍数同学有4个。
所以此时还应有34+4=38个同学面向老师。
评注:若将同学数50改成n,问此时还有多少同学面向老师?可以得出一个一般的结论:⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-12264nnnn例8 已知某校共有学生900名,其中男生528人,高中学生312人,团员670人,高中男生192人,男团员336人,高中团员247人,高中男团员175人,试问这些数据统计有无错误?解:用I表示全校学生,A表示该校男生,B表示该校高中学生,C表示团员,则有:I=900,A=528,B=312,C=670,且BA=192,CA=336,CB=247,CBA=175这样,初中女生的非团员数是:I -A-B-C+BA+CA+CB-CBA=900-528-312-670+192+336+247-175= -10<0因人数做到负数,所以数据统计有错误。
例9 从自然数序列:1,2,3,4,…中依次划去3的倍数和4的倍数,但其中5的倍数均保留。
划完后剩下的数依次组成一个新的序列:1,2,5,7,…求该序列中第2002个数。
分析:因为3,4,5的最小公倍数是60,所以可将自然数序列:1,2,3,4,…以60的倍数来分段,先考虑1到60的整数,其中3的倍数有20个,4的倍数有15个,既是3的倍数又是4的倍数的数有5个,则划去3的倍数和4的倍数还剩60-20-15+5=30个,又还要保留其中的5的倍数6个,这样还剩36个,即1到60的整数中,划完后剩下36个,由此推得,每60个一段中,划完后剩下36个。
因2002=36⨯55+22,说明2002是56段中的第22个数。
解:先考虑1到60的整数在1到60的整数中,3的倍数有20个,4的倍数有15个,既是3的倍数又是4的倍数的数有5个,所以划去3的倍数和4的倍数还剩60-20-15+5=30个。
又因为其中5的倍数有6个,需要保留,所以划完后剩下30+6=36个因为3,4,5的最小公倍数是60,所以每60个整数一段中,划完后均剩下36个。
因为2002=36⨯55+22,所以第2002个数是56段中的第22个数。
因为第一段中的第22个数是37,所以该序列中第2002个数是55⨯60+37=3337。
三、三、巩固练习选择题1、在1到40这四十个自然数中选一些数组成数集,使其中任何一个数不是另一个数的2倍,则这个数集最多有( )个数。
A、20B、26C、30D、402、甲、乙、丙、丁四人排成一排照相,甲不排在首位,丁不排在末位,有( )种不同的排法。
A、14B、13C、12D、113、从1到1000中,能被2,3,5之一整除的整数有( )个A、767B、734C、701D、6984、从1到200中,能被7整除但不能被14整除的整数有( )个A、12B、13C、14D、155、A、B、C是面积分别为150、170、230的三张不同形状的纸片,它们重叠放在一起的覆盖面积是350,且A与B、B与C、A与C的公共部分面积分别是100、70、90。
则A、B、C的公共部分面积是( )A、12B、13C、60D、156、50束鲜花中,有16束插放着月季花,有15束插放着马蹄莲,有21束插放着白兰花,有7束中既有月季花又有马蹄莲,有8束中既有马蹄莲又有白兰花,有10束中既有月季花又有白兰花,还有5束鲜花中,月季花、马蹄莲、白兰花都有。