大物习题

合集下载

大物课后习题 答案

大物课后习题 答案

1-3 一质点在xOy 平面上运动,运动方程为x =3t +5, y =21t 2+3t -4.式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1) j t t i t r)4321()53(2-+++=m (4) 1s m )3(3d d -⋅++==j t i tr v则 j i v734+= 1s m -⋅(6) 2s m 1d d -⋅==j tv a这说明该点只有y 方向的加速度,且为恒量。

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s)的速率收绳时,试求船运动的速度和加速度的大小.图1-4解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l +=将上式对时间t 求导,得ts stl ld d 2d d 2= 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, ∴ ts v v tl v d d ,d d 0-==-=船绳即 θcos d d d d 00v v sl tl s l ts v ==-=-=船或 sv s h slv v 02/1220)(+==船将船v 再对t 求导,即得船的加速度32022222002)(d d d d d d sv h sv sls v slv s v v st s l tl s tv a =+-=+-=-==船船1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m , v =0,求该质点在t =10s 时的速度和位置. 解:∵ t tv a 34d d +==分离变量,得 t t v d )34(d += 积分,得12234c t t v ++=由题知,0=t ,00=v ,∴01=c 故 2234t t v += 又因为 2234d d t t tx v +==分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c 故 521232++=t t x所以s 10=t 时m70551021102sm 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1-8 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b . 解:(1) bt v ts v -==0d dRbt v Rva b t v a n 202)(d d -==-==τ则 240222)(Rbt v b aa a n-+=+=τ加速度与半径的夹角为20)(arctanbt v Rb a a n--==τϕ(2)由题意应有2402)(Rbt v b b a -+==即 0)(,)(4024022=-⇒-+=bt v Rbt v b b∴当bv t 0=时,b a =1-10 以初速度0v =201s m -⋅抛出一小球,抛出方向与水平面成幔 60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题1-10图(1)在最高点,o0160cos v v v x == 21sm 10-⋅==g a n又∵ 1211ρv a n =∴m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1sm -⋅,而 o60cos 2⨯=g a n ∴ m 8060cos 10)20(22222=︒⨯==n a v ρ2-3 283166-⋅===sm m f a x x2167-⋅-==s m mf a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=2101200872167452832sm dt a v v s m dt a v v y y y x x x于是质点在2s 时的速度18745-⋅--=sm ji v(2) mji j i jt a i t a t v r y x 874134)167(21)4832122(21)21(220--=⨯-+⨯⨯+⨯-=++= 2-4 (1)∵dtdv mkv a =-=分离变量,得m kdt v dv -=即⎰⎰-=vv tmkdt v dv 0mkt ev v -=ln ln∴ tmk e v v -=0(2)⎰⎰---===tttmk mk ekmv dt ev vdtx 000)1((3)质点停止运动时速度为零,即t →∞, 故有⎰∞-=='000kmv dt ev x tmk(4)当t=km 时,其速度为ev ev ev v km m k 0100===-⋅-即速度减至v 0的e1.2-7由题知,小球落地时间为0.5s .因小球为平抛运动,故小球落地的瞬时向下的速度大小为v 1=gt=0.5g ,小球上跳速度的大小亦为v 2=0.5g .设向上为y 轴正向,则动量的增量 Δp=mv 2-mv 1 方向竖直向上,大小 |Δp |=mv 2-(-mv 1)=mg碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒. 2-12 (1)由题知,F 合为恒力,∴ A 合=F ·r=(7i-6j)·(-3i+4j+16k)=-21-24=-45 J (2)w tA N 756.045==∆=(3)由动能定理,ΔE k =A=-45 J2-15 弹簧A 、B 及重物C 受力如题2-15图所示平衡时,有题2-15图 F A =F B =Mg 又 F A =k 1Δx 1 F B =k 2Δx 2所以静止时两弹簧伸长量之比为 1221k k x x =∆∆弹性势能之比为12222211121212k k x k x k E E p p=∆∆=2-20 两小球碰撞过程中,机械能守恒,有222120212121mv mv mv +=即 222120v v v += ①3-7 观测者甲乙分别静止于两个惯性参考系S 和S '中,甲测得在同一地点发生的两事件的时间间隔为 4s ,而乙测得这两个事件的时间间隔为 5s .求: (1) S '相对于S 的运动速度.(2)乙测得这两个事件发生的地点间的距离.解: 甲测得0,s 4==x t ∆∆,乙测得s 5=t ∆,坐标差为12x x x '-'='∆′ (1)∴ t cv tx cv t t ∆-∆=∆+∆='∆22)(11)(λγ54122='∆∆=-t t cv解出 c c t t c v 53)54(1)(122=-='∆∆-=8108.1⨯= 1s m -⋅(2) ()0,45,=∆=∆'∆=∆-∆='∆x tt t v x x γγ∴ m 1093453458⨯-=-=⨯⨯-=-='c c t v x ∆γ∆负号表示012<'-'x x . 3-8 一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度是多少? 解: 2220153,1513βββ-=-=-=='则l l∴ c c v 542591=-=3-11 根据天文观测和推算,宇宙正在膨胀,太空中的天体都远离我们而去.假定地球上观察到一颗脉冲星(发出周期无线电波的星)的脉冲周期为 0.50s ,且这颗星正沿观察方向以速度0.8c 离我们而去.问这颗星的固有周期为多少?解: 以脉冲星为S '系,0='∆x ,固有周期0τ='∆t .地球为S 系,则有运动时t t '∆=∆γ1,这里1t ∆不是地球上某点观测到的周期,而是以地球为参考系的两异地钟读数之差.还要考虑因飞行远离信号的传递时间,ct v 1∆∴ t cv t c t v t t ∆+'∆=∆+∆=∆γγ11′)1(cv t +'=∆γ6.01)8.0(112=-=c c γ则 γλτ)8.01(5.0)1(0c c cv t t +++∆='∆=s 1666.08.13.06.01)8.01(5.0==+=3-16 静止在S 系中的观测者测得一光子沿与x 轴成︒60角的方向飞行.另一观测者静止于S ′系,S ′系的x '轴与x 轴一致,并以0.6c 的速度沿x 方向运动.试问S ′系中的观测者观测到的光子运动方向如何? 解: S 系中光子运动速度的分量为c c v x 500.060cos ο==c c v y 866.060sin ο==由速度变换公式,光子在S '系中的速度分量为c ccc c c v cu u v v xx x143.05.06.016.05.0122-=⨯--=--='c ccc c v cu v cu v xyy 990.05.06.01866.06.011122222=⨯-⨯-=--='光子运动方向与x '轴的夹角θ'满足692.0tan -=''='xy v v θθ'在第二象限为ο2.98='θ在S '系中,光子的运动速度为c v v v y x='+'='22 正是光速不变. 3-17 (1)如果将电子由静止加速到速率为0.1c ,须对它作多少功?(2)如果将电子由速率为0.8c 加速到0.9c ,又须对它作多少功?解: (1)对电子作的功,等于电子动能的增量,得)111()1(222020202--=-=-==cv c m c m cm mcE E k k γ∆)11.011()103(101.922831--⨯⨯⨯=-161012.4-⨯=J=eV 1057.23⨯(2) )()(2021202212c m c m c m c m E E E k k k---=-='∆)1111(221222202122cv cv c m cm c m ---=-=))8.0119.011(103101.92216231---⨯⨯⨯=-J 1014.514-⨯=eV 1021.35⨯=4-2 劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题4-2图所示的两种方式连 接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.题4-2图解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有111x k F x k F -=-=串222x k F -=又有 21x x x +=2211k F k F k F x +==串所以串联弹簧的等效倔强系数为2121k k k k k +=串即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为2121)(222k k k k m k m T +===ππωπ串(2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有2211x k x k x k +=并故 21k k k +=并 同上理,其振动周期为212k k m T +='π4-5 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动; (3)过2A x =处向负向运动; (4)过2A x -=处向正向运动.试求出相应的初位相,并写出振动方程. 解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t TA x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t TA x)452cos(454πππφ+==t TA x4-7 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4.用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后 ,给予向上的初速度10scm 0.5-⋅=v ,求振动周期和振动表达式.解:由题知 12311mN 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x ( 设向上为正)又 s 26.12,51082.03===⨯==-ωπωT mk 即m102)5100.5()100.1()(22222220---⨯=⨯+⨯=+=∴ωv x A45,15100.1100.5tan 022000πφωφ==⨯⨯⨯=-=--即x v∴ m )455cos(1022π+⨯=-t x4-8 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+=4-12 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x 解: (1)∵ ,233712πππφφφ=-=-=∆∴合振幅 cm 1021=+=A A A (2)∵ ,334πππφ=-=∆∴合振幅 0=A4-13 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。

大物习题答案1

大物习题答案1

习 题 一1—1 一质点在平面xOy 内运动,运动方程为x =2t ,2219t y -= (SI)。

(1)求质点的运动轨道;(2)求t =1s 和t =2s 时刻质点的位置矢量;(3)求t =1s 和t =2s 时刻质点的瞬时速度和瞬时加速度;(4)在什么时刻,质点的位置矢量和速度矢量垂直?这时x 、y 分量各为多少?(5)在什么时刻,质点离原点最近?最近距离为多大?[解] 质点的运动方程:t x 2=,2219t y -= (1)消去参数t ,得轨道方程为: 22119x y -= (2)把t=1s 代入运动方程,得j i j i r 172)219(22+=-+=t t 把t =2s 代入运动方程,可得j i j i r 114)2219(222+=⨯-+⨯= (3)由速度、加速度定义式,有4/,0/4/,2/-====-====dt dv a dt dv a t dt dy v dt dx v y y x x y x所以,t 时刻质点的速度和加速度为 j i j i t v v v y x 42-=+= j j i a 4-=+=y x a a所以,t=1s 时,j i v 42-=,j a 4-= t=2s 时,j i v 82-=,j a 4-= (4)当质点的位置矢量和速度矢量垂直时,有 0=⋅v r即 0]42[])219(2[2=-⋅-+j i j i t t t 整理,得 093=-t t解得 3,3;0321-===t t t (舍去) m 19,0,s 011===y x t 时 m 1,m 6,s 322===y x t 时 (5)任一时刻t 质点离原点的距离 222)219()2()(t t t r -+= 令d r/d t =0 可得 t =3所以,t =3s 时,质点离原点最近 r1—2 一粒子按规律59323+--=t t t x 沿x 轴运动,试分别求出该粒子沿x 轴正向运动;沿x 轴负向运动;加速运动,减速运动的时间间隔。

大物习题9

大物习题9

习题99.1选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[答案:A](2)下面说法正确的是:()(A)若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B)若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。

[答案:D](3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0[答案:C](4)在电场中的导体内部的()(A)电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。

[答案:C]9.2填空题(1)在静电场中,电势不变的区域,场强必定为。

[答案:相同](2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。

[答案:q/6ε0, 将为零](3)电介质在电容器中作用(a)——(b)——。

[答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。

[答案:5:6]9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题9.3图示(1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题9.3图 题9.4图9.4 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题9.4图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的解: 如题9.4图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 9.5 根据点电荷场强公式204rq E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.9.7 长l =15.0cm AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题9.7图所示(1) 在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==⎰⎰-ελ题9.7图]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)2220d d π41d +=x xE Q λε 方向如题9.7图所示由于对称性⎰=l QxE 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向9.8 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如9.8图在圆上取ϕRd dl =题9.8图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.9.9 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E解: 如9.9图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为 ()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE+++=⊥ελ题9.9图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿9.10 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题9.10图所示. 题9.10 图9.11 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q rE当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外.9.12 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题9.13图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场解: 如题9.13图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.9.14 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题9.14图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题9.14图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'd π4π3430320OO r E ερ=∴ O 点电场d 33030r E ερ= ;(2) ρ+在O '产生电场'dπ4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题9.14图(a) 题9.14图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.9.15 一电偶极子由q =1.0×10-6C d=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p在外场E 中受力矩E p M ⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅9.16 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题9.17图9.17 如题9.17图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的解: 如题9.17图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=9.18 如题9.18图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题9.18图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O9.19 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ==∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅9.20 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm解: 平行板电容器内部近似为均匀电场 4105.1d ⨯==E U V9.21 证明:对于两个无限大的平行平面带电导体板(题9.21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符证: 如题9.21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题9.21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题9.22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题9.22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题9.22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV9.23两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1) (2) *(3) 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势⎰⎰∞∞==⋅=22020π4π4d d R R R qrr q r E U εε题9.23图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=9.24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题9.24图所示,设金属球感应电荷为q ',则球接地时电势0=O U题9.24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q9.25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力0022018348342F r πqr π"q 'q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r qq F ==ε9.26 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4rrQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4rrQ E r Qr D ε ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞ 外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r-+=εεε9.27 如题9.27图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题9.27图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d qS D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21UE E == rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内∴r r E E εεεεσσ==102012题9.27图 题9.28图9.28 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==题9.29图9.29 如题9.29 图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 9.30 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V ?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.9.31半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题9.31图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε=3R r >时 302π4rrQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4rrQ E ε=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R Q W C -==ε 121049.4-⨯=F。

大物习题册答案及详解(山东理工大学大二上学期2020版)

大物习题册答案及详解(山东理工大学大二上学期2020版)
考点:无限大均匀带电平面的电场强度公式:E=σ/ε0,电场强度等于两个带电平行电板所产生的电场强度的矢量 和。(课本120页 例6-7 推导公式)
4.如图所示,一点电荷q位于正立方体的A角上,则通过侧面abcd的电通量Φe=q/24ε0
考点: 高斯定理公式 (课本118页 6-18) 解法:1.建立一正方体高斯面(补7个如图正方体),使A点位于正中心
考点:电势是一个与引进电荷无关,完全由电场自身的性质和相对位置决定的物理量。电场中某点电势的大小与零 电势点的选取有关。
2.在边长为a的正方体中心处放置一电量为Q的点电荷,设无穷远处为电势零点,则在一个侧面的中心处的电势为
(B)
(A)Q/4πε0a
(B)Q/2πε0a
(C)Q/πε0a
(D)Q/2√2πε0a
q/(1/r-1/r0)/4πε0
考点:电势的计算
解法:U=∫
r0 r
E·dr
=∫
r0 qdr r 4πε0r
2
=q/(1/r-1/r0)/4πε0
(课本122页
6-29b)
பைடு நூலகம்
3.一质量为m、电量为q的小球,在电_场__力__作__用下,从电势为U的a点移动到电势为零的b点,若已知小球在b点的 速率为Vb,则小球在a点的速率Va=√Vb2-2qU/m
②均匀带电球面内的电势UP2=Q/4πε0R(课本123页例6-8结论得), ③UP=UP1+UP2.
6.在带电量为-Q的点电荷A的静电场中,将另一带电量为q的点电荷B从a点移到b点,a、b两点距离点电荷A的距 离分别为r1和r2,如图所示,则移动过程中电场力做的功为(C) (A)-Q(1/r1-1/r2)/4πε0 (B)qQ(1/r1-1/r2)/4πε0 (C)-qQ(1/r1-1/r2)/4πε0 (D)-qQ/4πε0(r2-r1) 考点:电场力的功 解法:Aeab=q(UA-UB)=q(-Q/4πε0r1— -Q/4πε0r2)=-qQ(1/r1-1/r2)/4πε0 (课本123页 6-31)

大学物理第二版习题答案

大学物理第二版习题答案

13级应用化学(2)班物理习题详解习题精解1-1某质点的速度为j t i v 82-=,已知t=0时它经过点(3,7),则该质点的运动方程为( )A.j t i t 242-B.()()j t i t 74322+-+ C.j 8- D.不能确定解:本题答案为B.因为 dt rd v =所以 ()dt j t i r d82-=于是有()d t j t i r d t rr ⎰⎰-=0820即 j t i t r r2042-=-亦即 ()j t i t j i r 24273-=-- 故 ()()j t i t r 74322+-+=1-2 一质点在平面上作曲线运动,1t 时刻位置矢量为j i r 621+-=,2t 时刻的位置矢量为j i r 422+=,求:(1)在12t t t -=∆时间内质点的位移矢量式;(2)该段时间内位移的大小和方向;(3)在坐标图上画出21,r r及r∆。

解 (1)在12t t t -=∆时间内质点的位移矢量式为()()m j i r r r 2412-=-=∆ (2)该段时间内位移的大小 ()()m r 522422=+=∆该段时间内位移的方向与轴的夹角为 ︒-=⎪⎭⎫⎝⎛-=-6.2642tan 1α (3)坐标图上的表示如图1.1所示1-3某质点作直线运动,其运动方程为214x t t =+- ,其中x 以m 计,t 以s 计,求:(1)第3s 末质点的位置;(2)头3s 的位移大小;(3)头3s 内经过的路程。

解 (1)第3s 末质点的位置为2(3)14334()x m =+⨯-=(2)头3s 的位移大小为 ()(3)03()x x m -=(3)因为质点做反向运动是有()0v t =,所以令0dxdt=,即420,2t t s -==因此头3s 内经过的路程为 (3)(2)(2)(0)45515()x x x x m -+-=-+-=1-4 已知某质点的运动方程为22,2x t y t ==-,式中t 以s 计,x 和y 以m 计。

大一物理习题及答案(下)

大一物理习题及答案(下)

大学物理练习十一.选择题:1.C 1和C 2两空气电容器串联起来接上电源充电。

然后将电源断开,再把一电介质板插入C 1中,则(A) C 1上电势差减小,C 2上电势差增大。

(B) C 1上电势差减小,C 2上电势差不变。

(C) C 1上电势差增大,C 2上电势差减小。

(D) C 1上电势差增大,C 2上电势差不变。

解∶电源断开意味着电量不变。

由于C 1 放入介质,C 1电容增大,则电势差减小。

[ B ]2.两只电容器,F C F C μμ2,821==,分别把它们充电到1000V ,然后将它们反接(如图所示),此时两极板间的电势差为: (A) 0V (B) 200V(C) 600V (D) 1000V [C ] 解∶311108-⨯==V C Q 库 ,322102-⨯==V C Q 库。

将它们反接321106-⨯=-=Q Q Q 库,3.一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图。

当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,平衡在极板间的空气区域中。

此后,若把电介质抽去,则该质点(A) 保持不动 (B) 向上运动 (C) 向下运动 (D) 是否运动不能确定 [ B ] 解∶原来+q 的质点平衡在极板间的空气区域中,qE m g =故电势差增大,场强E 增大。

电场力大于重力。

4.一球形导体,带电量q ,置于一任意形状的空腔导体中。

当用导线将两者连接后,则与未连接前相比系统静电场能将 (A) 增大 (B) 减小(C) 不变 (D) 如何变化无法确定 [ B ]+Q解∶任意形状的空腔导体中,球形导体带电量q 不变 未连接前腔内、腔外均有电场存在。

只不过连接后电量q 跑到空腔的外表面上,则腔外电场不变。

但腔内电场则为 零了。

故与未连接前相比系统静电场能将减小。

5.用力F 把电容器中的电介质板拉出,在图(a)和图(b)的两种情况下,电容器中储存的静电能量将 (A) 都增加。

大物练习题

大物练习题

第十一章真空中的静电场1.如图所示,真空中一长为L的均匀带电细直杆,电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度.LP2.一个点电荷位于一边长为a的立方体高斯面中心,则通过此高斯面的电通量为ˍˍˍ,通过立方体一面的电场强度通量是ˍˍˍ,如果此电荷移到立方体的一个角上,这时通过(1)包括电荷所在顶角的三个面的每个面电通量是ˍˍˍ,(2)另外三个面每个面的电通量是ˍˍˍ。

3.在场强为E的均匀静电场中,取一半球面,其半径为R,E的方向和半球的轴平行,可求得通过这个半球面的E通量是()A.ER2π B.R22πC. ER22π D. ER221π4.根据高斯定理的数学表达式⎰∑⋅=SqSE/dε可知下述各种说法中,正确的是()(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.5.半径为R的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E与距轴线的距离r的关系曲线为( )图11-2图11-3EOr (A)E ∝1/r6.如图所示, 电荷-Q 均匀分布在半径为R ,长为L 的圆弧上,圆弧的两端有一小空隙,空隙长为)(R L L <<∆∆,则圆弧中心O 点的电场强度和电势分别为( )A.R Q i L R L Q 0204,4πεπε-∆- B.RQ i L R L Q 02024,8πεεπ-∆- C.RQ i L R L Q 0204,4πεπε ∆ D.RL L Qi L R L Q 0204,4πεπε∆-∆-7.如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8 C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×10­8C ,设无穷远处电势为零,则空间另一电势为零的球面半径r = __________________8. 如图所示,一半径为a 的“无限长”圆柱面上均匀带电,其电荷线密度为λ.在它外面同轴地套一半径为b 的薄金属圆筒,圆筒原先不带电,但与地连接.设地的电势为零,则在内圆柱面里面、距离轴线为r 的P 点的场强大小和电势分别为( )(A) E =0,U =r a ln 20ελπ. (C) E =r 02ελπ,U =rb ln 20ελπ (B) E =0,U =a b ln 20ελπ (D) E =r 02ελπ,U =a b ln 20ελπ.图11-69.如图,在点电荷+Q ,-Q 产生的电场中,abcd 为同一直线上等间距的四个点,若将一点电荷+q 0由b 点移到d 点,则电场力( )A. 作正功;B. 作负功;C.不作功;D.不能确定10.说明下列各式的物理意义(1)l d E ⋅(2)l d E b a ⋅⎰ (3)l d E L ⋅⎰(4)S d E ⋅11.已知某静电场的电势函数)(14121222SI y y x x U --=,由场强和电势梯度的关系式可得点(2,3,0)处的场强E =ˍˍˍi +ˍˍˍj +ˍˍˍk (SI)a c +Q-Q 图11-9答案:1.()d L d q +π04ε 2. 00024,0,6,εεεq q q 3.A4.C5.C ⎪⎪⎩⎪⎪⎨⎧≥=≤=)( 22)( 220020R r R rr R R r r E ρπλπελερερ,或 6. A7. 10cm8.B9.A10. (1)l d E ⋅表示电场力对单位正电荷所做的元功。

大学物理B习题及答案

大学物理B习题及答案

(A) 67 J. (B) 17 J. (C) 67 J. (D) 91 J. 4、速度为 v 的子弹,打穿一块不动的木板后速度变为零,设木板对子弹的阻力是恒定的.那么,
当子弹射入木板的深度等于其厚度的一半时,子弹的速度是[ ]
(A) 1 v . 4
(B) 1v . (C) 1 v .
3
2
(D) 1 v . 2

2、一质点沿半径为 R 的圆周运动,运动方程为 3 2t2 (SI),则 t 时刻质点的法向加速度大小
为 an =____________;切向加速度 at =______________。
-1-
3、质点沿 x 轴方向运动,速度与时间的关系为 v 3 t(m / s) ,如果初始时刻质点在 x 4m 处,
(D) 变加速直线运动,加速度沿 x 轴负方向.
3、已知质点的位矢与时间的变化关系为
r
(2t
3)i
t2
j
(SI),当
t=1s
时,速度与加速度的大
小分别为[ ]
(A) 2 2m / s , 2m / s2
(B) 2 2m / s ,0
(C) 2 2m / s ,1m / s2
(D) 2m / s , 2m / s2
1 2
kx 2
1 2
(m1
m2 )2 2
(1) (3)
联立(1) (2) (3),可解得 m1 与 m2 碰后速度
2
m1 m1
2gh m2
弹簧所受的最大压力: F kx m1
2 ghk m1 m2
第三章 刚体的转动
一、选择题 1、一轻绳跨过一具有水平光滑轴质量为 M 的定滑轮,绳的两端分别悬 m1 , m2 的物体( m1 m2 ),轻绳不可伸缩且与滑轮间无相对滑动,若

大物习题10

大物习题10

习题10]10.1选择题(1) 对于安培环路定理的理解,正确的是:(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。

[答案:C](2) 对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B () (A )内外部磁感应强度B 都与r 成正比;(B )内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比; (C )内外部磁感应强度B 都与r 成反比;(D )内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比。

[答案:B](3)质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要() (A ) 增加磁场B ;(B )减少磁场B ;(C )增加θ角;(D )减少速率v 。

[答案:B](4)一个100匝的圆形线圈,半径为5厘米,通过电流为0.1安,当线圈在1.5T 的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A )0.24J ;(B )2.4J ;(C )0.14J ;(D )14J 。

[答案:A]10.2 填空题(1)边长为a 的正方形导线回路载有电流为I ,则其中心处的磁感应强度 。

[答案:aIπμ220,方向垂直正方形平面](2)计算有限长的直线电流产生的磁场 用毕奥——萨伐尔定律,而 用安培环路定理求得(填能或不能)。

[答案:能, 不能](3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为 。

电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为 。

[答案:零,正或负或零](4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以 电流时,管内的磁力线H 分布相同,当把两螺线管放在同一介质中,管内的磁力线H 分布将 。

大物习题三答案

大物习题三答案

习题三习题三一、选择题1.一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端的光滑水平轴上。

现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以v 0/2的水平速度穿出棒,此后棒的最大偏转角恰为90︒,则v 0的大小为 [ ](A; (B(C; (D )22163M glm 。

答案:A 解:11122,1122J J J J Mg l ωωωω=+⎧⎪⎨=⋅⎪⎩ 22211, 243l ml J m J Ml ⎛⎫=== ⎪⎝⎭ 0012/2v v l l ω==,0021/21/22v v l l ωω===,111121()2J J J J ωωωω-== 21122J Mgl ω=, 2112J J Mgl J ω⎛⎫⋅= ⎪⎝⎭, 22114J Mgl Jω= 22202244143v ml l Mgl Ml ⎛⎫ ⎪⎝⎭=⋅,Mgl M v m =⋅202163,2202163M v gl m =,所以 340gl m Mv =2.圆柱体以80rad/s 的角速度绕其轴线转动,它对该轴的转动惯量为24kg m ⋅。

在恒力矩作用下,10s 内其角速度降为40rad/s 。

圆柱体损失的动能和所受力矩的大小为 [ ](A )80J ,80N m ⋅; (B )800J ,40N m ⋅;(C )4000J ,32N m ⋅;(D )9600J ,16N m ⋅。

答案:D解:800=ω,40=ω,10=t ,4J = 2201122k E J J ωω-∆=- 22011()4(64001600)9600(J)22k E J ωω∆=-=⨯⨯-=M 恒定,匀变速,所以有0t ωωα=-,0tωωα-=,08040416N m 10M J J tωωα--==⋅=⨯=⋅3.一个转动惯量为J 的圆盘绕一固定轴转动,初角速度为0ω。

设它所受阻力矩与转动角速度成正比M k ω=- (k 为正常数)。

大学物理(第四版)课后习题及答案 动量

大学物理(第四版)课后习题及答案 动量

题3.1:质量为m 的物体,由水平面上点O 以初速为0v 抛出,0v 与水平面成仰角α。

若不计空气阻力,求:(1)物体从发射点O 到最高点的过程中,重力的冲量;(2)物体从发射点到落回至同一水平面的过程中,重力的冲量。

题3.1分析:重力是恒力,因此,求其在一段时间内的冲量时,只需求出时间间隔即可。

由抛体运动规律可知,物体到达最高点的时间g v t αsin 01=∆,物体从出发到落回至同一水平面所需的时间是到达最高点时间的两倍。

这样,按冲量的定义即可求出结果。

另一种解的方法是根据过程的始、末动量,由动量定理求出。

解1:物体从出发到达最高点所需的时间为g v t αsin 01=∆ 则物体落回地面的时间为gv t t αsin 22012=∆=∆ 于是,在相应的过程中重力的冲量分别为 j j F I αsin d 0111mv t mg t t -=∆-==⎰∆j j F I αsin 2d 0222mv t mg t t -=∆-==⎰∆解2:根据动量定理,物体由发射点O 运动到A 、B 的过程中,重力的冲量分别为j j j I αsin 00y Ay 1mv mv mv -=-= j j j I αsin 200y By 2mv mv mv -=-=题3.2:高空作业时系安全带是必要的,假如质量为51.0kg 的人不慎从高空掉下来,由于安全带的保护,使他最终被悬挂起来。

已知此时人离原处的距离为2米,安全带的缓冲作用时间为0.50秒。

求安全带对人的平均冲力。

题3.2解1:以人为研究对象,在自由落体运动过程中,人跌落至2 m 处时的速度为ghv 21= (1)在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有()12mv mv t -=∆+P F (2)由(1)式、(2)式可得安全带对人的平均冲力大小为 ()N 1014.123⨯=∆+=∆∆+=tgh m mg t mv mg F解2:从整个过程来讨论,根据动量定理有N 1014.1/23⨯=+∆=mg g h tmgF 题 3.3:如图所示,在水平地面上,有一横截面2m 20.0=S 的直角弯管,管中有流速为1s m 0.3-⋅=v 的水通过,求弯管所受力的大小和方向。

大物习题

大物习题
面密度分别为;;
;。
3.一空气平行板电容器,电容为C,两极板间距离为d。充电后,两极板间相互作用力为F,则两极板间的电势差为______________,极板上的电量为______________。
4.一电容为C的空气平行板电容器,接上电源充电至端电压为V后与电源断开。若把电容器的两个极板的间距增大至原来的3倍,则外力所做的功为。
(3)若外球接地, 和 为多少?(4)若内球接地, 和 为多少?
2.两个同心的薄金属球壳,内、外半径分别为 和 。球壳之间充满两层均匀电介质,其相对电容率分别为 和 ,两层电介质的分界面半径为 。设内球壳带有电荷 ,求电位移、场强分布和两球壳之间的电势差。
3.在极板间距为d的空气平行板电容器中,平行于极板插入一块厚度为 、面积与极板相同的金属板后,其电容为原来电容的多少倍?如果平行插入的是相对电容率为 的与金属板厚度、面积均相同的介质板则又如何?
2.在真空中,电流I由长直导线1沿垂直bc边方向经a点流入一电阻均匀分布的正三角形线框,再由b点沿平行ac边方向流出,经长直导线2返回电源,如图3-4所示。三角形框每边长为l,则在该正三角框中心O点处磁感应强度的大小 。
3.在一根通有电流I的长直导线旁,与之共面地放着一个长、宽各为a和b的矩形线框,线框的长边与载流长直导线平行,且二者相距为b,如图3-5所示。在此情形中,线框内的磁通量 ______________。
2.如图所示,一半径为R的半圆环,右半部均匀带电 ,左半部均匀带电 。问半圆环中心O点的电场强度大小为多少?方向如何?
3.图示为一个均匀带电的球层,其电荷体密度为,球层内表面半径为R1,外表面半径为R2。设无穷远处为电势零点,求该带电系统的场强分布和空腔内任一点的电势。
4.两个带等量异号电荷的均匀带电同心球面,半径分别为 和 。已知两者的电势差为450 V,求内球面上所带的电荷。

大物习题

大物习题

第一次 质点运动学、牛顿运动定律一、 选择题1.瞬时速度 v 的大小 v可以用下列哪个式子来表示: [ ]A .dt drB .dt r dC . dt r dD . 222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dz dt dy dt dx2.一质点沿X 轴作直线运动,其v-t 曲线如图所示,t =0时,质点于坐标原点,则t =4.5s 时质点在X 轴上位置为: [ ]A .0mB .5mC .-2mD .2m3. 质点作曲线运动,r (x,y)表示位置矢量,S 表示路程,下列表达式正确是:[ ]A.(1、2、4)B.(3、4、5)C.(1、3、6)D.(2、5、6)1.dv a dt τ=;2.dt dr =υ;3.dt ds =υ;4.dv a dt =;5.22d r a dt =;6.222dv v dt R ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=a 4.下列说法中正确的是:[ ]A .物体在作曲线运动时,有可能在某时刻的法向加速度为零.B .斜上抛物体,在最高点处的速度最小,加速度最大.C .不管加速度如何,平均速率表达式总可以写成:2/)(21v v v +=.D .物体运动加速度的大小越大,则速率越大.5.某质点作直线运动的运动学方程为3356x t t=-+ (SI),则该质点作 [ ]A .匀加速直线运动,加速度沿x 轴正方向.B .匀加速直线运动,加速度沿x 轴负方向.C .变加速直线运动,加速度沿x 轴正方向.D .变加速直线运动,加速度沿x 轴负方向.6. 一个原来静止的小球受到图示的两个力的作用,设力的作用时间为5秒,问下列哪种情况下小球最终获得的速率最大。

[ ]A .N F 8F ,6N 21==;B .N F 8F 21== ;C .N F 8F ,021==D .0F ,6N 21==F .7.用细绳系一小球使之于竖直平面内做圆周运动。

下面说法正确的是[ ]A .小球在任意位置都有切向加速度;B .小球在任意位置都有法向加速度;C .小球在任意位置绳子拉力和重力合力是惯性离心力的反作用力;D .小球运动到最高点时将受到重力、拉力和离心力的作用.二、填空题1. 质点以速度 )/( 3 2s m t t v +=沿 X 轴做直线运动, 2 s t =时,质点位于 5 m x =处,则该质点的运动学方程为:_____________________-______。

大物习题

大物习题

选择1、对质点系有下列几种说法:(1)质点系总动量的改变与内力无关;(2)质点系的总动能与内力无关;(3)质点系机械能的改变与保守内力无关。

对于这些说法,下述结论中正确的是(B)B、只有(1)、(3)是正确的2、对质点系的动量和机械能有下述三种说法。

(1)不受外力作用的系统,它的动量和机械能必然同时守恒;(2)内力是保守力的系统,当所受的合外力为零时,其机械能必然守恒;(3)只有保守内力而无外力作用的系统,它的动量和机械能必然守恒。

对于这些说法,下列结论中正确的是(C)C、只有(3)是正确的3、一力学系统由两个质点组成,它们之间只有引力作用。

若两质点所受外力的矢量和为零,则此系统中(C)C、动量守恒,但机械能和对一固定点的角动量是否守恒还不能断定4、关于角动量有以下四种说法,其中正确的是(B)B、一质点做直线运动,相对于直线上的任一点,质点的角动量一定为零5、一个人站在旋转平台的中央,两臂侧平举,整个系统以2πrad/s的角速度旋转,转动惯量为6.0kg·m平方;如果将两臂收回,该系统的转动惯量变为2.0kg·m平方。

此时系统的转动动能与原来的转动动能之比为(C)C、36、对一绕固定水平O轴匀速转动的转盘,沿如图所示的同一水平直线从相反方向射入两粒质量相同、速率相等的子弹,并留在盘中。

则子弹射入后的转盘的角速度应(B)B、减小第9页7、均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始下落。

在棒摆动到竖直位置的过程中,应有(A)A、角速度从小到大,角加速度从大到小8、关于力矩有以下几种说法,其中正确的是(B)B、作用力和反作用力对同一轴的力矩之和必为零9、在相对论的时空观中,以下的判断哪一个是正确的(C)C、在一个惯性系中,两个同时又同地的事件,在另一惯性系中一定同时又同地10、根据狭义相对论观点,下列说法正确的是(C)C、如果光速是无限大,同时的相对性就不会存在了11、根据狭义相对论,有下列几种说法:(1)所有惯性系统对物理基本规律都是等价的;(2)在真空中,光的速度与光的频率、光源的运动状态无关;(3)在任何惯性系中,光在真空中沿任何方向的传播速度都相同。

大物第一章习题及答案

大物第一章习题及答案

第一章章节测试题一、选择题(每小题3分,共计15分)1.以下四种运动形式中,a保持不变的运动是 ( D ) (A) 单摆的运动 (B) 匀速率圆周运动 (C) 行星的椭圆轨道运动 (D) 抛体运动2.一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为 t v,那么它运动的时间是 ( C ) (A) gt 0v v (B) gt 20v v(C) gt2/1202v v(D) gt22/1202v v3.下列说法中,哪一个是正确的? ( C )(A) 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m 的路程 (B) 斜向上抛的物体,在最高点处的速度最小,加速度最大 (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零 (D) 物体加速度越大,则速度越大4.一质点沿x 轴运动,其运动方程为2353x t t ,其中t 以s 为单位。

当t=2s 时,该质点正在 ( A ) (A )加速 (B )减速 (C )匀速 (D ) 静止5.下列关于加速度的说法中错误的是 ( C ) (A )质点加速度方向恒定,但其速度的方向仍可能在不断的变化着 (B )质点速度方向恒定,但加速度方向仍可能在不断的变化着(C )某时刻质点加速度的值很大,则该时刻质点速度的值也必定很大(D )质点作曲线运动时,其法向加速度一般不为零,但也有可能在某时刻法向加速度为零 二、填空题(每空2分,共计20分)1.一辆作匀加速直线运动的汽车,在6 s 内通过相隔60 m 远的两点,已知汽车经过第二点时的速率为15 m/s ,则汽车通过第一点时的速率v 1 =__5.00m/s_。

2.质点沿半径为R 的圆周运动,运动学方程为 223t ,则t时刻质点的法向加速度大小为a n = 16Rt 2。

3.一质点沿x 方向运动,其加速度随时间变化关系为:a = 3+2 t ,如果初始时刻质点的速度v 0为5 m/s ,则当t为3s 时,质点的速度 v = 23m/s 。

大物练习题

大物练习题
练习1.氢原子中,电子绕原子核沿半径为r的圆周运动,它等 效于一个圆形电流。如果外加一个磁感应强度为B的磁场,其 磁力线与轨道平面平行,那么电子的速度v ____________, 这个圆电流所受的磁力矩的大小M ____________。(设电子 质量为me,电子电量的绝对值为e)
e2 4pe0r 2
— —
R1 O
r

R2
— —

两金属圆筒间的电势差为
U Edr ln R2
2 0 R1

电子作圆周运动,必有
eE m v 2 eU / ln R2
rr
R1
由上式得
U mv2 ln R2 35.5V e R1
练习14. 如图所示,在静电实验装置中,有一均匀带电圆环,内外半 径分别为R1 0.4m,R2 0.8m,总电量为q -6107 C。现有一电 子沿轴线从无限远处射向带负电的圆环。欲使电子能穿过圆环,它 的初始动能至少多大?
=
me
v2 r
v=
e 4pe0mer
M
=
BIS
=
B
ve 2pr
pr 2
=
Ber 2
v
M = 1 Be2 4
r
pe 0
me
练习2. 1、2是两个完全相同的空气电容器,将其充Байду номын сангаас后与电
源断开,再将一块各向同性均匀电介质插入电容器1的两极板
间,则电容器2的电压U2 将 大、减小或不变)
,电场能量W2 将
。(填增
减少
练习13.如图所示,将半径分别为R1=5cm和R2=10cm的两个很长 的共轴金属圆筒分别连接到直流电源的两极上。今使一电子

大物习题答案第3章连续物体的运动

大物习题答案第3章连续物体的运动

⼤物习题答案第3章连续物体的运动第3章连续物体得运动⼀基本要求1 理解描写刚体定轴转动得物理量,并掌握⾓量与线量得关系。

2 理解⼒矩与转动惯量概念,掌握刚体绕定轴转动得转动定律。

3理解⾓动量概念,掌握质点在平⾯内运动以及刚体绕定轴转动情况下得⾓动量守恒定律。

4理解刚体定轴转动得转动动能概念,能载有刚体绕定轴转动得问题中正确得应⽤机械能守恒定律。

5了解流体得特点,掌握理想流体得概念。

6掌握理想流体得连续性⽅程与伯努利⽅程。

7了解伯努利⽅程得应⽤。

⼆基本概念1连续介质在宏观⼒学得范围内如果能忽视物体内部得不连续性,把物体瞧作质量连续分布得质点系。

2刚体⼤⼩与形状得变化可以忽略得连续介质。

3对定轴得⼒矩:⼒得⼤⼩与点到⼒得作⽤线得垂直距离得(⼒臂)乘积。

或=r×F4转动惯量转动惯量就是描述刚体在转动中惯性⼤⼩得物理量。

对于质点系得转动惯量。

如果物体得质量就是连续分布得,上式可写为。

5 质点得⾓动量质点对固定点O得位⽮为,质点m对原点O得⾓动量为6冲量矩⼒矩与作⽤时间得乘积,记作。

7刚体定轴转动得⾓动量8⼒矩得功9⼒矩得功率10刚体得转动动能11流体处于液态与⽓态得物体得统称。

特点就是物体各部分之间很容易发⽣相对运动,即流动性。

12理想流体绝对不可压缩与完全没有黏性得流体。

13定常流动流体流经空间任⼀给定点得速度就是确定得,并且不随时间变化。

在流速较低时定常流动得条件就是能够得到满⾜得。

14流线为了形象地描述流体得运动,在流体中画出⼀系列曲线,使曲线上每⼀点得切线⽅向与流经该点流体质点得速度⽅向相同, 这种曲线称为流线。

15流管在定常流动中,通过流体中得每⼀点都可以画⼀条流线。

由流线围成得管状区域, 就称为流管。

16流量单位时间内流过某⼀截⾯得流体体积, 称为流体流过该截⾯得体积。

三基本规律1刚体定轴转动⾓量与线量得关系=R = R2转动定律刚体绕定轴转动时,刚体得⾓加速度与所受得合外⼒矩成正⽐,与刚体得转动惯量成反⽐,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题十二
1 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.
解: (1)由λk d
D
x =明知,λ22.01010.63⨯⨯=
, ∴ 3
10
6.0-⨯=λm m o
A 6000=
(2) 3106.02
.010133
=⨯⨯⨯==∆-λd D x m m
2 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500o
A ,求此云母片的厚度. 解: 设云母片厚度为e ,则由云母片引起的光程差为
e n e ne )1(-=-=δ
按题意 λδ7=
∴ 610
106.61
58.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ
3 用5900=λo
A 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?
解:500
1=+b a m m 3100.2-⨯= m m 4
100.2-⨯=o
A
由λϕk b a =+sin )(知,最多见到的条纹级数max k 对应的2
π
ϕ=,
所以有39.35900
100.24m ax ≈⨯=+=
λ
b
a k ,即实际见到的最高级次为3max =k .
4 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6
rad ,它们都发出波长为5500o
A 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星? 解:由最小分辨角公式
D
λ
θ22
.1=
∴ 86.1310
84.4105.522.122.16
5
=⨯⨯⨯==--θλD
5 光由空气射入折射率为n 的玻璃.在题8图所示的各种情况中,用黑点和短线把反射光和折射光的振动方向表示出来,并标明是线偏振光还是部分偏振光.图中.arctan ,00n i i i =≠
题图8 解:见图.
题解8图。

相关文档
最新文档