岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程岩石矿物分析是地球科学中重要的研究手段,通过对岩石和矿物样品的化学和物理性质的分析,可以揭示地壳和地球内部的组成、演化历史和构造过程。
以下是岩石矿物分析的基本流程。
野外采样是岩石矿物分析的第一步。
采样地点应根据研究目的和地质背景选择,通常包括岩石表面和深度样品。
采样过程中需要考虑到样品的均匀性和代表性,避免被外来物质污染。
然后,样品的准备与处理是岩石矿物分析的重要环节。
样品需要进行物理破碎和粉碎成适当的颗粒度,以便于后续分析。
对于不同类型的分析,样品有时还需要进行特殊处理,如磨片、制薄片、腐蚀去脏等。
接下来,进行化学分析。
化学分析是岩石矿物分析中最常用的手段之一。
化学分析可以揭示样品中各种元素的含量和组成,常见的包括岩石主量元素(Si、Al、Fe等)和微量元素(Mg、Ca、K、Na等),以及一些稀有元素(如REE等)。
常用的化学分析方法包括电感耦合等离子体发射光谱仪(ICP-OES)、电感耦合等离子体质谱仪(ICP-MS)等。
在化学分析的基础上,可以进行岩石矿物的定性和定量分析。
定性分析可以鉴定岩石矿物的种类和存在状态,常用的手段包括X射线衍射分析(XRD)、扫描电子显微镜(SEM)和能量色散X射线光谱仪(EDS)等。
定量分析可以测定岩石中各个矿物的含量和比例,常见的方法有全岩岩石矿物分析、显微镜下定量测定和图像分析等。
物理分析是岩石矿物分析中的另一个重要环节。
物理分析可以测定岩石和矿物的物理性质,如密度、磁性、热性等。
常用的物理分析方法包括比重计、振动样品磨砂仪、磁定向仪等。
物理分析可以辅助判断岩石的成因、变质作用和构造特征等。
将分析结果进行整理和解释。
根据化学和物理分析的结果,可以推断岩石的成因类型、含矿性和背景物质来源等。
结合地质背景资料和地球模型,可以进一步解释和推断岩石和矿物样品的演化历史和成因机制。
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程岩石矿物分析是地质学和矿物学研究的基础工作之一,也是矿床勘查和资源评价的重要手段。
岩石矿物分析的基本流程包括取样、制片、显微镜观察和化学分析等步骤。
本文将围绕这些步骤展开,详细介绍岩石矿物分析的基本流程及相关技术。
1. 取样取样是岩石矿物分析的第一步,取样的目的是获取代表性的样品,以进行后续的研究和分析。
在取样过程中,需要注意选择合适的位置和方式进行取样,保证样品的代表性和一致性。
同时还需要注意样品的标识和编号,以便于后续的实验和数据整理。
2. 制片制片是岩石矿物分析的重要步骤,主要是将取样的岩石样品进行切片或打薄,以获取透明或半透明的薄片,用于显微镜观察和分析。
制片的过程需要使用专业的设备和工具,例如切片机、研磨机等,并且需要掌握一定的制片技术,以确保制片的质量和薄片的代表性。
3. 显微镜观察显微镜观察是岩石矿物分析的核心步骤,通过显微镜观察可以获得岩石矿物的形态特征、颜色、透明度、晶体结构等信息,从而进行定性和定量的分析。
在显微镜观察中,需要使用各种显微镜和配套的附件,例如偏光显微镜、偏光镜片、偏光光源等,同时需要掌握显微镜的操作技巧和分析方法,以准确地观察和描述岩石矿物的特征。
4. 化学分析化学分析是岩石矿物分析的重要手段,通过化学分析可以确定岩石矿物的化学成分和元素含量,从而进行岩石矿物的定性和定量分析。
常用的化学分析方法包括X射线荧光光谱分析、电子探针分析、化学分析仪分析等,这些方法需要使用专业的设备和仪器,并且需要有一定的化学分析技术和经验以确保分析结果的准确性和可靠性。
5. 数据整理和分析数据整理和分析是岩石矿物分析的最后一步,通过对显微镜观察和化学分析的数据进行整理和分析,可以得到岩石矿物的特征和性质,从而进行岩石矿物的分类和识别。
同时还可以通过数据分析得到岩石矿物的成因和生成条件,为地质学和矿物学的研究提供重要的参考和依据。
岩石矿物分析是地质学和矿物学研究的重要工作之一,通过取样、制片、显微镜观察和化学分析等步骤,可以得到岩石矿物的形态特征、化学成分和性质,为地质学和矿物学的研究提供重要的数据和信息。
岩石矿物化学分析的基本流程
这样能够提高工作的效率,减少问题的出现,准确的进行定位,从而实现进一步的发展,推动地质工作的顺利进行,使得相关单位能够得到更好的发展,从而有效的进行工程的改造,及时的对自然灾害进行预防,对各个方面的发展都起到了非常重要的作用,是现在非常重视的研究内容,在技术上和发展理念上都得到了很好的突破,使得地质工作获得了更多的收益。
2 关于岩石矿物分析工作的基本流程2.1 选择试样和加工2.1.1 关于采样点的布设选择试样以及加工是整个岩石矿物分析工作当中一个非常重要的环节,在实际的采样工作当中,需要合理的去布设采样点,结合实际的条件尽可能的将试样点分散开,不要出现采样点太集中的现象。
因为,采样工作在整个分析工作当中都是非常关键的,采样点布设的位置是否合理在一定程度上会影响到采样分析的结果。
所以,相关工作人员在布设采样点的时候,一定要对当地的矿区各方面情况进行一个全面的了解,同时也需要对当地的地形进行全面的分析,这样才能够更加合理的去进行采样点的布设工作,从而保证实验能够全面地反映出当地不同区域的岩石矿物的实际情况。
因此,工作人员在进行采样部社工作的时候,一定要足够仔细认真,这样才能够尽可能的去避免,由于采样点布设不合理而导试验结果出现片面的现象。
2.1.2 关于试样的选择试样的选择也是非常的重要,相关工作人员在提取试样的时候,可以充分能利用之设置好的工程点,通过分析可以将一些符合要求的工程点来当作采样点进行使用,并且也可以直接利用之前的矿芯以及岩芯。
在进行采集的时候,需要对之前开采过的矿山进行全面的查看和利用,因为,之前相关的工作人员对这些矿山已经进行过有效的勘察和采矿工作,所以可以直接选择其中符合相关要求,或者是最能够显示工业品级的工程点作为采样点来进行使用。
在实际的试样提取工作当中,如果能够充分的利用之前设置的工程点来进行采样工作,不仅可以有效的减少工作人员的压力,还可以更加明显的表现出才让结果,从而有效的提高试样提取工作的质量和效率。
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程我国地质业的发展对地质勘探的要求逐渐提高,岩石矿物作为地质勘探的基本成分在矿物分析中起着关键性的作用。
岩石矿物按照分析对象可以将其分为金属矿物和非金属矿物,为了了解矿物的组成成分,需要按照矿物的基本流程对岩石矿物进行分析,实现矿物质的优化利用,进一步提高其经济价值和使用效益。
标签:岩石矿物分析基本流程岩石矿物是地质作用下产生的矿物质,对这种矿物质进行分析是化学地质工作的首要内容,对整个地质工作能够起到指导性的作用。
岩石矿物质具有多种种类和组成元素,还具有多样化的特点,所以导致矿物质进行分析的过程相对复杂。
对岩石矿物质进行分析的过程中应该掌握其基本的分析流程,对矿物质中所含有的成分进行仔细的分析,从而提高岩石矿物质分析的价值。
1岩石矿物的概述及其分析的重要性1.1岩石矿物的基本概述岩石矿物是地制作用下产生的一种自然聚合体,其主要是由一种或是多种化学物质组合而成的。
由于自然界中有多种化学元素,这些化学元素的组合方式具有多样化,随着地质作用使得岩矿也形成了多样化的种类。
自然界中常见的岩矿是多种元素的化合物质,主要有碳酸盐类矿物、含氧矿物、硅酸盐矿物和硫化矿物等,这些物质有其本身的特性和物理性质,可以根据这些物质对矿物质进行识别。
其中,有些矿物质还可以形成一种晶体的形式,例如立方体的食盐、六面体的水晶、六边形的云母等,还有一些不规则的矿物质。
1.2对岩石矿物进行分析的重要性现代化的发展促进了工业的发展,也使得一些工业原料得到重视,主要组成工业原料的成分有金属和非金属物质,大部分的工业原料都是从岩石矿物质分析中取得的。
随着工业的发展,较多的工业原料已经不能满足工业发展的需求,所以需要对岩石矿物质的成分进行分析,从中找出新型的原料使其能够满足工业发展的要求。
2岩石矿物分析的基本流程2.1获取矿物分析的加工试样加工试样的获取是进行矿物质分析的第一步,也是关键环节,所以需要采取得当的加工方式和合理的操作方式来对矿藏的勘探情况进行指导,计算矿物质的储藏量。
浅谈岩石矿物分析的基本流程
伊宁 8 3 5 0 0 0 )
岩石矿物是对整 个矿物质进行基础性 分析的T作 , 属 于化学 地质 工作者 的主要 工作之一 。岩石矿物 分析主要是对 岩石中
的矿物质进行分析 , 是否能够准确地 了解这些矿物质 的成分及各个成分 的含量 , 在 于有 没有遵 照岩石矿物分 析基本流程 中所用 到的方 法及所
2 . 1 试样 采样 与加 工
分 析 的 方 法 对 于试 样 量 的影 响 , 适 当 的增 减试 样 的 提取 量 以适应 不 同的试 验要求 。
2 . 2 进 行定 性与 半定 量分 析 为 了避 免 盲 目地 对 岩 石 进 行 检 测 , 在 此 阶段 要
( 1 ) 采 样 点 的 布设 要 尽 量 分 散 , 避免过 于集 中。
状、 粒状 、 纤维状 、 放 射状 等 , 我 们经 常 看 到 的矿物 多 均 匀 , 若称 取 试 样 量 过 少 , 必将 导 致 分 析 结 果 分 散 、 半 是 些不规 则 的块状 。 失 真 。此 外 , 在试 样 提取 阶段 , 还 要充 分 的考虑 化 验
2 岩石 矿 物分 析 的基 本 流 程
据 。矿 物具 有 各 种 各 样 不 同 的形 状 , 有 些 矿 物 能 形 不 同 的加工方 法 , 确保 加工 质量 。 成 整 齐 的 晶体 , 如 食 盐 是立 方 体 , 水 晶是 六 面体 , 云 分 析 子样 的 代表 性 应 给予 足 够 的重 视 。某 些 痕
母 是 六 边 形 的片 状 。 有 些 矿 物 则 是 不 规 则 的 葡 萄 量元素 当以独立矿物存 在 , 它在粉末 中的分布不易
2 0 1 5 钲 D O I : 1 0 . 1 6 2 0 6  ̄ . c n k i . 6 5 — 1 1 3 6 / t g . 2 0 1 5 . 0 2 . 0 2 9
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程岩石矿物分析是地质学和矿物学的重要分支之一,通过对岩石和矿物的化学成分和物理特性进行分析,可以帮助人们更好地理解地壳构造和地质演化,为矿产勘探和矿产资源评价提供科学依据。
本文将就岩石矿物分析的基本流程进行探讨,希望对相关研究和学习有所帮助。
一、野外采样岩石矿物分析的第一步是进行野外采样,野外采样是获取研究样品的第一步,也是最关键的一步。
在进行野外采样时,需要根据研究目的和地质条件选择合适的样品点和采样方法,通常可以采用锤子、凿子和其他工具对岩石进行取样,对于含有矿物的地质样品,可以通过开采或者探矿获得。
在野外采样时需要注意几个问题:一是样品的代表性,即采样点应该是具有代表性的地质环境,能够反映该区域的地质特征;二是采样点的标定,需要记录下采样点的经纬度、海拔高度和地质构成等信息,以便后续的分析和研究;三是采样的数量和密度,通常需要根据样品的状况和研究的深度进行合理的采样密度和数量。
二、样品制备野外采样到的岩石样品通常是不规则的块状材料,需要进行样品制备才能进行后续的分析。
样品制备包括研磨、切片、薄片和打磨等步骤,可以根据研究需要选择合适的制备方法。
对于矿石样品,通常需要进行研磨和切片,以获取透明的矿物样品进行光学和电镜分析;对于岩石样品,通常需要进行打磨和薄片制备,以获取薄片进行岩石矿物组成和结构的研究。
在样品制备过程中需要注意的是避免污染和样品损伤,以保证后续分析的准确性和可靠性。
三、物理性质测试样品制备完成后,需要进行物理性质测试,主要包括颜色、硬度、密度、磁性、光泽等方面的测试。
这些物理性质的测试可以直观地了解样品的外观特征和物理特性,为后续的化学分析提供必要的参考。
物理性质的测试也可以帮助鉴别不同的矿物和岩石类型,对于未知的样品具有重要的分析价值。
四、化学成分分析化学成分分析是岩石矿物分析的重要环节,通过对样品中元素的定量和定性分析,可以了解样品的化学组成和成分特征。
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程岩石矿物分析是地球科学中的重要研究方法之一,它用于确定岩石的组成、结构和性质,从而帮助地质学家深入了解岩石的形成和变化过程。
下面将给出岩石矿物分析的基本流程。
1.选样:在进行岩石矿物分析之前,首先需要采集合适的岩石样品。
样品应该具有代表性,能够反映整个岩石体的特征。
通常可以通过野外考察或钻探来获得合适的样品。
2.制备标本:采集到的岩石样品需要经过加工和制备,以便于后续的矿物分析。
一般来说,样品需要先破碎成适当的颗粒大小,然后进行均质化处理,以获取具有一定粒度和形状的标本。
3.观察岩石形态:在进一步分析之前,需要首先对岩石的宏观形态进行观察和描述。
包括岩石的颜色、纹理、结构、断口等特征。
这些形态特征能够为矿物分析提供一些重要的线索。
4.根据岩石的颜色、质地等特征初步判断岩石中可能存在的矿物。
5.显微镜下观察:岩石样品经过预处理后,可以使用光学显微镜进行观察。
使用透射光学显微镜能够观察到岩石中的各种矿物颗粒,通过矿物的颜色、形状、折射率等特征,可以初步确定矿物的种类。
6.化学分析:化学分析是确定岩石矿物组成的重要手段。
可以使用化学试剂进行常规的酸解试验,从而确定岩石中矿物的化学成分。
同时,利用电子探针、质谱仪等仪器设备进行进一步的元素分析。
7.衍射分析:衍射分析是岩石矿物分析中常用的手段之一、通过X射线衍射或电子衍射技术,可以确定岩石中矿物的晶体结构和取向。
衍射分析可以提供矿物晶体学参数的精确数据,帮助深入理解岩石的形成过程。
8.特殊测试:除了常规的方法外,有时还需要进行一些特殊测试来确定岩石中的特殊矿物。
例如,电子显微镜和能谱仪联用可以用于确定微量和次微量元素,扫描电镜则可以观察到岩石中的微细构造。
9.数据处理和解释:在进行了以上分析后,需要对所得到的数据进行处理和解释。
这些数据可以被用来确定岩石的成因、变质和变形等地质事件的发生和过程。
10.形成结论:最后,在将所有数据进行综合、对比和分析之后,可以得出关于岩石样品的结论。
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程岩石矿物分析是地球科学领域中的一项重要技术,可以比较准确地确定岩石矿物组成和特征,对于建立岩石矿物图谱、探矿勘探、地质调查等方面有着广泛应用。
其基本流程包括取样、粗选、细选、鉴定和化学分析五个步骤。
1. 取样取样是岩石矿物分析的第一步,取样时应根据实际情况选择合适的样品,如岩石、矿石、沉积物等。
取样时应尽可能保证样品取自同一处或同一层位,且尽量避免外界干扰和污染。
取到样品后,应在尽量短的时间内进行分析,以保证样品的原始特性不发生改变。
2. 粗选粗选是指将取样得到的岩石矿物进行初步分离,去除杂质和不需要的部分,以便于后续分析。
常见的粗选方法包括破碎、筛分、重液分选等。
其中,破碎是将岩石矿物用锤子或破碎机破碎成较小的块状或粉末状,筛分是将破碎后的样品通过筛网进行分离,重液分选则是利用不同密度的液体将样品分离。
粗选后的样品通常还需要在显微镜下进行观察,以确定样品中的基本矿物种类和数量。
3. 细选细选是将粗选得到的样品进行更细致的分离和纯化,以获取更精确的数据。
一般采用的方法包括磁选、选矿、电选、浮选等。
其中,磁选是指利用磁性物质将矿物进行分离,电选是指利用电场将矿物进行分离,浮选则是让矿物与带有药剂的气体或液体相接触,使某些矿物产生浮力而分离。
细选后的样品通常需要在能够分辨矿物的显微镜下进行观察,以便于后续的鉴定。
4. 鉴定鉴定是岩石矿物分析中最为重要的步骤之一,是针对样品中的矿物进行定性和定量分析,确定样品中各种矿物的种类和含量。
常用的鉴定方法包括显微镜观察和X射线衍射分析。
显微镜观察是利用显微镜观察矿物的外部形态、颜色、折射率、双折射等特征,结合显微镜操作技巧、观察矿物的光学性质等,对矿物进行定性和定量分析。
X射线衍射分析则是利用X射线衍射原理对样品进行分析,通过判断衍射图案和衍射峰的位置和强度,确定样品中各种矿物的种类和含量。
5. 化学分析化学分析是鉴定之后的重要步骤,利用各种分析化学方法,分析样品中各种矿物的化学成分和含量。
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程岩石矿物分析是指通过物理、化学等方法对岩石样品中的矿物组成进行分析和鉴定的过程。
岩石矿物分析的基本流程可以分为样品采集、样品制备、矿物鉴定和结果分析等几个步骤。
样品采集是岩石矿物分析的基础。
样品采集需要根据具体的研究目的从实地采集岩石样品,并且要保证采样的代表性和可比性。
采集的样品需要在现场进行标注并记录相关的采集信息。
接下来,样品制备是岩石矿物分析的关键步骤之一。
样品制备主要包括样品的研磨和样品的制片两个过程。
研磨是将采集到的岩石样品进行粉碎和均匀混合的过程,研磨后的样品要求颗粒细小且均一。
制片是将研磨后的岩石样品制备成透明的薄片,薄片制备要求样品表面光滑且无气泡和杂质。
然后,矿物鉴定是岩石矿物分析的核心步骤。
矿物鉴定可以通过光学显微镜、X射线衍射、扫描电子显微镜等多种方法进行。
光学显微镜是常用的鉴定方法,通过观察矿物的颜色、透明度、光学性质等特征来进行鉴定。
X射线衍射可以通过矿物的衍射图谱来确定其晶体结构和组成。
扫描电子显微镜可以通过观察矿物的形貌和微观结构来进行鉴定。
结果分析是岩石矿物分析的重要环节。
通过对鉴定结果的整理和分析,可以获得岩石样品中各个矿物的组成和含量,进一步了解岩石的成因和演化过程。
结果分析可以使用统计分析方法对数据进行处理,并且结合地质背景和岩石特征进行解释和综合研究。
岩石矿物分析的基本流程包括样品采集、样品制备、矿物鉴定和结果分析等几个步骤。
每个步骤都需要严格控制和操作,以确保获得准确、可靠的分析结果。
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程岩石矿物分析是地质学和矿物学领域中的核心实验技术之一,为了更好地了解岩石矿物成分、结构和性质,需要采用一系列方法对其进行分析。
本文将介绍岩石矿物分析的基本流程。
1.野外样品采集岩石矿物分析的第一步就是采集样品。
在采集过程中,需要注意保持采集的样品的完整性和原貌。
在选取样品时,应考虑到其流变性、矿化程度、风化程度等要素,同时还需要记录该样品的地理坐标、采集地质环境、岩石类型等信息。
2.样品制备采集的岩石样品需要进行样品制备工作。
首先,要对样品进行打磨或切割,制备出薄片或研磨粉末。
其次,根据需要进行钠蒸气灼烧、浸泡等前处理,去除影响分析结果的杂质。
3.岩石矿物鉴定岩石矿物鉴定是岩石矿物分析的核心内容。
对于晶体结构未知的样品,常用X射线粉晶衍射法(XRD)进行鉴定。
在鉴定过程中,XRD可以测定样品的结晶相及其晶体结构参数,从而确定样品的矿物组成。
4.岩石矿物形态分析岩石矿物形态分析是将样品放在显微镜下,通过对样品的岩石矿物光学性质、断口形态、矿物颜色、纹理等特征进行分析,以确定样品中的主要矿物种类及其含量比例。
在岩石矿物形态分析中,常用的方法有薄片光学显微镜、扫描电镜(SEM)等。
5.岩石矿物化学分析基于样品的岩石矿物鉴定和形态分析结果,我们可以进行下一步的岩石矿物化学分析。
此时需选择适当的化学分析方法,如火花光谱法、X射线荧光光谱法、原子吸收光谱法等,来测定样品中矿物元素的含量。
6.数据处理在进行岩石矿物分析时,要对每个步骤所得到的数据进行记录和整理。
处理岩石矿物分析数据时,可采用如Excel等电子表格软件,对分析结果进行统计、图表绘制等操作,用来辅助判断样品的成分、物性等信息。
7.岩石矿物分析结果的解读最后,针对研究问题,结合分析数据和前期采集的地质地貌信息,通过对样品的形态、构造、组成等特征的分析,来解读样品的岩石学、矿物学、地球化学特征,从而对大地构造、成因机制、资源储量进行地质解释。
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程岩石矿物分析是研究岩石中各类矿物组成及其性质的重要手段,它可以为地质研究、矿床勘查和资源开发提供重要的科学依据。
岩石矿物分析的基本流程包括样品采集、预处理、矿物鉴定和定量分析等几个主要步骤。
下面将详细介绍这些步骤的具体内容。
首先是样品采集。
岩石样品采集是岩石矿物分析的基础,它直接关系到结果的准确性和可靠性。
在采集岩石样品时,要注意选择具有代表性的样品,即从不同部位、不同岩性、不同矿化程度的岩石样品中采集。
采样时还要注意避免掺杂和表面氧化现象的发生,避免对结果产生影响。
接下来是样品的预处理。
在进行矿物分析之前,通常需要对采集到的岩石样品进行一些预处理,以便更好地进行后续的矿物鉴定和定量分析。
预处理主要包括样品的粉碎、研磨和筛分等步骤。
粉碎的目的是将样品尽可能细碎,以增加矿物的内部面积,便于后续的化学反应。
研磨的目的是消除样品的粗颗粒,减小颗粒大小的差异,以提高后续分析的准确性。
筛分则是将样品中的一些颗粒的大小控制在一定范围内,以满足后续鉴定和分析的要求。
然后是矿物鉴定。
矿物鉴定是岩石矿物分析的核心环节,它的主要目的是准确地确定岩石中所含矿物的种类和含量。
矿物鉴定通常采用的方法包括显微镜观察、X射线衍射分析等。
显微镜观察是最常用的矿物鉴定方法之一,通过观察矿物颗粒的形状、颜色、透明度等特征,结合一些特殊的物理性质,如双折射、强光反射等,可以初步确定矿物的种类。
然后可以通过X射线衍射分析进一步对矿物进行鉴定。
X射线衍射分析是一种利用X射线与矿物相互作用的方法,通过测定所产生的衍射图样,可以准确地鉴定矿物的种类,并进一步确定其结构和组成。
最后是矿物的定量分析。
矿物定量分析是对岩石中各类矿物含量进行准确测定的手段,它是岩石矿物分析的重要环节之一。
矿物定量分析通常采用的方法包括化学分析和仪器分析等。
化学分析是最常用的矿物定量分析方法之一,通过一系列的化学反应,可以将矿物样品中的各种元素进行测定,并计算出矿物含量的百分比。
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程岩石矿物分析是一种通过对岩石样品的物理、化学性质进行测试和分析,以确定和研究岩石中所含矿物的种类、含量和分布情况的方法。
岩石矿物分析的基本流程可以分为野外勘察、采样、样品制备、物理性质测试、化学性质测试以及结果分析等步骤。
需要进行野外勘察来确定研究区域,确定研究目标和取样点。
野外勘察包括地质地形观测、矿物矿化带的勘探、岩石的野外描述和标注等工作,可以为后续的取样和研究提供重要的基础资料。
在确定研究目标后,需要进行岩石样品的采集工作。
采样时要选取具有代表性的样品,通常需选择岩石的不同组分、不同类型和不同产状的样品,以获得岩石中不同矿物的信息。
然后,需要对采集到的样品进行制备,以便进行后续的物理和化学性质测试。
样品制备包括样品的鉴定、研磨、粉碎、筛分等操作,以获得符合要求的样品粒度和形状。
接下来,需要对制备好的样品进行物理性质测试。
物理性质测试主要包括岩石的密度、孔隙度、孔径分布、磁性、热力学性质等方面的测试,以帮助确定岩石矿物的物理性质和特征。
随后,进行化学性质测试。
化学性质测试包括岩石样品的主量元素和微量元素的含量测试以及岩石矿物的化学成分测试。
主量元素的含量测试通常采用化学分析法,如酸浸法、碱浸法等,微量元素的含量测试通常采用光谱分析法、质谱分析法等。
化学成分测试通常采用电子显微镜-能谱仪(SEM-EDS)等技术,以获得岩石矿物的化学组成信息。
对测试结果进行分析和解释。
根据岩石样品的物理和化学性质测试结果,可以确定岩石中所含矿物的种类、含量和分布情况,进一步研究岩石的成因和演化过程。
还可以与其他研究结果进行对比和验证,以提高分析的精确性和可靠性。
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程岩石矿物分析是研究岩石中各种矿物成分及其组成特征的一种方法。
它是地质学、地球化学、矿物学等学科的基础和核心内容之一,对于研究岩石的成因、演化过程、地球化学循环等具有重要的科学价值。
本文将从野外调查、取样和标本制备、显微鉴定和分析、数据处理和解释等几个方面,介绍岩石矿物分析的基本流程。
一、野外调查野外调查是岩石矿物分析的第一步,通过对野外地质条件的观察和记录,了解岩石分布、结构、构造等信息,为后续矿物分析提供必要的背景资料。
野外调查一般包括地质地貌、地层分布、岩石成因、构造特征等方面的观察和记录。
二、取样和标本制备取样是岩石矿物分析的重要环节,合理选取样品对后续的分析结果起着决定性作用。
在取样前需要仔细观察和分析岩体的特征,选择具有代表性的样品,避免样品的局部特殊性。
取样时需要使用清洁的工具,避免杂质和外界污染。
取得样品后,进行标本制备,将岩石样品制作成光滑平坦的标本,以便后续的显微鉴定和分析。
三、显微鉴定和分析显微鉴定是岩石矿物分析的主要手段,通过显微镜观察矿物的形态、颜色、透明度、光学性质等特征,进一步确定矿物的成分和性质。
显微鉴定主要依靠光学显微镜和电子显微镜等仪器设备进行。
在显微鉴定过程中,需结合图谱和参考文献对矿物进行识别和鉴定。
分析时需要记录下矿物的相关特征和数据,如颜色、光学性质、晶体形态、化学成分等。
四、数据处理和解释在矿物分析的过程中,会产生大量的数据,如矿物组合、矿物含量等。
对于这些数据的处理和解释,是岩石矿物分析的重要环节之一。
可以使用统计学、地球化学等方法对数据进行分析和处理,进一步了解岩石的成因、演化过程等信息。
在数据解释时需结合地质背景和已有的相关研究成果进行分析和推断,形成科学合理的结论。
岩石矿物分析的基本流程包括野外调查、取样和标本制备、显微鉴定和分析、数据处理和解释等几个方面。
这些步骤相互关联,相互影响,需要全面、系统的分析和判断。
通过对岩石矿物的分析,可以进一步了解其成分和性质,为后续的地质研究和资源勘查提供依据。
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程
岩石矿物分析是对岩石中的矿物成分进行定性分析和定量分析的过程。
主要包括岩石
薄片制备、显微镜观察、矿物定性和定量分析等步骤。
下面将详细介绍岩石矿物分析的基
本流程。
一、岩石薄片制备
岩石薄片制备是岩石矿物分析的第一步。
制备岩石薄片需要选取代表性的岩石样品,
将样品切割成一定大小的薄片,然后通过研磨和抛光等步骤使得薄片表面光滑均匀,最后
用酸洗处理去除残留的杂质。
二、显微镜观察
在显微镜下观察岩石薄片可以识别岩石中的矿物类型和组成。
观察时可使用透射光显
微镜或偏光显微镜,通过调节显微镜的放大倍数和焦距,找出岩石薄片中的典型矿物颗粒,并观察其特性、颜色、形态、晶体结构、光学性质等。
三、矿物定性分析
通过对岩石薄片中的矿物颗粒进行观察和比较,可以对其进行定性分析,即确定岩石
中包含的矿物种类。
这需要根据矿物的特征,如颜色、形态、晶体结构、光学性质等,结
合相关的矿物手册和数据库进行鉴定。
四、矿物定量分析
矿物定量分析是岩石矿物分析的重要步骤。
其目的是测定岩石中每种矿物的百分含量,从而了解岩石的来源、成因、演化过程等信息。
常用的矿物定量方法包括偏光显微镜法、
X射线衍射法、扫描电子显微镜法、电子探针显微镜法等。
五、结果解释和报告
对于矿物分析的结果,要进行综合解释和分析,找出岩石中不同矿物的相互关系、形
成机制等规律。
还需编写相应的矿物分析报告,将结果和结论进行整理和总结,为岩石学、矿物学研究和资源评估提供依据。
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程岩石矿物分析是地球科学研究中的重要内容之一,通过对岩石中各种矿物成分进行分析,可以深入研究岩石的形成、演化、构造背景等问题。
下面介绍一下岩石矿物分析的基本流程。
进行样品的野外采集。
野外采集样品必须有代表性,应根据研究目的和野外地质条件选择合适的岩石样品。
样品的采集须严格遵守岩石采集标准,保持样品的完整性,避免人为干扰。
然后,进行样品的室内制样。
将野外采集的岩石样品经过初步处理,去除杂质并进行粉碎。
样品的制样还要求得到一定粒度范围内的岩石粉末,以保证后续的测试和分析的准确性。
接下来,进行岩石矿物的定性分析。
定性分析是通过观察岩石样品的形态特征、颜色、透明度等性质来判定矿物的种类。
这一步需要使用显微镜对岩石样品进行观察,熟悉各种常见的矿物形态特征和性质,以便正确识别出岩石中的主要矿物成分。
然后,进行岩石矿物的定量分析。
定量分析是对岩石样品中各种矿物成分的含量进行测定。
常用的技术包括X射线衍射技术、电子探针技术和激光拉曼技术等。
这些技术可以准确测定矿物的含量,并推测出岩石的化学组成、密度和晶格结构等信息。
对分析结果进行解释和评价。
通过对岩石矿物分析的结果进行综合分析,可以得出关于岩石形成和演化过程的重要信息。
这些信息对于研究与岩石相关的地质问题,如岩浆的来源和演化过程、大地构造运动等方面具有重要意义。
岩石矿物分析的基本流程包括野外采集、室内制样、定性分析、定量分析和结果解释等环节。
这些环节相互关联,互为补充,通过综合分析得出科学结论,推动地球科学领域的研究和发展。
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程岩石矿物分析是地质学中的重要分支,它通过对岩石和矿物的物理、化学性质进行研究,帮助我们去了解地球的构造和演化。
岩石矿物分析的基本流程包括野外采集样品、样品制备、显微镜观察和化学分析等步骤。
下面我们就对岩石矿物分析的基本流程进行详细介绍。
一、野外采集样品岩石矿物分析的第一步是野外采集样品。
在野外采集样品时,我们首先要选择合适的采样点,这些采样点应该能够代表整个研究区域的岩石和矿物组成。
在采集过程中,我们需要记录下岩石的外貌特征、产状、构造、岩性、成因等信息。
我们还需要注意采样的方式和位置,以保证样品的完整性和代表性。
野外采集样品的过程中,我们还需要注意保护环境,遵守采样地的规定,不做损害环境的行为。
二、样品制备采集回来的岩石样品需要进行样品制备,这是岩石矿物分析的第二步。
在样品制备过程中,我们首先要对采集的岩石样品进行初步的清洗和加工,将其清除表面的泥沙和杂质。
然后,我们需要根据分析的需要选择合适的制备方法,比如制备薄片、制备荧光薄片、打磨抛光等。
这些制备方法能够使岩石样品保持完整和平整,方便我们后续的观察和分析。
三、显微镜观察显微镜观察是岩石矿物分析的重要环节,它可以帮助我们对岩石和矿物的微细结构进行观察和描述。
在显微镜观察过程中,我们可以通过观察岩石的颗粒组成、晶体形态、颜色、条纹等特征来确定岩石的成分和性质。
我们还可以通过观察矿物的晶形、颜色、光学性质、双折射性质等来确定矿物的种类和含量。
显微镜观察通常分为光学显微镜观察和电子显微镜观察,不同的观察方式可以提供不同的信息,帮助我们更加全面地了解岩石和矿物的性质。
四、化学分析化学分析是岩石矿物分析的重要手段之一,它可以帮助我们对岩石和矿物的化学成分进行定量和定性的分析。
在化学分析过程中,我们可以使用不同的方法来进行分析,比如X射线荧光光谱仪、质谱仪、原子吸收光谱仪等。
通过化学分析,我们可以得到岩石和矿物中各种元素的含量和成分,进一步了解它们的成因和演化过程。
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程岩石矿物分析是矿物学的一项重要实验技术,通过对岩石或矿物样本进行分析,可以更全面地了解岩石的成因、组成和性质。
岩石矿物分析的基本流程可以分为岩石样品收集与预处理、岩石薄片制备、岩石薄片观察与描述、光学性质测定、矿物鉴定与成分测定等几个步骤。
岩石样品的收集与预处理是整个分析过程的第一步。
岩石样品可以从野外采集或者实验室里的矿石样本中获取。
采集样品时应该注意选择具有代表性的样品,并尽量避免有明显的破碎或人为变质的部分。
取得岩石样品后,需要进行预处理,包括去除水分、粉碎和磨粉等处理。
岩石薄片制备是岩石矿物分析中的一个重要环节。
制备岩石薄片的目的是为了观察和测定岩石矿物的光学性质。
制备过程包括样品切片、打磨、粘贴和修整等步骤。
切片时需要根据岩石的性质和需要观察的部位,选择适当的切片方法和切片厚度。
打磨过程中,样品需要经过多次打磨,直至获得平整的样品表面。
将打磨好的样品粘贴到载玻片上,并进行最后的修整工作,以获得符合要求的岩石薄片。
制备好的岩石薄片可以进行光学性质测定。
常用的方法有透射光学显微镜、偏光显微镜和反射光学显微镜等。
通过光学显微镜的观察,可以了解岩石薄片中矿物的颜色、形态、晶体结构和光学性质等信息。
在观察中,可以应用偏光、缩口和旋转偏光等技术,进一步观察和分析岩石中的矿物特征。
根据岩石样品的性质和已有的矿物数据库,可以进行矿物鉴定与成分测定。
矿物鉴定可以通过观察矿物的形态特征、颜色、光学性质和特有的晶体结构等进行。
鉴定的过程中,需要借助矿物鉴定表和光学鉴定仪器等工具。
对于某些难以鉴定的矿物,还可以使用X射线衍射、电子探针和质谱等工具进行进一步的分析和确认。
成分测定则是通过化学方法测定岩石样品中的主要元素和微量元素含量,可以采用常规的化学分析方法或者仪器分析技术。
通过整个岩石矿物分析的步骤,可以获得岩石样品的光学特性、矿物组成和元素含量等信息。
这些信息对于岩石的成因、地质演化和资源评价等具有重要的意义,为矿产勘探和地质研究提供了基础数据。
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程
岩石矿物分析是地球科学研究中一项重要的技术,可以帮助地质学家了解地球内部构成、岩石成因、成矿作用以及环境演化等多方面信息。
本文将介绍岩石矿物分析的基本流程。
1. 样品制备
首先需要准备好研究对象的样品。
岩石样品需要经过标本制备,包括样品的取样、样
品的选取、样品的切割、研磨和抛光等处理,以便于后续的矿物分析。
2. 矿物鉴定
矿物鉴定是岩石矿物分析中的关键步骤。
包括光学显微镜下的矿物形态、颜色、透明
度等特征的观察与判断,以及X射线衍射仪、扫描电子显微镜等分析仪器的应用,进一步
确定各矿物组分的含量和性质。
3. 矿物组分分析
矿物组分分析是岩石矿物分析的重要内容。
利用各种分析仪器,如X射线衍射仪、扫
描电子显微镜、电子探针、质谱仪等技术,对样品中的矿物成分进行分析,并得出其含量
和组分成分。
4. 地球化学分析
地球化学分析是岩石矿物分析的重要内容之一。
其目的是确定样品的元素组成和成分。
常用的地球化学分析技术包括原子吸收光谱分析、电感耦合等离子质谱分析、X射线荧光
光谱分析等。
5. 结果解释与处理
在所有分析完成后,需要对数据进行整理,如计算出各组分的含量,确定样品的成因、演化历史等重要信息。
同时,还需要进行质量控制,不断修正和完善分析结果。
综上所述,岩石矿物分析是一项复杂的、综合性的工作,需要使用各种技术手段,包
括光学显微镜观察、X射线衍射、扫描电子显微镜、电子探针、地球化学分析等技术手段。
正确、准确地分析出岩石和矿物组成,对地质研究和相关领域都有重要的意义和价值。
探析岩石矿物分析的基本流程
探析岩石矿物分析的基本流程改革开放以来,随着经济水平不断提高,我国采矿业以及相关行业蓬勃发展,在国内国际都取得了不斐的成绩。
岩石矿物分析是地质工作中重要的一环,在勘察和开采的过程中,对岩石矿物进行分析是地质工作开展的必要条件。
本文针对岩石矿物分析的基本流程进行研究,并提出了各个分析环节中应注意的问题,以供参考。
标签:岩石矿物分析基本流程研究岩石矿物是工业生产必不可少的原材料,同时,对岩石矿物的分析研究可以促进我国地质研究的发展,对地质工作及地质行业的影响贯穿始终,在长期的地质工作研究中,通过地质工作人员和科研人员的努力,目前已经形成一套比较全面的岩石矿物分析流程。
1试样的提取和加工1.1采样点布设岩石矿物的采样属于随机抽样法,所以采样点的布设尽量保证分散,这样才可以保证使选取的试样具有普遍代表性。
采样点位置的选择直接决定岩石矿物试样的质量,所以在采样点的布设过程中,我们要充分考虑矿区的基本地质情况和地形走势,遵循采样点最大程度的反映不同区域的岩石矿物特点的原则,尽可能分散地布设采样点,避免采样点集中导致的岩石矿物试样不具代表性,从而减少或者消除试样提取和加工的误差。
1.2利用工程点地质工作的步骤比较繁琐,所以,在岩石矿物试样的提取阶段,我们要在保证提取质量的前提下,尽量节省时间和资金成本,其中一个有效的途径就是最大程度的利用原有工程点,通过一系列的改造,将原有的工程点直接转化为采样点,同时也可以直接利用原有的岩芯和矿芯。
对于已经开采过的矿山,充分利用其勘察工程和开采工程中,选择其中开采程度大、工业品及揭露较完全的工程点作为采样点。
在这个过程中,要注意的是岩芯和矿芯的管理工作,要将现成的岩芯和矿芯留有一部分作为备用,并妥善保存,避免损坏变质。
1.3完善施工、运输条件对于采样点的选择,除了要考虑岩石矿物试样的代表性以外,还需要考虑施工和运输条件,保证选取试样的施工工作可以顺利进行。
对于岩石矿物试样的提取工作,其施工需要的机械设备和施工工具较多,人员较为复杂,这就要求选取有利于施工的采样点,并将其进行完善,尽可能使施工现场的条件符合试样采取工作的要求;选择运输条件便利的采样点,可以方便试验的搬运及运输,同时还可以减少试样的遗漏及存放过程出现的问题。
浅谈岩石矿物分析的基本流程
浅谈岩石矿物分析的基本流程岩石矿物分析是指对岩石样品进行综合分析,包括岩石中含有的矿物种类、数量、常见的结晶形态、化学成分及其分布规律等一系列指标的研究。
岩石矿物分析是岩石学和地球化学等领域中不可或缺的一项研究方法,可用于研究地球的构造、岩石演化、成矿作用及环境演化等方面。
1.采样采样是进行岩石矿物分析的基础,采样应选择典型的岩石样品,并考虑采样地点的地质条件和目的。
最好采用多点、多层次的采样方式,以确保样品的典型性和代表性。
2.磨粉磨粉是将岩石样品机械研磨成细粉末的过程。
可用万能研磨器或手摇研钵将样品研磨至小于80目的粉末,以便后续的矿物分析操作。
3.筛分筛分是通过振动筛把磨粉后的样品分为不同尺寸的颗粒,以便进行分级分析。
常用筛网为20、60、100、140、200目等。
4.选取样品根据岩石类型和矿物组成,选取合适的分析方法。
选取需要分析的样品,注意保持样品的尽量一致性,以确保分析结果的准确性。
5.光学显微镜观察通过在光学显微镜下观察岩石样品,可以准确的确定其矿物组成和特征。
常用的识别方法有比色法、干涉法等。
6.X射线衍射(XRD)X射线衍射是一种非常常用的矿物鉴定方法。
将样品放在平面玻璃板上,通过X射线照射,根据矿物晶胞间距和衍射角度确定样品中各种矿物的含量及种类。
7.扫描电镜(SEM)扫描电镜是通过对样品施加电子束后收集电子背散射或电子荧光产生的信号进行显微成像的技术。
可以对相对介电常数差异较大的矿物进行观察,可用于分析微量矿物、矿物纹理和不同颜色或形状的矿物等。
8.能谱仪(EDS)能谱仪是可用于分析矿物成分的仪器,它依据样品吸收的电子束能量和内部产生的X 射线能量谱进行分析。
通过对不同元素的能谱特征进行分析,可进一步确定矿物中各种元素的含量。
总之,岩石矿物分析的基本流程是从岩石样品的采集、磨粉、筛分,到对样品进行光学显微镜观察、X射线衍射、扫描电镜和能谱仪分析等一系列措施的应用,以确定矿物的种类和含量等重要参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岩石矿物分析的基本流程研究摘要:岩石矿物分析是地质勘探工作的重要的组成部分,也是整个矿物质分析的基础性工作。
从分析的对象和原理上来看,岩石矿物的分析主要包括非金属矿物分析和金属矿物质分析,是否能够准确地了解这些矿物质的成分、各个成分的含量,对于实现矿物质的最优化利用,实现经济价值、环境价值的最大化具有十分重要的意义。
本文中,笔者结合自身工作的实践,对岩石矿物分析的基本流程进行初步地分析和研究。
文中首先对岩石矿物分析的基本流程进行了概述,在此基础上,以硅酸盐为例,对岩石矿物质的分析流程进行了实证分析。
通过本文的分析,笔者试图对岩石矿物的从业者有所借鉴。
abstract: analysis of rocks and minerals is the important component of geological exploration work and also the basic work of entire mineral analysis. from the object of the analysis and principle, rock and mineral analysis includes non-metallic mineral analysis and metal mineral analysis. whether can accurately understand the mineral components and each component content has very important significance to achieving the optimal utilization of minerals and maximization of economic value and environmental value. in this paper, the authors, by combining their own practice, thebasic process of rock and mineral analysis are preliminarily analyzed and researched. in this paper, the basic process of rock and mineral analysis is summarized, on the basis of this, the empirical analysis of the rock mineral analysis process is made by using silicate as an example. through this analysis, the author tries to help the practitioner of rocks and minerals.关键词:岩石;矿物;流程;分析key words: rock;minerals;process;analysis0 引言岩石矿物分析是化学地质工作者的主要工作内容之一,也是整个矿物质分析的基础性工作。
从分析的对象和原理上来看,岩石矿物的分析主要包括非金属矿物分析和金属矿物质分析,是否能够准确地了解这些矿物质的成分、各个成分的含量,对于实现矿物质的最优化利用,实现经济价值、环境价值的最大化具有十分重要的意义。
本文中,笔者结合自身的工作实践,对岩石矿物质的基本分析流程进行初步的分析和研究,以期对岩石矿物质工作者有所借鉴。
1 岩石矿物概述岩石矿物是地壳中的一种或者多种化学元素组成的自然聚合体,是地壳中各种地质作用的产物。
岩矿的种类非常丰富,这是因为自然界中存在多种多样的化学元素,以及它们之间的多种组合方式,复杂多变的地质作用也促使了岩矿的多样化。
在自然界中,目前被人类探明的岩矿种类达到三千多种,然而人们所熟悉的盐矿种类只有百余种。
自然界中常见的岩石矿物通常是几种元素的化合物,如石英、磁铁矿、红铁矿等含氧矿物;碳酸盐类矿物包括方解石、白云石等;硅酸盐类矿物包括云母、长石、角闪石等;硫酸盐类矿物包括重晶石、石膏等;此外,硫化矿物还有铜、铁、锌等。
各种矿物都具有一定的外表特征和物理性质,因此可以用来作为识别矿物的依据。
矿物具有各种各样不同的形状,有些矿物能形成整齐的晶体,如食盐是立方体,水晶是六面体,云母是六边形的片状。
有些矿物则是不规则的葡萄状、粒状、纤维状、放射状等,我们经常看到的矿物多半是些不规则的块状。
2 岩石矿物质分析的基本流程2.1 试样的加工与定性分析试样加工采取的方式是否得当,操作是否合理,对于指导矿藏的勘探以及计算其储量具有重要的影响,如果试样的加工和分析出现问题,就会对整个工程的施工可能造成难以弥补的影响。
将最原始的岩石样品送到检测实验室时,检测人员需要从中选出具有代表性的样品进行检验,有可能只需要选取几克,这就需要对岩石的样品进行粉碎或者进行缩合,以达到一定的细度。
否则,如果选取的样品不具有代表性,或者是细度不符合要求,就会使检测结果产生较大的误差。
在选择了样品之后,就需要对样品进行定性分析。
定性分析时定量分析的基础,在该阶段进行定性或者半定量的分析的主要的目的就是以最快的速度、最低的成本了解岩石的组成成分以及具体的含量。
以避免在检测的过程中盲目性的发生。
在进行定性分析时,可以使用化学分析法或者是发射光谱分析法,将试样进行加工以后,再进行定性或者半定量的分析,目的就是了解岩石样品中含有哪些元素以及每种元素的具体的含量或者比率等等。
在完成初步地定量分析之后,再结合地质工作的具体的要求,并结合实验室检测的规定,来测定每种元素应该采取的测定方法。
2.2 测定方法及方案的确定在完成样品的加工而和进行半定量的确定分析之后,就需要再选择合适的测定方法、制定最佳的测定方案。
随着科学技术的快速发展,岩石矿物分析的要求也越来越高,需要测定的项目越来越多。
同时,测定的难度也大大加大。
由于岩石中包含各种各样的的矿物质,而不同的矿物质的测定方法和测定的难度并不相同,这就需要制定恰当的测定方法和测定方案,以满足对岩石矿物质进行分析的要求。
在决定采用何种测定方法时,应该首先根据前文所提及的定性或者是半定量分析的结果,再对测定元素的含量以及与其共存元素的实际情况进行检测。
目前,从检测的实际情况来看,更多地是对试样中含量较高的元素进行检测,检测时主要运用重量法、容量法等方式进行测定。
而对于含量相对比较低的元素,则主要用比色法进行测定,目前也出现了使用其它方法进行测定的发展趋势。
对于那些共存元素的含量的测定,则根据各个元素相应的测量方法进行测定,否则就难以取得预期的效果,比如,在测定钙镁含量较低的铜的测定时,经常采用氨分离法进行测定。
如果选用的测量的方法不正确,不仅不能够准确地测定待测元素的含量,而且还有可能出现与真实的含量差别较大的结果。
在选定了测定的方法之后,就需要制定测定方案,这也是进行岩石矿物分析的重中之重。
相对于前两个环节来说,方案的拟定是一个十分复杂而又相当重要的环节,方案的制定几乎涉及到所有元素的测定、各个元素的分离。
因此,这就需要分析者具有较强的理论知识和实践经验。
在选择拟定方案时,所选择的方案最好是一个综合性、可行性较强的方案,也就是最好是同一称样在经过分解之后,就能够分取溶液,将溶液分成若干份,进行每个组分的测定。
但是,由于元素的测定方法和测定的技术是处于不断的变化之中的,因此,在进行岩石矿物分析时,应该特别注重分析方案的实时更新。
2.3 分析结果的核查在选定了岩石样品、确定了初步的测定方法之后,审查分析结果就是一个十分重要的环节。
审查分析的结果的目的就是要进一步的发现问题,根据问题对各种测量信息进行重新的核实,以保证测量分析的质量。
在确定了岩石矿物测定方案之后,就需要根据有关的操作规程进行分析、审查分析的详细结果,分析的结果必须符合国家相关的规章制度的要求。
事实上,无论多么准确地测量方法,无论采用多么高端的科学技术,岩石矿物质的分析都会不可避免地出现误差。
由于任何的元素和组分的测定过程,都不可避免地涉及到测定的方法、测定的仪器以及具体的操作人员等几个因素,这就使得岩石矿物质的分析就必然存在着一个限度。
误差是任何试验都不可避免的现象。
虽然误差不可以完全地避免,但是,可以通过采用不同的测量方法、提高测量的技术等等,将测量的误差降低的最小的范围之内,比如,使用动物胶凝聚测定二氧化硅的实验中,无论采用什么样的技术,总会产生千分之几的误差。
因此,在进行岩石矿物的分析时,应该尽量选取不同的试样量,以实现数据的集中或者是分散的表述程度,这样有利于揭示可能存在的各种误差。
在实际的测量工作中,需要测量者使用最佳的分析技术,并不断地提高自身的测量方法、技术,这样才能实现获取尽量准确地测量结果的目的。
在明确了岩石矿物分析的基本流程之后,笔者接下来将以硅酸盐为例,采用系统分析的方法对岩石矿物质的分析进行研究与分析。
3 岩石矿物中硅酸盐的分析方法硅酸盐是岩石矿物的重要的组成部分,为了简化分析的过程,笔者在本文主要对硅酸盐岩石的化学成分分析系统进行相关的研究与分析。
目前,岩石中硅酸盐的分析主要采用快速分析流程进行测定与分析,本文中,笔者以碱熔快速分析系统分析为例。
3.1 试样的选取硝酸盐矿物所需要测量的元素比较多,因此进行分析的速度比较慢,为了加快试样分析的速度并减少试样的用量,通常选取同一试样,并对试样进行分离、分解或者掩蔽等手段,以消除干扰元素对所测结果的影响,从而连贯、系统地对数个元素进行依次测定。
由于对硝酸盐的分析是以重量法为基础的,一次取样就对二氧化硅、二氧化钛、三氧化二铁、三氧化二铝、氧化镁和氧化钙等项目进行测定。
分析过程主要包括如下几个主要步骤:分解试样、分离和测定二氧化硅、沉淀和测定二三氧化物、沉淀和测定草酸钙以及沉淀和测定硝酸铵镁。
3.2 具体的分析过程碱熔快速分析系统第一次称样为0.5克,然后加入碳酸钠并放在铂坩埚中进行熔融。
在完成熔融之后,再用盐酸进行提取至湿盐状动物胶凝聚过滤,沉淀出二氧化硅。
第一次取0.5克试样,将试样中加入碳酸钠,然后放在铂坩埚中进行熔融,然后利用盐酸将蒸至湿盐状的动物胶加以提取,使其凝聚并进行过滤,从而将二氧化硅从中沉淀出来,并分别将250毫升的实验湿盐加入不同的试剂中以对元素进行提取,并在溶液中加入25毫升的edta以连续滴定出三氧化二铁以及氧化钙、氧化锰,可以采用差减法来分离氧化钙和氧化锰,并采用比色法利用25毫升的过氧化水将二氧化钛析出,同时采用差减法将三氧化二铁进行分离,然后用25毫升的磷矾铜黄将五氧化二磷利用比色法进行分离。