锂电池发鼓胀气和爆炸原因分析(最新版)

合集下载

锂电池的保护措施和爆炸原因

锂电池的保护措施和爆炸原因

锂电池的保护措施和爆炸原因锂电池芯过充到电压高于 4.2V 后,会开始产生副作用。

过充电压愈高,危险性也跟着愈高。

锂电芯电压高于 4.2V 后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。

如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。

这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。

这些锂金属结晶会穿过隔膜纸,使正负极短路。

有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。

因此,锂电池充电时,一定要设定电压上限,才可以同时兼顾到电池的寿命、容量、和安全性。

最理想的充电电压上限为4.2V。

锂电芯放电时也要有电压下限。

当电芯电压低于2.4V 时,部分材料会开始被破坏。

又由于电池会自放电,放愈久电压会愈低,因此,放电时最好不要放到2.4V 才停止。

锂电池从3.0V 放电到2.4V 这段期间,所释放的能量只占电池容量的3%左右。

因此,3.0V 是一个理想的放电截止电压。

充放电时,除了电压的限制,电流的限制也有其必要。

电流过大时,锂离子来不及进入储存格,会聚集于材料表面。

这些锂离子获得电子后,会在材料表面产生锂原子结晶,这与过充一样,会造成危险性。

万一电池外壳破裂,就会爆炸。

因此,对锂离子电池的保护,至少要包含:充电电压上限、放电电压下限、及电流上限三项。

一般锂电池组内,除了锂电池芯外,都会有一片保护板,这片保护板主要就是提供这三项保护。

但是,保护板的这三项保护显然是不够的,全球锂电池爆炸事件还是频传。

要确保电池系统的安全性,必须对电池爆炸的原因,进行更仔细的分析。

二、爆炸的原因分析1、内部极化较大2、极片吸水,与电解液发生反应气鼓3、电解液本身的质量,性能问题4、注液时候注液量达不到工艺要求5、装配制程中激光焊焊接密封性能差,漏气,测漏气时漏测6、粉尘,极片粉尘首先易导致微短路7、正负极片较工艺范围偏厚,入壳难8、注液封口问题,钢珠密封性能不好导致气鼓9、壳体来料存在壳壁偏厚,壳体变形影响厚度.三、爆炸类型分析爆炸类型分析电池芯爆炸的类形可归纳为外部短路、内部短路、及过充三种。

深度剖析锂离子电池鼓胀原因

深度剖析锂离子电池鼓胀原因

深度剖析锂离子电池鼓胀原因锂离子电池由于具有高寿命、高容量被广泛推广使用,但是随着使用时间的延长,其存在鼓胀、安全性能不理想和循环衰减加快的问题也日益严重,引起了锂电界深度的分析和抑制研究。

根据实验研发经验,笔者将锂电池鼓胀的原因分为两类,一是电池极片的厚度变化导致的鼓胀;二是由于电解液氧化分解产气导致的鼓胀。

在不同的电池体系中,电池厚度变化的主导因素不同,如在钛酸锂负极体系电池中,鼓胀的主要因素是气鼓;在石墨负极体系中,极片厚度和产气对电池的鼓胀均起到促进作用。

一、电极极片厚度变化在锂电池使用过程中,电极极片厚度会发生一定的厚度变化,尤其是石墨负极。

据现有数据,锂电池经过高温存储和循环,容易发生鼓胀,厚度增长率约6%——20%,其中正极膨胀率仅为4%,负极膨胀率在20%以上。

锂电池极片厚度变大导致的鼓胀根本原因是受石墨的本质影响,负极石墨在嵌锂时形成LiCx(LiC24、LiC12和LiC6等),晶格间距变化,导致形成微观内应力,使负极产生膨胀。

下图是石墨负极极片在放置、充放电过程中的结构变化示意图。

石墨负极的膨胀主要是嵌锂后产生不可恢复膨胀导致的。

这部分膨胀主要与颗粒尺寸、粘接剂剂及极片的结构有关。

负极的膨胀造成卷芯变形,使电极与隔膜间形成空洞,负极颗粒形成微裂纹,固体电解质相界面(SEI)膜发生破裂与重组,消耗电解液,使循环性能变差。

影响负极极片变厚的因素有很多,粘接剂的性质和极片的结构参数是最重要的两个。

石墨负极常用的粘接剂是SBR,不同的粘接剂弹性模量、机械强度不同,对极片的厚度影响也不同。

极片涂布完成后的轧制力也影响负极极片在电池使用中的厚度。

在相同的应力下,粘接剂弹性模量越大,极片物理搁置反弹越小;充电时,由于Li+嵌入,使石墨晶格膨胀;同时,因负极颗粒及SBR的形变,内应力完全释放,使负极膨胀率急剧升高,SBR处于塑性变形阶段。

这部分膨胀率与SBR的弹性模量和断裂强度有关,导致SBR的弹性模量和断裂强度越大,造成不可逆的膨胀越小。

重磅软包锂离子电池鼓胀原因超全总结

重磅软包锂离子电池鼓胀原因超全总结

重磅软包锂离子电池鼓胀原因超全总结引起软包锂离子电池鼓胀的原因有很多。

根据实验研发经验,笔者将锂电池鼓胀的原因分为三类,一是电池极片在循环过程中膨胀导致的厚度增加;二是由于电解液氧化分解产气导致的鼓胀。

三是电池封装不严引进水分、角位破损等工艺缺陷引起的鼓胀。

在不同的电池体系中,电池厚度变化的主导因素不同,如在钛酸锂负极体系电池中,鼓胀的主要因素是气鼓;在石墨负极体系中,极片厚度和产气对电池的鼓胀均起到促进作用。

一、电极极片厚度变化石墨负极膨胀影响因素及机理讨论锂离子电池在充电过程中电芯厚度增加主要归结为负极的膨胀,正极膨胀率仅为2~4%负极通常由石墨、粘接剂、导电碳组成,其中石墨材料本身的膨胀率达到~10%,造成石墨负极膨胀率变化的主要影响因素包括:SEI膜形成、荷电状态(state of charge,SOC)、工艺参数以及其他影响因素。

(1)SEI膜形成锂离子电池首次充放电过程中,电解液在石墨颗粒在固液相界面发生还原反应,形成一层覆盖于电极材料表面的钝化层(SEI 膜),SEI膜的产生使阳极厚度显著增加,而且由于SEI膜产生,导致电芯厚度增加约4%。

从长期循环过程看,根据不同石墨的物理结构和比表面,循环过程会发生SEI的溶解和新SEI生产的动态过程,比如片状石墨较球状石墨有更大的膨胀率。

(2)荷电状态电芯在循环过程中,石墨阳极体积膨胀与电芯SOC 呈很好的周期性的函数关系,即随着锂离子在石墨中的不断嵌入(电芯SOC的提高)体积逐渐膨胀,当锂离子从石墨阳极脱出时,电芯SOC 逐渐减小,相应石墨阳极体积逐渐缩小。

(3)工艺参数从工艺参数方面看,压实密度对石墨阳极影响较大,极片冷压过程中,石墨阳极膜层中产生较大的压应力,这种应力在极片后续高温烘烤等工序很难完全释放。

电芯进行循环充放电时,由于锂离子的嵌入和脱出、电解液对粘接剂溶胀等多个因素共同作用,膜片应力在循环过程得到释放,膨胀率增大。

另一方面,压实密度大小决定了阳极膜层空隙容量大小,膜层中孔隙容量大,可以有效吸收极片膨胀的体积,空隙容量小,当极片膨胀时,没有足够的空间吸收膨胀所产生的体积,此时,膨胀只能向膜层外部膨胀,表现为阳极片的体积膨胀。

锂电池为什么会鼓胀气或者发生爆炸?

锂电池为什么会鼓胀气或者发生爆炸?

本文摘自再生资源回收-变宝网()锂电池为什么会鼓胀气或者发生爆炸?一、锂离子电池特性锂是化学周期表上直径最小也最活泼的金属。

体积小所以容量密度高,广受消费者与工程师欢迎。

但是,化学特性太活泼,则带来了极高的危险性。

锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。

为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。

这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。

这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。

锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。

锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。

锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。

放电时,整个程序倒过来。

为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。

好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。

保护措施:锂电池电芯过充到电压高于4.2V后,会开始产生副作用。

过充电压愈高,危险性也跟着愈高。

锂电芯电压高于4.2V后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。

如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。

这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。

这些锂金属结晶会穿过隔膜纸,使正负极短路。

有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。

因此,锂电池充电时,一定要设定电压上限,才可以同时兼顾到电池的寿命、容量、和安全性。

最理想的充电电压上限为 4.2V。

锂电芯放电时也要有电压下限。

锂电池鼓包产气

锂电池鼓包产气

锂电池鼓包产气锂电池作为目前主流的电池技术之一,在众多电子设备中得到了广泛应用。

然而,锂电池虽然具有高能量密度、长寿命等优点,但其也存在一些问题,其中之一就是鼓包产气的现象。

本文将就锂电池鼓包产气的原因、影响以及解决方法进行探讨。

我们需要了解什么是锂电池鼓包产气。

简单来说,锂电池鼓包产气指的是锂电池在使用过程中,电池内部产生气体,导致电池外壳膨胀、变形甚至爆炸的现象。

产生这种现象的原因主要有以下几点:1.电池内部结构问题:锂电池内部由正负极、隔膜和电解液组成,如果电池内部结构设计不合理,或者隔膜材料不符合要求,就容易导致电池内部产生气体积聚。

2.充放电过程中的化学反应:锂电池在充放电过程中,正极和负极之间会发生氧化还原反应,这些反应可能会产生气体,当气体不能及时排出时,就会导致电池鼓包。

3.过度充放电:如果电池在充电时过度充电,或者在放电时过度放电,就会导致电池内部产生气体积聚,进而引起鼓包产气。

锂电池鼓包产气不仅会影响电池的正常使用,还可能对人身安全造成威胁。

鼓包的电池外壳可能会在充放电过程中发生破裂,导致电解液泄漏,甚至引发火灾或爆炸。

因此,及早发现并解决锂电池鼓包产气的问题是非常重要的。

针对锂电池鼓包产气问题,可以采取以下措施进行解决:1.优化电池结构设计:改进电池内部结构,提高隔膜材料的质量,以减少气体积聚的可能性。

2.控制充放电过程中的温度:合理控制充放电过程中的温度,避免温度过高或过低,以减少气体产生的可能性。

3.严格控制充放电过程:合理控制充放电的电流和电压,避免过度充放电,以减少气体积聚。

4.加强电池质量检测:在生产过程中,严格把控电池的质量,确保每一颗电池都符合质量标准,以减少鼓包产气的风险。

5.合理使用和储存锂电池:在使用锂电池时,避免过度使用或过度充放电,同时在储存锂电池时,要注意避免长时间存放和高温环境。

锂电池鼓包产气是锂电池技术面临的一个重要问题。

了解产生鼓包产气的原因,并采取相应的解决措施,可以有效减少鼓包产气的风险,提高锂电池的安全性和可靠性。

锂电池爆炸的六个原因

锂电池爆炸的六个原因
当正极部位对面的负极部位容量不足,或是 根本没有容量时,充电时所产生的部分或全 部的锂就无法插入负极石墨的间层结构中, 会析在负极的表面,形成突起状“枝晶”, 而下一次充电时,这个突起部分更容易造成 锂的析出,经过几十至上百次的循环充放电 后,“枝晶”会长大,最后会刺穿隔膜纸, 使内部产生短路。
三、过充
电芯过充电时,正极的锂过度放出会使正极 的结构发生变化,而放出的锂过多也容易无 法插入负极中,也容易造成负极表面析锂, 而且,当电压达到4.5V以上时,电解液会分 解生产大量的气体。上面种种均可能造成爆 炸。
造成过充可能的原因
1、预充时电流设置过大; 2、预充柜个别点电流过大; 3、电芯容量不足; 4、检测时电流设置过大; 5、检测时个别点电压偏大; 6、用户使用时充电器电压偏大。
五、水分含量高
水分可以和电芯中的电解液反应,生产气体, 充电时,可以和生成的锂反应,生成氧化锂, 使电芯的容量损失,易使电芯过充而生成气 列生成的气体会使电 芯的内部压力增大,当电芯的外壳无法承受 时,电芯就会爆炸。
六、负极容量不足
造成负极容量不足可能的原因
1、正极来料容量偏高; 9、负极划痕; 2、负极来料容量偏低; 10、负极凹点; 3、正负极搅拌不均; 11、负极露箔; 4、正极敷料量偏大; 12、负极颗粒; 5、正极涂布不均; 13、负极压片时压死; 6、正极头尾部堆料; 14、正负极分档配对错误; 7、负极涂布不均; 15、负极包不住正极。 8、负极暗痕;
四、过放
过放电时,负极的性能受到较严重破坏,其表面上 的SEI膜被损坏,而且集流体铜箔受到较严重的腐 蚀氧化,导致负极阻抗增大,极化增强;最终电池 被损坏!
电池过放可能会给电池带来灾难性的后果,特别是大 电流过放,或反复过放对电池影响更大.一般而言,过 放电会使电池内压升高,正负极活性物质可逆性受到 破坏,即使充电也只能部分恢复,容量也会有明显衰 减.

手机电池膨胀的原因

手机电池膨胀的原因

手机电池膨胀的原因手机电池膨胀的原因手机电池膨胀的原因一、原因分析1、手机电池大部分使用的都是高能的锂电电池。

一般这种电池用就了就会出现鼓包和膨胀的现象。

出现这种现象还继续使用是非常的危险的,所以一旦出现这种情况要及时的换电池,不能继续使用,以免发生手机爆炸事件。

2、手机的电池一般来说,使用一两年就会达到使用寿命极限。

手机电池是不能长期使用的,最多使用三年,一两年之后手机的电池就会出现各种各样的问题。

导致这些问题出现的主要原因是电池的质量问题和平时的过度使用。

3、锂电池是一种金属属性的电池,这种电池暴露在空气中的时间久了,就很容易膨胀炸。

锂电池也是一种可以经过充电进行放电的金属物,所以它会和氧气产生化学反应。

是比较不耐用的。

二、处理的方法当手机的电池出现膨胀的时候,千万不能继续使用,一定要及时的清理掉。

但是及时的清理掉并不意味着你可以随手的丢进垃圾桶里,或者丢进一些易燃易爆物里。

手机电池一旦出现膨胀就意味着它随时会引起爆炸,要处理锂电池也是需要谨慎的,因为一不小心就会害人害己。

处理膨胀的手机电池,可以选择一个盒子或者袋子,将电池装起来,丢进可以回收金属物的垃圾箱里。

不能随便丢在自己家的垃圾桶里,膨胀的电池遇水之后是会产生一些有毒物质的,会影响健康。

发热预防及解决办法:预防方法:a、手机在正常室温时,发热不超过60℃属正常现象,是不会损坏电池的。

b、使用大电流充电器时间不宜太长,太长时间充电会使电池被损坏,同时也会产生热量。

c、充电器最好使用原装或质量信誉较好的产品。

d、如不急于使用的话,建议还是以座充(慢充方式)充电为好,不致使电池发热,使用手机原装充电器最好。

e、使用手机听歌或电池充电时如感觉手机有点热的话,可以用#0228#查看其温度,如超过60℃的话立即回到待机状态或换块电池使用,如在充电的话就立即停止。

两种类型的电池的区别两种类型的电池的区别,聚合物锂离子电池所用的正负极材料与液态锂离子都是相同的,正极材料分为钴酸锂、锰酸锂、三元材料和磷酸铁锂材料,负极为石墨,电池工作原理也基本一致。

锂电池发鼓胀气和爆炸原因分析详细版

锂电池发鼓胀气和爆炸原因分析详细版

文件编号:GD/FS-6355(安全管理范本系列)锂电池发鼓胀气和爆炸原因分析详细版In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities.编辑:_________________单位:_________________日期:_________________锂电池发鼓胀气和爆炸原因分析详细版提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。

,文档所展示内容即为所得,可在下载完成后直接进行编辑。

一、锂离子电池特性锂是化学周期表上直径最小也最活泼的金属。

体积小所以容量密度高,广受消费者与工程师欢迎。

但是,化学特性太活泼,则带来了极高的危险性。

锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。

为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。

这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。

这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。

锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。

锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。

锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。

放电时,整个程序倒过来。

为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。

好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。

锂电软包电池气鼓、硬鼓原因!

锂电软包电池气鼓、硬鼓原因!

锂电软包电池气鼓、硬鼓原因!第一篇:锂电软包电池气鼓、硬鼓原因!软包锂电池胀气的原因聚合物锂离子电池芯採用的是铝塑複合膜的包装技术,当电池芯内部由于异常化学反应的发生而产生气体时,Pocket会被充起,电池芯鼓胀(有轻微鼓胀和严重鼓胀两种情况),且不论外观如何,电池芯的使用性能(Capacity、Cycle life、C-rate等)会发生严重的失效,导致电池芯不能使用。

胀气会发生在生产过程中也会在客户甚至最终用户手中。

当然,电池芯在化成启动或Baking过程中会正常的产生一定量(一般很少)的气体,这根据所使用的原材料而异,这种气体在Degassing工序会被抽掉。

目前部分Model(一次封装成型电池芯)通过添加V18溶剂来消除这种SEI层形成、相介面稳定时所产生的气体。

但是由于工序异常所产生的气体在Degassing前表面非常明显或者Degassing后产生不能再消掉或者添加V18也不能消除。

这里简要介绍工序异常产生气体的原因:1.封装不良,由封装不良所引起胀气电池芯的比例已经大大地降低。

前面已经介绍了引起Top sealing、Side sealing和Degassing三边封装不良的原因,任何一边封装不良都会导致电池芯,表现以T op sealing 和Degassing居多,T op sealing主要是Tab位密封不良,Degassing主要是分层(包括受电解液和凝胶影响导致PP与Al脱离)。

封装不良引起空气中水分进入电池芯内部,引起电解液分解产生气体等。

2.Pocket表面破损,电池芯在流拉过程中,受到异常损坏或人为破环导致Pocket破损(如针孔)而使水分进入电池芯内部。

3.角位破损,由于折边角位铝的特殊变形,气袋晃动会扭曲角位导致Al破损(电池芯越大,气袋越大,越易破损),失去对水的阻隔作用。

可以在角位加皱纹胶或热熔胶缓解。

并且在顶封后的各工序禁止拿气袋移动电池芯,更要注意操作方式防止老化板上电芯池的摆动。

锂电池鼓包原因

锂电池鼓包原因

锂电池鼓包的原因
1、锂电池制造水平的难题是电极镀层不均匀,生产工艺不平整。

2、短路故障的短反射,转化为大量热量,导致电解液溶液溶解汽化,引起锂离子。

3、电池组长期不使用,也会产生鼓包现象,因为气体在一定水平上是导电的,所以放电时间等于可充电电池的正负直接接触。

4、锂电池充电器质量差。

充电头采用虚假或不良的电子装置制成,热量大,主要参数不准确,无法控制蓄电池充电限制器。

5、电池充电时间太长。

如果过多的电池充电会导致大量的蒸汽冲洗电极,使活性材料内的锂电池脱落,减少电池循环次数,加速充电电池缺水率,危及锂电池的溶解,使电池温度升高,使其充满鼓形。

锂电池过度放电产生气体的原因

锂电池过度放电产生气体的原因

锂电池过度放电产生气体的原因锂电池是一种高效、环保的能源存储设备,广泛应用于电动车、手机、笔记本电脑等电子产品中。

然而,锂电池在使用过程中存在一个问题,就是可能会发生过度放电而产生气体。

首先,让我们了解一下什么是锂电池的过度放电。

锂电池是一种化学电源,其正极和负极之间的电压差产生了电流,利用这种电流来提供电力。

然而,当锂电池在使用过程中被长时间放电至低电量状态时,过度放电就会发生。

而过度放电会导致电池内部的化学反应不完全,产生气体。

那么,为什么过度放电会产生气体呢?这是因为锂电池的基本工作原理是通过离子在正负极之间的来回迁移来实现电流输出。

当电池发生过度放电时,锂离子会被释放出来,与电解液中的成分发生反应,产生气体。

这种气体主要是可燃性的,比如氧气和氢气。

如果没有及时处理,气体的积聚可能会导致电池内部压力升高,进而引发电池爆炸的风险。

那么,如何避免锂电池过度放电产生气体呢?首先,我们要合理使用电池,避免长时间放电至低电量状态。

当电池电量接近耗尽时,应及时充电,避免超低电量情况下的使用。

同时,在购买电子产品时,我们应选择具有过放电保护功能的锂电池,这样可以有效预防过度放电问题。

此外,正确储存电池也非常重要。

电池在未使用时,应存放在干燥、通风的地方,远离高温和潮湿环境。

如果我们长期不使用电子设备,应将电池取出,并进行适当的储存,以避免过度放电。

总的来说,锂电池过度放电产生气体主要是因为锂离子与电解液中的成分反应而产生的。

为了避免这个问题,我们应合理使用和储存电池,选择具有过放电保护功能的产品。

只有正确使用和保养锂电池,我们才能够安全高效地享受现代科技带来的便利。

电池 - 软包锂离子电池鼓胀原因超全总结

电池 - 软包锂离子电池鼓胀原因超全总结

电池| 软包锂离子电池鼓胀原因超全总结引起软包锂离子电池鼓胀的原因有很多。

根据实验研发经验,笔者将锂电池鼓胀的原因分为三类,一是电池极片在循环过程中膨胀导致的厚度增加;二是由于电解液氧化分解产气导致的鼓胀。

三是电池封装不严引进水分、角位破损等工艺缺陷引起的鼓胀。

在不同的电池体系中,电池厚度变化的主导因素不同,如在钛酸锂负极体系电池中,鼓胀的主要因素是气鼓;在石墨负极体系中,极片厚度和产气对电池的鼓胀均起到促进作用。

一、电极极片厚度变化石墨负极膨胀影响因素及机理讨论锂离子电池在充电过程中电芯厚度增加主要归结为负极的膨胀,正极膨胀率仅为2~4%,负极通常由石墨、粘接剂、导电碳组成,其中石墨材料本身的膨胀率达到~10%,造成石墨负极膨胀率变化的主要影响因素包括:SEI膜形成、荷电状态(state of charge,SOC)、工艺参数以及其他影响因素。

(1)SEI膜形成锂离子电池首次充放电过程中,电解液在石墨颗粒在固液相界面发生还原反应,形成一层覆盖于电极材料表面的钝化层(SEI膜),SEI膜的产生使阳极厚度显著增加,而且由于SEI膜产生,导致电芯厚度增加约4%。

从长期循环过程看,根据不同石墨的物理结构和比表面,循环过程会发生SEI的溶解和新SEI生产的动态过程,比如片状石墨较球状石墨有更大的膨胀率。

(2)荷电状态电芯在循环过程中,石墨阳极体积膨胀与电芯SOC呈很好的周期性的函数关系,即随着锂离子在石墨中的不断嵌入(电芯SOC的提高)体积逐渐膨胀,当锂离子从石墨阳极脱出时,电芯SOC逐渐减小,相应石墨阳极体积逐渐缩小。

(3)工艺参数从工艺参数方面看,压实密度对石墨阳极影响较大,极片冷压过程中,石墨阳极膜层中产生较大的压应力,这种应力在极片后续高温烘烤等工序很难完全释放。

电芯进行循环充放电时,由于锂离子的嵌入和脱出、电解液对粘接剂溶胀等多个因素共同作用,膜片应力在循环过程得到释放,膨胀率增大。

另一方面,压实密度大小决定了阳极膜层空。

电池爆炸分析

电池爆炸分析

电池爆炸分析1、电池发生爆炸的原因○1外部短路当电芯外部发生短路,电子组又未能切断回路时,电池内部会产生高热,造成部分电解液汽化,将电池外壳撑大。

当电池内部温度高到135摄氏度时,质量好的隔膜纸,会将细孔关闭,电化学反应终止或近乎终止,电流骤降,温度也慢慢下降,进而避免了爆炸发生。

但是,细孔关闭率太差,或是细孔根本不会关闭的隔膜纸,会让电池温度继续升高,更多的电解液汽化,最后将电池外壳撑破,甚至将电池温度提高到使材料燃烧并爆炸。

○2内部短路由于内部产生短路现象,电芯大电流放电,产生大量的热,烧坏隔膜,而造成更大的短路现象,这样电芯就会产生高温,使电解液分解成气体,造成内部压力过大,当电芯的外壳无法承受这个压力时,电芯就会爆炸。

容易造成内部短路的几个原因如下:激光焊时,热量经壳体传导到正极耳上,使正极耳温度高,如果上部胶纸没有隔开正极耳及隔膜,热的正极耳就会使隔膜纸烧坏或收缩,造成内部短路,而形成爆炸。

在负极耳电焊时,热量传导到负极耳,如果高温胶纸未贴好,负极耳上的热量就会烧坏隔膜,造成内部短路,形成爆炸。

在底部铝镍复合带处点焊时会在底部壳壁产生大量的热,传导极芯的底部,如果高温胶纸未完全包住隔膜,会烧坏隔膜,造成内部短路,形成爆炸。

铜箔与铝箔的毛刺穿破隔膜,或是锂原子的树枝状结晶穿破隔膜所造成。

这些细小的针状金属,会造成微短路。

由于,针很细有一定的电阻值,因此,电流不见得会很大。

铜铝箔毛刺系在生产过程造成,可观察到的现象是电池漏电太快,多数可被电芯厂或是组装厂筛检出来。

而且,由于毛刺细小,有时会被烧断,使得电池又恢复正常。

因此,因毛刺微短路引发爆炸的几率不高。

○3过充锂电池芯过充到电压高于4.2V后,会开始产生副作用。

过充电压愈高,危险性也跟着愈高。

锂电芯电压高于4.2V后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。

如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。

锂离子电池燃烧或爆炸的三种原因

锂离子电池燃烧或爆炸的三种原因

锂离子二次电池以其高比能量、较高的工作电压、体积小、重量轻等优点已成为移动通讯、笔记本电脑等便携式电子产品的主要电源之一。

然而,锂离子电池在充放电过程中由于使用不当,会出现爆炸的危险;特别是在滥用条件下(如受热、过充、短路、振动、挤压等),电池会出现燃烧、爆炸乃至人员受伤等情况。

因此,研究锂离子电池的爆炸机理对提高锂离子电池的安全性有重要的意义。

看到上图的电池爆炸图片,找电池网行业人士分析了一下锂离子电池燃烧或爆炸的3种可能性,主要如下三种。

一、当锂离子电池受热时,电池内部的反应如一个反应链,各个反应相互促进,依次进行。

首先是SEI膜分解放出热量加热了电池,促使负极与溶剂的反应放出更多的热量,导致负极与粘结剂的反应、溶剂分解,接接着正极开始进行热分解反应,放出大量的热与气体,最后导致电池燃烧或爆炸。

二、在锂离子电池充电初期,电流通过电池时一部分电能转化为热能,欧姆极化也产生一部分热量,但电池表面温度上升的很慢;当电池达到全充满状态时,由锂离子继续的嵌入反应变成锂金属在负极表面的沉积,溶剂被氧化(由过充引起的溶剂的氧化反应放出的热量远远高于可逆状态下锂离子与溶剂反应放出的热量)放出的热量加热了电池;随着电池温度升高,金属锂与溶剂反应、嵌锂碳与溶剂反应相继发生,热量失控,同时伴随发生溶剂的分解、粘结剂与锂金属的反应。

三、短路、针刺和撞击对锂离子电池造成的危害大致相同。

短路时,电流通过电池的瞬间产生大量的热,加热电池,使电池温度升高到正极分解的温度,正极热分解又导致电池热量失控;针刺速度很快时,在针刺的部位造成局部短路并产生大量的热,使电池内部温度升高到正极热分解的温度;当锂离子电池受到撞击时,电极上过电压损失产生热量,促使溶剂与负极的反应,放出的热量又进一步加热电池,促使正极热分解反应发生,导致热量的失控。

软包锂电池胀气的原因

软包锂电池胀气的原因

软包锂电池胀气的原因聚合物锂离子电池芯采用的是铝塑複合膜的包装技术,当电池芯内部由于异常化学反应的发生而产生气体时,Pocket会被充起,电池芯鼓胀(有轻微鼓胀和严重鼓胀两种情况),且不论外观如何,电池芯的使用性能(Capacity、Cycle life、C-rate等)会发生严重的失效,导致电池芯不能使用。

胀气会发生在生产过程中也会在客户甚至最终用户手中。

当然,电池芯在化成启动或Baking过程中会正常的产生一定量(一般很少)的气体,这根据所使用的原材料而异,这种气体在Degassing工序会被抽掉。

目前部分Model(一次封装成型电池芯)通过添加V18溶剂来消除这种SEI层形成、相介面稳定时所产生的气体。

但是由于工序异常所产生的气体在Degassing前表面非常明显或者Degassing后产生不能再消掉或者添加V18也不能消除。

这里简要介绍工序异常产生气体的原因:1.封装不良,由封装不良所引起胀气电池芯的比例已经大大地降低。

前面已经介绍了引起Top sealing、Side sealing和Degassing三边封装不良的原因,任何一边封装不良都会导致电池芯,表现以Top sealing 和Degassing居多,Top sealing 主要是Tab位密封不良,Degassing主要是分层(包括受电解液和凝胶影响导致PP与Al脱离)。

封装不良引起空气中水分进入电池芯内部,引起电解液分解产生气体等。

2.Pocket表面破损,电池芯在流拉过程中,受到异常损坏或人为破环导致Pocket 破损(如针孔)而使水分进入电池芯内部。

3.角位破损,由于折边角位铝的特殊变形,气袋晃动会扭曲角位导致Al破损(电池芯越大,气袋越大,越易破损),失去对水的阻隔作用。

可以在角位加皱纹胶或热熔胶缓解。

并且在顶封后的各工序禁止拿气袋移动电池芯,更要注意操作方式防止老化板上电芯池的摆动。

4.电池芯内部水含量超标,前面我们已经介绍过对电池芯内水含量有一定的要求,一旦水含量超标,电解液会失效在化成或Degassing后产生气体。

锂电池爆炸五大原因

锂电池爆炸五大原因

锂电池爆炸五大原因
一、锂电池外部短路
外部短路可能由于操作不当,或误使用所造成,由于外部短路,电池放电电流很大,会使电芯的发热,高温会使电芯内部的隔膜收缩或完全坏坏,造成内部短路,因而起火。

二、锂电池内部短路
由于内部出现短路现象,电芯大电流放电,出现大量的热,烧坏隔膜,而造成更大的短路现象,这样电芯就会出现高温,使电解液分解成气体,造成内部压力过大,当电芯的外壳无法承受这个压力时,电芯就会起火。

三、锂电池过充
电芯过充电时,正极的锂过度放出会使正极的结构发生变化,而放出的锂过多也容易无法插入负极中,也容易造成负极表面析锂,而且,当电压达到 4.5V 以上时,电解液会分解生产大量的气体。

上面种种均可能造成起火。

四、水份含量过高
水份可以和电芯中的电解液反应,生产气体,充电时,可以和生成的锂反应,生成氧化锂,使电芯的容量损失,易使电芯过充而生成气体,水份的分解电压较低,充电时很容易分解生成气体,当这一系列生成的气体会使电芯的内部压力增大,当电芯的外壳无法承受时,电芯就会爆炸。

五、锂电池负极容量不足
当正极部位对面的负极部位容量不足,或是根本没有容量时,充电时所出现的部分或全部的锂就无法插入负极石墨的间层结构中,会析在负极的表面,形成突起状枝晶,而下一次充电时,这个突起部分更容易造成锂的析出,经过几十至上百次的循环充放电后,枝晶会长大,最后会刺穿隔膜纸,使内部出现短路。

锂电池发鼓胀气和爆炸原因分析(最新版)

锂电池发鼓胀气和爆炸原因分析(最新版)

( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改锂电池发鼓胀气和爆炸原因分析(最新版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes锂电池发鼓胀气和爆炸原因分析(最新版)一、锂离子电池特性锂是化学周期表上直径最小也最活泼的金属。

体积小所以容量密度高,广受消费者与工程师欢迎。

但是,化学特性太活泼,则带来了极高的危险性。

锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。

为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。

这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。

这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。

锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。

锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。

锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。

放电时,整个程序倒过来。

为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。

好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。

保护措施:锂电池电芯过充到电压高于4.2V后,会开始产生副作用。

过充电压愈高,危险性也跟着愈高。

锂电芯电压高于4.2V后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。

如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改锂电池发鼓胀气和爆炸原因分析(最新版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes锂电池发鼓胀气和爆炸原因分析(最新版)一、锂离子电池特性锂是化学周期表上直径最小也最活泼的金属。

体积小所以容量密度高,广受消费者与工程师欢迎。

但是,化学特性太活泼,则带来了极高的危险性。

锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。

为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。

这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。

这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。

锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。

锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。

锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。

放电时,整个程序倒过来。

为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。

好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。

保护措施:锂电池电芯过充到电压高于4.2V后,会开始产生副作用。

过充电压愈高,危险性也跟着愈高。

锂电芯电压高于4.2V后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。

如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。

这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。

这些锂金属结晶会穿过隔膜纸,使正负极短路。

有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。

因此,锂电池充电时,一定要设定电压上限,才可以同时兼顾到电池的寿命、容量、和安全性。

最理想的充电电压上限为4.2V。

锂电芯放电时也要有电压下限。

当电芯电压低于2.4V时,部分材料会开始被破坏。

又由于电池会自放电,放愈久电压会愈低,因此,放电时最好不要放到2.4V才停止。

锂电池从3.0V放电到2.4V 这段期间,所释放的能量只占电池容量的3%左右。

因此,3.0V是一个理想的放电截止电压。

充放电时,除了电压的限制,电流的限制也有其必要。

电流过大时,锂离子来不及进入储存格,会聚集于材料表面。

这些锂离子获得电子后,会在材料表面产生锂原子结晶,这与过充一样,会造成危险性。

万一电池外壳破裂,就会爆炸。

因此,对锂离子电池的保护,至少要包含:充电电压上限、放电电压下限、及电流上限三项。

一般锂电池组内,除了锂电池芯外,都会有一片保护板,这片保护板主要就是提供这三项保护。

但是,保护板的这三项保护显然是不够的,全球锂电池爆炸事件还是频传。

要确保电池系统的安全性,必须对电池爆炸的原因,进行更仔细的分析。

二、电池爆炸原因:1、内部极化较大;2、极片吸水,与电解液发生反应气鼓;3、电解液本身的质量,性能问题;4、注液时候注液量达不到工艺要求;5、装配制程中激光焊焊接密封性能差,漏气.测漏气漏测;6、粉尘,极片粉尘首先易导致微短路,具体原因未知;7、正负极片较工艺范围偏厚,入壳难;8、注液封口问题,钢珠密封性能不好导致气鼓;9、壳体来料存在壳壁偏厚,壳体变形影响厚度;三、爆炸类型分析电池芯爆炸的类形可归纳为外部短路、内部短路、及过充三种。

此处的外部系指电芯的外部,包含了电池组内部绝缘设计不良等所引起的短路。

当电芯外部发生短路,电子组件又未能切断回路时,电芯内部会产生高热,造成部分电解液汽化,将电池外壳撑大。

当电池内部温度高到135摄氏度时,质量好的隔膜纸,会将细孔关闭,电化学反应终止或近乎终止,电流骤降,温度也慢慢下降,进而避免了爆炸发生。

但是,细孔关闭率太差,或是细孔根本不会关闭的隔膜纸,会让电池温度继续升高,更多的电解液汽化,最后将电池外壳撑破,甚至将电池温度提高到使材料燃烧并爆炸。

内部短路主要是因为铜箔与铝箔的毛刺穿破隔膜,或是锂原子的树枝状结晶穿破膈膜所造成。

这些细小的针状金属,会造成微短路。

由于,针很细有一定的电阻值,因此,电流不见得会很大。

铜铝箔毛刺系在生产过程造成,可观察到的现象是电池漏电太快,多数可被电芯厂或是组装厂筛检出来。

而且,由于毛刺细小,有时会被烧断,使得电池又恢复正常。

因此,因毛刺微短路引发爆炸的机率不高。

这样的说法,可以从各电芯厂内部都常有充电后不久,电压就偏低的不良电池,但是却鲜少发生爆炸事件,得到统计上的支持。

因此,内部短路引发的爆炸,主要还是因为过充造成的。

因为,过充后极片上到处都是针状锂金属结晶,刺穿点到处都是,到处都在发生微短路。

因此,电池温度会逐渐升高,最后高温将电解液气体。

这种情形,不论是温度过高使材料燃烧爆炸,还是外壳先被撑破,使空气进去与锂金属发生激烈氧化,都是爆炸收场。

但是过充引发内部短路造成的这种爆炸,并不一定发生在充电的当时。

有可能电池温度还未高到让材料燃烧、产生的气体也未足以撑破电池外壳时,消费者就终止充电,带手机出门。

这时众多的微短路所产生的热,慢慢的将电池温度提高,经过一段时间后,才发生爆炸。

消费者共同的描述都是拿起手机时发现手机很烫,扔掉后就爆炸。

综合以上爆炸的类型,我们可以将防爆重点放在过充的防止、外部短路的防止、及提升电芯安全性三方面。

其中过充防止及外部短路防止属于电子防护,与电池系统设计及电池组装有较大关系。

电芯安全性提升之重点为化学与机械防护,与电池芯制造厂有较大关系。

四、设计规范由于全球手机有数亿只,要达到安全,安全防护的失败率必须低于一亿分之一。

由于,电路板的故障率一般都远高于一亿分之一。

因此,电池系统设计时,必须有两道以上的安全防线。

常见的错误设计是用充电器(adaptor)直接去充电池组。

这样将过充的防护重任,完全交给电池组上的保护板。

虽然保护板的故障率不高,但是,即使故障率低到百万分之一,机率上全球还是天天都会有爆炸事故发生。

电池系统如能对过充、过放、过电流都分别提供两道安全防护,每道防护的失败率如果是万分之一,两道防护就可以将失败率降到一亿分之一。

常见的电池充电系统方块图如下,包含充电器及电池组两大部分。

充电器又包含适配器(Adaptor)及充电控制器两部分。

适配器将交流电转为直流电,充电控制器则限制直流电的最大电流及最高电压。

电池组包含保护板及电池芯两大部分,以及一个PTC来限定最大电流。

五、文字方块:适配器交流变直流文字方块:充电控制器限流限压文字方块:充电器文字方块:保护板过充、过放过流等防护文字方块:电池组文字方块:限流片文字方块:电池芯以手机电池系统为例,过充防护系利用充电器输出电压设定在4.2V左右,来达到第一层防护,这样就算电池组上的保护板失效,电池也不会被过充而发生危险。

第二道防护是保护板上的过充防护功能,一般设定为4.3V。

这样,保护板平常不必负责切断充电电流,只有当充电器电压异常偏高时,才需要动作。

过电流防护则是由保护板及限流片来负责,这也是两道防护,防止过电流及外部短路。

由于过放电只会发生在电子产品被使用的过程。

因此,一般设计是由该电子产品的线路板来提供第一到防护,电池组上的保护板则提供第二道防护。

当电子产品侦测到供电电压低于3.0V时,应该自动关机。

如果该产品设计时未设计这项功能,则保护板会在电压低到2.4V时,关闭放电回路。

总之,电池系统设计时,必须对过充、过放、与过电流分别提供两道电子防护。

其中保护板是第二道防护。

把保护板拿掉后充电,如果电池会爆炸就代表设计不良。

上述方法虽然提供了两道防护,但是由于消费者在充电器坏掉后,常会买非原厂充电器来充电,而充电器业者,基于成本考虑,常将充电控制器拿掉,来降低成本。

结果,劣币驱逐良币,市面上出现了许多劣质充电器。

这使得过充防护失去了第一道也是最重要的一道防线。

而过充又是造成电池爆炸的最重要因素,因此,劣质充电器可以称得上是电池爆炸事件的元凶。

当然,并非所有的电池系统都采用如上图的方案。

在有些情况下,电池组内也会有充电控制器的设计。

例如:许多笔记型计算机的外加电池棒,就有充电控制器。

这是因为笔记型计算机一般都将充电控制器做在计算机内,只给消费者一个适配器。

因此,笔记型计算机的外加电池组,就必须有一个充电控制器,才能确保外加电池组在使用适配器充电时的安全。

另外,使用汽车点烟器充电的产品,有时也会将充电控制器做在电池组内。

最后的防线如果电子的防护措施都失败了,最后的一道防线,就要由电芯来提供了。

电芯的安全层级,可依据电芯能否通过外部短路和过充来大略区分等级。

由于,电池爆炸前,如果内部有锂原子堆积在材料表面,爆炸威力会更大。

而且,过充的防护常因消费者使用劣质充电器而只剩一道防线,因此,电芯抗过充能力比抗外部短路的能力更重要。

云博创意设计MzYunBo Creative Design Co., Ltd.。

相关文档
最新文档