概率论与数理统计 第四版 (乐励华 段五朵 著)
概率论与数理统计第四版 (4)
(四) 不相关与相互独立的关系:
a. 若X, Y相互独立, 则X, Y不相关; b. 上面的逆命题一般不真;
反例, 二维r.v.( X , Y )的密度函数是
f
(
x,
y)
1
,
x2 y2 1,
0, 其它,
其Cov(
X
,Y
)
0,
但f ( x, y)
f
X
(
x)
fY
(
y).
c. 当(X, Y)服从二维正态分布时, 逆命题亦成立
(4.1)
又若( X ,Y )为离散型r.v.
其分布律为P X xi ,Y yj pij , i, j 1, 2,3,
则有E(Z ) E g( X ,Y ) g( xi , yj ) pij , (4.2) j1 i1
(假设上述积分、级数分别绝对收敛)
例4. 设随机变量( X ,Y )的概率密度为
则其密度函数为
f
(
x)
e1
x
,
x 0,
0 , x 0.
E(X)
D( X ) E( X 2 ) [ E( X )]2 2
30 正态分布: 设X~N(, 2 ) E(X) ,D(X) 2
§3. 协方差和相关系数
(一) 定义:
二维r.v.( X , Y ) ,若E{[X E( X )][Y E(Y )]}存在,
四. n维正态随机变量:
1. 定义 : 设有n维r.v.( X1, X 2 , , X n ), 记
x1
1
11 12
X
x2
,
2
,
C
21
22
1n
2n
概率论与数理统计 第四版 第二章
(2) 所求的概率为
P{ X ≥ 3} = P{ X = 3} + P{ X = 4} + P{ X = 5}
= 5 0 .13 (1 - 0 .1)2 + 5 0 .14 (1 - 0 .1) + 0 .15
3
4
= 0 .008 1 + 0 .000 45 + 0 .000 01 = 0 .008 56 . (3) 所求的概率为
31
+ P{ X = 1} P{ Y = 3} + P{ X = 2} P{ Y = 3}
=
1 3
×
1 3
+
1 3
×
1 3
+
2 9
×
1 3
=
8 27
.
(ii) P{ Y < X} = 1 - P{ X < Y} - P{ X = Y}
钞 =
1
-
8 27
-
3 k= 1
P{( X = k) ∩ ( Y = k)}
解 (1) 此 试验 至少 做 1 次 ,此 即 X 可能 值的 最 小值 .若需做 k 次 ,则 前
k - 1次试验均失败最后一次成功 ,由于各次试验是相互独立的 ,故分布律为
P{ X = k} = qk- 1 p = (1 - p) k- 1 p , k = 1 ,2 ,3 ,… . (2) 此试验至少做 r 次 ,若需做 k 次 ,则第 k 次必为成功 ,而前 k - 1 次中有
P{ Y
= 3} =
1 3
.
即 Y 的分布律为
P{ Y =
i} =
1 3
,
i
=
1 ,2 ,3 .
(3) (i) { X < Y}可分解为下列 3 个两两不相容的事件之和 ,即
概率论与数理统计(第四版)习题答案全
概率论与数理统计(第四版)习题答案全概率论与数理统计习(第四版)题解答第一章 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。
设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品;(4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A第二章 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率. 解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=75.04341313131==-++=第三章 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=第四章 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++= 于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有 504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P 又设B 表示“电路发生间断”,则321A A A B += 于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+=328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++= 6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P 设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P)()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则)9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.第五章离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布.解:设X表示“在取得合格品以前已取出的废品数”,则X的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p.生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X表示“在两次调整之间生产的合格品数”,且设=1,则ξ的概率分布为q-p三、 已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布;(2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x CCC x X P x x从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xxx从而X 的概率分布为即四、 电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP 相对误差为.5168877.0168031355.0168877.000≈-=δ五、 设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P 32254115505)1()1()1(11p p C p p C p p C ------=16308.0≈六、 设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=第六章 随机变量的分布函数·连续随机变量的概率密度一、 函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-). 解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x因为)0( 0)1(2)('22<>+-=x x x x F ,所以)(x F 在(0,∞-)上单增.综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π. 解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、 一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤<≤<≤<≤=3,132,22021921,222110,430,0)(x x x x x x F四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A == 即)( ,arctan 121)(+∞<<-∞+=x x πx F . (2).21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P(3) X 的概率密度为)1(1)()(2x x F x f +='=π.五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Ae x f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2)).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰21102121)()(x e x e dx e dx x f x F x xx xx .第七章 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间 不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率. 解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰e e dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有 638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xe x F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有tt e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥. (2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx x f X P s X s X P x x.答:该电视机还能使用5年以上的概率约为6065.0. 四、 设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=.解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X X Y -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yXyYe F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即)( )1(2)(2+∞<<-∞+=y e e y f y yY π.第八章 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布.解:二维随机变量),(Y X 的联合概率分布为Y的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=. 求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π(3)X 及Y 的边缘分布函数分别为xxxXx dx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan 1)4(2),()(2ππ2arctan 121x π+=yxy Y ydy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan1)9(3),()(2ππ3arctan 121y π+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ)4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dxx y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有1610032==⎰⎰∞+∞+--A dy e dx e A yx,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x yy x xy⎩⎨⎧>>--=--其它00,0)1)(1(32y x e e y x(3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰020006),()(2032x x ex x dye e dy y xf x f xy x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰030006),()(3032y y ex x dxe e dx y xf y f yy x Y(4)⎰⎰⎰⎰---==∈x y xRdye dx edxdy y x f R Y X P 322033026),(}),{( 6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dydx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x .第九章 随机变量的独立性·二维随机变量函数的分布一、 设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥. 解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dxedx edy e dx dxdy y x f X Y P x xyxyxy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥102102212)(21),()(7869.0)1(2221122≈-=-=--e ex二、 设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(;,,2 ,1 ,0 ,)(212211n j q p C j p n i q p C i p j n j j n Y in i i n X====--证明它们的和Y X Z +=也服从二项分布. 证明: 设j i k +=, 则ik n i k i k n ki i n i i n ki Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()(∑=-+=ki kn n k in i n q p C C 02121)(由k nm ki ik nk m C C C +=-=∑0, 有 kn nki in i n C C C21210+==∑. 于是有),,2,1,0( )(212121n n k q p C k P k n n k in n Z +==-++由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,;2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ. 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0,2 1,10 ,210,10,),(其它当当y x y y x y y x fYX Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z∈=≤+=≤=,其中D 是z y x ≤+与),(y x f 的定义域的公共部分.故有⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z zz z z F Z从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、 电子仪器由六个相互独立的部件ijL (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ijX 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ 先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ第十章 随机变量的数学期望与方差一、 一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差.解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即于是有1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX 2X 的分布为即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、 对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为于是有p q p q q p q p iq p ipq EX i ii i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2X于是有pp p p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=-进一步有pp p p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P kk k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k kkk k kkkk kki iik k k X P k x X P x 不绝对收敛,所以ξ没有数学期望. 四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D . 解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdxx x dx xx dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为)( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)第十一章 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为于是有72.072.0128.00=⨯+⨯=EY72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为 ⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf .弦OB 的长为]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRR d R4sin 4cos 42020===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ; 0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<14110441141)()1(e e dx e dx x f X P x x进而有 41)1(1)1(-=<-=≥e X P X P 设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---e e e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量nX X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni iX nX 11的数学期望与方差. 解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量nX X X,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设iX 表示"第i 站的停车次数" (10,,2,1 =i ). 则iX 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i,1,0 于是iX 的概率分布为设∑==ni iX X 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-=即停车次数的数学期望为748.8.第十二章 二维随机变量的数字特征·切比雪夫不等式与大数定律一、 设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y x Ay x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X . 解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++11120022222A dr r rd A dxdy y x A πθπ解得, π1=A .(2)()11),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dxy xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰022022220223]11)1ln([1)1(211r r dr r r r r dr r r d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y x xydy dxdy y x xyf π.二、 设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么?解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-121322),(dx x dy xdx dxdy y x xf EX xx0),(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY 0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdyy x xyf ),(10==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有⎰⎰+∞∞--===xdy dy y x f x f x xX 2),()(; 当)1,0(∉x 时,有0)(=x f X.即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y 因为),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、 利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差 )(X σ的概率.解:91)3()3(2=≤>-ξξξξξD DD E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率.解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==npq D ξ 于是有npq p npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、 样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少 个产品,可使次品率为10%的一批产品不被接受的概率达到0.9?解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以)3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ 1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理) 因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ.查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.第十三章 正态分布的概率密度、分布函数、数学期望与方差一、 设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P)]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---=.0402.09973.09625.02=--二、 已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率.解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布). 解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F XY≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y. 当0>y 时,有dx ey X P y F yx Y⎰∞---=≤=ln 2)(2221)ln ()(σμσπ. 此时亦有222)(ln 21)(σμσπ--='y Yeyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数;(2) 随机变量函数XY Z =2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有 (1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.第十四章二维正态分布·正态随机变量线性函数的分布中心极限定理一、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.。
第四版 概率论与数理统计答案
点( a , b)连续,则: g ( X n , Yn ) ⎯ ⎯→ g ( a , b )
P
▲ 定理一的等价叙述: 定理一 设随机 X 1 , X 2 ,
同的数学期望和方差:
E ( X k ) = μ , D( X k ) = σ 2 , k = 1,2,
1 n Xn = ∑ Xi n i =1
近似服从
X
~
近似服从
N ( nμ , nσ ) 或
2
X − nμ 近似服从 ~ N ( 0,1) nσ
X −μ
近似服从
X
~
N (μ ,σ / n)
2
或
σ/ n
~
N ( 0 ,1)
例1、一加法器同时收到 20 个噪声电压 V k , 设它们 是相互独立的随机变量 ,且都在区间( 0, ) 10 上服从均匀分布,记 V = 求 P { > 105 } V 的近似值?
解:则该随机变量服从X~b(90000,1/3),其分布律为
⎛ 90000 ⎞⎛ 1 ⎞ ⎛ 2 ⎞ P{ X = k } = ⎜ ⎜ k ⎟⎜ 3 ⎟ ⎜ 3 ⎟ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
k 90000− k
, k = 0,1,
,90000
所求的概率为
⎛ 90000 ⎞⎛ 1 ⎞ ⎛ 2 ⎞ P {29500 ≤ X ≤ 30500} = ∑ ⎜ ⎜ k ⎟⎜ 3 ⎟ ⎜ 3 ⎟ ⎟ k = 29500 ⎝ ⎠⎝ ⎠ ⎝ ⎠
dt = Φ( x )
证明: η n ( n = 1 , 2 ,
)可分解为 n 个相互独立、服从 :
同一( 0 − 1 )分布的随机变量之和 + Xn ηn = X1 + X 2 + 其中: EX 由定理四, ⎧ ⎪ lim P ⎨ n→ ∞ ⎪ ⎩ =
概率论与数理统计 第四版 第四章
第四章 随机变量的数字特征1.(1)在下列句子中随机地取一个单词,以X表示取到的单词所包含的字母个数,写出X的分布律并求E(X).“T H E GIRL P U T ON H ER BEA U T IF U L RED H A T”.(2)在上述句子的30个字母中随机地取一个字母,以Y表示取到的字母所在单词所包含的字母数,写出Y的分布律并求E(Y).(3)一人掷骰子,如得6点则掷第2次,此时得分为6+第二次得到的点数;否则得分为他第一次掷得的点数,且不能再掷,求得分X的分布律及E(X).解(1)随机试验属等可能概型.所给句子共8个单词,其中含2个字母,含4个字母,含9个字母的各有一个单词,另有5个单词含3个字母,所以X的分布律为X2349p k18581818数学期望E(X)=2×18+3×58+4×18+9×18=154.(2)随机试验属等可能概型,Y的可能值也是2,3,4,9.样本空间S由各个字母组成,共有30个样本点,其中样本点属于Y=2的有2个,属于Y=3的有15个,属于Y=4的有4个,属于Y=9的有9个,所以Y的分布律为Y2349p k2301530430930数学期望 E(Y)=2×230+3×1530+4×430+9×930=7315.(3)分布律为X12345789101112p k1616161616136136136136136136E(X)=1×16+2×16+3×16+4×16+5×16+7×136+8×136+9×136 +10×136+11×136+12×136=4912.2.某产品的次品率为0畅1,检验员每天检验4次.每次随机地取10件产品进行检验,如发现其中的次品数多于1,就去调整设备.以X表示一天中调整设备的次数,试求E(X).(设诸产品是否为次品是相互独立的.)解先求检验一次,决定需要调整设备的概率.设抽检出次品件数为Y,则Y~b(10,0畅1).记需调整设备一次的概率为p,则p=P{Y>1}=1-P{Y=0}-P{Y=1}=1-0畅910-101·0畅99·0畅1=0畅2639.又因各次检验结果相互独立,故X~b(4,0畅2639).X的分布律为X01234p k(1-p)44p(1-p)36p2(1-p)24p3(1-p)p4于是E(X)=1×4p(1-p)3+2×6p2(1-p)2+3×4p3(1-p)+4×p4=4p=4×0畅2639=1畅0556.以后将会知道若X~b(n,p),则E(X)=n p.3.有3只球,4个盒子,盒子的编号为1,2,3,4.将球逐个独立地,随机地放入4个盒子中去.以X表示其中至少有一只球的盒子的最小号码(例如X=3表示第1号,第2号盒子是空的,第3个盒子至少有一只球),试求E(X).解法(i) 由于每只球都有4种放法,由乘法原理共有43=64种放法.其中3只球都放在4号盒中的放置法仅有1种,从而P{X=4}=164.又{X=3}表示事件“1,2号盒子都是空的,而3号盒子不空”.因1,2号盒子都空,球只能放置在3,4号两个盒子中,共有23种放置法,但其中有一种是3只球都放在4号盒子中,即3号盒子是空的,这不符合X=3的要求需除去,故有P{X=3}=23-164=764.88概率论与数理统计习题全解指南同理可得P {X =2}=33-2364=1964,P {X =1}=43-3364=3764.因此E (X )=钞4k =1kP {X =k }=2516.注:P {X =1}也可由1-(P {X =4}+P {X =3}+P {X =2})求得.解法(ii ) 以A i (i =1,2,3,4)记事件“第i 个盒子是空盒”.{X =1}表示事件“第一个盒子中至少有一只球”,因此{X =1}=A —1,故P {X =1}=P (A —1)=1-P (A 1)=1-343=3764.(因第一个盒子为空盒,3只球的每一只都只有3个盒子可以放,故P (A 1)=(3/4)3.){X =2}表示事件“第一个盒子为空盒且第二个盒子中至少有一只球”,因此{X =2}=A 1A —2.故P {X =2}=P (A 1A —2)=P (A —2A 1)P (A 1)=(1-P (A 2A 1))P (A 1)=1-233343=1964.(因在第一个盒子是空盒的条件下,第二个盒子也是空盒,则3只球都只有2个盒子可以放,故P (A 2A1)=233.)类似地,P {X =3}=P (A 1A 2A —3)=P (A —3A 1A 2)P (A 2A 1)P (A 1)=1-123233343=764,P {X =4}=1-3764-1964-764=164,因此,E (X )=钞4k =1kP {X =k }=2516.解法(iii ) 将球编号.以X 1,X 2,X 3分别记1号,2号,3号球所落入的盒子的号码数.则X 1,X 2,X 3都是随机变量,记X =min {X 1,X 2,X 3},按题意,本题需要求的是98第四章 随机变量的数字特征E(X)=E[min{X1,X2,X3}].因X1,X2,X3具有相同的分布律X j1234p k14141414因而X1,X2,X3具有相同的分布函数F(z)=0,z<1,14,1≤z<2,24,2≤z<3,34,3≤z<4,1,z≥4.于是X=min{X1,X2,X3}的分布函数为:F min(z)=1-[1-F(z)]3=1-(1-0)3=0,z<1,1-1-143=3764,1≤z<2,1-1-243=5664,2≤z<3,1-1-343=6364,3≤z<4,1-(1-1)3=1,z≥4.X=min{X1,X2,X3}的分布律为X1234p k37641964764164得E(X)=2516.4.(1)设随机变量X的分布律为P X=(-1)j+13j j=23j,j=1,2,…,说明X的数学期望不存在.(2)一盒中装有一只黑球,一只白球,作摸球游戏,规则如下:一次从盒中随机摸一只球,若摸到白球,则游戏结束;若摸到黑球放回再放入一只黑球,然后再09概率论与数理统计习题全解指南从盒中随机地摸一只球.试说明要游戏结束的摸球次数X的数学期望不存在.解(1)因级数钞∞j=1(-1)j+13j j P X=(-1)j+13j j=钞∞j=1(-1)j+13j j·23j=2钞∞j=1(-1)j+1j不绝对收敛,按定义X的数学期望不存在.(2)以A k记事件“第k次摸球摸到黑球”,以A k记事件“第k次摸球摸到白球”,以C k表示事件“游戏在第k次摸球时结束”,k=1,2,….按题意C k=A1A2…A k-1A —k,P(C k)=P(A —k|A1A2…A k-1)P(A k-1|A1A2…A k-2)…P(A2|A1)P(A1).P{X=1}=P(A —1)=12,P{X=2}=P(A1A —2)=P(A —2|A1)P(A1)=13·12,P{X=3}=P(A1A2A —3)=P(A —3|A1A2)P(A2|A1)P(A1)=14·23·12=14·13,X=k时,盒中共k+1只球,其中只有一只是白球,故P{X=k}=P(A1…A k-1A —k)=P(A —k A1A2…A k-1)P(A k-1A1A2…A k-2)…P(A2A1)P(A1)=1k+1·k-1k·k-2k-1·…·23·12=1k+1·1k.若E(X)存在,则它应等于钞∞k=1kP{X=k}.但钞∞k=1kP{X=k}=钞∞k=1k·1k+1·1k=钞∞k=11k+1=∞,故X的数学期望不存在.5.设在某一规定的时间间隔里,某电气设备用于最大负荷的时间X(以min 计)是一个随机变量,其概率密度为f(x)=115002x,0≤x≤1500,-115002(x-3000),1500<x≤3000,0,其他.19第四章 随机变量的数字特征求E (X ).解按连续型随机变量的数学期望的定义,有E (X )=∫∞-∞x f (x )d x =∫0-∞x f (x )d x +∫15000x f (x )d x +∫30001500x f (x )d x +∫∞3000x f (x )d x=∫0-∞x ·0d x +∫15000x ·x15002d x +∫30001500x ·-(x -3000)15002d x +∫∞3000x ·0d x=115002x 3315000+1150023000×x 22-x3330001500=1500(min ).6.(1)设随机变量X 的分布律为X -202p k0畅40畅30畅3求E (X ),E (X 2),E (3X 2+5).(2)设X ~π(λ),求E 1X +1.解(1)X 的分布律为X -202p k0畅40畅30畅3E (X )=(-2)×0畅4+0×0畅3+2×0畅3=-0畅2.由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2×0畅4+02×0畅3+22×0畅3=2畅8,E (3X 2+5)=[3(-2)2+5]×0畅4+[3(0)2+5]×0畅3+[3(22)+5]×0畅3=13畅4.如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3×2畅8+5=13畅4.(2)因X ~π(λ),故P {X =k }=λke -λk !.29概率论与数理统计习题全解指南E1X+1=钞∞k=01k+1P{X=k}=钞∞k=01k+1λk e-λk!=钞∞k=0λk e-λ(k+1)!=e-λλ钞∞k=0λk+1(k+1)!=e-λλ钞∞j=1λjj!=e-λλ钞∞j=0λjj!-1=e-λλ(eλ-1)=1λ(1-e-λ).7.(1)设随机变量X的概率密度为f(x)=e-x,x>0,0,x≤0.求(i)Y=2X;(ii)Y=e-2X的数学期望.(2)设随机变量X1,X2,…,X n相互独立,且都服从(0,1)上的均匀分布(i)求U=max{X1,X2,…,X n}的数学期望,(ii)求V=min{X1,X2,…,X n}的数学期望.解(1)由关于随机变量函数的数学期望的定理,知(i)E(Y)=E(2X)=∫∞-∞2x f(x)d x=2∫0-∞x·0d x+∫∞0x e-x d x=2-x e-x∞0+∫∞0e-x d x=-2e-x∞0=2;(ii)E(Y)=E(e-2X)=∫∞0e-2x·e-x d x=∫∞0e-3x d x=-13e-3x∞0=13.(2)因X i~U(0,1),i=1,2,…,n,X i的分布函数为F(x)=0, x<0,x, 0≤x<1,1, x≥1.因X1,X2,…,X n相互独立,故U=max{X1,X2,…,X n}的分布函数为F U(u)=0, u<0,u n, 0≤u<1,1, u≥1.U的概率密度为f U(u)=nun-1, 0<u<1,0, 其他.E(U)=∫∞-∞u f U(u)d u=∫10u·nu n-1d u=n∫10u n d u=n n+1.39第四章 随机变量的数字特征V =min {X 1,X 2,…,X n }的分布函数为F V (v )=0, v <0,1-(1-v )n, 0≤v <1,1, v ≥1.V 的概率密度为f V (v )=n (1-v )n -1, 0<v <1,0, 其他.E (V )=∫∞-∞v f V (v )d v =∫10vn (1-v )n -1d v=-v (1-v )n10+∫10(1-v )nd v=-(1-v )n +1n +110=1n +1.8.设随机变量(X ,Y )的分布律为X Y 123-10畅20畅10畅000畅10畅00畅310畅10畅10畅1(1)求E (X ),E (Y ).(2)设Z =Y X,求E (Z ).(3)设Z =(X -Y )2,求E (Z ).解由关于随机变量函数的数学期望E [g (X ,Y )]的定理,得(1)E (X )=钞3i =1钞3j =1x i p i j=1·(0畅2+0畅1+0畅1)+2·(0畅1+0+0畅1)+3·(0+0畅3+0畅1)=2. E (Y )=钞3j =1钞3i =1y j p i j=(-1)·(0畅2+0畅1+0)+0·(0畅1+0+0畅3)+1·(0畅1+0畅1+0畅1)=0.(2)E (Z )=EYX=-11P {X =1,Y =-1}+-12P {X =2,Y=-1} +-13P {X =3,Y =-1}49概率论与数理统计习题全解指南 +01P {X =1,Y =0}+02P {X =2,Y =0} +03P {X =3,Y =0}+11P {X =1,Y =1} +12P {X =2,Y =1}+13P {X =3,Y =1}=-0畅2-0畅05+0畅1+0畅05+0畅13=-115.(3)E (Z )=E [(X -Y )2]=钞3j =1钞3i =1(x i -y j )2p i j=22×0畅2+32×0畅1+42×0+12×0畅1+22×0 +32×0畅3+02×0畅1+12×0畅1+22×0畅1=5.注:(i )可先求出边缘分布律,然后求出E (X ),E (Y ).(ii )在(3)中可先算出Z =(X -Y )2的分布律Z 0149p k0畅10畅20畅30畅4然后求得E (Z )=钞4k =1z k p k =5.题4畅9图9.(1)设随机变量(X ,Y )的概率密度为f (x ,y )=12y 2,0≤y ≤x ≤1,0,其他.求E (X ),E (Y ),E (XY ),E (X 2+Y 2).(2)设随机变量X ,Y 的联合密度为f (x ,y )=1ye -(y +x /y ), x >0,y >0,0, 其他,求E (X ),E (Y ),E (XY ).解(1)各数学期望均可按照E [g (X ,Y )]=∫∞-∞∫∞-∞g (x ,y )f (x ,y )d x d y 计算.因f (x ,y )仅在有限区域G :{(x ,y ) 0≤y ≤x ≤1}内不为零,故各数学期望均化为G (如题4畅9图)上相应积分的计算.E (X )=∫∞-∞∫∞-∞x f (x ,y )d x d y =∫∫Gx ·12y 2d x d y=∫10d x ∫x012x y 2d y =45.59第四章 随机变量的数字特征E(Y)=∫∫G y·12y2d x d y=∫10d x∫x012y3d y=35.E(XY)=∫∫G x y·12y2d x d y=∫10d x∫x012x y3d y=12.E(X2+Y2)=∫∫G(x2+y2)12y2d x d y=∫10d x∫x012(x2y2+y4)d y=1615.(2)E(X)=∫∞-∞∫∞-∞x f(x,y)d x d y=∫∞0∫∞0x y e-(y+x y)d x d y=-∫∞0e-y∫∞0x e-x/y d(-x y)d y=-∫∞0e-y x e-x/y∞0-∫∞0e-x/y d x d y=∫∞0e-y y d y=1.E(Y)=∫∞0∫∞0e-(y+x/y)d x d y=∫∞0e-y∫∞0e-x/y d x d y=∫∞0e-y[-y e-x/y]∞0d y=∫∞0e-y y d y=1.E(XY)=∫∞-∞∫∞-∞x y f(x,y)d x d y=∫∞0∫∞0x e-(y+x/y)d x d y=∫∞0e-y[∫∞0x e-x/y d x]d y.而 ∫∞0x e-x/y d x=-y∫∞0x e-x/y d(-x y)=y2,故 E(XY)=∫∞0y2e-y d y=Γ(3)①=2.10.(1)设随机变量X~N(0,1),Y~N(0,1)且X,Y相互独立.求E X2X2+Y2.(2)一飞机进行空投物资作业,设目标点为原点O(0,0),物资着陆点为(X,Y),X,Y相互独立,且设X~N(0,σ2),Y~N(0,σ2),求原点到点(X,Y)间距离的数学期望.解(1)由对称性知E X2X2+Y2=EY2X2+Y2.69概率论与数理统计习题全解指南①Γ函数:Γ(α)=∫∞0xα-1e-x d x,α>0,它具有性质:Γ(α+1)=αΓ(α),α>0,Γ(1)=1,Γ(12)=π,Γ(n+1)=nΓ(n)=n!(n为正整数).而EX2X2+Y2+EY2X2+Y2=E(1)=1,故EX2X2+Y2=12.(2)记原点到点(X,Y)的距离为R,R=X2+Y2,由题设(X,Y)的密度函数为f(x,y)=12πσe-x2/(2σ2)·12πσe-y2/(2σ2)=12πσ2e-x2+y22σ2, -∞<x<∞, -∞<y<∞.E(R)=E(X2+Y2)=∫∞-∞∫∞-∞x2+y212πσ2e-(x2+y2)/(2σ2)d x d y.采用极坐标E(R)=∫2π0dθ∫∞0r2πσ2e-r2/(2σ2)r d r=2π∫∞012πσ2r2e-r2/(2σ2)d r=1σ2∫∞0r2e-r2/(2σ2)d r=-∫∞0r d(e-r2/(2σ2))=-r e-r2/(2σ2)∞0+∫∞0e-r2/(2σ2)d r=12∫∞-∞e-r2/(2σ2)d r=1212πσ∫∞-∞e-r2/(2σ2)d r2πσ=12×1×2πσ=σπ2.11.一工厂生产的某种设备的寿命X(以年计)服从指数分布,概率密度为f(x)=14e-x/4,x>0,0, x≤0.工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备净赢利的数学期望.解一台设备在一年内调换的概率为p=P{X<1}=∫1014e-x/4d x=-e-x/410=1-e-1/4.以Y记工厂售出一台设备的净赢利值,则Y具有分布律Y100100-300p k e-1/41-e-1/4故有E(Y)=100×e-1/4-200(1-e-1/4)=300e-1/4-200=33畅64(元).12.某车间生产的圆盘直径在区间(a,b)服从均匀分布,试求圆盘面积的数学期望.解设圆盘直径为X,按题设X具有概率密度f X(x)=1b-a,a<x<b,0,其他,故圆盘面积A=14πX2的数学期望为E14πX2=∫b a14πx21b-a d x=π12(b-a)x3ba=π12(b2+ab+a2).13.设电压(以V计)X~N(0,9).将电压施加于一检波器,其输出电压为Y=5X2,求输出电压Y的均值.解由X~N(0,9),即有E(X)=0,D(X)=9.E(Y)=E(5X2)=5E(X2)=5{D(X)+[E(X)]2}=5(9+0)=45(V).另法 X的概率密度为f X(x)=132πe-x2/18, -∞<x<∞.E(Y)=E(5X2)=5E(X2)=5∫∞-∞x232πe-x2/18d x=5×932π-x e-x2/18∞-∞+∫∞-∞e-x2/18d x=4532π∫∞-∞e-x2/18d x=45∫∞-∞f X(x)d x=45×1=45(V).14.设随机变量X1,X2的概率密度分别为f1(x)=2e-2x,x>0,0,x≤0, f2(x)=4e-4x,x>0,0,x≤0.(1)求E(X1+X2),E(2X1-3X22).(2)又设X1,X2相互独立,求E(X1X2).解若X服从以θ为参数的指数分布,其概率密度为f(x)=1θe-x/θ,x>0,0,其他,则E(X)=∫∞-∞x f(x)d x=∫∞0x1θe-x/θd x,令u=xθ,得到 E(X)=θ∫∞0u e-u d u=θΓ(2)=θΓ(1)=θ,E(X2)=∫∞-∞x2f(x)d x=∫∞0x21θe-x/θd x=θ2∫∞0u2e-u d u=θ2Γ(3) (其中u=xθ)=θ2·2Γ(2)=θ2·2Γ(1)=2θ2,故E(X1)=12,E(X2)=14,E(X22)=2(14)2=18,于是(1)由数学期望的性质,有E(X1+X2)=E(X1)+E(X2)=34,E(2X1-3X22)=2E(X1)-3E(X22)=58.(2)因X1,X2相互独立,由数学期望的性质,有E(X1X2)=E(X1)E(X2)=12×14=18.15.将n只球(1~n号)随机地放进n个盒子(1~n号)中去,一个盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对.记X为总的配对数,求E(X).解引入随机变量X i=1, 若第i号球装入第i号盒子中,0, 若第i号球未装入第i号盒子中,i=1,2,…,n,则总的配对数X可表示成X=X1+X2+…+X n.显然P{X i=1}=1n, i=1,2,…,n.X i的分布律为X i01p k1-1n1n即有E(X i)=1n,i=1,2,…,n,于是E (X )=E (X 1+X 2+…+X n )=E (X 1)+E (X 2)+…+E (X n )=1.16.若有n 把看上去样子相同的钥匙,其中只有一把能打开门上的锁,用它们去试开门上的锁.设取到每只钥匙是等可能的.若每把钥匙试开一次后除去,试用下面两种方法求试开次数X 的数学期望.(1)写出X 的分布律.(2)不写出X 的分布律.解(1)以A k (k =1,2,…,n )表示事件“第k 次试开是成功的”.{X =k }表示前k -1次所取的钥匙均未能打开门,而第k 次所取的钥匙能将门打开.即有P {X =k }=P (A —1A —2…A —k -1A k )=P (A —1A —2…A —k -1)P (A k A —1A —2…A —k -1)=P (A —1A —2…A —k -2)P (A —k -1A —1A —2…A —k -2)P (A k A —1A —2…A —k -1)=…=P (A —1)P (A —2A —1)P (A —3A —1A —2)…P (A k A —1A —2…A —k -1)=n -1n ·n -2n -1·…·n -k +1n -k +2·1n -k +1=1n,X 的分布律为P {X =k }=1n, k =1,2,…,n ,故E (X )=钞nk =1kP {X =k }=钞nk =1k ·1n =1n钞nk =1k=1n ·n (n +1)2=n +12.(2)引入随机变量X k 如下:X 1=1,X k =1, 前k -1次试开均未成功,0, 前k -1次中有一次试开成功,k =2,3,…,n ,则X =X 1+X 2+…+X n .沿用(1)中的记号,则有E (X 1)=1,E (X k )=1×P {X k =1}=1×P (A —1A —2…A —k -1)=P (A —1)P (A —2A —1)…P (A —k -1A —1A —2…A —k -2)=n -1n ·n -2n -1·…·n -(k -1)n -(k -2)=n -k +1n, k=2,3,…,n.故有E(X)=1+钞nk=2E(X k)=1+钞nk=2n-k+1n=n+12.17.设X为随机变量,C是常数,证明D(X)<E[(X-C)2],对于C≠E(X).(由于D(X)=E[[X-E(X)]2],上式表明E[(X-C)2]当C=E(X)时取到最小值.)证 E[(X-C)2]=E(X2-2CX+C2)=E(X2)-2CE(X)+C2=E(X2)-[E(X)]2+{[E(X)]2-2CE(X)+C2}=D(X)+(E(X)-C)2≥D(X).等号仅当C=E(X)时成立.18.设随机变量X服从瑞利分布,其概率密度为f(x)=xσ2e-x2(2σ2),x>0,0,x≤0,其中σ>0是常数.求E(X),D(X).解E(X)=∫∞-∞x f(x)d x=∫∞0x xσ2e-x2(2σ2)d x.令u=x2(2σ2),得到E(X)=2σ∫∞0u1/2e-u d u=2σΓ(32)=2σ12Γ(12)①=π2σ.E(X2)=∫∞-∞x2f(x)d x=∫∞0x2xσ2e-x2(2σ2)d x.令u=x2(2σ2),得到E(X2)=2σ2∫∞0u e-u d u=2σ2Γ(2)=2σ2,故D(X)=E(X2)-(E(X))2=2σ2-π2σ2=4-π2σ2.19.设随机变量X服从Γ分布,其概率密度为f(x)=1βαΓ(α)xα-1e-x/β,x>0,0,x≤0,①参见96页注.其中α>0,β>0是常数.求E(X),D(X).解E(X)=∫∞-∞x f(x)d x=∫∞0xβαΓ(α)xα-1e-x/βd x令u=xββΓ(α)∫∞0uαe-u d u=βΓ(α)Γ(α+1)=βΓ(α)αΓ(α)=αβ. Ε(X2)=∫∞-∞x2f(x)d x=∫∞0x2βαΓ(α)xα-1e-x/βd x令u=x/ββ2Γ(α)∫∞0uα+1e-u d u=β2Γ(α)Γ(α+2)=β2Γ(α)(α+1)αΓ(α)=α(α+1)β2. D(X)=α(α+1)β2-(αβ)2=αβ2.20.设随机变量X服从几何分布,其分布律为P{X=k}=p(1-p)k-1, k=1,2,…,其中0<p<1是常数.求E(X),D(X).解E(X)=钞∞n=1nP{X=n}=钞∞n=1n p(1-p)n-1=p钞∞n=1n(1-p)n-1=p1[1-(1-p)]2=1p.这是因为11-x=1+x+x2+…+xk+…, x<1,两边对x求导,就有1(1-x)2=1+2x+3x2+…+kxk-1+…,x<1.(A)又E[X(X+1)]=钞∞n=1n(n+1)P{X=n}=p钞+∞n=1n(n+1)(1-p)n-1.将上述(A)式两边关于x求导,就有2(1-x)3=1·2+2·3x+…+(k-1)·kxk-2+…, x<1,由此知E[X(X+1)]=p2[1-(1-p)]3=2p2故D(X)=E(X2)-[E(X)]2=E[X(X+1)-X]-[E(X)]2=E [X (X +1)]-E (X )-[E (X )]2=2p 2-1p -1p 2=1-pp2.21.设长方形的长(以m 计)X ~U (0,2),已知长方形的周长(以m 计)为20.求长方形面积A 的数学期望和方差.解长方形的长为X ,周长为20,所以它的面积A 为A =X (10-X ).现在X ~U (0,2),X 的概率密度为f X (x )=12,0<x <2,0,其他,所以E (A )=E [X (10-X )]=∫20x (10-x )·12d x =52x 2-16x 320=263=8畅67,E (A 2)=E [X 2(10-X )2]=∫20x 2(10-x )2·12d x =12∫20(100x 2-20x 3+x 4)d x =144815=96畅53,D (A )=E (A 2)-[E (A )]2=144815-2632=21畅42.22.(1)设随机变量X 1,X 2,X 3,X 4相互独立,且有E (X i )=i ,D (X i )=5-i ,i =1,2,3,4.设Y =2X 1-X 2+3X 3-12X 4.求E (Y ),D (Y ).(2)设随机变量X ,Y 相互独立,且X ~N (720,302),Y ~N (640,252),求Z 1=2X +Y ,Z 2=X -Y 的分布,并求概率P {X >Y },P {X +Y >1400}.解(1)E (Y )=E 2X 1-X 2+3X 3-12X 4=2E (X 1)-E (X 2)+3E (X 3)-12E (X 4)=2×1-2+3×3-12×4=7.因X 1,X 2,X 3,X 4相互独立,故有D (Y )=D 2X 1-X 2+3X 3-12X 4=4D (X 1)+D (X 2)+9D (X 3)+14D (X 4)=4×4+3+9×2+14×1=37畅25.(2)因X,Y相互独立,且X~N(720,302),Y~N(640,252),故Z1=2X+Y,Z2=X-Y均服从正态分布,且E(Z1)=E(2X+Y)=2E(X)+E(Y)=2×720+640=2080,D(Z1)=D(2X+Y)=4D(X)+D(Y)=4×302+252=4225,E(Z2)=E(X-Y)=E(X)-E(Y)=720-640=80,D(Z2)=D(X-Y)=D(X)+D(Y)=302+252=1525,故有Z1~N(2080,4225), Z2~N(80,1525).P{X>Y}=P{X-Y>0}=P{Z2>0}=1-P{Z2≤0}=1-Φ0-801525=Φ(2畅0486)=0畅9798.又X+Y~N(E(X)+E(Y),D(X)+D(Y)),即X+Y~N(1360,1525).故P{X+Y>1400}=1-P{X+Y≤1400}=1-Φ1400-13601525=1-Φ(1畅02)=1-0畅8461=0畅1539.23.五家商店联营,它们每两周售出的某种农产品的数量(以kg计)分别为X1,X2,X3,X4,X5.已知X1~N(200,225),X2~N(240,240),X3~N(180,225),X4~N(260,265),X5~N(320,270),X1,X2,X3,X4,X5相互独立.(1)求五家商店两周的总销售量的均值和方差.(2)商店每隔两周进货一次,为了使新的供货到达前商店不会脱销的概率大于0.99,问商店的仓库应至少储存多少千克该产品?解以Y记五家商店该种产品的总销售量,即Y=X1+X2+X3+X4+X5.(1)按题设X i(i=1,2,3,4,5)相互独立且均服从正态分布,即有E(Y)=钞5i=1E(X i)=200+240+180+260+320=1200,D (Y )=钞5i =1D (Y i )=225+240+225+265+270=1225.(2)设仓库应至少储存n kg 该产品,才能使该产品不脱销的概率大于0畅99,按题意,n 应满足条件P {Y ≤n }>0畅99.由于Y ~N (1200,352),故有P {Y ≤n }=PY -120035≤n -120035=Φn -120035,因而上述不等式即为Φn -120035>0畅99=Φ(2畅33),从而n -120035>2畅33,故应有n >1200+2畅33×35=1281畅55,即需取n =1282kg 畅24.卡车装运水泥,设每袋水泥重量X (以kg 计)服从N (50,2.52),问至多装多少袋水泥使总重量超过2000的概率不大于0畅05.解设至多能装运n 袋水泥,各袋水泥的重量分别为X 1,X 2,…,X n ,则X i ~N (50,2畅52), i =1,2,…,n ,故卡车所装运水泥的总重量为W =X 1+X 2+…+X n .按题意n 需满足P {W >2000}≤0畅05.对于像这样的实际问题,认为X 1,X 2,…,X n 相互独立是适宜的,此时E (W )=50n , D (W )=2畅52n ,于是W ~N (50n ,2畅52n ).从而P {W >2000}=1-Φ2000-50n2畅5n,即n 应满足Φ2000-50n2畅5n ≥0畅95=Φ(1畅645).故应有2000-50n2畅5n≥1畅645,解得n ≤6畅2836,从而n ≤39畅483.故n 至多取39,即该卡车至多能装运39袋水泥,方能使超过2000kg 的概率不大于0畅05.(在这里我们指出,若设W =nX ,其中X ~N (50,2畅52)而去求出n ≈37,那就犯错误了,为什么?)25.设随机变量X ,Y 相互独立,且都服从(0,1)上的均匀分布.(1)求E (XY ),E (X /Y ),E [ln (XY )],E [|Y -X |].(2)以X ,Y 为边长作一长方形,以A ,C 分别表示长方形的面积和周长,求A 和C 的相关系数.解(1)X ,Y 的概率密度都是f (x )=1, 0<x <1,0, 其他.E (XY )=E (X )E (Y )=12×12=14.E X Y不存在(因∫10∫10xyd x d y发散).题4畅25图E [ln (XY )]=∫10∫10(ln x +ln y )d x d y =2∫10∫10(ln x )d x d y=-2.E (|Y -X |) =簇D|y -x |d x d y (如题4畅25图D =D 1∪D 2) =2簇D 1(y -x )d x d y =2∫10∫1x(y -x )d y d x =13.(2)A =XY ,C =2(X +Y ),Cov (A ,C )=E (AC )-E (A )E (C ).AC =2X 2Y +2XY 2,E (X 2)=E (Y 2)=D (X )+(E (X ))2=112+14=13.E (AC )=2E (X 2Y )+2E (XY 2)=2E (X 2)E (Y )+2E (X )E (Y 2)=2×13×12+2×12×13=23.Cov (A ,C )=E (AC )-E (A )E (C )=23-[E (X )E (Y )×2(E (X )+E (Y ))]=23-12×12×212+12=16.D (A )=E (X 2Y 2)-[E (X )E (Y )]2=E (X 2)E (Y 2)-(12×12)2=(13)2-(14)2=7144.D (C )=D (2X +2Y )=D (2X )+D (2Y )=4×112+4×112=23.故 ρAC =Cov (A ,C )D (A )D (C )=16/7144×23=67.26.(1)设随机变量X 1,X 2,X 3相互独立,且有X 1~b 4,12,X 2~b 6,13,X 3~b 6,13,求P {X 1=2,X 2=2,X 3=5},E (X 1X 2X 3),E (X 1-X 2),E (X 1-2X 2).(2)设X ,Y 是随机变量,且有E (X )=3,E (Y )=1,D (X )=4,D (Y )=9,令Z =5X -Y +15,分别在下列3种情况下求E (Z )和D (Z ).(i )X ,Y 相互独立,(ii )X ,Y 不相关,(iii )X 与Y 的相关系数为0.25.解(1)P {X 1=2,X 2=2,X 3=5}=P {X 1=2}P {X 2=2}P {X 3=5}.因P {X 1=2}=421221-124-2=42124,P {X 2=2}=621321-136-2=62132234,P {X 3=5}=651351-136-5=6513523,故 P {X 1=2,X 2=2,X 3=5}=P {X 1=2}·P {X 2=2}·P {X 3=5}=0.00203E (X 1X 2X 3)=E (X 1)E (X 2)E (X 3)=(4×12)(6×13)(6×13)=8.E (X 1-X 2)=E (X 1)-E (X 2)=2-2=0.E (X 1-2X 2)=E (X 1)-2E (X 2)=-2.(2)对于E (Z ),在(i ),(ii ),(iii )三种情况下都有E (Z )=E (5X -Y +15)=5E (X )-E (Y )+15=15-1+15=29.对于D (Z ),(i )X ,Y 独立,则D (5X -Y +15)=D (5X -Y )=D (5X )+D (-Y )=25D (X )+D (Y )=25×4+9=109.(ii)X,Y不相关,即Cov(X,Y)=0,D(Z)=109.(iii)ρX Y=0畅25,则Cov(X,Y)=D(X)D(Y)ρX Y=2×3×0畅25=1畅5,D(5X-Y+15)=D(5X-Y)=25D(X)+D(Y)-10Cov(X,Y)=100+9-10×1畅5=94畅27.下列各对随机变量X和Y,问哪几对是相互独立的?哪几对是不相关的.(1)X~U(0,1),Y=X2.(2)X~U(-1,1),Y=X2.(3)X=cos V,Y=sin V,V~U(0,2π).若(X,Y)的概率密度为f(x,y),(4)f(x,y)=x+y 0<x<1,0<y<1,0, 其他.(5)f(x,y)=2y, 0<x<1,0<y<1,0, 其他.解 (1)E(X)=12,E(Y)=E(X2)=∫10x2d x=13,E(XY)=E(X3)=∫10x3d x=14.Cov(X,Y)=E(XY)-E(X)E(Y)=14-12×13≠0.故X,Y不相互独立,也不是不相关的.(2)E(X)=0,E(Y)=E(X2)=∫1-112x2d x=13,E(XY)=E(X3)=∫1-112x3d x=0.Cov(X,Y)=E(XY)-E(X)E(Y)=0-0=0.故X,Y不相互独立,但不相关.(3)E(X)=∫2π012πcos v d v=0,E(Y)=∫2π012πsin v d v=0,E(XY)=E(sin V cos V)=12E(sin2V)=12∫2π012πsin2v d v=0,Cov(X,Y)=E(XY)-E(Z)E(Y)=0-0×0=0,故X,Y不相互独立,但不相关.(4)f(x,y)=x+y, 0<x<1, 0<y<1,0, 其他.f X(x)=∫10(x+y)d y=x+12, 0<x<1,0, 其他,f Y(y)=y+12, 0<y<1,0,其他.f(x,y)与f X(x)f Y(y)在平面上不几乎处处相等,X,Y不相互独立.E(X)=∫10x(x+12)d x=712, E(Y)=712,E(XY)=∫10∫10x y(x+y)d x d y=13.Cov(X,Y)=E(XY)-E(X)E(Y)≠0.故X,Y不是不相关的,因而一定也是不相互独立的.(5)f(x,y)=2y, 0<x<1, 0<y<1,0, 其他,f X(x)=1, 0<x<1,0, 其他, f Y(y)=2y, 0<y<1,0, 其他.f(x,y)=f X(x)f Y(y)对于任意x,y成立.故X,Y相互独立,因此X,Y也是不相关的.28.设二维随机变量(X,Y)的概率密度为f(x,y)=1π,x2+y2≤1,0,其他.试验证X和Y是不相关的,但X和Y不是相互独立的.证 E(X)=∫∞-∞∫∞-∞x f(x,y)d x d y=簇x2+y2≤1xπd x d y=1π∫1-1d y∫1-y2-1-y2x d x=0.同样 E(Y)=∫∞-∞∫∞-∞y f(x,y)d x d y=簇x2+y2≤1yπd x d y=0,而 E(XY)=∫∞-∞∫∞-∞x y f(x,y)d x d y=簇x2+y2≤1x yπd x d y=1π∫1-1y d y∫1-y2-1-y2x d x=0,从而E(XY)=E(X)E(Y),这表明X,Y是不相关的.又f X(x)=∫∞-∞f(x,y)d y=∫1-x 2-1-x21πd y=2π1-x2,-1<x<1,0,其他.同样f Y(y)=2π1-y2,-1<y<1,0,其他.显然f X(x)f Y(y)≠f(x,y),故X,Y不是相互独立的.29.设随机变量(X,Y)的分布律为XY -101-11818180180181181818验证X和Y是不相关的,但X和Y不是相互独立的.证 先求出边缘分布律如下:X-101p k382838Y-101p k382838易见P{X=0,Y=0}=0≠P{X=0}P{Y=0},故X,Y不是相互独立的.又知X,Y具有相同的分布律,且有E(X)=E(Y)=(-1)×38+1×38=0.又 E(XY)=钞3j=1钞3i=1x i y j p i j=(-1)(-1)×18+(-1)×1×18+1×(-1)×18+1×1×18=0,即有E(XY)=E(X)E(Y),故X,Y是不相关的.30.设A 和B 是试验E 的两个事件,且P (A )>0,P (B )>0,并定义随机变量X ,Y 如下:X =1, 若A 发生,0, 若A不发生, Y =1, 若B 发生,0, 若B不发生.证明若ρX Y =0,则X 和Y 必定相互独立.解X ,Y 的分布律分别为X 01p kP (A —)P (A )Y 01p kP (B —)P (B )由X ,Y 的定义,XY 只能取0,1两个值,且P {XY =1}=P {X =1,Y =1}=P (AB ),于是得XY 的分布律为XY 01p k1-P (AB )P (AB )即得 E (X )=P (A ),E (Y )=P (B ),E (XY )=P (AB ).由假设ρX Y =0,得E (XY )=E (X )E (Y ),即P (AB )=P (A )P (B ),故知A 与B 相互独立.从而知A 与B —、A —与B 、A —与B —也相互独立,于是 P {X =1,Y =1}=P (AB )=P (A )P (B )=P {X =1}P {Y =1}, P {X =1,Y =0}=P (AB —)=P (A )P (B —)=P {X =1}P {Y =0}, P {X =0,Y =1}=P (A —B )=P (A —)P (B )=P {X =0}P {Y =1}, P {X =0,Y =0}=P (A —B —)=P (A —)P (B —)=P {X =0}P {Y =0},故X ,Y 相互独立.题4畅31图31.设随机变量(X ,Y )具有概率密度f (x ,y )=1,y <x ,0<x <1,0,其他.求E (X ),E (Y ),Cov (X ,Y ).解注意到f (x ,y )只在区域G :{(x ,y ) y <x ,0<x <1}(题4畅31图)上不等于零,故有E (X )=∫∞-∞∫∞-∞x f (x ,y )d x d y =簇Gx d x d y=∫10d x ∫x-xx d y =∫102x 2d x =23,E(Y)=∫∞-∞∫∞-∞y f(x,y)d x d y=簇G y d x d y=∫10d x∫x-x y d y=0,E(XY)=∫∞-∞∫∞-∞x y f(x,y)d x d y=簇G x y d x d y=∫10d x∫x-x x y d y=0,Cov(X,Y)=E(XY)-E(X)E(Y)=0.32.设随机变量(X,Y)具有概率密度f(x,y)=18(x+y),0≤x≤2,0≤y≤2,0,其他.求E(X),E(Y),Cov(X,Y),ρX Y,D(X+Y).解注意到f(x,y)只在区域G:{(x,y) 0<x<2,0<y<2}上不等于零,故有E(X)=∫∞-∞∫∞-∞x f(x,y)d x d y=∫20d x∫20x8(x+y)d y=∫20x8(x y+12y2)20d x=∫20x4(x+1)d x=76,E(X2)=∫∞-∞∫∞-∞x2f(x,y)d x d y=∫20d x∫20x28(x+y)d y=18∫20x2(x y+12y2)20d x=14∫20(x3+x2)d x=53,E(XY)=∫∞-∞∫∞-∞x y f(x,y)d x d y=∫20d x∫20x y8(x+y)d y=14∫20(x2+4x3)d x=43.由x,y在f(x,y)的表达式中的对称性(即在表达式f(x,y)中将x和y互换,表达式不变),得知E(Y)=E(X)=76, E(Y2)=E(X2)=53,且有D(Y)=D(X)=E(X2)-[E(X)]2=53-(76)2=1136.而 Cov(X,Y)=E(XY)-E(X)E(Y)=43-4936=-136,ρX Y=Cov(X,Y)D(X)D(Y)=-111,D(X+Y)=D(X)+D(Y)+2Cov(X,Y)=59.33.设随机变量X~N(μ,σ2),Y~N(μ,σ2),且设X,Y相互独立,试求Z1=αX+βY和Z2=αX-βY的相关系数(其中α,β是不为零的常数).解法(i) Cov(Z1,Z2)=Cov(αX+βY,αX-βY)=α2Cov(X,X)-αβCov(X,Y)+αβCov(Y,X)-β2Cov(Y,Y)=α2D(X)-β2D(Y)=(α2-β2)σ2,而 D(Z1)=D(αX+βY)=α2D(X)+β2D(Y)+2Cov(αX,βY)=(α2+β2)σ2,D(Z2)=D(αX-βY)=α2D(X)+β2D(Y)-2Cov(αX,βY)=(α2+β2)σ2,故ρZ1Z2=(α2-β2)σ2D(Z1)D(Z2)=α2-β2α2+β2.解法(ii) Cov(Z1,Z2)=E(Z1Z2)-E(Z1)E(Z2)=E(α2X2-β2Y2)-[αE(X)+βE(Y)][αE(X)-βE(Y)]=α2E(X2)-β2E(Y2)-{α2[E(X)]2-β2[E(Y)]2}=α2{E(X2)-[E(X)]2}-β2{E(Y2)-[E(Y)]2}=α2D(X)-β2D(Y)=(α2-β2)σ2. D(Z1)=D(αX+βY)=α2D(X)+β2D(Y)=(α2+β2)σ2, D(Z2)=D(αX-βY)=α2D(X)+β2D(Y)=(α2+β2)σ2,故ρZ1Z2=(α2-β2)σ2D(Z1)D(Z2)=α2-β2α2+β2.34.(1)设随机变量W=(aX+3Y)2,E(X)=E(Y)=0,D(X)=4,D(Y)=16,ρXY=-0畅5.求常数a使E(W)为最小,并求E(W)的最小值.(2)设随机变量(X,Y)服从二维正态分布,且有D(X)=σ2X,D(Y)=σ2Y.证明当a2=σ2Xσ2Y时,随机变量W=X-aY与V=X+aY相互独立.解(1)E(W)=E[(aX+3Y)2]=a2E(X2)+6aE(XY)+9E(Y2),E(X2)=D(X)+[E(X)]2=4,E(Y2)=D(Y)+[E(Y)]2=16,E(XY)=Cov(X,Y)+E(X)E(Y)=ρX YD(X)D(Y)=-4,故E(W)=4a2-24a+144=4(a-3)2+108,故当a=3时E(W)取最小值,min{E(W)}=108.(2)因为(X,Y)是二维正态变量,而W与V分别是X,Y的线性组合,故由n维正态随机变量的性质3°知(W,V)也是二维正态变量.现在a2=σ2Xσ2Y,故知有Cov(W,V)=Cov(X-aY,X+aY)=Cov(X,X)-a2Cov(Y,Y)=σ2X-a2σ2Y=0,即知W与V不相关.又因(W,V)是二维正态变量,故知W与V是相互独立的.35.设随机变量(X,Y)服从二维正态分布,且X~N(0,3),Y~N(0,4),相关系数ρX Y=-14,试写出X和Y的联合概率密度.解因μ1=μ2=0,σ1=3,σ2=2,ρ=-14,故X和Y的联合概率密度为f(x,y)=143π1-116exp-12(1-116)x23+x y43+y24=135πexp-815x23+x y43+y24.36.已知正常男性成人血液中,每一毫升白细胞数平均是7300,均方差是700.利用切比雪夫不等式估计每毫升含白细胞数在5200~9400之间的概率p.解以X表示每毫升含白细胞数,由题设E(X)=μ=7300, D(X)=σ=700而概率p=P{5200<X<9400}=P{-2100<X-7300<2100}=P{X-7300<2100}.在切比雪夫不等式P{X-μ<ε}≥1-σ2ε2中,取ε=2100,此时1-σ2ε2=1-700221002=89,即知p=P{X-7300<2100}≥89.37.对于两个随机变量V,W,若E(V2),E(W2)存在,证明[E(V W)]2≤E(V2)E(W2).(A)这一不等式称为柯西施瓦茨(Cauchy‐Sch warz)不等式.证若E(V2)=0,则P{V=0}=1(因E(V2)=D(V)+(E(V))2=0,得D(V)=0且E(V)=0,由方差性质4°即得P{V=0}=1).由此P{V W=0}=1,因此,E(V W)=0,此时不等式(A)得证.同样对于E(W2)=0时,不等式(A)也成立.以下设E(V2)>0,E(W2)>0.考虑实变量t的函数:q(t)=E[(V+tW)2]=E(V2)+2tE(V W)+t2E(W2).因为对于任意t,E[(V+tW)2]≥0,E(W2)>0,故二次三项式q(t)的判别式:Δ=4[E(V W)]2-4E(V2)E(W2)≤0,即有[E(V W)]2≤E(V2)E(W2).38.中位数.对于任意随机变量X,满足以下两式P{X≤x}≥12, P{X≥x}≤12的x称为X的中位数,记为x12或M.它是反映集中位置的一个数字特征.中位数总是存在,但可以不唯一.画出X的分布函数F(x)的图.如果F(x)连续,那么x12是方程F(x)=12的解(如题4畅38图(1)),如果F(x)有跳跃点(见题4畅38图(2)),用垂直于横轴的线段联结后,得一连续曲线,它与直线y=12的交点的横坐标即为x12.由于交点可以不唯一,故可以有许多x12.题4畅38图(1)设X的概率密度为f(x)=2e-2x, x≥0,0, 其他.试求X的中位数M.(2)设X服从柯西分布,其概率密度为f(x)=bπ[(x-a)2+b2], b>0.试求X的中位数M.解 设F(x)为分布函数.(1)M应满足F(M)=12.即 12=F(M)=P{X≤M}=∫M02e-2x d x=-e-2x M0=1-e-2M,故 e-2M=12, e2M=2,得 M=12ln2.此即为所求的中位数.(2)由 12=F(M)=P{X≤M}=∫M-∞bπ[(x-a)2+b2]d x=1πarctan x-a b M-∞=1πarctan M-a b+12,得 M-a=0,即知中位数M=a.另外,易知X的概率密度函数f(x)的图形关于直线x=a是对称的.即知P{X≤a}=∫a-∞f(x)d x=12.故中位数为M=a.。
概率论与数理统计第四版(乐励华段五朵著).pdf
课
后
P ( B | C1 ) = 0.2 P ( B | C 2 ) = 0.6 P ( B | C 3 ) = 1
答
案
网
ww w.
C i :{有 i 人击中飞机} i = 0 , 1 , 2 , 3
kh
da
w. co
m
P (C 3 ) = P ( A1 A2 A3 ) = ⋯ = 0.14
= 0.09 × 0 + 0.36 × 0.2 + 0.41 × 0.6 + 0.14 × 1 = 0.458
ww w.
kh
da
w. co
m
B . 四. 设 A1 :{抽到甲箱}, A2:{抽到乙箱},:{取到白球}
∴
由全概率公式有:
课
后
答
案
网
ww w.
1 3 1 2 31 P(B) = P( A1)P(B | A1) + P( A2 )P(B | A2 ) = × + × = ≈ 0.443 2 5 2 7 70
课
后
答
k −1 = C n−1 p k (1 − p ) n− k
案
P ( A1 A2 ) = P ( A1 ) P ( A2 )
网
练习五参考答案与参考解答
一. 1 1/2 二. 1/12 5/18 三. B、C
当x > 2时,P { X ≤ x } = 1
课
后
x≤1 ⎧ 0, ⎪ ∴ F ( x ) = P{ X ≤ x } = ⎨ x − 1 , 1 < x ≤ 2 ⎪ 1, x>2 ⎩
P ( B | A2 ) = 4%
w. co
则: P ( A1 ) = 25%
概率论和数理统计第四版
203
休息 结束
P(B) 3 C277C2100C1100 18
30!
203
10!10!10!
休息 结束
§1.4 条件概率
引例
袋中有7只白球,3只红球;白球中有4只木球, 3只塑料球;红球中有2只木球,1只塑料球。现 从袋中任取1球,假设每个球被取到旳可能性相 同。
i1
A1, A2 ,, An , 旳和事件 ——
Ai
i1
休息 结束
4. 事件旳交(积) A B 或 AB
A B 发生
S
A
A B
B
—— A 与B 旳积事件
事件 A与事件B 同步发生
n
A1 , A2 ,, An 旳积事件 ——
Ai
i1
A1, A2 ,, An , 旳积事件 —— Ai
i1
休息 结束
设 A: 取到旳球是白球。B:取到旳球是木球。
求:1) P(A); 2) P(AB) ;
3) 在已知取出旳球是白球旳条件下,求取出旳 是木球旳概率。
休息 结束
解: 1 ). P( A ) kA 7
n 10
2 ). P( AB ) kAB 4 n 10
列表 白球 红球 小计 木球 4 2 6 塑料球 3 1 4 小计 7 3 10
显然, P(A)=3/6=1/2.
P( A)
A包含的基本事件数 S中基本事件的总数
休息 结束
其特征为:
1) 随机试验或观察旳全部可能成果为有限个,
每次试验或观察发生且仅发生其中旳一种成果;
2) 每一种成果发生旳可能性相同。
对古典概型,某随机事件 A发生旳概率:
概率论与数理统计教程第四版课后答案第三章.ppt
E( X ) 0 3 1 9 2 9 3 1 0.3
4 44 220 220
E( X 2 ) 02 3 12 9 22 9 32 1 0.409
4
44
220
220
D( X ) E( X 2 ) E 2 ( X ) 0.319 X D( X ) 0.565
1
t 2dt
0
0
2
A a3 2
t
1 2
e
t
dt
0
a3 A
2
(
3 2
)
a3 1 A
a3 A
1
22
4
4 A
a3
E( X ) 4
x e dx
x2 3 a2
x2 a2t
4
a3t
3 2
et
a
t
1
2 dt
a3 0
a3 0
2
2a tetdt 2a (2) 2a
0
20
E( X 2 ) 4
i
j
(2)设二维连续随机变量(X,Y)的联合概率密度为f(x, y),则
随机变量X及Y 的数学期望分别定义如下:假定积分绝对收敛.
EX
xf
x,
ydxdy,
EY
yf x, ydxdy.
EX
xf X x dx,
EY
yfY y dy.
2
三、一维随机变量函数的数学期望
j
ij
6
连续型随机变量X ,Y ,
DX
x
EX
2
fX
xdx
x
EX
2
f
x,
y dxdy,
DY
概率论与数理统计高教版第四版课后习题答案
定义1.2 若试验结果一共由n个基本事件E1,E2,…,En组成, 并且这些事件的出现具有相同的可能性,而事件A由其中的 某m个基本事件E1/,E2/,…,En/组成,则事件A的概率可用下式 计算:
有利于A的基本事件数 m P( A) = = 试验的基本事件总数 n (1.1)
这里E1,E2,…,En构成一个等概率完备事件组。 (三)计算概率的例题 例1 袋内有5个白球,3个黑球,从中任取两个位球,计算 取出的两个球都是白球的概率。 例2 一批产品共200个,有6个废品,求:(1)这些产品的 废品率;(2)任取3个恰有一个是废品的概率;(3)任取3个
12
数值p,即(P(A))就是在一次试验中对事件A发生可能 性的大小的数量描述。 如上所说,频率的稳定性是概率的经验基础,但并不是 说概率决定于试验。一个事件发生的概率完全决定于事件本 身的结构,是先于试验而客观存在的。 概率的统计定义仅仅指出了事件的概率是客观存在的 但 并不能用这个定义计算P(A)。实际上,人们是采用一次大量 实验的频率或一系列频率的平均值作为P(A)的近似值。 这就是说,概率的统计定义还不是真正意义上的数学定 义。 (二)概率的古典定义 直接计算某一事件的概率有时是非常困难的,甚至是不 可能的。仅在某些情况下,才可以直接计算事件的概率。
5
个事件发生。记作
å
¥
Ai 或
¥
Ai
i= 1
i= 1
4. 事件的交(积) 两个事件A与B同时发生,即“A且B” ,是一个事件,称为 A与B的交(积),它是由既属于A又属于B的所有公共样本点 构成的集合,记作 AB或A∩B 5.事件的差 事件A发生而事件B不发生,是一个事件,称为事件A与事 件B的差。它是由属于A但不属于B的样本点构成的集合。记作 A-B. 6. 互不相容事件
概率论与数理统计第四版课后习题答案
概率论与数理统计课后习题答案第七章参数估计1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。
解:μ,σ2的矩估计是6122106)(1ˆ,002.74ˆ-=⨯=-===∑ni i x X n X σμ621086.6-⨯=S 。
2.[二]设X 1,X 1,…,X n 为准总体的一个样本。
求下列各总体的密度函数或分布律中的未知参数的矩估计量。
(1)⎩⎨⎧>=+-其它,0,)()1(cx x c θx f θθ其中c >0为已知,θ>1,θ为未知参数。
(2)⎪⎩⎪⎨⎧≤≤=-.,010,)(1其它x x θx f θ其中θ>0,θ为未知参数。
(5)()p p m x p px X P x m xmx,10,,,2,1,0,)1()(<<=-==- 为未知参数。
解:(1)X cθc θc c θdx x c θdx x xf X E θθcθθ=--=-===+-∞+-∞+∞-⎰⎰1,11)()(1令,得cX Xθ-=(2),1)()(10+===⎰⎰∞+∞-θθdx xθdx x xf X E θ2)1(,1X X θX θθ-==+得令(5)E (X ) = mp令mp = X , 解得mX p=ˆ 3.[三]求上题中各未知参数的极大似然估计值和估计量。
解:(1)似然函数1211)()()(+-===∏θn θn n ni ix x x cθx f θL0ln ln )(ln ,ln )1(ln )ln()(ln 11=-+=-++=∑∑==ni ini i xc n n θθd θL d x θc θn θn θL∑=-=ni icn xnθ1ln ln ˆ (解唯一故为极大似然估计量)(2)∑∏=--=-+-===ni i θn n ni ix θθnθL x x x θx f θL 11211ln )1()ln(2)(ln ,)()()(∑∑====+⋅-=ni ini ix n θxθn θL d 121)ln (ˆ,0ln 2112)(ln 。
概率论与数理统计第四版 (1)
(二)概率的公理化定义 1.定义:设S是样本空间,E是随机试验. 对于E
的每个事件A对应一个实数P(A),称为事件 A的概率,如果集合函数P(.)满足下列条件:
(1) (非负性)对任一事件A,有P(A)≥0;
(2) (规范性) P(S)=1;
(3) (可列可加性) 设A1,A2,…是两两互不相容的事件,则有 P(A1 A2 …)=P(A1)+P(A2)+…
例1. 事件“A与B发生,C不发生”
事件“A、B、C中至少有二个发生”
事件“A、B、C中恰有二个发生”
例2.事件A、B、C两两互不相容, 则有ABC 反之不成立
§3. 频率与概率
(一) 频率 1. 在相同的条件下,共进行了n次试验.
事件A发生的次数nA, 称为A的频数; nA/n 称为事件A发生的频率,记为fn(A).
( 2)显然 A是A的对立事件, 即A A.
(3) 必然事件与不可能事件互为对立事件, S 或S
7.事件的运算律:
交换律: A B B A;A B B A.
分配律:A (B C ) ( A B) ( A C ); A (B C ) ( A B) ( A C ).
对偶律(德摩根律): A B A B; A B A B.
N n
min(D, n)).
例6(书P12) 箱中装有a个白球和b个黑球, k个人依次在袋中取一只球,对(1)放回抽样; (2)不放回抽样,分别求第i(i=1, 2, …, k)人取 到白球的概率.
解 (1)放回抽样P(A) a ab
(2)不放回抽样P(A)
aAk 1 ab1 Ak ab
a ab
2. 频率的基本性质: (1) (非负性)0 fn ( A) 1; (2) (规范性) fn (S) 1;
概率论与数理统计及其应用
概率论与数理统计及其应用摘要:英国学者威尔斯说过:统计的思维方法,就像读和写的能力一样,将来有一天会成为效率公民的必备能力。
概率论与数理统计是研究现实世界中随机现象统计规律的学科,广泛应用于社会,经济和科学技术等各个领域。
本文就概率论与数理统计的方法与思维,以及在解决一些生活中的实际问题而展开讨论!关键词——随机现象、统计、应用从随机现象说起,在自然界和现实生活中,一些事物都是相互联系和不断发展的。
在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成截然不同的两大类:一类是确定性的现象。
这类现象是在一定条件下,必定会导致某种确定的结果。
举例来说,在标准大气压下,水加热到100摄氏度,就必然会沸腾。
事物间的这种联系是属于必然性的。
通常的自然科学各学科就是专门研究和认识这种必然性的,寻求这类必然现象的因果关系,把握它们之间的数量规律。
另一类是不确定性的现象。
这类现象是在一定条件下,它的结果是不确定的。
举例来说,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。
又如,在同样条件下,进行小麦品种的人工催芽试验,各棵种子的发芽情况也不尽相同,有强弱和早晚的分别等等。
为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素又是人们无法事先一一能够掌握的。
正因为这样,我们在这一类现象中,就无法用必然性的因果关系,对个别现象的结果事先做出确定的答案。
事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。
在自然界,在生产、生活中,随机现象十分普遍,也就是说随机现象是大量存在的。
比如:每期体育彩票的中奖号码、同一条生产线上生产的灯泡的寿命等,都是随机现象。
因此,我们说:随机现象就是:在同样条件下,多次进行同一试验或调查同一现象,所的结果不完全一样,而且无法准确地预测下一次所得结果的现象。
概率论与数理统计第四版
第五章 大数定律及中心极限定理1.据以往经验,某种电器元件的寿命服从均值为100h的指数分布,现随机地取16只,设它们的寿命是相互独立的.求这16只元件的寿命的总和大于1920h的概率.解以X i(i=1,2,…,16)记第i只元件的寿命,以T记16只元件寿命的总和:T=钞16i=1X i,按题设E(X i)=100,D(X i)=1002,由中心极限定理知T-16×100161002近似地服从N(0,1)分布,故所求概率为P{T>1920}=1-P{T≤1920}=1-P T-16×100161002≤1920-16×100161002≈1-Ф1920-1600400=1-Ф(0.8)=1-0畅7881=0畅2119.2.(1)一保险公司有10000个汽车投保人,每个投保人索赔金额的数学期望为280美元,标准差为800美元,求索赔总金额超过2700000美元的概率.(2)一公司有50张签约保险单,各张保险单的索赔金额为X i,i=1,2,…,50(以千美元计)服从韦布尔(Weibull)分布,均值E(X i)=5,方差D(X i)=6,求50张保险单索赔的合计金额大于300的概率(设各保险单索赔金额是相互独立的).解(1)记第i人的索赔金额为X i,则由已知条件E(X i)=280, D(X i)=8002.要计算p1=P钞10000i=1X i>2700000,因各投保人索赔金额是独立的,n=10000很大.故由中心极限定理,近似地有X —=110000钞10000i=1X i~N280,80021002,故 p1=P(X —>270)≈1-Φ270-2808=1-Φ-54=Φ54=Φ(1畅25)=0畅8944.(2)E(X i)=5,D(X i)=6,n=50.故 p=P钞50i=1X i>300≈1-Φ300-50×550×6=1-Φ50300=1-Φ(2畅89)=0畅0019.这与情况(1)相反.(1)的概率为0畅8944表明可能性很大.而(2)表明可能性太小了,大约500次索赔中出现>300的只有一次.3.计算器在进行加法时,将每个加数舍入最靠近它的整数,设所有舍入误差相互独立且在(-0畅5,0畅5)上服从均匀分布.(1)将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0畅90?解设第k个加数的舍入误差为X k(k=1,2,…,1500),已知X k在(-0畅5,0畅5)上服从均匀分布,故知E(X k)=0,D(X k)=112.(1)记X=钞1500k=1X k,由中心极限定理,当n充分大时有近似公式P 钞1500k=1X k-1500×01500112≤x≈Φ(x).于是P{X>15}=1-P{X≤15}=1-P{-15≤X≤15}=1-P-15-01500112≤X-01500112≤15-01500112≈1-Φ151500112-Φ-151500112=1-2Φ15150012-1=1-[2Φ(1畅342)-1]=2[1-0畅9099]=0畅1802.即误差总和的绝对值超过15的概率近似地为0畅1802.(2)设最多有n个数相加,使误差总和Y=钞n k=1X k符合要求,即要确定n,使P{Y<10}≥0畅90.由中心极限定理,当n充分大时有近似公式P Y-0n112≤x≈Φ(x).811概率论与数理统计习题全解指南于是 P {Y <10}=P {-10<Y <10}=P -10n 112<Yn 112<10n 112≈Φ10n 12-Φ-10n 12=2Φ10n 12-1.因而n 需满足 2Φ10n /12-1≥0.90,亦即n 需满足 Φ10n /12≥0畅95=Φ(1畅645),即n 应满足 10n /12≥1畅645,由此得 n ≤443畅45.因n 为正整数,因而所求的n 为443.故最多只能有443个数加在一起,才能使得误差总和的绝对值小于10的概率不小于0畅90.4.设各零件的重量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0畅5kg ,均方差为0畅1kg ,问5000个零件的总重量超过2510kg 的概率是多少?解以X i (i =1,2,…,5000)记第i 个零件的重量,以W 记5000个零件的总重量:W =钞5000i =1X i .按题设E (X i )=0.5,D (X i )=0畅12,由中心极限定理,可知W -5000×0畅55000×0畅1近似地服从N (0,1)分布,故所求概率为P {W >2510}=1-P {W ≤2510}=1-P W -5000×0畅55000×0畅1≤2510-5000×0畅55000×0畅1≈1-Ф2510-5000×0畅55000×0畅1=1-Ф(2)=1-0畅9213=0畅0787畅5.有一批建筑房屋用的木柱,其中80%的长度不小于3m ,现从这批木柱中随机地取100根,求其中至少有30根短于3m 的概率.解按题意,可认为100根木柱是从为数甚多的木柱中抽取得到的,因而可当作放回抽样来看待.将检查一根木柱看它是否短于3m 看成是一次试验,检查100根木柱相当于做100重伯努利试验.以X 记被抽取的100根木柱中长度短于3m 的根数,则X ~b (100,0畅2).于是由教材第五章§2定理三得P {X ≥30}=P {30≤X <∞}911第五章 大数定律及中心极限定理=P30-100×0畅2100×0畅2×0畅8≤X -100×0畅2100×0畅2×0畅8<∞-100×0畅2100×0畅2×0畅8≈Φ(∞)-Φ30-2016=1-Φ(2畅5)=1-0畅9938=0畅0062畅本题也可以这样做,引入随机变量:X k =1, 若第k 根木柱短于3m ,0, 若第k 根木柱不短于3m , k =1,2,…,100畅于是E (X k )=0.2,D (X k )=0畅2×0畅8.以X 表示100根木柱中短于3m 的根数,则X =钞100k =1X k .由中心极限定理有P {X ≥30}=P {30≤X <∞}=P 30-100×0畅21000畅2×0畅8≤钞100k =1X k -100×0畅21000畅2×0畅8 <∞-100×0畅21000畅2×0畅8≈Φ(∞)-Ф30-2016=1-Φ(2畅5)=0畅0062畅6.一工人修理一台机器需两个阶段,第一阶段所需时间(小时)服从均值为0.2的指数分布,第二阶段服从均值为0畅3的指数分布,且与第一阶段独立.现有20台机器需要修理,求他在8小时内完成的概率.解设修理第i (i =1,2,…,20)台机器,第一阶段耗时X i ,第二阶段为Y i ,则共耗时Z i =X i +Y i ,今已知E (X i )=0畅2,E (Y i )=0畅3,故E (Z i )=0畅5.D (Z i )=D (X i )+D (Y i )=0畅22+0畅32=0畅13畅20台机器需要修理的时间可认为近似服从正态分布,即有钞20i =1Z i ~N (20×0畅5,20×0畅13)=N (10,2畅6).所求概率 p =P钞20i =1Z i ≤8≈Φ8-20×0畅520×0畅13=Φ-21畅6125=Φ(-1畅24)=0畅1075,即不大可能在8小时内完成全部工作.7.一食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一只蛋糕的价格是一个随机变量,它取1元、1畅2元、1畅5元各个值的概率分别为0畅3、0畅2、0畅5畅若售出300只蛋糕.21概率论与数理统计习题全解指南(1)求收入至少400元的概率;(2)求售出价格为1畅2元的蛋糕多于60只的概率.解设第i 只蛋糕的价格为X i ,i =1,2,…,300,则X i 有分布律为X i 11畅21畅5p k0畅30畅20畅5由此得E (X i )=1×0畅3+1畅2×0畅2+1畅5×0畅5=1畅29,E (X 2i )=12×0畅3+1畅22×0畅2+1畅52×0畅5=1畅713,故D (X i )=E (X 2i )-[E (X i )]2=0畅0489畅(1)以X 表示这天的总收入,则X =钞300i =1X i ,由中心极限定理得P {X ≥400}=P {400≤X <∞}=P 400-300×1畅293000畅0489≤钞300i =1X i -300×1畅293000畅0489 <∞-300×1畅293000畅0489≈1-Φ(3畅39)=1-0畅9997=0畅0003.(2)以Y 记300只蛋糕中售价为1畅2元的蛋糕的只数,于是Y ~b (300,0畅2).E (Y )=300×0畅2,D (Y )=300×0畅2×0畅8,由棣莫弗拉普拉斯定理得P {Y >60}=1-P {Y ≤60}=1-P Y -300×0畅2300×0畅2×0畅8≤60-300×0畅2300×0畅2×0畅8≈1-Φ60-300×0畅2300×0畅2×0畅8=1-Φ(0)=0畅5.8.一复杂的系统由100个相互独立起作用的部件所组成,在整个运行期间每个部件损坏的概率为0畅10.为了使整个系统起作用,至少必须有85个部件正常工作,求整个系统起作用的概率.解将观察一个部件是否正常工作看成是一次试验,由于各部件是否正常工作是相互独立的,因而观察100个部件是否正常工作是做100重伯努利试验,以X 表示100个部件中正常工作的部件数,则X ~b (100,0畅9),按题意需求概率P {X ≥85},由棣莫弗拉普拉斯定理知X -100×0畅9100×0畅9×0畅1近似地服从标准正态分布N (0,1),故所求概率为121第五章 大数定律及中心极限定理P {X ≥85}=P {85≤X <∞}=P 85-100×0畅9100×0畅9×0畅1≤X -100×0畅9100×0畅9×0畅1≤∞-100×0畅9100×0畅9×0畅1≈1-Ф-53=0畅9525.9.已知在某十字路口,一周事故发生数的数学期望为2畅2,标准差为1畅4.(1)以X —表示一年(以52周计)此十字路口事故发生数的算术平均,试用中心极限定理求X —的近似分布,并求P {X —<2}.(2)求一年事故发生数小于100的概率.解 (1)E (X —)=E (X )=2畅2,D (X —)=D (X )52=1畅4252,由中心极限定理,可认为X —~N (2畅2,1畅42/52).P {X —<2}=Φ2-2畅21畅4/52=Φ-0畅2×521畅4=Φ(-1畅030)=1-Φ(1畅030)=1-0畅8485=0畅1515.(2)一年52周,设各周事故发生数为X 1,X 2,…,X 52.则需计算p =P钞52i =1X i <100,即P {52X —<100}.用中心极限定理可知所求概率为 p =P {52X —<100}=P {X —<10052}≈Φ10052-2畅2521畅4=Φ(-1畅426)=1-0畅9230=0畅0770.10.某种小汽车氧化氮的排放量的数学期望为0.9g /km ,标准差为1畅9g /km ,某汽车公司有这种小汽车100辆,以X —表示这些车辆氧化氮排放量的算术平均,问当L 为何值时X —>L 的概率不超过0畅01.解 设以X i (i =1,2,…,100)表示第i 辆小汽车氧化氮的排放量,则X —=1100钞100i =1X i .由已知条件E (X i )=0畅9,D (X i )=1畅92得E (X —)=0畅9, D (X —)=1畅92100.各辆汽车氧化氮的排放量相互独立,故可认为近似地有221概率论与数理统计习题全解指南X —~N 0畅9,1畅92100.需要计算的是满足P {X —>L }≤0畅01的最小值L .由中心极限定理P {X —>L }=PX —-0畅90畅19>L -0畅90畅19≤0畅01畅L 应为满足1-ΦL -0畅90畅19≤0畅01的最小值,即ΦL -0畅90畅19≥0畅99=Φ(2畅33),即L -0畅90畅19≥2畅33,故L ≥0畅9+0畅19×2畅33=1畅3427,应取L =1畅3427g /km 畅11.随机地选取两组学生,每组80人,分别在两个实验室里测量某种化合物的p H .各人测量的结果是随机变量,它们相互独立,服从同一分布,数学期望为5,方差为0畅3,以X —,Y —分别表示第一组和第二组所得结果的算术平均.(1)求P {4畅9<X —<5畅1}.(2)求P {-0畅1<X —-Y —<0畅1}.解由题设E (X —)=5,D (X —)=D (Y —)=0畅380.(1)由中心极限定理知X —近似服从N (5,0畅380),故P {4畅9<X —<5畅1}=P 4畅9-50畅380<X —-50畅380<5畅1-50畅380≈Φ5畅1-50畅380-Φ4畅9-50畅380=2Φ(1畅63)-1=2×0畅9484-1=0畅8968.(2)因E (X —-Y —)=E (X —)-E (Y —)=0,D (X —-Y —)=D (X —)+D (Y —)=0畅340,由中心极限定理P {-0畅1<X —-Y —<0畅1} 321第五章 大数定律及中心极限定理=P-0畅1-00畅340<(X —-Y —)-00畅340<0畅1-00畅340≈Φ0畅1-00畅340-Φ-0畅1-00畅340=2Φ(1畅15)-1=2×0畅8749-1=0畅7498.12.一公寓有200户住户,一户住户拥有汽车辆数X 的分布律为X 012p k0畅10畅60畅3问需要多少车位,才能使每辆汽车都具有一个车位的概率至少为0畅95畅解 设需要车位数为n ,且设第i (i =1,2,…,200)户有车辆数为X i ,则由X i 的分布律知E (X i )=0×0畅1+1×0畅6+2×0畅3=1畅2,E (X 2i )=02×0畅1+12×0畅6+22×0畅3=1畅8,故D (X i )=E (X 2i )-[E (X i )]2=1畅8-1畅22=0畅36.因共有200户,各户占有车位数相互独立.从而近似地有钞200i =1X i ~N (200×1畅2, 200×0畅36).今要求车位数n 满足0畅95≤P钞200i =1X i ≤n ,由正态近似知,上式中n 应满足0畅95≤Φn -200×1畅2200×0畅36=Φn -24072,因0畅95=Φ(1畅645),从而由Φ(x )的单调性知n -24072≥1畅645,故n ≥240+1畅645×72=253畅96.由此知至少需254个车位畅13.某种电子器件的寿命(小时)具有数学期望μ(未知),方差σ2=400.为了估计μ,随机地取n 只这种器件,在时刻t =0投入测试(测试是相互独立的)直到失效,测得其寿命为X 1,X 2,…,X n ,以X —=1n钞ni =1X i 作为μ的估计,为使P {X —-μ<1}≥0畅95,问n 至少为多少?解由教材第五章§2定理一可知,当n 充分大时,421概率论与数理统计习题全解指南钞ni =1X i -n μn σ=1n钞ni =1X i -μσ/n近似地N (0,1),即X —-μσn近似地N (0,1).由题设D (X i )=400(i =1,2,…,n ),即有σ=400,于是X —-μ400n =X —-μ20n近似地服从N (0,1)分布,即有P {X —-μ<1}=P {-1<X —-μ<1}=P -120n <X —-μ20n <120n ≈Φ120n-Φ-120n =2Φ120n -1.现在要求P {X —-μ<1}≥0畅95,即要求2Ф120n -1≥0畅95,亦即要求Ф120n≥0畅975=Ф(1畅96),故需要120n≥1畅96,即 n ≥(20×1畅96)2=1536畅64畅因n 为正整数,故n 至少为1537.14.某药厂断言,该厂生产的某种药品对于医治一种疑难血液病的治愈率为0畅8,医院任意抽查100个服用此药品的病人,若其中多于75人治愈,就接受此断言,否则就拒绝此断言.(1)若实际上此药品对这种疾病的治愈率是0畅8畅问接受这一断言的概率是多少?(2)若实际上此药品对这种疾病的治愈率为0畅7,问接受这一断言的概率是多少?解由药厂断言来看100人中治愈人数X ~b (100,0畅8).(1)在治愈率与实际情况相符合条件下,接受药厂断言的概率即为P (X >521第五章 大数定律及中心极限定理75).由中心极限定理知近似地有X~N(100×0畅8, 100×0畅8×0畅2)=N(80,42),于是 p1=P(X>75)≈1-Φ75-804=1-Φ(-54)=Φ(1畅25)=0畅8944.(2)若实际上治疗率为0畅7,即X~b(100,0畅7),则治愈人数X近似地服从正态分布,即有X~N(100×0畅7, 100×0畅7×0畅3).所求概率p2=P(X>75)≈1-Φ75-100×0畅7100×0畅7×0畅3=1-Φ521=1-Φ(1畅09)=1-0畅8621=0畅1379.621概率论与数理统计习题全解指南。
第四版 概率论与数理统计答案
e ( X (e, t ) t (, )),
即( X (t ), t (, )) ——随机过程
随机过程被认为是概率论的“动力学”部分 它的研究对象是随时间演变的随机现象 它是从多维随机变量向一族(无限多个)随机变量的推广。
FX ( x1 , x2 , xn ; t1 , t2 ,tn )
ti T 称为 X (t ), t T 的n维分布函数族
一般地, FX ( x1 , x2 , xn ; t1 , t2 , tn ), n 1, 2, ti T 称为随机过程 X (t ), t T 的有限维分布函数族 当n充分大时,它完全确定了随机过程的统计特性
各数字特征之间的关系如下:
2 X t RX t , t
C X t1 , t2 RX t1 , t2 X t1 X t2
2 2 X t C X t , t RX t , t X t
定义: 随机过程 X (t ), t T ,如果对每一t T , E[ X 2 (t )]都存在, 则称X (t )是二阶矩过程, 二阶矩过程的均值函数和相关函数总是存在的。
x(t) x1(t),1=0 O t x2(t), 2=3/2
例2x:设X (t ) Vcost t , 其中是常数; V 在[0,1]上服从均匀分布,则X (t )是一个随机过程。 对每一固定的t,X (t ) Vcost是随机变量V 乘以常 数cost,故也是随机变量,对[0,1]上随机变量取一vi 值, 就得到相应的一个样本函数xi (t ) vi cost.
概率论与数理统计(第四版)-第二章习题答案
概率论与数理统计 第二章习题1 考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。
若投保人在一年内因意外死亡的概率为0.0002,因其它原因死亡的概率为0.0010,求公司赔付金额的分崣上。
解 设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为0.0002;0.0010;0.9988,于是得分布律为2.(1)一袋中装有5只球,编号为1,2,3,4,5。
在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。
解 (1)在袋中同时取3个球,最大的号码是3,4,5。
每次取3个球,其总取法:35541021C ⋅==⋅,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。
因而其概率为 22335511{3}10C P X C C ====若最大号码为4,则号码为有1,2,4;1,3,4; 2,3,4共3种取法,其概率为23335533{4}10C P X C C ====若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法其概率为 25335566{5}10C P X C C ====一般地 3521)(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为 (2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,则样本点为 S ={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件, X 的取值为1,2,3,4,5,6,最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11{1}36P X ==; 最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3),9{2}36P X ==; 最小点数为3的共有7种,7{3}36P X ==; 最小点数为4的共有5种,5{4}36P X ==;最小点数为5的共有3种,3{5}36P X ==;最小点数为6的共有1种,1{6}36P X ==于是其分布律为3 设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品的次数,(1)求X 的分布律; (2)画出分布律的图形。
概率论与数理统计教程第四版课后答案
互不相容的完备事件组: 若 A1 , A2 ,, An 满足
n
Ai ,
i 1
且
Ai Aj (1 i j n).
3.事件运算的性质
(1). A A, A A , A A ;
(2). AB C AB AC,
(3). A B A B, AB A B.
(3)积事件: A B 或 AB : “二事件 A 与 B 都发生”
n 个事件的积
A1 A2 An
或
n
A1 A2 An . (简记为 Ai )
i 1
(4)互不相容(互斥)事件: AB : 事件 A 与 B 不能同时发生
若 n 个事件A1 , A2 ,, An 中任意两个事件不可能同时发生,即
1
0.0625
43 16
(3)P(C )
C
1 4
C
2 3
C
1 3
43
9 0.5625
16
13. 某工厂生产的100个产品中,有5个次品,从这批产品中任取一
半来检查,设A表示发现次品不多于1个,求A的概率。
解
P( A)
C
5
C
49 95
C15000
0.1811
nm !
其中 p q 1 。
6
第一章 随机事件及其概率
一、几种概率
1、统计概率 2、古典概率 3、几何概率
P( A) M N
P(A)
随机事件A所占的几何度量 试验的总的几何度量
4、条件概率
P( A | B) P( AB) P(B)
5、贝努利概率
概率论与数理统计第四版ppt精选课件
目 录 前一页 后一页 退 出
第一章 概率论的基本概念
§3 频 率 与 概 率
(一) 频率的定义和性质 定义: 在相同的条件下,进行了n 次试验, 在这
n 次试验中,事件 A 发生的次数 nA 称为 事件 A 发生的频数。比值 n A / n 称为事件 A 发生的频率,并记成 fn(A) 。
(2) B2 = (A1∪A3)( A2∪A4)
第一章 概率论的基本概念
§2 样本空间随机事件
例3 在S4 中(测试灯泡寿命的试验)
事件 A={t|t1000} 表示 “产品是次品” 事件 B={t|t 1000} 表示 “产品是合格品”
事件 C={t|t1500} 表示“产品是一级品”
则 A与B是互为对立事件; A与C是互不相容事件;
这时,样本空间由坐标平面第一象限 内一定区域内一切点构成 .
也可以按某种标准把支出分为高、 中、低三档. 这时,样本点有(高,高), (高,中),…,(低,低)等9种,样本空 间就由这9个样本点构成 .
目 录 前一页 后一页 退 出
第一章 概率论的基本概念
二 随机事件
§2 样本空间随机事件
随机事件 : 称试验 E 的样本空间 S 的子集为 E 的 随机事件,记作 A, B, C 等等;
第一章 概率论的基本概念
§1 随机试验
§1 、 随 机 试 验(Experiment )
这里试验的含义十分广泛,它包 括各种各样的科学实验,也包括对 事物的某一特征的观察。
目 录 前一页 后一页 退 出
其典型的例子有 E1:抛一枚硬币两次,观察正面H(Heads)、
概率论与数理统计第四版答案习题答案
习题1.1解答1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件C B A ,,中的样本点。
解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。
解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。
试用C B A ,,表示以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
解:(1)C B A ; (2)C AB ;(3)C B A C B A C B A ++;(4)BC A C B A C AB ++;(5)C B A ++;(6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ;(9)C B A ++4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课
后
答
k −1 = C n−1 p k (1 − p ) n− k
案
P ( A1 A2 ) = P ( A1 ) P ( A2 )
网
练习五参考答案与参考解答
一. 1 1/2 二. 1/12 5/18 三. B、C
当x > 2时,P { X ≤ x } = 1
课
后
x≤1 ⎧ 0, ⎪ ∴ F ( x ) = P{ X ≤ x } = ⎨ x − 1 , 1 < x ≤ 2 ⎪ 1, x>2 ⎩
案
网
另解: 电路断电为: A ∪ BC
ww w.
则电路断电概率为: 1 − 0.672 = 0.328
kh
da
P[ A( B ∪ C )] = P ( A B ) + P ( A C ) − P ( A B C ) = P ( A) P ( B ) + P ( A) P (C ) − P ( A) P ( B ) P (C ) = 0.672
课
则:P 三. 设 A1 :{抽到甲箱}, A2:{抽到乙箱},:{取到白球}
案
网
后
P ( A2 ) =
ww w.
1 2
kh
3 2 P ( B | A1 ) = P ( B | A2 ) = 5 7
da
w. co
m
练习四参考答案与参考解答
一. 1 1 − (1 − p ) n , (1 − p ) n + np(1 − p ) n−1 2 1/3 } :{甲击中飞机}, A2 :{乙击中飞机}, . 二. 设 A1 :{ A3 :{ } :{丙击中飞机}, B :{飞机坠落}。
则
P { X = 2} = P ( A1 A2 A3 ∪ A1 A2 A3 ∪ A1 A2 A3 ) = ⋯ = 0.092
P { X = 3} = P ( A1 A2 A3 ) = ⋯ = 0.006
x<0 ⎧ 0 ⎪0.504 0 ≤ x < 1 ⎪ ⎪ F ( x ) = ⎨0.902 1 ≤ x < 2 ⎪0.994 2 ≤ x < 3 ⎪ ⎪ 1 x≥3 ⎩
后
=
25 = ≈ 0.362 69
答
∑ P ( Ak ) P ( B | Ak ) k =1
案
25% × 5% 25% × 5% + 35% × 4% + 40% × 2%
网
P ( A1 | B ) =
P ( A1 ) P ( B | A1 )
3
ww w.
∴由贝叶斯公式有:
kh
da
P ( B | A1 ) = 5%
. 三.
P ( A) = 2296 / 5040 = 41 / 90 4 P12 41 ≈ 0.4271 P ( A) = 1 − 4 = 96 12
课
后
1 3 1 2 m A = C 5 A9 − C 4 A8 = 2296 种. . 共有
答
案
1 C4 P82 种取法, 事件A的样本点数 , 位偶数有
∵
P{ X = 1} = P { X = 2}
⇒
答
案
. 六.
X 的所有可能取值为:0,1,2,3, 0 1 2 3
网
ww w.
24 − 2 2 − 2 P { X = 4} = e = e 4! 3
kh
da
w. co
λ=2
m
P { X = 1} = λe − λ
λ2 − λ P { X = 2} = e 2
kh
案
y 24
1 2 µ( A) = 23 + 222 2 y = x - 2 P ( A) = µ ( A) = 0.8793 µ (Ω )
y = x + 1
网
y = x
da
则
w. co
设 A :{任一船都不需要等待码头空出}
µ ( Ω ) = 24 2
m
课
后
24
答
(
)
x
练习三参考答案与参考解答
课
后
P ( B | C1 ) = 0.2 P ( B | C 2 ) = 0.6 P ( B | C 3 ) = 1
答
案
网
ww w.
C i :{有 i 人击中飞机} i = 0 , 1 , 2 , 3
kh
da
w. co
m
P (C 3 ) = P ( A1 A2 A3 ) = ⋯ = 0.14
= 0.09 × 0 + 0.36 × 0.2 + 0.41 × 0.6 + 0.14 × 1 = 0.458
∑ P (C k ) P ( B | C k ) k =0
∴ α = 0.3
课
后
∴ 0.7 = P ( A ∪ B ) = P ( A) = 1 − α
da
3
w. co
m
则: P (C 0 ) = P ( A1 A2 A3 ) = P ( A1 ) P ( A2 ) P ( A3 ) = ⋯ = 0.09 P (C1 ) = P ( A1 A2 A3 ∪ A1 A2 A3 ∪ A1 A2 A3 ) = ⋯ = 0.36 P (C 2 ) = P ( A1 A2 A3 ∪ A1 A2 A3 ∪ A1 A2 A3 ) = ⋯ = 0.41
. 四. 设 A、B、C 表示电池 A、B、C 被损, 则电路不断电为: A( B ∪ C ) = A B ∪ A C
课
后
= P ( A) + P ( B ) P ( C ) − P ( A ) P ( B ) P ( C )
= 0.328
答
P ( A ∪ BC ) = P ( A) + P ( BC ) − P ( ABC )
一. . 二. 1. 0.7 2. 1/6
课
后
答
案
. 三.
设 Ai = {第 i 次取黑求 } 求P ( A1 | A2 ) = ? 3 2 1 则: P ( A1 A2 ) = ⋅ = 10 9 15 7 3 3 2 3 P( A2 ) = P( A1 A2 ) + P( A1 A2 ) = ⋅ + ⋅ = 10 9 10 9 10 P ( A1 | A2 ) = P ( A1 A2 ) P ( A2 ) = 2 / 9
P ( A1 ) = 0.4 P ( A2 ) = 0.5 P ( A3 ) = 0.4 C 0 = A1 A2 A3 C 1 = A1 A2 A3 ∪ A1 A2 A3 ∪ A1 A2 A3 C 2 = A1 A2 A3 ∪ A1 A2 A3 ∪ A1 A2 A3 C 3 = A1 A2 A3
P ( B | C0 ) = 0
ww w.
kh
da
w. co
m
B . 四. 设 A1 :{抽到甲箱}, A2:{抽到乙箱},:{取到白球}
∴
由全概率公式有:
课
后
答
案
网
ww w.
1 3 1 2 31 P(B) = P( A1)P(B | A1) + P( A2 )P(B | A2 ) = × + × = ≈ 0.443 2 5 2 7 70
P ( B | A2 ) = 4%
w. co
则: P ( A1 ) = 25%
P ( A2 ) = 35%
m
P ( A3 ) = 40%
P ( B | A3 ) = 2%
. 五.
设 A :{ 有效}, B :{ 有效},则;
P ( A) = 0.92
P ( B ) = 0.93
P ( B | A) = 0.85
课
后
答
案
网
X的分布函数为 :
ww w.
kh
P
da
X 的分布律为: X :
0 1 2 3 0.504 0.398 0.092 0.006
w. co
m
练习六参考答案与参考解答
一、 1) P{0.3 < X ≤ 0.7} = F (0.7) − F (0.3) = 0.72 − 0.32 = 0.4
⎧2 x , 0 < x < 1 ∴ X的概率密度为 : f ( x ) = ⎨ 其它 ⎩0 ,
A∪C − B = { 2 , 6 , 7 }
A( BC ) = { 1 , 5 ,6 , 7 , 8 , 9 , 10 }
网
5)
A B ∪ A C ∪ B C或 A BC ∪ ABC ∪ A B C ∪ A B C
ww w.
4)
A B C 或 A∪ B ∪C
kh
∪ Ak = ∩ Ak
da
3) A BC ∪ ABC ∪ A B C
P { X = 0} = P ( A1 A2 A3 ) = P ( A1 ) P ( A2 ) P ( A3 ) = ⋯ = 0.504
P{ X = 1} = P ( A1 A2 A3 ∪ A1 A2 A3 ∪ A1 A2 A3 ) = ⋯ = 0.398
课
后
设 Ai :{第 i 部件需要调整}, i = 1 , 2 , 3 } {
1) P ( A ∪ B ) = P ( A) + P ( B ) − P ( AB )
课
后
2) P ( A | B ) =
P ( A B ) 0.058 = ≈ 0.8286 P( B) 0.07
答
案
网
= 0.92 + 0.93 − 0.862 = 0.988
ww w.
kh
P ( A B ) = P ( A) − P ( AB ) = 0.92 − 0.862 = 0.058