平行四边形动点问题改
三角形、四边形中动点问题
§1. 三角形、四边形中的动点问题【解题思路与方法】1.关注变化因素和不变因素以及图形的特殊性,寻找常量和变量;2.化动为静 (由一般到特殊),以静制动;3.数学建模:确定图形运动中的变量关系时常常建立函数模型,确定图形运动中的特殊位置关系 时常常建立方程模型;4.关注运动问题的三个要素:运动方向、速度、范围(直线、射线、线段、折线);5.注重分类讨论,通过分别画图与分离图形使问题简单化;6.根据运动元素的不同分为动点问题、动线问题、动图问题三大类型(包括点、线、图同时运动).◆典例解析一、三角形中的动点问题例1. 已知,如图△ABC 是边长3cm 的等边三角形.动点P 以1cm/s 的速度从点A 出发,沿线段AB 向点B 运动.设运动时间为t (s ),(1)如图1,当t 为何值时,△PBC 是直角三角形?(2)如图2,若另一动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发.那么 当t 为何值时,△DCQ 是等腰三角形?(3)如图3,若另一动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D ,连接PC.如果动点P 、Q 都以1cm/s 的速度同时出发. 请探究:在点P 、Q 的运动过程中△PCD 和 △QCD 的面积是否相等?BCPA QDBCPAQDBCPA已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC 方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:(1)当t为何值时,△PBQ是直角三角形?(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC 的面积是△ABC面积的三分之二?如果存在,求出相应的t值;若不存在,请说明理由。
例2.如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)若点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A 点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?如图(1)△ABC 为等边三角形,动点D 在边CA 上,动点P 边BC 上,若这两点分别从C 、B 点同时出发,以相同的速度由C 向A 和由B 向C 运动,连接AP ,BD 交于点Q ,两点运动过程中AP=BD 。
动点问题(四边形动点专题)
动态几何问题--------动点问题(四边形动点专题)【动态几何问题的特点】动态几何是以几何知识和几何图形为背景,渗透运动变化观点的一类试题;用运动的观点研究几何图形中图形的位置、角与角、线段与线段之间的位置及大小关系。
几何图形按一定的条件进行运动,有的几何量是随之而有规律地变化的,形成了轨迹和极值;而有的量是始终保持不变,也就是我们常说的定值。
动态几何就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的 “变”与“不变”性;动态几何问题常常集几何、代数知识于一体,数形结合,有较强的综合性,题目灵活、多变,动中有静,动静结合,能够在运动变化中发展空间想象能力,综合分析能力,是近几年中命题的热点。
【动态几何问题的解决方法】解决动态几何题,通过观察,对几何图形运动变化规律的探索,发现其中的“变量”和“定量”。
动中求静,即在运动变化中探索问题中的不变性;动静互化,抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动与静”的关系;这需要有极敏锐的观察力和多种情况的分析能力,加以想象、结合推理,得出结论。
解决这类问题,要善于探索图形的运动特点和规律,抓住变化中图形的性质与特征,化动为静,以静制动。
解决运动型试题需要用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住其中的等量关系和变量关系,并特别关注一些不变量和不变关系或特殊关系.【动态几何问题的分类】动态几何问题是以几何图形为背景的,几何图形有直线型和曲线型两种,那么动态几何也有直线型的和曲线型的两类,即全等三角形、相似三角形中的动态几何问题,也有圆中的动态问题。
有点动、线动、面动,就其运动形式而言,有平移、旋转、翻折、滚动等。
根据其运动的特点,又可分为:(1)动点类(点在线段或弧线上运动)也包括一个动点或两个动点;(2)动直线类;(3)动图形问题。
【典型例题】例1.如图,在梯形中,ABCD 动点从点出发沿线段3545AD BC AD DC AB B ====︒∥,,,,∠.M B 以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段BC C N C 以每秒1个单位长度的速度向终点运动.设运动的时间为秒.CD D t (1)求的长;BC (2)当时,求的值;MN AB ∥t (3)试探究:为何值时,t MNC △CB例2. 已知:等边三角形的边长为4厘米,长为1厘米的线段在ABC MN 的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点ABC △AB AB B 与点重合,点到达点时运动终止),过点分别作边的垂线,M A N B M N 、AB 与的其它边交于两点,线段运动的时间为秒.ABC △P Q 、MN t (1)线段在运动的过程中,为何值时,四边形恰为矩形?并求出MN t MNQP 该矩形的面积;(2)线段在运动的过程中,四边形的面积为,运动的时间MN MNQP S 为.求四边形的面积随运动时间变化的函数关系式,并写出自变量t MNQP S t 的取值范围.t 例3.如图,在等腰梯形中,∥,,AB =12 ABCD AB DC cm BC AD 5==cm,CD =6cm , 点从开始沿边向以每秒3cm 的速度移动,点从开P A AB B Q C 始沿CD 边向D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止。
平行四边形动点问题
动点型问题解题思路
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类问题.
解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.解题时要注意动点的起始位置和终止位置、运动方向,有时还要关注动点的运动速度,注意在运动过程中寻找等量关系.
动点问题思路剖析
问题1:动点问题的处理框架是什么?
答:读题标注,整合信息(即明确所研究的背景图形)
问题2:分析运动过程需要关注四要素是什么?
答:①起点、终点、速度:标注到图形中,以示说明
②时间范围
根据路程、时间和速度的公式s=vt,已知动点的速度,结合基本图形中线段长的研究,可以确定动点的运动时间
③状态转折
状态转折即点的运协发生变化的时刻,常体现在动点的运动方向,运动速度发生了改变
④目标或结论导向
根据题意作出图形,有序操作(分段作图并求解)
问题3:在分析几何特征,表达时,常见表达线段长的方式有哪些?
答:①路程即线段长,可根据s=vt直接进行表达已走路程或未走路程
②根据研究几何特征的需求进行表达,即要利用动点的运动情况,又要结合背景图形信息。
四边形中的动点问题(带答案)
四边形中的动点问题1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠ EFB =2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H 分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为 _____3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ +PQ 的最小值为___________4、如图,在Rt△ABC中,∠ B=90°,AC=60cm,∠A=60°,点 D 从点C出发沿CA方向以4cm/s 的速度向点A匀速运动,同时点E从点 A 出发沿AB 方向以2cm/s 的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t ≤15).过点 D 作DF⊥ BC于点F,连接DE,EF.(1) 求证:AE=DF;(2) 四边形AEFD能够成为菱形吗如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,△ DEF为直角三角形请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点 A 出发沿射线AG以1cm/s 的速度运动,同时点 F 从点 B 出发沿射线BC以2cm/s 的速度运动,设运动时间为t.(1)连接EF,当EF经过AC边的中点 D 时,(1)求证:△ ADE≌△ CDF;:(2)当t 为____ s 时,四边形ACFE是菱形;6、在菱形ABCD中,∠ B=60°,点E在射线BC上运动,∠ EAF=60°,点 F 在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点 E 在BC的延长线上时(如图2),线段EC、CF、AB 有怎样的相等关系写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠ DAB=60°,点E是AD边的中点.点M 是AB边上一动点不与点 A 重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN 是平行四边形;(2)填空:①当AM 的值为____ 时,四边形AMDN 是矩形;②当AM 的值为____ 时,四边形AMDN 是菱形.8、如图,△ ABC中,点O 是边AC上一个动点,过O 作直线MN ∥BC,设MN 交∠ BCA的平分线于点E,交∠ BCA 的外角平分线于点F.(1)探究:线段OE与OF 的数量关系并加以证明;(2)当点O 运动到何处,且△ ABC满足什么条件时,四边形AECF是正方形(3)当点O 在边AC上运动时,四边形BCFE会是菱形吗若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D 重合)分别向直线AB、AD 作垂线,垂足分别为E、F.(1)BD的长是___ ;(2)连接PC,当PE+PF+PC取得最小值时,此时PB 的长是__10、如图,∠ MON=90°,矩形ABCD的顶点A、B分别在边OM,ON 上,当B在边ON 上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O 的最大距离为_____ .11、如图,已知矩形ABCD,AD=4,CD=10,P 是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN 是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN 是菱形;(3)四边形PMEN有可能是矩形吗若有可能,求出AP 的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A 运动,其速度为/s。
平行四边形动点问题方法总结
平行四边形动点问题方法总结大家好,今天我们来聊聊平行四边形动点问题。
这个问题可大可小,有时候我们在生活中也会碰到这样的问题。
比如说,你拿着一个碗,碗口朝下放在地上,然后用一根棍子在碗里搅动,碗里的水会形成一个漩涡。
这个现象背后就隐藏着平行四边形动点问题。
那么,我们怎么解决这个问题呢?接下来,我就要给大家普及一下解决平行四边形动点问题的三大法宝:三角形法则、相似三角形法则和向量法。
我们来说说三角形法则。
三角形法则是解决平行四边形动点问题的基本方法。
它的核心思想是利用三角形的三个顶点和三条边的关系,将平行四边形分解成若干个三角形,然后分别求解这些三角形的问题,最后将结果合并起来得到原问题的解。
这个方法简单易懂,而且非常实用。
但是,有时候三角形法则并不能直接解决问题,这时候我们就需要用到第二个法宝:相似三角形法则。
相似三角形法则是解决平行四边形动点问题的另一个重要方法。
它的核心思想是利用相似三角形的性质,将平行四边形分解成若干个相似的三角形,然后分别求解这些三角形的问题,最后将结果合并起来得到原问题的解。
这个方法比三角形法则更加灵活,可以处理更多的问题类型。
但是,相似三角形法则也有它的局限性,有些问题无法用相似三角形法则解决。
这时候,我们就需要用到第三个法宝:向量法。
向量法是解决平行四边形动点问题的最高级方法。
它的核心思想是利用向量的概念,将平行四边形分解成若干个向量,然后分别求解这些向量的问题,最后将结果合并起来得到原问题的解。
这个方法非常强大,可以处理各种复杂的问题类型。
而且,向量法还有一个优点,就是它可以避免一些几何陷阱,让你在解决问题的过程中更加得心应手。
解决平行四边形动点问题有三大法宝:三角形法则、相似三角形法则和向量法。
这三大法宝各有优缺点,我们需要根据具体的问题类型来选择合适的方法。
如果你觉得这些方法还是太难了,也不用担心,我们还有很多其他的方法可以用来解决这个问题。
比如说,你可以尝试画图、列方程、用公式等等。
初二数学《平行四边形中的动点问题》(附练习及答案)
四边形中的动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或直线上运动的一类开放性题目。
解决这类问题关键是动中求静,灵活运用有关数学知识。
数学思想:分类思想、函数思想、方程思想、数形结合思想、转化思想,其注重对几何图形运动变化能力的考查。
这类类问题从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查自主探究能力,促进培养学生解决问题的能力。
解决这类问题首先要在动点的运动过程中观察图形的变化情况,需要画出图形在不同位置的情况,才能做好计算推理的过程;其次在变化中找到不变量的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
动点问题题型方法归纳:动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就四边形中的动点问题的常见题型作简单介绍,解题方法、关键给以点拨。
1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB =60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________(第1题)(第2题)(第3题)3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s);(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)求当t为何值时,四边形ACFE是菱形;(3)是否存在某一时刻t,使以A、F、C、E为顶点的四边形内角出现直角?若存在,求出t的值;若不存在,请说明理由.6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是______;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______(第9题)(第10题)10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.11、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD 的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。
特殊平行四边形动点问题
特殊四边形:动点问题题型一:1.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为A 、17172B 、17174C 、 17178D 、3 2.如图4,在梯形ABCD 中,AD ∥BC ,AD =6,BC =16,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.3.如图,在梯形ABCD 中,AD ∥BC,E 是BC 的中点,AD=5,BC=12,CD=42,∠C=045,点P 是BC 边上一动点,设PB 长为x.1当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为直角梯形. 2当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为平行四边形.3点P 在BC 边上运动的过程中,以点P 、A 、D 、E 为顶点的四边形能否构成菱形试说明理由.4.在一个等腰梯形ABCD 中,AD1.t 为何值时,四边形ABQP 为平行四边形2.四边形ABQP 能为等腰梯形吗如果能,求出t 的值,如果不能,请说明理由;6.梯形ABCD 中,AD ∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P 从点A 开始,沿AD 边,以1厘米/秒的速度向点D 运动;动点Q 从点C 开始,沿CB 边,以3厘米/秒的速度向B 点运动;已知P 、Q 两点分别从A 、C 同时出发,,当其中一点到达端点时,另一点也随之停止运动;假设运动时间为t 秒,问:1t 为何值时,四边形PQCD 是平行四边形2在某个时刻,四边形PQCD 可能是菱形吗为什么3t 为何值时,四边形PQCD 是直角梯形4t 为何值时,四边形PQCD 是等腰梯形5 t 为何值时, APQ 是等腰三角形7.如图,在直角梯形ABCD 中,∠B=90°,AD ‖BC,且AD=4cm,AB=8cm,DC=10cm;若动点P 从点A 出发,以每秒4cm 的速度沿线段AD 、DC 向C 点运动;动点Q 从C 点以每秒5cm 的速度沿CB 向B 点运动;当Q 点到达B 点时,动点P 、Q 同时停止运动;设P 、Q 同时出发,并运动了t 秒; 1直角梯形ABCD 的面积为__________cm 的平方.2当t=________秒时,四边形PQCD 为平行四边形;3当t=________秒时,PQ=DC4是否存在t,使得P 点在线段DC 上,且PQ ⊥DC 如图2所示若存在,列出方程求出此时的t ;若不存在,请说明理由;8.如图,在直角梯形ABCD 中,∠B=90°,AB ‖CD,且AB=4cm,BC=8cm,DC=10cm;若动点P 从点A 出发,以每秒1cm 的速度沿线段AB 、BC 向C 点运动;动点Q 从C 点以每秒1cm 的速度沿CB 向B 点运动;当Q 点到达B 点时,动点P 、Q 同时停止运动;设P 、Q 同时出发,并运动了t 秒; 1直角梯形ABCD 的面积为__________cm 的平方.2当t=________秒时,四边形PBCQ 为平行四边形;3当t=________秒时,PQ=BC.10. 如图,在等腰梯形ABCD 中,AB ∥CD,其中AB=12 cm,CD=6cm ,梯形的高为4,点P 从开始沿AB 边向点B 以每秒3cm 的速度移动,点Q 从开始沿CD 边向点D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止;设运动时间为t 秒; 1求证:当t 为何值时,四边形APQD 是平行四边形;2PQ 是否可能平分对角线BD 若能,求出当t 为何值时PQ 平分BD ;若不能,请说明理由; 3若△DPQ 是以PQ 为腰的等腰三角形,求t 的值;11.如图,在直角梯形ABCD 中,AB1求CD 的长;2当四边形PBQD 为平行四边形时,求四边形PBQD 的周长;3在点P,点Q 的运动过程中,是否存在某一时刻,使得ΔBPQ 的面积为20cm 2若存在,请求出所有满足条件的t 的值;若不存在,请说明理由;13. 已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .1如图10-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;2如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b 单位:cm ,0ab ≠,已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.14.已知:如图,在梯形ABCD 中,AB ∥DC,∠B=90°,BC=8cm,CD=24cm,AB=26Cm,点P 从C 出发,以1cm/s 的速度向D 运动,点Q 从A 出发,以3cm/s 的速度向B 运 动,其中一动点达到端点时,另一动点随之停止运动.从运动开始.1经过多少时间,四边形AQPD 是平行四边形2经过多少时间,四边形AQPD 成为等腰梯形3在运动过程中,P 、Q 、B 、C 四点有可能构成正方形吗为什么A BC D EF 图10-1 O 图10-2 备用图如图,在梯形ABCD 中,AD ∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P,Q 分别从点B,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动的时间为t 秒.①当t 为何值时,四边形PQDC 是平行四边形;②当t 为何值时,以C,D,Q,P 为顶点的梯形面积等于60cm 2 ③是否存在点P,使△PQD 是等腰三角形若存在,请求出所有满足要求的t 的值,若不存在,请说明理由. 15.如图,在梯形ABCD 中,AD ∥BC,AD=6,DC=10,AB=65,∠B=45°.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.16.1求BC 的长.17.2当MN ∥AB 时,求t 的值.18.3△MNC 可能为等腰三角形吗若能,请求出t 的值;若不能,请说明理由.(4)△MNC 可能为直角三角形吗若能,请求出t 的值;若不能,请说明理由.(5)△MNC 为20时,请求出t 的值.如图,直角梯形ABCD 中,AB ∥CD,∠A=90°,AB=34,AD=4,DC=234 ,点P 从点A 出发沿折线段AD-DC-CB 以每秒3个单位长的速度向点B 匀速运动,同时,点Q 从点A 出发沿射线AB 方向以每秒2个单位长的速度匀速运动,当点P 与点B 重合时停止运动,点Q 也随之停止,设点P,Q 的运动时间是t 秒t >0.1当点P 到达终点B 时,求t 的值;2设△APQ 的面积为S,分别求出点P 运动到AD 、CD 上时,S 与t 的函数关系式;3当t 为何值时,能使PQ ∥DB ;4当t 为何值时,能使P 、Q 、D 、B 四点构成的四边形是平行四边形;16.如图,在等腰梯形ABCD 中,AD ∥BC,AB=DC=60,AD=75,BC=135.点P 从点B 出发沿折线段BA-AD-DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC,交折线段CD-DA-AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒t >0.1当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;2当点P 运动到AD 上时,t 为何值能使PQ ∥DC ;3设射线QK 扫过梯形ABCD 的面积为S,分别求出点E 运动到CD 、DA 上时,S 与t 的函数关系式;不必写出t 的取值范围4△PQE 能否成为直角三角形若能,写出t 的取值范围;若不能,请说明理由.17.如图,直角梯形ABCD 中,AD ∥BC,∠ABC=90°,已知AD=AB=3,BC=33,动点P 从B 点出发,沿线段BC 向点C 作匀速运动;动点Q 从点D 出发,沿线段DA 向点A 作匀速运动.过Q 点垂直于AD 的射线交AC 于点M,交BC 于点N .P 、Q 两点同时出发,速度都为每秒1个单位长度.当Q 点运动到A 点,P 、Q 两点同时停止运动.设点Q 运动的时间为t 秒.1求NC,MC 的长用t 的代数式表示;2当t 为何值时,四边形PCDQ 构成平行四边形3当t 为何值时,射线QN 恰好将△ABC 的面积平分并判断此时△ABC 的周长是否也被射线QN 平分.19.如图,已知直角梯形ABCD 中,AD ∥BC,AB ⊥BC,AD=2,AB=8,CD=10.1求梯形ABCD 的面积S ;2动点P 从点B 出发,以2cm/s 的速度、沿B →A →D →C 方向,向点C 运动;动点Q 从点C 出发,以2cm/s 的速度、沿C →D →A 方向,向点A 运动.若P 、Q 两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t 秒.问:①当点P 在B →A 上运动时,是否存在这样的t,使得直线PQ 将梯形ABCD 的周长平分若存在,请求出t 的值,并判断此时PQ 是否平分梯形ABCD 的面积;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P 、D 、Q 为顶点的三角形恰好是以DQ 为一腰的等腰三角形若存在,请求出所有符合条件的t 的值;若不存在,请说明理由.20.在直角梯形ABCD 中,∠C=90°,高CD=6cm,底BC=10cm 如图1.动点Q 从点B 出发,沿BC 运动到点C 停止,运动的速度都是1cm/s .同时,动点P 也从B 点出发,沿BA →AD 运动到点D 停止,且PQ 始终垂直BC .设P,Q 同时从点B 出发,运动的时间为ts,点P 运动的路程为ycm .分别以t,y 为横、纵坐标建立直角坐标系如图2,已知如图中线段为y 与t 的函数的部分图象.经测量点M 与N 的坐标分别为4,5和2, 25.1求M,N 所在直线的解析式;2求梯形ABCD 中边AB 与AD 的长;3写出点P 在AD 边上运动时,y 与t 的函数关系式注明自变量的取值范围,并在图2中补全整运动中y 关于t 的函数关系的大致图象.22.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=3 3,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM 返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒t>0.23.1设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式不必写t的取值范围;24.2当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;已知:如图,在直角梯形COAB中,OC∥AB,∠AOC=90°,AB=4,AO=8,OC=10,以O为原点建立平面直角坐标系,点D为线段BC的中点,动点P从点A出发,以每秒4个单位的速度,沿折线AOCD 向终点C运动,运动时间是t秒.1D点的坐标为;2当t为何值时,△APD是直角三角形;3如果另有一动点Q,从C点出发,沿折线CBA向终点A以每秒5个单位的速度与P点同时运动,当一点到达终点时,两点均停止运动,问:P、C、Q、A四点围成的四边形的面积能否为28如果可能,求出对应的t;如果不可能,请说明理由.在梯形ABCO中,OC∥AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别是A8,0,B8,10,C0,4.点D4,7为线段BC的中点,动点P从O点出发,以每秒1个单位的速度,沿折线OAB的路线运动,运动时间为t秒.1求直线BC的解析式;2设△OPD的面积为s,求出s与t的函数关系式,并指出自变量t的取值范围;33当t为何值时,△OPD的面积是梯形OABC的面积的8如图,在直角梯形COAB中,CB∥OA,以O为原点建立直角坐标系,A、C的坐标分别为A10,0、C0,8,CB=4,D为OA中点,动点P自A点出发沿A→B→C→O的线路移动,速度为1个单位/秒,移动时间为t秒.1求AB的长,并求当PD将梯形COAB的周长平分时t的值,并指出此时点P在哪条边上;2动点P在从A到B的移动过程中,设△APD的面积为S,试写出S与t的函数关系式,并指出t的取值范围;3几秒后线段PD将梯形COAB的面积分成1:3的两部分求出此时点P的坐标已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动.当其中一个动点运动到终点时,两个动点都停止运动.1求B点坐标;2设运动时间为t秒;①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;②当t为何值时,四边形OAMN的面积最小,并求出最小面积;③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN 的长度也刚好最小,求动点P的速度.如图1,以梯形OABC的顶点O为原点,底边OA所在的直线为轴建立直角坐标系.梯形其它三个顶点坐标分别为:A14,0,B11,4,C3,4,点E以每秒2个单位的速度从O点出发沿射线OA 向A点运动,同时点F以每秒3个单位的速度,从O点出发沿折线OCB向B运动,设运动时间为t.1当t=4秒时,判断四边形COEB是什么样的四边形2当t为何值时,四边形COEF是直角梯形3在运动过程中,四边形COEF能否成为一个菱形若能,请求出t的值;若不能,请简要说明理由,并改变E、F两点中任一个点的运动速度,使E、F运动到某时刻时,四边形COEF 是菱形,并写出改变后的速度及t的值如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A16,0,C0,2.1如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒0≤t≤4.①求当t为多少时,四边形PQAB为平行四边形②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ 的解析式.2如图②,若点P、Q分别是线段BC、AO上的任意两点不与线段BC、AO的端点重合,且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标.如图,在平面直角坐标系中,直角梯形ABCO的变OC落在x轴的正半轴上,且AB方形ODEF 的两边分别坐落在坐标轴上,且它的面积等于直角梯形ABCO面积,将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO的重叠部分面积为S;(1)求正方形ODEF的边长;(2)求OA所在直线的解析式(3)当正方形ODEF移动到顶点O与C重合时,求S的值(4)设正方形ODEF顶点O向右移动的距离为x,当正方形ODEF的边ED与y轴重合时,停止移动,求重叠部分面积S与x的函数关系式;如图,在△ABC中,∠ACB=90°,AC=BC=6cm,等腰RT△DEF中,∠D=90°,EF=在BC所在直线L上,开始时点F与点C重合,让等腰RT△DEF沿直线L向右以每秒1cm的速度做匀速运动,最后点E和点B重合;(1)请直接写出等腰RT△DEF运动6S时与△ABC重叠部分面积(2)设运动时间为xS,运动过程中,等腰RT△DEF与△ABC重叠部分面积为ycm2①在等腰RT△DEF运动6S后至运动停止前这段时间内,求y与x之间的函数关系式②在RT△DEF整个运动过程中,求当x为何值时,y=1/2.题型二:1.如图,正方形ABCD的边长为4cm,两动点P、Q分别同时从D、A出发,以1cm/秒的速度各自沿着DA、AB边向A、B运动;试解答下列各题:1当P出发后多少秒时,三角形PDO为等腰三角形;2当P、Q出发后多少秒,四边形APOQ为正方形;3当P、Q出发后多少秒时,ABCD PQDSS正方形325=∆.2.如图所示,有四个动点P 、Q 、E 、F 分别从正方形ABCD 的四个顶点出发,沿着AB 、BC 、CD 、DA 以同样的速度向B 、C 、D 、A 各点移动;1试判断四边形PQEF 是正方形并证明;2PE 是否总过某一定点,并说明理由;(3)四边形PQEF 的顶点位于何处时,其面积最小,最大各是多少(4)3.已知:如图,边长为a 的菱形ABCD 中,∠DAB=60°,E 是异于A 、D 两点的动点,F 是CD 上的动点;请你判断:无论E 、F 怎样移动,当满足:AE+CF=a 时,△BEF 是什么三角形并说明你的结论;4.如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD 不含B 点上任意一点,将BM 绕点B 逆时针旋转60°得到BN,连接EN 、AM 、CM.⑴ 求证:△AMB ≌△ENB ;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;⑶ 当AM +BM +CM 的最小值为13 时,求正方形的边长.题型三:1.如图,在直角梯形ABCD 中,AD//BC,∠C =90°,BC =16,DC =12,AD =21;动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P,Q 分别从点D,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动;设运动的时间为t 秒;(1)设▲BPQ 的面积为S,求S 与t 之间的函数关系式;(2)当t 为何值时,四边形ABPQ 平行四边形3当t 为何值时,以B 、P 、Q 三点为顶点的三角形是等腰三角形4是否存在时刻t,使得PQ ⊥BD 若存在,求出t 的值;若不存在,请说明理由;E A DB C N M2.如图①,在等腰梯形ABCD中,AD边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N.1如图25-1,当点M在AB边上时,连接BN.△≌△;①求证:ABN ADN②若∠ABC = 60°,AM = 4,∠ABN =α,求点M到AD的距离及tanα的值;2如图25-2,若∠ABC = 90°,记点M运动所经过的路程为x6≤x≤12.试问:x为何值时,△ADN为等腰三角形.4.在正方形ABCD中,M是边BC中点,E是边AB上的一个动点,MF⊥ME,MF交射线CD于点F,AB=4,BE=x,CF=y1求y关于x的解析式及定义域2当点F在边CD上时,四边形AEFD的周长是否随点E的运动而发生变化请说明理由3当DF=1时,求点A到直线EF的距离;5.如图1,在等腰梯形ABCD中,AD‖BC,E是AB的中点,过点E作EF‖BC交CD于点F;AB=4,BC=6,∠B=60°1求点E到BC的距离;2点P为线段EF上的一个动点,过点P作PM⊥EF交BC于点M,过M作MN‖AB交折线ADC于点N,连接PN,设EP=x.①当点N在线段AD上时,△PMN的形状是否发生改变若不变,求出△PMN的周长,若改变,说明理由.②当点N在线段DC上时,是否存在点P,使△PMN为等腰三角形若存在,请求出所有满足要求的x的值,若不存在,说明理由.6.在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD;一动点P从A出发以每秒1cm的速度沿A-B-C的路线做匀速运动,过点P做直线PM,使PM⊥AD;当点P运动2秒时,另一动点Q也从A 出发沿A-B-C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动;过Q做直线QN,使QN∥PM;设点Q的运动时间为t秒0≤t≤10,直线PM与QN截平cm行四边形所得图形的面积为S2①求S关于t的函数关系式;②求S的最大值;7.菱形ABCD中∠A=60°,边长为4CM,动点P从A出发,以1CM/秒的速度沿A-B-C的路线运动,在点P出发1秒后,点Q以同样的速度,沿同样的路径运动,过点P、Q的直线L1、L2互相平行,且都与AB边所在的直线成60°角,设点P运动的时间是X1≤X≤8秒,直线L1、L2在菱形上截出的图形周长为Y厘米1求Y与X的函数关系;2当X取何值时,Y的值最大最大值是多少8.如图,在矩形ABCD中,AB=12cm,BC=8cm,点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G即点F与点G重合时,三个点随之停止移动.设移动开始后第t秒时,△EF G的面积为Scm2.1当t=1秒时,S的值是多少2写出S和t之间的函数解析式,并指出自变量t的取值范围.。
有关平行四边形的动点问题
有关平行四边形的动点问题
平行四边形是由两组相邻的平行线和它们之间的四条线段组成的四边形。
在平行四边形中,我们可以考虑一个点在它沿着一个方向移动的同时,沿着另一个方向的轨迹。
这个点被称为“动点”。
如果动点沿着平行四边形的一条边上移动,那么它所相应的高度和底边也会相应地改变。
因此,如果我们将平行四边形分成许多小长方形,并在这些小长方形的顶点处放置动点,则可以形成一条光滑的曲线。
这个曲线被称为平行四边形的“径线”。
如果动点同时沿着两个方向移动,则可以得到一个新的曲线,称为“余弦曲线”。
这个曲线看起来像是一个上下波动的曲线,与平行四边形的一条对角线平行。
有趣的是,这两个曲线都是周期性的,其周期等于平行四边形的面积除以它沿着这个方向的速度。
因此,我们可以通过这些曲线来计算平行四边形的面积和周长。
通过研究这些平行四边形的动点问题,我们能够深入了解其内在的几何性质和性质之间的相互关系。
这不仅有助于帮助我们更好地理解平行四边形,还可以为其他更复杂的几何形状和问题提供有用的洞见和启示。
平行四边形的动点问题
平行四边形的动点问题1. 平行四边形是指具有两对相对平行的边的四边形。
在这个问题中,我们关注一个动点在平行四边形内移动的情况。
2. 首先,让我们定义平行四边形的四个顶点为A、B、C和D,并假设它们按顺时针方向排列。
我们还假设动点记为P,并且它可以在平行四边形内的任意位置移动。
3. 问题的第一部分是,如果动点P从A点出发,按一定路径移动,最后回到A点,那么它经过的路径会是什么样子4. 要回答这个问题,我们需要注意到平行四边形的两对相对边分别是AB和CD,以及AD和BC。
因此,如果动点P从A点出发并回到A 点,它必定会经过平行四边形的另外两个顶点,即C和B。
5. 为了更具体地描述动点P的路径,我们可以进一步假设动点P沿着直线AC移动到顶点C,然后沿着直线CB移动到顶点B,最后沿着直线BA移动回到顶点A。
这样,动点P所经过的路径形成了一个三角形ABC。
6. 需要注意的是,这个路径并不是唯一的。
动点P可以按任意方式从A到C,再从C到B,最后从B到A。
但无论路径如何,最终的路径都是一个三角形ABC。
7. 接下来,让我们来看问题的第二部分。
如果动点P从一个顶点出发,按一定路径移动,最后回到另一个顶点,那么它经过的路径会是什么样子8. 在这种情况下,我们可以假设动点P从顶点A出发,并沿着直线AC移动到顶点C。
然后,它会继续按照平行四边形的形状,沿着直线CB移动到顶点B,并最终沿着直线BA返回到顶点A。
9. 与第一部分类似,这个路径也不是唯一的。
动点P可以从任意顶点出发,按照相应的顺序经过其他两个顶点,最后回到初始的顶点。
10. 总结起来,平行四边形的动点问题涉及动点在平行四边形内移动的路径问题。
无论是从一个顶点出发回到同一个顶点,还是从一个顶点出发回到另一个顶点,最终路径都可以看作是一个三角形。
11. 这个问题的解答可以帮助我们更好地理解平行四边形的形状和特性,以及动点在平行四边形内移动时的可能路径。
它也为我们提供了一种思考和探索几何问题的方式。
平行四边形动点问题方法总结
平行四边形动点问题方法总结1. 引言:为什么我们要关注平行四边形动点问题?嘿,朋友们!今天我们来聊聊一个看似枯燥却又很有趣的数学话题——平行四边形动点问题。
别急着打哈欠,咱们慢慢来,这可是个让你从头到脚都充满成就感的数学冒险哦。
平行四边形动点问题,听名字就知道,讲的是在平行四边形里,某个点在移动时,会发生什么奇妙的事情。
这不仅仅是数学题,更像是一场迷人的舞蹈。
你知道吗?这些问题其实很接地气,因为它们涉及到很多我们生活中常见的现象,比如房子四角是直角的,家具摆放的角度等等。
2. 方法一:坐标法——从数学角度看平行四边形的奇妙。
2.1 说到解决这类问题,坐标法可是个不可或缺的好帮手。
咱们首先给平行四边形的四个顶点分配坐标,比如A、B、C、D分别是(0, 0)、(a, 0)、(b, c)、(d, e)。
坐标法就是把平行四边形里的每个点都用坐标表示出来,这样一来,不管点怎么动,我们都能通过数学公式来搞定。
2.2 你可以把平行四边形当成一个平面上的大布景,点A、B、C、D就是布景上的关键位置。
然后,动点就是在这个布景上游走的小演员。
比如,如果你要找出某个点P 的轨迹,只需要把P的坐标带入公式,就能知道P跑到哪儿去了。
坐标法简直是数学里的瑞士军刀,万能又省事。
3. 方法二:向量法——用矢量的眼光看世界。
3.1 向量法是另一个很酷的方法。
想象一下,向量就像是一把利刃,把复杂的数学问题一刀切成简单易懂的形状。
比如,平行四边形的对角线是彼此平行的,那么它们之间的向量关系就能告诉我们很多有用的秘密。
如果我们把动点P的运动看作一个向量变化,我们就能用向量运算来分析它的行为。
3.2 向量法的好处在于,它能帮我们迅速搞清楚平行四边形中各个点的相对位置和移动规律。
用这个方法,你可以非常方便地计算出点P在平行四边形内的各种可能位置,也能找到一些隐含的规律,比如点P可能会在平行四边形的对角线附近来回移动。
数学就像个魔术师,向量法让我们能透过表面看到更多的奥秘。
初二动点问题(答案)
初二动点问题1.分析:(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.解答:解:(1)∵四边形PQCD平行为四边形∴PD=CQ∴24-t=3t解得:t=6即当t=6时,四边形PQCD平行为四边形.(2)过D作DE⊥BC于E则四边形ABED为矩形∴BE=AD=24cm∴EC=BC-BE=2cm∵四边形PQCD为等腰梯形∴QC-PD=2CE即3t-(24-t)=4解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形.(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形.点评:此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的性质解答.解答:解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE= ∠ACB,同理,∠ACF= ∠ACG,∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.点评:本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用.(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM;四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;(3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值.(4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论:①当MP=MC时,那么PC=2NC,据此可求出t的值.②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值.③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.综上所述可得出符合条件的t的值.解答:解:(1)∵AQ=3-t∴CN=4-(3-t)=1+t在Rt△ABC中,AC2=AB2+BC2=32+42∴AC=5在Rt△MNC中,cos∠NCM= = ,CM= .(2)由于四边形PCDQ构成平行四边形∴PC=QD,即4-t=t解得t=2.(3)如果射线QN将△ABC的周长平分,则有:MN+NC=AM+BN+AB即:(1+t)+1+t= (3+4+5)解得:t= (5分)而MN= NC= (1+t)∴S△MNC= (1+t)2= (1+t)2当t= 时,S△MNC=(1+t)2= ≠ ×4×3∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分.(4)①当MP=MC时(如图1)则有:NP=NC即PC=2NC∴4-t=2(1+t)解得:t=②当CM=CP时(如图2)则有:(1+t)=4-t解得:t=③当PM=PC时(如图3)则有:在Rt△MNP中,PM2=MN2+PN2而MN= NC= (1+t)PN=NC-PC=(1+t)-(4-t)=2t-3∴[ (1+t)]2+(2t-3)2=(4-t)2解得:t1= ,t2=-1(舍去)∴当t= ,t= ,t= 时,△PMC为等腰三角形点评:此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法.4.分析:以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形的必须条件是点P、N重合且点Q、M不重合,此时AP+ND=AD即2x+x2=20cm,BQ+MC≠BC即x+3x≠20cm;或者点Q、M重合且点P、N不重合,此时AP+ND≠AD即2x+x2≠20c m,BQ+MC=BC即x+3x=20cm.所以可以根据这两种情况来求解x的值.以P,Q,M,N为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MC,BQ=ND;当点P在点N 的右侧时,AN=MC,BQ=PD.所以可以根据这些条件列出方程关系式.如果以P,Q,M,N为顶点的四边形为等腰梯形,则必须使得AP+ND≠AD即2x+x2≠20cm,BQ+MC≠BC即x+3x≠20cm,AP=ND即2x=x2,BQ=MC即x=3x,x≠0.这些条件不能同时满足,所以不能成为等腰梯形.解答:解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.①当点P与点N重合时,由x2+2x=20,得x1= -1,x2=- -1(舍去).因为BQ+CM=x+3x=4(-1)<20,此时点Q与点M不重合.所以x= -1符合题意.②当点Q与点M重合时,由x+3x=20,得x=5.此时DN=x2=25>20,不符合题意.故点Q与点M不能重合.所以所求x的值为-1.(2)由(1)知,点Q只能在点M的左侧,①当点P在点N的左侧时,由20-(x+3x)=20-(2x+x2),解得x1=0(舍去),x2=2.当x=2时四边形PQMN是平行四边形.②当点P在点N的右侧时,由20-(x+3x)=(2x+x2)-20,解得x1=-10(舍去),x2=4.当x=4时四边形NQMP是平行四边形.所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.由于2x>x,所以点E一定在点P的左侧.若以P,Q,M,N为顶点的四边形是等腰梯形,则点F一定在点N的右侧,且PE=NF,即2x-x=x2-3x.解得x1=0(舍去),x2=4.由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,所以以P,Q,M,N为顶点的四边形不能为等腰梯形.点评:本题考查到三角形、平行四边形、等腰梯形等图形的边的特点.5.分析:(1)根据平行四边形的性质,对边相等,求得t值;(2)根据等腰梯形的性质,下底减去上底等于12,求解即可.解答:解:(1)∵MD∥NC,当MD=NC,即15-t=2t,t=5时,四边形MNCD是平行四边形;(2)作DE⊥BC,垂足为E,则CE=21-15=6,当CN-MD=12时,即2t-(15-t)=12,t=9时,四边形MNCD是等腰梯形点评:考查了等腰梯形和平行四边形的性质,动点问题是中考的重点内容.6.分析:(1)若过点P作PM⊥BC于M,则四边形PDCM为矩形,得出PM=DC=12,由QB=16-t,可知:s= PM×QB=96-6t;(2)本题应分三种情况进行讨论,①若PQ=BQ,在Rt△PQM中,由PQ2=PM2+MQ2,PQ=QB,将各数据代入,可将时间t求出;②若BP=BQ,在Rt△PMB中,由PB2=BM2+PM2,BP=BQ,将数据代入,可将时间t求出;③若PB=PQ,PB2=PM2+BM2,PB=PQ,将数据代入,可将时间t求出.解答:解:(1)过点P作PM⊥BC于M,则四边形PDCM为矩形.∴PM=DC=12,∵QB=16-t,∴s= •QB•PM= (16-t)×12=96-6t(0≤t≤ ).(2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况:①若PQ=BQ,在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得;②若BP=BQ,在Rt△PMB中,PB2=(16-2t)2+122,由PB2=BQ2得(16-2t)2+122=(16-t)2,此方程无解,∴BP≠PQ.③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得,t2=16(不合题意,舍去).综上所述,当或时,以B、P、Q为顶点的三角形是等腰三角形.点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.7.分析:(1)分别令y=0,x=0,即可求出A、B的坐标;(2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O 到A的时间是8秒,点P的速度是2,从而可求出,当P在线段OB上运动(或0≤t≤3)时,OQ=t,OP=2t,S=t2,当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于点D,由相似三角形的性质,得PD=48-6t5,利用S= 12OQ×PD,即可求出答案;(3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标.解答:解:(1)y=0,x=0,求得A(8,0)B(0,6),(2)∵OA=8,OB=6,∴AB=10.∵点Q由O到A的时间是81=8(秒),∴点P的速度是6+108=2(单位长度/秒).当P在线段OB上运动(或O≤t≤3)时,OQ=t,OP=2t,S=t2.当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,如图,做PD⊥OA于点D,由PDBO=APAB,得PD= 48-6t5.∴S= 12OQ•PD=- 35t2+245t.(3)当S= 485时,∵485>12×3×6∴点P在AB上当S= 485时,- 35t2+245t= 485∴t=4∴PD= 48-6×45= 245,AD=16-2×4=8AD= 82-(245)2= 325∴OD=8- 325= 85∴P(85,245)M1(285,245),M2(- 125,245),M3(125,- 245)点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.。
第十八章平行四边形四边形中的动点问题(教案)人教版八年级数学下册
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形中动点问题的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对动点问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现同学们对平行四边形内动点问题的探究表现得非常积极。他们对于动点的运动规律和性质有了初步的认识,也尝试着将这些知识应用到实际问题中。我觉得这是一个很好的开始,但也发现了一些需要改进的地方。
首先,理论讲授部分,我发现有些同学对动点问题的基本概念掌握不够扎实。可能是我讲解得不够细致,也可能是同学们对这些概念还不够熟悉。在以后的教学中,我需要更加注意这一点,尽量用简单易懂的语言和丰富的例子来帮助他们理解。
3.重点难点解析:在讲授过程中,我会特别强调动点的运动规律和利用平行四边形性质解题这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与动点问题相关的实际问题。
2.实行四边形中的运动规律和性质。
-难点二:在实际问题中,学生可能不知道如何选择合适的定理和性质来解决动点问题。教师应指导学生通过分析问题结构,识别关键信息,进而选择恰当的几何定理进行求解。
-难点三:针对不同动点问题,如路径最短、面积最大等,学生可能不知如何下手。教师应教授学生分类讨论和优化的方法,帮助学生理清思路,找到解题突破口。
4.培养合作意识和团队精神,在小组讨论和探究过程中,学会倾听、交流、表达和协作,共同解决问题。
特殊平行四边形中的三种几何动点问题—2023-2024学年九年级数学上册(北师大版)(解析版)
特殊平行四边形中的三种几何动点问题类型一、面积问题 例.如图,在四边形ABCD 中,AB CD ∥,90BCD ∠=,10cm AB AD ==,=8cm BC .点P 从点A 出发,以每秒3cm 的速度沿折线ABC 方向运动,点Q 从点D 出发,以每秒2cm 的速度沿线段DC 方向向点C 运动.已知动点P ,Q 同时发,当点Q 运动到点C 时,P ,Q 运动停止,设运动时间为t .(1)直接写出CD 的长(cm );(2)当四边形PBQD 为平行四边形时,直接写出四边形PBQD 的周长(cm );(3)在点P 、点Q 的运动过程中,是否存在某一时刻,使得BPQ V 的面积为215cm ?若存在,请求出所有满足条件的t 的值;若不存在,请说明理由.【答案】(1)16(2)(3)存在,满足条件的t 的值为2512秒或5秒【分析】(1)过点A 作AM CD ⊥于M ,根据题意证明四边形ABCD 是平行四边形,然后根据平行四边形的性质以及勾股定理可得结果;(2)当四边形PBQD 是平行四边形,则点P 在AB 上,点Q 在DC 上,则103BP t =−,2DQ t =,根据平行四边形的性质可得1032t t −=,求解得出平行四边形的各边长,求其周长即可;(3)分两种情况进行讨论:①当点P 在线段AB 上时;②当点P 在线段BC 上时;根据三角形面积列方程计算即可.【详解】(1)解:如图1,过点A 作AM CD ⊥于M ,AM CD ⊥,=90BCD ∠︒,∴AM CB ∥,∵AB CD ∥,∴四边形ABCD 是平行四边形,10cm CM AB ∴==,在t R ADM 中,10cm AD =,8cm AM BC ==,根据勾股定理得,6cm DM =,16cm CD DM CM ∴=+=;(2)当四边形PBQD 是平行四边形,则点P 在AB 上,点Q 在DC 上,如图3,由运动知,103BP t =−,2DQ t =,1032t t ∴−=,2t ∴=,此时,4BP DQ ==,12CQ =,根据勾股定理得,BQ =∴四边形PBQD 的周长为()28BP BQ +=+(3)①当点P 在线段AB 上时,即:1003t ≤≤时,如图2,()1110381522BPQ S PB BC t =⋅=−⨯=,2512t ∴=;②当点P 在线段BC 上时,即:1063t <≤时,如图4,310BP t =−,162CQ t =−,()()113101621522BPQ S PB CQ t t ∴=⋅=−−=,5t ∴=或193t =(舍), 即:满足条件的t 的值为2512秒或5秒.【点睛】本题考查了四边形的动点问题,平行四边形的判定与性质,勾股定理,读懂题意,根据相应图形的性质列出方程是解本题的关键.【答案】(1)①12DP t =−;15BQ t =−;②7.5t =(2)()()()220<12=12<151345 15<1844t S t t t t −≤−≤−−≤⎧⎪⎪⎪⎪⎪⎩【分析】(1)①根据路程等于速度乘以时间列代数式即可;②AP BQ =时,四边形APQB 是平行四边形;(2)求出相关线段的长度,利用三角形面积公式,分情况讨论即可.【详解】(1)解:①由题意可知=cm AP t ,cm CQ t =,∴()12cm DP AD AP t =−=−,()15cm BQ BC CQ t =−=−;②当四边形APQB 是平行四边形时,AP BQ =,即15t t =−,解得7.5t =.故答案为:()12cm t −,()15cm t −(2)解:如图,过点D 作DE BC ⊥于点E ,则90A B DEB ∠=∠=∠=︒,∴四边形ABED 是矩形,∴90ADE ∠=︒,()12cm BE AD ==, ∴()15123cm CE BC BE =−=−=,∵120ADC ∠=︒,∴30CDE ADC ADE ∠=∠−∠=︒,∴()26cm DC EC ==,∴)cm DE ===,∴点P 运动到点D 时,需12秒,点P 到点C 时,需18秒;点Q 从点C 到点B 需15秒,从点B 到点A 需15+秒.故分三种情况讨论:①当012t <≤时,如图,11==(1522S BQ AB t ⋅−−)②当1215t <≤时,如图,过点P 作DH BC ⊥于点H ,()18cm PC AD DC t t =+−=−,易知DE PH ∥∴30CPH CDE ∠=∠=︒, ∴()119cm 22CH PC t ==−,∴())cm PH t ==−,∴211(15))22S BQ PH t t =⋅=−−=;③当1518t <≤时,如图,()15cm BQ t BC t =−=−,()111596cm 22BH BC CH t t ⎛⎫=−=−−=+ ⎪⎝⎭, ∴211113(15)(6)4522244S BQ BH t t t t =⋅=−⋅+=−−,综上,))()220<12=12<15134515<1844t S t t t t ≤−≤−−≤⎧⎪⎪⎪⎪⎪⎩.【点睛】本题考查列代数式、三角形面积公式、平行四边形的判定、勾股定理、矩形的判定与性质、含30度角的直角三角形的性质、四边形上的动点问题等,熟练掌握分类讨论思想是解题的关键.【答案】(1)10(2)12(3)S=18(09)6216(918)t t t t <≤⎧⎨−+<≤⎩(4)t= 4或8或12【分析】(1)当t=4时,AP=8,PD=AD -AP=BC -AP=18-8=10;(2)当四边形ABQP为矩形时,AP=BQ,根据不同的时间段AP的关系式求出t值即可;(3)由(2)中不同时间段AP的关系式得出S的分段函数即可;(4)PQ所在的直线将矩形ABCD分成面积比为1:2的两部分时,可能再两个不同的时间段存在12ABQPPDCQss=四边形四边形和12PDCQABQPss=四边形四边形两种可能,根据(3)中面积的函数关系式分段求t值即可.(1)解:当t=4时,AP=2t=8,∴PD=AD-AP=18-8=10,故答案为10(2)解:当四边形ABQP为矩形时,AP=BQ,若0≤t≤9时,AP=2t,则2t=t,解得t=0(不符合题意,舍去);若9<t≤18时,AP=36-2t,则36-2t=t,解得t=12;故答案为12(3)解:当0<t≤9时,S=12(BQ +AP)⋅AB =12(t+2t)×12= 18t;当9<t<18时,S=12(BQ +AP).AB =- 6t + 216.综上所述,S =18(09)6216(918)t tt t<≤⎧⎨−+<≤⎩(4)解:当0≤t≤9时,若12ABQPPDCQss=四边形四边形,则ABQPs四边形=13ABCDS矩形,∴18t=13×12×18,解得t=4;若12PDCQABQPss=四边形四边形,则ABQPs四边形=23ABCDS矩形,∴18t=23×12×18,解得t=8;当9<t≤18时,若12ABQPPDCQss=四边形四边形,则ABQPs四边形=13ABCDS矩形,∴-6t+216=13×12×18,解得t=24(舍);若12PDCQABQPss=四边形四边形,则ABQPs四边形=23ABCDS矩形,∴-6t+216=23×12×18,解得t=12;综上,当t=4或8或12时,PQ所在的直线将矩形ABCD分成面积比为1:2两部分.【点睛】本题主要考查四边形的综合题型,涉及动点问题,矩形的性质,梯形的面积等知识点,会用分类讨论的思想解决问题是解题的关键.如图,在ABD中,几秒钟后,MON的面积为【答案】(1)见解析(2)5米,24平方米;(3)1秒或4秒【分析】(1)根据题意,用“一组对边平行且相等的四边形是平行四边形”先判定平行四边形,再用邻边相等证明菱形;(2)解方程可得OA 、OB 的长,用勾股定理可求AB ,根据“菱形的面积对应对角线积的一半”计算连线面积;(3)根据点M 、N 运动过程中与O 点的位置关系,分三种情况分别讨论.【详解】(1)证明:AO 平分BAD ∠,AB CD ∥,DAC BAC DCA ∠∠∠∴==, ACD ∴是等腰三角形,AD DC =,又AB AD =,AB CD ∴=,∴四边形ABCD 为平行四边形,又AB AD =,∴四边形ABCD 是菱形;(2)解:解方程27120x x −+=,得,14x =,23x = 4OA ∴=,3OB =,利用勾股定理5AB ==,28,26AC OA BD OB ∴====,∴ABCD S =菱形118622AC BD ⨯=⨯⨯24=平方米.(3)解:在第(2)问的条件下,设M 、N 同时出发x 秒钟后,MON 的面积22m ,当点M 在OA 上时,2x <,MON S =12()()4232x x −−=, 解得1214x x ==, (大于2,舍去);当点M 在OC 上且点N 在OB 上时,23x <<,MON S =12()()3242x x −−=,整理得,2580x x −+=,此时,2=541870∆−⨯⨯=−<,∴原方程无解;当点M 在OC 上且点N 在OD 上时,即34x <≤,MON S =12 ()()2432x x −−=,整理得,2540x x −+=,解得1241x x ==, (小于3,舍去).综上所述:M ,N 出发1秒或4秒钟后,△MON 的面积为22m .【点睛】本题考查了菱形的判定方法,菱形的面积计算方法,分类讨论的数学思想.类型二、几何图形存在性问题 Rt ABC 中, (1)求AB AC ,的长;(2)求证:AE DF =;(3)当t 为何值时,DEF 为直角三角形?请说明理由.【答案】(1)AB=5,AC=10;(2)证明见解析(3)当52t =秒或4秒时,DEF 为直角三角形,理由见解析【分析】(1(2)利用已知用未知数表示出DF ,AF 的长,进而得出AE DF =;(3)利用①当90EDF ∠=︒时;②当90DEF ∠=︒时;③当90EFD ∠=︒时,分别分析得出即可.【详解】(1)解:设AB x =,90B ∠=︒,30C ∠=︒,22AC AB x ∴==.由勾股定理得,()(2222x x −=, 解得:5x =, 5AB ∴=,10AC = ;(2)证明:由题意得AE t =,CD=2t ,则102AD t =−,在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴12DF CD t==.又AE t=,AE DF∴=;(3)解:当52t=秒或4秒时,DEF为直角三角形,理由如下:分情况讨论:①∠EDF=∠DFC=90°时,则DE BC∥,∴∠AED=∠B=90°,∠ADE=∠C=30°,∴AD=2AE,∴10-2t=2t,∴52t=;②∠DEF=90°时,∵AB⊥BC,DF⊥BC,∴AE DF.又∵AE=DF,∴四边形AEFD为平行四边形,∴AD EF,∴∠ADE=∠DEF=60°,∴∠AED=30°,∴12AD AE=,∴1 1022t t−=,∴4 t=;③∠EFD=90°时,此种情况不存在. 当52t =秒或4秒时,DEF 为直角三角形.【点睛】本题是四边形综合题目,考查了平行四边形的判定、菱形的判定与性质、勾股定理、直角三角形的性质等知识.理解相关知识是解答关键. (1)连接PD 、PQ 、DQ ,求当t 为何值时,PQD △的面积为(2)当点P 在BC 上运动时,是否存在这样的t 使得△合条件的t 的值;若不存在,请说明理由.【答案】(1)1秒或4秒(2)存在,43t =秒或4)秒【分析】(1)根据正方形的性质和面积公式,利用割补法即可求解;(2)根据勾股定理、等腰三角形的性质得出一元二次方程,分情况讨论以PD 为腰的等腰三角形即可说明.【详解】(1)解:当P 在BC 上时如图:根据题意,得4AB BC CD AD ====AQ t =,4QB t =−,2BP t =,42PC t =−,7PQD ADQ BPQ DPC ABCD S S S S S =−−−=△△△△正方形,1111642(4)4(42)7222t t t t −⨯⨯−⨯−−⨯⨯−=整理,得2210t t −+=,解得121t t ==.当P 在CD 上时,此时24t <≤4(24)82DP t t =−−=− 1(82)472PQD S t ∴=−⨯=△94t ∴=答:当t 为1秒或94秒时,PQD △的面积为27cm .(2)①当PD DQ =时,根据勾股定理,得2216(42)16t t +−=+,解得143t =,24t =(不符合题意,舍去).②当PD PQ =时,根据勾股定理,得22216(42)(4)(2)t t t +−=−+,整理得:28160t t +−=解得14t =,24t =−(不符合题意,舍去).答:存在这样的43t =秒或4)秒,使得PQD △是以PD 为一腰的等腰三角形.【点睛】本题考查了正方形、一元二次方程、等腰三角形的相关知识,解决本题的关键是分类讨论思想的运用.例3.如图,在四边形ABCD 中,AD ∥BC ,∠B =90°,AB =8cm ,AD =12cm ,BC =18cm ,点P 从点A 出发以1cm/s 的速度向点D 运动;点Q 从点C 同时出发,以2cm/s 的速度向点B 运动,当点Q 到达点B 时,点P 也停止运动,设点P ,Q 运动的时间为t s .(1)从运动开始,当t 取何值时,PQ ∥CD ?(2)在整个运动过程中是否存在t 值,使得四边形PQCD 是菱形?若存在,请求出t 值;若不存在,请说明理由;(3)从运动开始,当t 取何值时,四边形PQBA 是矩形?(4)在整个运动过程中是否存在t 值,使得四边形PQBA 是正方形?若存在,请求出t 值;若不存在,请说明理由.【答案】(1)4(2)不存在,理由见解析(3)6(4)不存在,理由见解析【分析】(1(2)利用菱形的判定和性质进行求解即可;(3)利用矩形的判定和性质进行求解即可;(4)利用正方形的判定和性质进行求解即可.(1)解:由运动知,AP =tcm ,CQ =2tcm ,∴DP =AD ﹣AP =(12﹣t )cm ,∵AD BC ∥,要PQ CD ∥,∴四边形CDPQ 为平行四边形,∴DP =CQ ,∴12﹣t =2t ,∴t =4,即t =4时,PQ ∥CD ;(2)不存在,理由:∵四边形PQCD 是菱形,∴CQ =CD ,∴2t =10,∴t =5,此时,DP =AD ﹣AP =12﹣5=7(cm ),而DP≠CD ,∴四边形PQCD 不可能是菱形;(3)如图4,∵∠B =90°,AD ∥BC ,∴当AP =BQ 时,四边形ABQP 是矩形,即t =18﹣2t ,解得:t =6,∴当t =6时,四边形PQBA 是矩形;(4)由当t =6时,四边形PQBA 是矩形,∴AP =6cm ,∵AB =8cm ,∴AP≠AB ,∴矩形PQBA 不能是正方形,即不存在时间t ,使四边形PQBA 是正方形.【点睛】本题考查四边形中的动点问题.解题的关键是熟练掌握平行四边形、菱形、矩形和正方形的判定和性质,确定动点的位置. 例4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O ,且8AC =,6BD =,现有两动点M ,N 分别从A ,C 同时出发,点M 沿线段AB 向终点B 运动,点N 沿折线C D A −−向终点A 运动,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t (秒).(1)填空:AB = ;菱形ABCD 的面积S = ;菱形的高h = .(2)若点M 的速度为每秒1个单位,点N 的速度为每秒a 个单位(其中52a <),当4t =时在平面内存在点得以A ,M ,N ,E 为顶点的四边形为菱形,请求出所有满足条件的a 的值.【答案】(1)5;24;245(2)1.5或1.94或1.4【分析】(1)先由菱形的性质和勾股定理求得AB ,再跟菱形面积为对角线之积的一半可得S ,最后根据菱形的面积为边长×高,由此可得高h 的长;(2)当4t =,时间固定,AM 的长度也就固定,A 、M 、N 、E 四点要形成菱形,分两大类情况,第一类以AM 为边,这种情况可以画两种菱形;第二类以AM 为对角线,只有一种.因此共三种情况,分别计算.【详解】(1)解:∵四边形ABCD 是菱形,AC 与BD 交于点O ,86AC BD ==,,∴43AO CO BO DO AC BD ====⊥,,,∴AB=5,设菱形的高为h,则菱形ABCD 的面积为186242AB h ⨯⨯=⨯=∴245h =故答案为:5,24,245(2)解:当4t =时,4AM =,①如图2,四边形AMEN 为菱形,4AN AM ∴==,1046ND CD ∴+=−=,46a ∴=,32a =.②如图3,AENM 为菱形,EM 交AN 于点R ,作DP 垂直BC 于P ,菱形面积为24,4.8DP ∴=,75CP ∴=,MAR BCD ∠=∠,AMR PDC ∴∠=∠,AR CP AM CD ∴=,1.12AR ∴=,2.24AN ∴=,()()410 2.244 1.94a ND CD ∴=+÷=−÷=,③如图4,AEMN 为菱形,EN 交AM 于点T ,作BS 垂直CD 于S ,则2AT MT ==,523BT NS ∴==−=,4.8BS =, 1.4CS ∴=,1.43 4.4CN NS CS∴=+=+=,4 4.44 1.1a CN∴=÷=÷=;综上所述,a的取值有1.5或1.94或1.4.【点睛】本题主要考查了菱形的性质、三角函数、勾股定理、面积计算,分类讨论等重要知识点,综合性和技巧性很强,计算量也较大,对学生的能力要求较高,因此综合应用所学知识成为解答本题的关键.类型三、直线位置关系问题(1)直接写出AB的长.(2)当点Q落在AB边上时,用含t的代数式表示【答案】(1)3(2)3523t−或5332t−(3)12、或175(4)920或215【分析】(1)根据勾股定理直接求出AB 的长度;(2)分类讨论Q 在AD 和BD 上的两种情况,DQ AD AQ =−或 DQ AQ AD =−;(3)当平行四边形PQDM 为菱形或矩形时即为轴对称图形,因为PQ AC ⊥,所以当Q 在AB 上时,PQD ∠不可能为直角,平行四边形PQDM 不可能为矩形,只存在菱形的情况,根据PQ DQ =建立等量解出t 值;当Q 在BC 上时,表示出DQ 的长度较为复杂,所以可以表示出2DQ ,利用22PQ DQ =建立方程解出t 值;当Q 点在BC 中点时,平行四边形PQDM 为矩形,可直接求得t 值;(4)因为平行四边形PQDM 的四个顶点顺序已经确定,所以Q 在过点D 的AC 平行线的下方,分类讨论Q 在AD 上和在CN (见详解图)上的两种况下QM 平行于不同边时的情况,注意,根据平行线的定义,当Q 在AB 上时,QM 不可能平行于AB ,当Q 在BC 上时,QM 不可能平行于BC .【详解】(1)解:在Rt ABC 中,222AB AC BC =−,∴3=AB ;(2)解:P 从点A 出发以每秒个单位的速度沿AC 向终点C 运动,∴AP t =,PQ AC ⊥,∴APQ ABC △△∽,::3:4:5AB BC AC =,∴::3:4:5AP QP AQ =, ∴5533AP t AQ ==,点D 是边AB 的中点,∴32AD BD ==, ∴ 3523DQ t =−或5332t −;(3)解:当平行四边形PQDM 为菱形或矩形时即为轴对称图形, ∴ PQ DQ =或平行四边形PQDM 某一内角为90︒,①当Q 在AB 上时,990510t t ⎛⎫≤≤≠ ⎪⎝⎭,由(1)得43PQ t =,3523DQ t =−或5332t −, ∴354233t t −=或534323t t −=, 解得12t =或92, 990510t t ⎛⎫≤≤≠ ⎪⎝⎭,∴12t =;Q 在AB 上时,PQD ∠不可能为90︒,故不存在矩形的情况;②如图,当Q 在BC 上时,955t ≤≤,CPQ CBA △△∽,∴::4:3:5CP QP CQ =,AP t =,∴5CP t =−, ∴()354PQ t =−,()554CQ t =−, ∴()55945444BQ t t =−−=−, ∴222222359254511724416816DQ BD BQ t t t ⎛⎫⎛⎫=+=+−=−+ ⎪ ⎪⎝⎭⎝⎭, 当22PQ DQ =时,平行四边形PQDM 为菱形, ∴()22254511735168164t t t ⎡⎤−+=−⎢⎥⎣⎦,解得t =,955t ≤≤,∴t =;当Q 点在BC 中点时,平行四边形PQDM 为矩形, 此时485255t −=⨯=, 解得175t =;综上所述:当平行四边形PQDM 为轴对称图形时,t 的值为12、或175;(4)解:平行四边形PQDM ,∴Q 在过点D 的AC 平行线的下方, ①如图,Q 在AD 上,9010t ≤<,QM AC ∥时,易得DQM QAP △△∽,平行四边形PQDM ,∴43DM QP t ==, 由(1)得3523DQ t =−, ∴35523443t DQ DM t −==, 解得920t =;②如图,Q 在AD 上,9010t ≤<,QM BC ∥时, 易得DQM QPA △△∽,∴35423453tDQDM t−==,解得8245t=(舍);③过点D的平行线交BC于点N,点Q在CN上移动才可能会出现平行四边形PQDM的对角线QM平行于直角三角形的边,此时1755t≤≤,如图,当QM AC∥时,延长DM交AC于点H,平行四边形PQDM,∴()354DM PQ t==−且DH AC⊥,QM AC∥,∴四边形MQPH为矩形,∴()354MH PQ DM t===−,∴()365245t DH−⨯==,解得215t=;不存在QM AB∥的情况;综上所述:当QM与Rt ABC△的某条边平行时,t的值为920或215.【点睛】本题考查了几何动点问题,涉及到相似、平行线的性质、平行四边形以及特殊的平行四边形的性质和判定,还会用到分类讨论的思想,难度较大,解决本题的关键是能准确找到不同的情况并对问题进行分类讨论.【答案】(1)BD =,9BE cm =(2)PQ AD ⊥,理由见详解(3)存在,t 的值为125或4(4)或【分析】(1)可求出30ADB ∠=︒,根据含30︒的直角三角形的性质可得212AD AB cm ==,BD =,根据平行四边形的性质可得AD BC ∥,则30DBC ∠=︒,即可得12DE BD =,BE =,即可求解; (2)先证四边形DEQP 是平行四边形,可得四边形DEQP 是矩形,即可得出结论;(3)分两种情况讨论,由平行四边形的性质可得AP BQ =,列出方程可求解;(4)分两种情况讨论,由轴对称的性质和等边三角形的性质以及勾股定理可求解.【详解】(1)四边形ABCD 是平行四边形,90ABD Ð=°,60A ∠=︒,6AB cm =,30ADB ∴∠=︒,AD BC ∥,212AD AB cm ∴==,BD ==,30DBC ADB ∠=∠=︒,DE BC ⊥,12DE BD ∴==,BE =,9BE cm ∴==;(2)PQ AD ⊥,理由如下:如图1,动点P 从点D 出发沿DA 以1/s cm 的速度向终点A 运动,同时点Q 从点B 出发,以4/cm s 的速度沿射线BC 运动,∴当95t =时,95PD =,365BQ =, 369955QE BE BQ PD ∴=−=−==, AD BC ,∴四边形DEQP 是平行四边形,DE BC ⊥,∴四边形DEQP 是矩形,PQ AD ∴⊥;(3)存在,当CD 为边时,四边形PQCD 是平行四边形,PD CQ ∴=,124t t ∴=−,125t ∴=;当CD 为对角线时,四边形PCQD 是平行四边形,PD CQ ∴=,412t t ∴=−,4t ∴=,综上所述:t 的值为125或4;(4)如图,当点P 的对称点在线段CD 上时,60ADQ QDC ∴∠=∠=︒,60QDC BCD ∴∠=∠=︒,CDQ ∴是等边三角形,CD CQ ∴=,6124t ∴=−,32t ∴=,过点P 作PH BC ⊥于H ,则PH DE ==,32EH PD cm ==, 60BCD ∠=︒,6CD AB cm ==,DE BC ⊥,13cm 2CE CD ∴==,32QH CQ EH CE cm ∴=−−=,在Rt PQH 中,PQ =; 如图,当点P 的对称点在线段CD 的延长线上时,120CDA ∠=︒,60PDP '∴∠=︒,点P 的对称点在线段CD 的延长线上,1302CDQ PDP '∴∠=∠=︒,BCD CDQ CQD ∠=∠+∠, 30CDQ CQD ∴∠=∠=︒,6CD CQ ∴==,12618BQ ∴=+=,418t ∴=,92t ∴=,过点P 作PH BC ⊥于H ,则PH DE ==,92EH PD cm ==,60BCD ∠=︒,6CD AB cm ==,DE BC ⊥,132CE CD cm ∴==,272QH CQ EH CE cm ∴=++=,在Rt PQH 中,PQ ==;综上所述:点P ,Q 之间的距离为或.【点睛】本题是四边形综合题,考查了平行四边形的性质,直角三角形的性质,等边三角形的判定和性质等知识,利用分类讨论思想解决问题是解题的关键.课后训练1.如图,在四边形ABCD 中,AB CD ∥,90A ∠=︒,24cm DC =,26cm AB =,动点P 从D 开始沿DC 边向C 点以1cm /s 的速度运动,动点Q 从点B 开始沿BA 向A 点以3cm /s 的速度运动,P ,Q 分别从点D ,B 同时出发,当其中一点到达终点时,另一点也随之停止运动,运动的时间为t 秒.(1)t 为何值时,四边形DPQA 为矩形?(2)t 为何值时,四边形PQBC 为平行四边形?【答案】(1)当132t =秒时,四边形DPQA 为矩形(2)当6t =秒时,四边形PQBC 为平行四边形【分析】(1)根据AB CD ∥,矩形的判定和性质,得AQ DP =,求出t ,即可;(2)根据平行四边形的判定和性质,得PC QB =,求出t ,即可.【详解】(1)∵AB CD ∥,∴AQ DP ∥,当AQ DP =时,四边形DPQA 为平行四边形,∵90A ∠=︒,∴平行四边形DPQA 为矩形,∵动点P 从D 开始沿DC 边向C 点以1cm /s 的速度运动,动点Q 从点B 开始沿BA 向A 点以3cm /s 的速度运动, ∴cm DP t =,3cm BQ t =,∴263AQ AB BQ t =−=−,∴263t t =−,解得:261342t ==, ∴当132t =秒时,四边形DPQA 为矩形.(2)∵AB CD ∥,∴QB PC ∥,当PC QB =时,四边形PQBC 为平行四边形,∴24PC t =−,∴243t t −=,解得:6t =,∴当6t =秒时,四边形PQBC 为平行四边形.【点睛】本题考查动点与几何的综合,矩形和平行四边形的知识,解题的关键是掌握矩形和平行四边形的判定和性质. 在ABC 中, 发现:(1)在点O 的运动过程中,OE 与OF 的关系是(2)当=2t 时,=EF ______cm .【答案】(1)OE OF =,详见解析(2)8cm ,探究:3,拓展:=AB 10cm【分析】()1根据角平分线的定义、平行线的性质分别得到OEC ACE ∠=∠,ACF OFC ∠=∠,根据等腰三角形的判定定理得到OE OC =,OF OC =,等量代换证明结论;()2根据直角三角形斜边上的中线的性质解答;探究:根据矩形的判定定理得到=OA OC 时,四边形AECF 是矩形,进而求出OA ,求出t ;拓展:根据正方形的对角线平分一组对角得到45ACE ∠=︒,进而得到90ACB ∠=︒,根据勾股定理计算,得到答案.【详解】(1)解:OE OF =,理由如下:CE 平分ACB ∠,BCE ACE ∴∠=∠,EF BC ∥,BCE OEC ∴∠=∠,OEC ACE ∴∠=∠,OE OC ∴=,同理可得,ACF OFC ∠=∠,OF OC ∴=,OE OF ∴=,故答案为:OE OF =;(2)由题意得,当=2t 时,2cm OA =,则4cm OC AC OA =−=,BCE ACE ∠=∠,GCF ACF ∠=∠,90ECF ∴∠=︒,OE OF =,()28cm EF OC ∴==,故答案为:8; 探究:当=3t 时,四边形AECF 是矩形,理由如下:90ECF ∠=︒,OE OF =,∴当=OA OC 时,四边形AECF 是矩形,此时,3cm OA OC ==,3t ∴=时,四边形AECF 是矩形,故答案为:3;拓展:当四边形AECF 是正方形时,45ACE ∠=︒,CE 平分ACB ∠,290ACB ACE ∴∠=∠=︒,()10cm AB ∴=.【点睛】本题考查的是正方形的性质、矩形的判定、平行线的性质以及直角三角形斜边上的中线的性质,掌握矩形的判定定理、正方形的性质是解题的关键. 3.已知正方形ABCD 中,8AB BC CD DA ====,90A B C D ∠=∠=∠=∠=︒.动点P 以每秒2个单位速度从点B 出发沿线段BC 方向运动,动点Q 同时以每秒8个单位速度从B 点出发沿正方形的边BA AD DC CB −−−方向顺时针作折线运动,当点P 与点Q 相遇时停止运动,设点P 的运动时间为t .(1)当运动时间为 秒时,点P 与点Q 相遇;(2)当BQ PD ∥时,求线段DQ 的长度;(3)连接PA ,当PAB 和QAD 全等时,求t 的值.【答案】(1)3.2(2)3.2(3)t 为0.8或83【分析】(1)先判断出点P ,Q 相遇时,必在正方形的边BC 上,利用运动路程之和为正方形的正常建立方程即可;(2)先判断出四边形BQDP 是平行四边形,得出BP DQ =,进而表示出BP ,DQ ,用BP DQ =建立方程求解即可;(3)分点Q 在正方形的边AB ,AD ,CD ,BC 上,建立方程求解即可得出结论;【详解】(1)解:点P 的运动速度为2,8BC =,∴点P 运动到点C 的时间为4,点Q 的运动速度为8,∴点Q 从点B 出发沿BA AD DC CB −−−方向顺时针作折线运动到点C 的时间为(888)83++÷=,∴点P ,Q 相遇时在边BC 上,284832t t ∴+=⨯=,3.2t ∴=,故答案为3.2;(2)解:如图1,//BQ PD ,∴点Q 只能在边AD 上,四边形ABCD 是正方形,//AD BC ∴,∴四边形BQDP 是平行四边形,BP DQ ∴=,2288t t ∴=⨯−,1.6t ∴=,288 3.2DQ t ∴=⨯−=;(3)解:①当点Q 在边AB 上时,如图2,AB AD =,ABP DAQ ∠=∠,要使PAB ∆和ΔQAD 全等,只能是PAB QDA ≅,BP AQ ∴=,88AQ t =−,2BP t =,882t t ∴−=,0.8t ∴=,②当点Q 在边AD 时,不能构成QAD ,③当点Q 在边CD 上时,如图3,同①的方法得,要使PAB 和QAD 全等,只能是PAB QAD ≅,BP DQ ∴=,2816t t ∴=−,83t ∴=,④当点Q 在边BC 时,QAD 不是直角三角形,而PAB 是直角三角形,所以,不能全等;即:当PAB 和QAD 全等时,t 的值为0.8或83;【点睛】本题考查四边形综合题、正方形的性质、平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会分类讨论. 4.如图,在ABCD Y 中,9034BAC CD AC ∠=︒==,,.动点P 从点A 出发沿AD 以1cm /s 速度向终点D 运动,同时点Q 从点C 出发,以4cm /s 速度沿射线CB 运动,当点P 到达终点时,点Q 也随之停止运动,设点P 运动的时间为t 秒()0t >.(1)CB 的长为______.(2)用含t 的代数式表示线段QB 的长.(3)连接PQ ,①是否存在t 的值,使得PQ 与AC 互相平分?若存在,求出t 的值;若不存在,请说明理由;②是否存在t 的值,使得PQ 与AB 互相平分?若存在,求出t 的值;若不存在,请说明理由.(4)若点P 关于直线AQ 对称的点恰好落在直线AB 上,请直接写出t 的值.【答案】(1)5(2)55404QB t t ⎛⎫=−<≤ ⎪⎝⎭或5454QB t t ⎛⎫=−> ⎪⎝⎭(3)①不存在,理由见解析;②存在,t 的值为53(4)t 的值为12或2【分析】(1)根据平行四边形的性质得3AB DC ==,再根据勾股定理即可求解;(2)根据题意可得4CQ t =,先求出当点Q 与点B 重合时,所花费的时间,再根据题意分两种情况讨论即可:当点Q 在线段BC 上时和当点Q 在线段CB 的延长线上时;(3)①连接PC AQ ,,假设PQ 与AC 互相平分,则可得四边形APCQ 是平行四边形,进而可得AP CQ =,解得即可到答案;②连接PB AQ ,,假设PQ 与AB 互相平分,则可得四边形APBQ 是平行四边形,进而可得AP BQ =,解得即可到答案;(4)根据题意分两种情况讨论即可:当点P 关于直线AQ 对称的点落在点A 下方时和当点P 关于直线AQ 对称的点落在点A 上方时.【详解】(1)∵四边形ABCD 是平行四边形,∴3AB DC ==,∵90BAC ∠=︒,∴5BC =,故答案为:5;(2)在ABCD Y 中,AD BC =,AD BC ∥,由题意得,4CQ t =,当点Q 与点B 重合时,45t =, ∴5s 4t =, 当点Q 在线段BC 上时,54QB BC CQ t =−=−,当点Q 在线段CB 的延长线上时,45QB CQ BC t =−=−, 综上所述,55404QB t t ⎛⎫=−<≤ ⎪⎝⎭或5454QB t t ⎛⎫=−> ⎪⎝⎭;(3)①不存在,理由如下:如图,连接PC AQ ,,若PQ 与AC 互相平分,则四边形APCQ 是平行四边形,∴AP CQ =,∵4AP t CQ t ==,,∴4t t =,解得0=t (不合题意),∴不存在t 的值,使得PQ 与AC 互相平分;②存在,如图,连接PB AQ ,,若PQ 与AB 互相平分,则四边形APBQ 是平行四边形,∴AP BQ =,∴45t t =−, ∴5s 3t =, ∴当5s 3t =时,PQ 与AB 互相平分; (4)当点P 关于直线AQ 对称的点落在点A 下方时,如图,由对称得,PAQ P AQ '∠=∠,∵AD BC ∥,∴PAQ AQB ∠=∠,∴P AQ AQB '∠=∠,即BAQ AQB ∠=∠,∴3BQ AB ==,∴2CQ BC BQ =−=,∴42t =,解得12t =;当点P 关于直线AQ 对称的点落在点A 上方时,如图,由对称得,12∠=∠,∵AD BC ∥,∴13∠=∠,∵24∠∠=∴3=4∠∠,∴3BQ AB ==,∴8CQ BC BQ =+=,∴48t =,解得2t =,综上所述,t 的值为12或2.【点睛】本题考查了平行四边形的判定和性质、勾股定理的应用和动点问题,灵活运用所学知识求解是解决本题的关键. 5.如图,矩形ABCD 中,4CD =,30CBD ∠=︒.一动点P 从B 点出发沿对角线BD 方向以每秒2个单位长度的速度向点D 匀速运动,同时另一动点Q 从D 点出发沿DC 方向以每秒1个单位长度的速度向点C 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点P 、Q 运动的时间为t 秒()0t >.过点P 作PE BC ⊥于点E ,连接EQ ,PQ .(1)求证:PE DQ =;(2)四边形PEQD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由.(3)当t 为何值时,PQE V 为直角三角形?请说明理由.【答案】(1)见解析(2)能,83t =(3)当2t =或165,见解析【分析】(1)由垂直得90BEP ∠=︒,在Rt BEP 中,2BP t =,由30CBD ∠=︒,可得PE t =,即可证明结果;(2)先证明四边形PEQD 是平行四边形,82PD t =−,DQ t =,当PD DQ =时,四边形PEQD 为菱形,即可求解;(3)分类讨论:①当90EPQ ∠=︒,②当90PQE ∠=︒,③当90PEQ ∠=︒即可.【详解】(1)证明:∵PE BC ⊥,∴90BEP ∠=︒,在Rt BEP 中,2BP t =,∵30CBD ∠=︒,∴PE t =,又∵DQ t =,∴PE DQ =;(2)解:能,理由如下:∵四边形ABCD 为矩形,PE BC ⊥,90BEP C ︒∠==∠,∴PE DQ ∥,由(1)知,PE DQ =,∴四边形PEQD 为平行四边形,在Rt CBD 中,4CD =,30CBD ∠=︒,∴28BD CD ==,∵2BP t =,∴82PD BD BP t =−=−,若使平行四边形PEQD 为菱形,则需PD DQ =,即82t t −=, ∴83t =, 即当83t =时,四边形PEQD 为菱形; (3)解:①当90EPQ ∠=︒时,四边形EPQC 为矩形,∴PE QC =,∵PE t =,4QC t =−,∴4t t =−,即2t =;②当90PQE ∠=︒时,90DPQ PQE ∠=∠=︒,在Rt DPQ 中,906030PQD ∠=︒−︒=︒,∴2DQ DP =,∵DQ t =,82DP t =−∴()282t t =−,即165t =.③当90PEQ ∠=︒时,此种情况不存在,综上所述,当2t =或165时,PQE V 为直角三角形.【点睛】本题考查动点问题、菱形的判定与性质及矩形的性质,找到动点运动的规律和路线、速度、以及是否停止和有无取值范围是解题的关键.(1)=a ______cm ,b =______cm ;(2)t 为何值时,EP 把四边形BCDE 的周长平分?(3)另有一点Q 从点E 出发,按照E D C →→的路径运动,且速度为1cm /s ,若P 、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t 为何值时,BPQ V 的面积等于26cm .【答案】(1)3,3(2)2s =t(3)3s 2或11s 3或5s【分析】(1)由非负性可求a ,b 的值;(2)先求出18cm BCDE C =四边形,可得9cm BE BP +=,可求4cm BP =,即可求解;(3)分三种情况讨论,由三角形的面积公式可求解.【详解】(1)∵()230a −=,∴30,290a a b −=+−=,∴3,3a b ==;故答案为:3,3;(2)∵3cm,3cm AE DE ==,∴6cm AD BC ==,∴18cm BCDE C BC CD DE EB =+++=四边形,∵EP 把四边形BCDE 的周长平分,∴9cm BE BP +=,∴4cm BP =,点P 在BC 上,∴42s 2t ==;(3)①点P在BC上(03)t<≤,∵12462BPQtS=⨯⨯=V,∴3.2t=;②相遇前,点P在CD上13 (3)3t<≤,∵[]1(4(3)(26)662BPQS t t=⨯−−−−⨯=,∴113t=;③相遇后,点P在CD上13(5)3t<≤,∵[]1(3)(26)4662BPQS t t=⨯−+−−⨯=,∴.5t=;∴综上所述,当3s2t=或11s3或5s时,BPQV的面积等于26cm.【点睛】本题考查了矩形的性质,非负数的性质,一元一次方程的应用等知识,利用分类讨论思想是解本题的关键.角形与DCQ全等.【答案】(1)1(2)54t=或4或232(3) 3.5t=,5.5或10【分析】(1)根据题中条件求出AP 的长即可求解;(2)分三种情况讨论:①当点P 在AB 上时,②当点P 在BC 上时,③当点P 在AD 上时;(3)连接CQ ,要使一个三角形与DCQ 全等,则另一条直角边必须等于DQ ,分类讨论即可.【详解】(1)解:动点P 的速度是2cm/s ,∴当2t =时,224AP =⨯=,∵5cm AB =,∴BP =1cm ;(2)解:①当点P 在AB 上时,CDP △是等腰三角形,∴PD CP =,在长方形ABCD 中,,90AD BC A B =∠=∠=︒,∴()HL DAP CBP ≌,∴AP BP =, ∴1522AP AB ==,∵动点P 的速度是2cm/s , ∴54t =;②当点P 在BC 上时,CDP △是等腰三角形,如图所示,∵90C ∠=︒,∴5CD CP ==,∴3BP CB CD =−=, ∴53422AB BP t ++===;③当点P 在AD 上时,CDP △是等腰三角形.如图所示,∵90D Ð=°,∴5DP CD ==, ∴585523222AB CB CD DP t ++++++===, 综上所述,54t =或4或232时,CDP △是等腰三角形; (3)解:根据题意,如图,连接CQ ,∵5,90,6AB CD A B C D DQ ==∠=∠=∠=∠=︒=,∴要使一个三角形与DCQ 全等,则另一条直角边必须等于DQ .①当点P 运动到1P 时,16CP DQ ==,此时1DCQ CDP △≌△, ∴点P 的路程为:1527AB BP +=+=, ∴72 3.5t =÷=;②当点P 运动到2P 时,26BP DQ ==,此时2CDQ ABP △≌△, ∴点P 的路程为:25611AB BP +=+=,∴112 5.5t =÷=③当点P 运动到3P 时,35AP DQ ==,此时3CDQ BAP △≌△, ∴点P 的路程为:3585220AB BC CD DP +++=+++=, ∴20210t =÷=,④当点P 运动到4P 时,即P 与Q 重合时,46DP DQ ==,此时4CDQ CDP △≌△, ∴点P 的路程为:4585624AB BC CD DP +++=+++=∴24212t =÷=,此结果舍去,不符合题意,综上所述,t 的值可以是: 3.5t =,5.5或10.【点睛】本题考查了动点问题,灵活运用分类讨论思想是解题关键.。
人教版初二数学8年级下册 第18章(平行四边形)动点问题专项训练(含答案)
人教版数学八年级下期第十八章平行四边形动点问题训练1.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在的直线对着得到△BQN,延长QN交BA的延长线于点M.(1)求证:AP⊥BQ;(2)当P在BC何处时,点N是MQ的中点.(3)若AB=3,P是BC的三等分点,求QM的长;2.如图,四边形ABCD是正方形,点E是边BC的动点,连接AE,以AE为边在AE的右上侧作Rt△AEF,使得∠AEF=90°,AE=EF,再过点F作FG⊥BC,交BC的延长于点G.(1)求证:∠BAE=∠GEF;(2)求证:CG=FG;(3)填空:若正方形ABCD的边长是2,当点E从点B运动到点C的过程中,点F也随之运动,则点F运动的痕迹的长是______.3.如图,点P是正方形ABCD(在小学,同学们学习过:正方形四边相等,四个角都是直角)对角线AC上一动点,点E在射线BC上,且PB=PE,连结PD,O为AC 中点.(1)如图①,当点P在线段AO上时,猜想PE与PD的关系,并说明理由;(2)如图②,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由.4.如图,已知菱形ABCD中,∠BAD=60°,点E、F分别是AB、AD上两个动点,若AE=DF,连接BF与DE相交于点G,连接CG,(1)求∠BGE的大小;(2)求证:GC平分∠BGD.5.如图,在平行四边形ABCD中,AB=10,AD=16,∠A=60°,P是射线AD上一点,连接PB,沿PB将△APB折叠,得△A'PB.(1)如图1所示,当∠DPA'=10°时,∠A'PB=______度;(2)如图2所示,当PA'⊥BC时,求线段PA的长度;(3)当点P为AD中点时,点F是边AB上不与点A,B重合的一个动点,将△APF 沿PF折叠,得到△A'PF,连接BA',求△BA'F周长的最小值.6.如图,边长为8的正方形ABCD的対角线AC,BD交于点O,M是AB边上一动点,ME⊥AO,MF⊥BO.(1)求证:四边形OEMF为矩形;(2)连接EF,求EF的最小值.7.如图,在正方形ABCD中,点E是AD边上的一个动点,连接BE,以BE为斜边在正方形ABCD内部构造等腰直角三角形BEF,连接CF.(1)求证:∠DEF+∠CBF=90°;,求△BEF的面积;(2)若AB=3,△BCF的面积为32(3)求证:DE=2CF.8.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:△NDE≌△MAE;(2)求证:四边形AMDN是平行四边形;(3)当AM的值为何值时,四边形AMDN是矩形?请说明理由.9.如图,已知四边形ABCD为正方形,AB=42,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFC,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.10.如图,已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≅△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.11.如图,已知矩形ABCD中,AB=5,AD=2+13.菱形EFGH的顶点H在边AD上,且AH=2,顶点G、E分别是边DC、AB上的动点,连结CF.(1)当四边形EFGH为正方形时,直接写出DG的长;(2)若△FCG的面积等于3,求DG的长;(3)试探究点G运动至什么位置时,△FCG的面积取得最小值.12.如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E,F,已知AD=4,试说明AE2+CF2的值是一个常数.13.如图,在△ABC中,CA=CB,∠ACB=90°,AB=5,点D是边AB上的一个动点,连接CD,过C点在上方作CE⊥CD,且CE=CD,点P是DE的中点.(1)如图①,连接AP,判断线段AP与线段DE的数量关系并说明理由;(2)如图②,连接CP并延长交AB边所在直线于点Q,若AQ=2,求BD的长.14.如图,D、E分别是△ABC的边AB、AC的中点,O是△ABC内一动点,F、G分别是OB、OC的中点.判断四边形DEGF的形状,并说明理由.15.在正方形ABCD中,如图1,点E是AB边上的一个动点(点E与点A、B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE.(2)如图2,当点E运动到AB中点时,连接DG,若AB=2,求DG的长.16.如图,在矩形ABCD中,BC=4,AB=10,E为CD边上的一点,DE=7,动点P从点A出发,以每秒1个单位的速度沿着边AB向终点B运动,连接PE.设每秒运动的时间为t秒.(1)求BE的长;(2)当t为多少秒时,△BPE是直角三角形.参考答案1.(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB=BC,在△ABP和△BCQ中,AB=BC∠ABC=∠CBP=CQ,∴△ABP≌△BCQ(SAS),∴∠BAP=∠CBQ,∵∠BAP+∠APB=90°,∴∠CBQ+∠APB=90°,∴∠BEP=90°,∴AP⊥BQ;(2)解:由折叠的性质得:NQ=CQ,∠BNQ=∠C=90°,∠NBQ=∠CBQ,∴∠BNM=90°,∵点N是MQ的中点,∴NQ=MN,由(1)得:MQ=MB,∴MN=12MB,∴∠MBN=30°,∴∠CBN=60°,∴∠NBQ=∠CBQ=30°,∴CQ=33BC,∴BP=CQ=33BC,即BP=33BC时,点N是MQ的中点.(3)解:∵四边形ABCD是正方形,AB=3,P是BC的三等分点,∴BP=2CP,或CP=2BP,①当BP=2CP时,BP=2,由折叠的性质得:NQ=CQ=BP=2,BN=BC=3,∵∠NQB=∠CQB=∠ABQ,∴MQ=MB,设MQ=MB=x,则MN=x-2,在Rt△MBN中,MB2=BN2+MN2,即x 2=32+(x -2)2,解得:x =134,即MQ =134;②当CP =2BP 时,BP =1,由折叠的性质得:NQ =CQ =BP =1,BN =BC =3,∵∠NQB =∠CQB =∠ABQ ,∴MQ =MB ,设MQ =MB =x ,则MN =x -1,在Rt △MBN 中,MB 2=BN 2+MN 2,即x 2=32+(x -1)2,解得:x =5,即MQ =5;综上所述,若AB =3,P 是BC 的三等分点,QM 的长为134或5.2.解:(1)∵∠AEF =90°,∴∠AEB +∠FEG =90°,∵四边形ABCD 是正方形,∴∠B =90°,∴∠AEB +∠BAE =90°,∴∠BAE =∠GEF ,(2)在△ABE 和△EGF 中,∠ABE =∠EGF ∠BAE =∠GEF AE =EF,∴△ABE ≌△EGF (AAS ),∴BE =GF ,AB =EG ,∴BE =CG ,∴CG =FG ;(3)223.解:(1)当点P在线段AO上时PE=PD且PE⊥PD.理由:当点P在线段AO上时,在△ABP和△ADP中AB=AD∠BAP=∠DAP=45∘AP=AP∴△ABP≌△ADP,∴BP=DP,∵PB=PE,∴PE=PD,如图,过点P作PM⊥CD于点M,作PN⊥BC于点N,∵AC平分∠BCD,∴PM=PN,在Rt△PNE与Rt△PMD中,∵PD=PE,PM=PN∴Rt△PNE≌Rt△PMD,∴∠DPM=∠EP N,易得∠MPN=90∘,∴∠DPE=90∘,故PE⊥PD,PE与PD的数量关系和位置关系分别为:PE=PD,PE⊥PD;(2)当点P在线段OC上时,(1)中的猜想成立;如图2,当点P在线段OC上时,∵四边形ABCD是正方形,AC为对角线,∴BA=DA,∠BAP=∠DAP=45°,又PA=PA,∴△BAP≌△DAP(SAS),∴PB=PD,又∵PB=PE,∴PE=PD,①当点E与点C重合时,PE⊥PD;②当点E在BC的延长线上时,如图2所示,∵△BAP≌△DAP,∴∠ABP=∠ADP,∠CDP=∠CBP,∵PB=PE,∴∠CBP=∠PEC,故∠PEC=∠PDC,∵∠1=∠2,∴∠DPE=∠DCE=90°,∴PE⊥PD,综上所述:PE⊥PD,当点P在线段OC上时,(1)中的猜想成立;4.解:(1)∵四边形ABCD是菱形∴AD=AB,∠BAD=60°∴△ADB是等边三角形∴AD=AB=BD,∠DAB=∠ADB=∠ABD∵AE=DF,∠DAB=∠ADB=60°,AD=BD∴△ADE≌△DBF(SAS)∴∠ADE=∠DBF又∠BGE=∠BDE+∠DBF=∠BDE+∠ADE=∠ADB∴∠BGE=∠ADB=60°(2)如图,过点C作CN⊥BF于点N,过点C作CM⊥ED于点M,由(1)得∠ADE=∠DBF∴∠CBF=60°+∠DBF=60°+∠ADE=∠DEB又∠DEB=∠MDC∴∠CBF=∠CDM∵BC=CD,∠CBF=∠CDM,∠CMD=∠CNG=90°∴Rt△CBN≌Rt△CDM(AAS)∴CN=CM,且CN⊥BF,CM⊥ED∴点C在∠BGD的平分线上即GC平分∠BGD5.856.(1)证明:∵ME⊥AO,MF⊥BO,∴∠MEO=90°,∠MFO=90°,∵正方形ABCD的対角线AC,BD交于点O,∴∠EOF=90°,∴四边形OEMF为矩形;(2)解:∵边长为8的正方形ABCD的対角线AC,BD交于点O,∴利用勾股定理可以得到OA=OB=42,当M在AB的中点时,EF有最小值,最小值=OE2+OF2=(22)2+(22)2=4.7.证明:(1)过点F作MN⊥AD于点M,交BC于点N,∴∠MEF+∠EFM=90°,∵∠EFB=90°,∴∠BFN +∠EFM =90°,∴∠MEF =∠BFN ,在正方形ABCD 中,AD ∥BC .∴MN ⊥BC ,∴∠FBN +∠BFN =90°,∴∠FBN +∠MEF =90°,即∠DEF +∠CBF =90°;证法二:在正方形ABCD 中,AD ∥BC ,∴∠DEB +∠CBE =180°,即∠DEF +∠BEF +∠EBF +∠CBF =180°,∵∠EFB =90°,∴∠BEF +∠EBF =90°,∴∠DEF +∠CBF =90°;(2)由(1)得MN ⊥AD ,∴正方形ABCD 的性质得四边形MNCD 是矩形,∴MN =CD =AB =3,在△BFN 与△FEM 中,由(1)得∠MEF =∠BFN ,∠EMF =∠FNB =90°,∵△BEF 为等腰直角三角形,∴BF =EF ,在△BFN 与△FEM 中,∠EMF =∠FNB ∠MEF =∠BFN BF =EF,∴△BFN ≌△FEM (AAS ),∵BC =AB =3,∴S △BCF =12BC ⋅FN =32FN =32,∴FN =1.∴BN =FM =MN -FN =2,在Rt △BFN 中,EF =BN 2+FN 2=12+22=5,∴S △BEF =12BF 2=12×(5)2=52;(3)在△BFN与△FEM中由(2)△BFN≌△FEM,MD=NC,∴BN=FM,EM=FN,∵MN=AB=BC,∴FM+FN=BN+NC,∴FN=NC=MD=EM,∴∠FCN=45°,DE=2MD=2CN,CF,在Rt△FNC中,CN=22∴DE=2×2CF=2CF.28.(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∵点E是AD中点,∴DE=AE,在△NDE和△MAE中,∠NDE=∠MAEDE=AE,∠DEN=∠AEM∴△NDE≌△MAE(ASA);(2)∵△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(3)解:当AM=1时,四边形AMDN是矩形.理由如下:∵四边形ABCD是菱形,∴AD=AB=2,∵四边形AMDN是矩形,∴DM⊥AB,即∠DMA=90°,∵∠DAB=60°,∴∠ADM=30°,∴AM=12AD=1.9.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,∠DNE=∠FME EN=EM∠DEN=∠FEM,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,AD=CD∠ADE=∠CDG DE=DG,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=2AB=2×42=8,∴CE+CG=8是定值.10. (1)∵点F,H分别是BC,CE的中点,∴FH //BE ,FH =12BE ,∴∠CFH =∠CBG .又∵点G 是BE 的中点,∴FH =BG .又∵BF =FC ,∴△BGF ≅△FHC .(2)连接EF ,GH .当四边形EGFH 是正方形时,可知EF ⊥GH且EF =GH .∵在△BEC 中,点G ,H 分别是BE ,EC 的中点,∴GH =12BC =12AD =12a ,且GH //BC ,∴EF ⊥BC .又∵AD //BC ,AB ⊥BC ,∴AB =EF =GH =12a ,∴S 矩形ABCD =AB ⋅AD =12a ⋅a =12a 211.解:(1)∵四边形EFGH 为正方形,∴HG =HE ,∠ADG =∠HAE =90°,∵∠DHG +∠AHE =90°,∠DHG +∠DGH =90°,∴∠DGH =∠AHE ,∴△DGH ≌△AHE (AAS ),∴DG =AH =2;(2)如图,作FM⊥DC,M为垂足,连结GE.∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEG-∠HEG=∠MGE-∠FGE,即∠AEH=∠MGF,又∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离恒等于2,∴S▵FCG=1×2⋅GC=3,2解得GC=3,∴DG=2;(3)设DG=x,则CG=5-x,由(2)可知,S△FCG=5-x.要使△FCG的面积最小,须使x最大,∵在Rt△DHG中,DH=13,∴当GH取得最大时,x最大当点E与点B重合时,HE最大,此时,HE=22+52=29,则GH=HE=29,在Rt△DHG中,x=(29)2−(13)2=4,∴当DG=4时,△FCG的面积取得最小值.12.解:∵四边形ABCD是正方形,∴∠AEB=∠BFC=90°,AB=BC,又∵∠ABE+∠FBC=∠BCF+∠FBC,∴∠ABE=∠BCF,在△ABE和△BCF中,AB=BC∠ABE=∠BCF∴△ABE≌△BCF(AAS),∠AEB=∠BFC∴AE=BF,∴AE2+CF2=BF2+CF2=BC2=AD2=16为常数.13.解:(1)AP=1DE,理由如下:2连接AE.∵CE⊥CD,∴∠ACE+∠ACD=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACE=∠BCD,在△BCD和△ACE中,CE=CD∠ACE=∠BCD,AC=BC∴△BCD≌△ACE(SAS),∴∠EAC=∠B=45°,∴∠EAD=90°,∵P为DE中点,DE.∴AP=12(2)①当Q在边AB上时,连接AE,EQ.∵P 为DE 中点,CE =CD ,∴PC 垂直平分DE ,∴DQ =QD ,∵AB =5,AQ =2,∴BD =3,设BD =AE =x ,则QD =EQ =3-x ,在Rt △AEQ 中,AE 2+AQ 2=QE 2,即x 2+22=(3-x )2解得x =56;当Q 在BA 延长线上时,连接AE ,EQ ,如图,设BD =AE =x ,同理可得AE 2+AQ 2=QE 2,即x 2+22=(7-x )2解得x =4514.综上可得BD =56或4514.14.解析 四边形DEGF 是平行四边形.理由:∵D 、E 分别是△ABC 的边AB 、AC 的中点,∴DE =12BC ,DE //BC ,∵F、G分别是OB、OC的中点,BC,FG//BC,∴FG=12∴DE=FG,DE//FG,∴四边形DEGF是平行四边形15.(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠GBC=90°,又∵四边形ABCD为正方形,∴∠GBA+∠GBC=90°,∴∠GCB=∠FBA,又∵BC=AB,∠FAB=∠EBC=90°,在△ABF与△BCE中,∠GCB=∠FBABC=AB,∠EBC=∠FAB∴△ABF≌△BCE(SAS);(2)解:过点D作DH⊥CE于点H,∵E为AB中点,∴EB=1,∵AB=2,∴BC=2,∴CE=BC2+EB2=22+12=5,在Rt △CEB 中,由CE •BG =EB •BC 得BG =EB ⋅BC CE =1×25=255,∴CG =455,∵∠DCE +∠BCE =∠BCE +∠CBF =90°,∴∠DCE =∠CBF ,又∵DC =BC =2,∠CHD =∠CGB =90°,在△CHD 与△BGC 中,∠CHD =∠CGB =90°∠DCE =∠CBF DC =BC,∴△CHD ≌△BGC (AAS )∴CH =BG =255,∴GH =CG -CH =255=CH ,∵DH =DH ,∠CHD =∠GHD =90°,在△DGH 与△DCH 中,GH =CH ∠GHD =∠CHD DH =DH,∴△DGH ≌△DCH (SAS ),∴DG =DC =2.16.解:(1)在矩形ABCD 中,∠C =∠B =90°,CD =AB =10,在Rt △BCE 中,CE =CD -ED =10-7=3,根据勾股定理得,BE =BC 2+CE 2=42+32=5,(2)①当以P 为直角顶点时,即∠BPE =90°,则∠C =∠B =∠BPE =90°,∴四边形CBPE 是矩形,∴BP =CE =3,即10-t =3,∴t =7,②当以E 为直角顶点时,即∠BEP =90°,由勾股定理得,BE 2+PE 2=BP 2,过点P 作PF ⊥CD 于F ,则PF=AD=4,DF=AP,设AP=t,则EF=7-t,BP=10-t,PE2=42+(7-t)2,∴52+42+(7-t)2=(10-t)2,,解得,t=53∴当t=7或5秒时,△BPE是直角三角形.3。
动点问题(学生用)
动点问题(一)1.如图,在平行四边形OABC中,顶点O为坐标原点,顶点A在x轴正半轴上,且∠AOC=60°,OC=2cm,OA=4cm.动点P从点O出发,以1cm/s的速度沿折线OA-AB运动;动点Q从点O同时出发,以相同的速度沿折线OC-CB运动.当其中一点到达终点B时,另一点也随之停止运动,设运动的时间为t(s).设△OPQ的面积为S,求S与t之间的函数关系式。
2.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D,E分别是AC,AB的中点,连接DE.点P从点D出发,沿DE方向以1cm/s的速度向点E匀速运动;点Q从点B同时出发,沿BA方向以2cm/s的速度向点A匀速运动,当点P停止运动时,点Q也随之停止.连接PQ,设运动的时间为t(s),解答下列问题:(1)当PQ⊥AB时,求t的值。
(2)当点Q在线段BE上运动时,设五边形PQBCD的面积为,求y与t之间的函数关系式为(3)在(2)的条件下,若存在某一时刻t,使PQ将四边形BCDE分成面积之比为1:29的两部分,即,求t的值3.如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=6cm,BD=8cm.点P,Q分别从点B,D同时出发,运动速度均为1cm/s,点P沿B→C→D运动,到点D停止,点Q沿D→O→B 运动,到点O停止1s后继续运动,到点B停止,连接AP,AQ,PQ,设△APQ的面积为y()(这里规定:线段是面积为0的几何图形),点P的运动时间为x(s).(1)AB=_____cm,AB与CD之间的距离为_____cm.A.10,B.5,C.5,D.10,(2)当时,求y与x之间的函数解析式(3)当时,若存在x使得PQ与菱形ABCD一边平行,求x的值4.如图,在梯形ABCD中,AB∥CD,AD⊥AB,AD=4cm,DC=6cm,CB=5cm.点P从点B出发,以1cm/s的速度沿线段BA向点A匀速运动;与此同时,点Q从点A出发,以2cm/s 的速度沿折线AD-DC匀速运动,过点P作PM⊥AB交折线BC-CD于点M,连接QM,PQ,当其中一点到达终点时,另一点也停止运动.设运动时间为t秒,△PQM的面积为S().(1)Q,M两点相遇时t的值为( )(2)当时,求S与t的函数关系式。
2021年中考数学 压轴专题训练之动点问题(含答案)
2021中考数学 压轴专题训练之动点问题1. 如图1,在平面直角坐标系中,四边形OABC 各顶点的坐标分别为O (0,0),A (3,33),B (9,53),C (14,0).动点P 与Q 同时从O 点出发,运动时间为t 秒,点P 沿OC 方向以1单位长度/秒的速度向点C 运动,点Q 沿折线OA -AB-BC 运动,在OA ,AB ,BC 上运动的速度分别为3,3,52(单位长度/秒).当P ,Q 中的一点到达C 点时,两点同时停止运动. (1)求AB 所在直线的函数表达式.(2)如图2,当点Q 在AB 上运动时,求△CPQ 的面积S 关于t 的函数表达式及S 的最大值.(3)在P ,Q 的运动过程中,若线段PQ 的垂直平分线经过四边形OABC 的顶点,求相应的t 值.图1 图22. 如图,抛物线y=-x 2+bx+c 与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点N ,过A 点的直线l :y=kx+n 与y 轴交于点C ,与抛物线y=-x 2+bx+c 的另一个交点为D ,已知A (-1,0),D (5,-6),P 点为抛物线y=-x 2+bx+c 上一动点(不与A ,D 重合).(1)求抛物线和直线l 的解析式;(2)当点P 在直线l 上方的抛物线上时,过P 点作PE ∥x 轴交直线l 于点E ,作PF ∥y 轴交直线l 于点F ,求PE+PF 的最大值;(3)设M 为直线l 上的点,探究是否存在点M ,使得以点N ,C ,M ,P 为顶点的四边形为平行四边形.若存在,求出点M 的坐标;若不存在,请说明理由.3. 如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 经过A (-2, -4 )、O (0, 0)、B (2, 0)三点.(1)求抛物线y =ax 2+bx +c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM +OM 的最小值.4. 设直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2,若l 1⊥l 2,垂足为H ,则称直线l 1与l 2是点H 的直角线.(1)已知直线①122y x =-+;②2y x =+;③22y x =+;④24y x =+和点C (0,2),则直线_______和_______是点C 的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC 的顶点A (3,0)、B (2,7)、C (0,7),P 为线段OC 上一点,设过B 、P 两点的直线为l 1,过A 、P 两点的直线为l 2,若l 1与l 2是点P 的直角线,求直线l 1与l 2的解析式.5. 如图①,在平面直角坐标系xOy 中,已知抛物线y=ax 2-2ax -8a 与x 轴相交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,-4).(1)点A 的坐标为 ,点B 的坐标为 ,线段AC 的长为 ,抛物线的解析式为 .(2)点P 是线段BC 下方抛物线上的一个动点.如果在x 轴上存在点Q ,使得以点B ,C ,P ,Q 为顶点的四边形是平行四边形,求点Q 的坐标.①6. 如图,已知抛物线211(1)444by x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.7. 如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =. (1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?8. 如图,已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.9. 在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.10. 如图,已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3,抛物线与x轴相交于A,B两点,与y轴相交于点C,已知B点的坐标为(8,0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点,点N为线段BC上的一点,若MN∥y 轴,求MN的最大值;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.11. 如图,直线y=2x+6与反比例函数y=kx(k>0)的图象交于点A(m,8),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的解析式;(2)观察图象,直接写出当x>0时不等式2x+6-kx>0的解集;(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?12. 如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.13. 在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=35分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.14. 如图,已知一次函数y =-x +7与正比例函数43y x 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.15. 如图,二次函数y =a (x 2-2mx -3m 2)(其中a 、m 是常数,且a >0,m >0)的图像与x 轴分别交于A 、B (点A 位于点B 的左侧),与y 轴交于点C (0,-3),点D 在二次函数的图像上,CD //AB ,联结AD .过点A 作射线AE 交二次函数的图像于点E ,AB 平分∠DAE . (1)用含m 的式子表示a ; (2)求证:ADAE为定值; (3)设该二次函数的图像的顶点为F .探索:在x 轴的负半轴上是否存在点G ,联结GF ,以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.16. 如图,二次函数y=-x2+4x+5的图象的顶点为D,对称轴是直线l,一次函数y=x+1的图象与x轴交于点A,且与直线DA关于l的对称直线交于点B.(1)点D的坐标是.(2)直线l与直线AB交于点C,N是线段DC上一点(不与点D,C重合),点N 的纵坐标为n.过点N作直线与线段DA,DB分别交于点P,Q,使得△DPQ与△DAB相似.①当n=时,求DP的长;②若对于每一个确定的n的值,有且只有一个△DPQ与△DAB相似,请直接写出n的取值范围.17. 已知直线y=3x-3分别与x轴、y轴交于点A,B,抛物线y=ax2+2x+c经过点A,B.(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,点B关于直线l的对称点为C,若点D在y 轴的正半轴上,且四边形ABCD为梯形.①求点D的坐标;②将此抛物线向右平移,平移后抛物线的顶点为P,其对称轴与直线y=3x-3交于点E ,若73tan =∠DPE ,求四边形BDEP 的面积.18. 如图,在平面直角坐标系xOy 中,二次函数y =-x 2+2x +8的图象与一次函数y =-x +b 的图象交于A 、B 两点,点A 在x 轴上,点B 的纵坐标为-7.点P 是二次函数图象上A 、B 两点之间的一个动点(不与点A 、B 重合),设点P 的横坐标为m ,过点P 作x 轴的垂线交AB 于点C ,作PD ⊥AB 于点D . (1)求b 及sin ∠ACP 的值;(2)用含m 的代数式表示线段PD 的长;(3)连接PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 值,使这两个三角形的面积之比为1∶2?如果存在,直接写出m 的值;如果不存在,请说明理由.19. 如图,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.20. 已知平面直角坐标系中两定点A (-1, 0)、B (4, 0),抛物线y =ax 2+bx -2(a≠0)过点A 、B ,顶点为C ,点P (m , n )(n <0)为抛物线上一点. (1)求抛物线的解析式和顶点C 的坐标; (2)当∠APB 为钝角时,求m 的取值范围;(3)若m >32,当∠APB 为直角时,将该抛物线向左或向右平移t (0<t <52)个单位,点C 、P 平移后对应的点分别记为C ′、P ′,是否存在t ,使得顺次首尾连接A 、B 、P ′、C ′所构成的多边形的周长最短?若存在,求t 的值并说明抛物线平移的方向;若不存在,请说明理由.2021中考数学 压轴专题训练之动点问题-答案一、解答题(本大题共20道小题)1. 【答案】【思维教练】(1)设一次函数解析式,将已知点A 、B 的坐标值代入求解即可;(2)S △CPQ =12·CP·Q y ,CP =14-t ,点Q 在AB 上,Q y 即为当x =t 时的y 值,代入化简得出S 与t 的函数关系式,化为顶点式得出最值;(3)垂直平分线过顶点需以时间为临界点分情况讨论,当Q 在OA 上时,过点C ;当Q 在AB 上时,过点A ;当Q 在BC 上时,过点C 和点B ,再列方程并求解.解图1解:(1)把A(3,33),B(9,53)代入y =kx +b ,得⎩⎨⎧3k +b =33,9k +b =53,解得⎩⎨⎧k =33,b =23,∴y =33x +23;(3分)(2)在△PQC 中,PC =14-t ,∵OA =32+(33)2=6且Q 在OA 上速度为3单位长度/s , AB =62+(23)2=43且Q 点在AB 上的速度为3单位长度/s , ∴Q 在OA 上时的横坐标为t ,Q 在AB 上时的横坐标为32t , PC 边上的高线长为33t +2 3.(6分)所以S =12(14-t )(32t +23)=-34t 2+532t +143(2≤t ≤6).当t =5时,S 有最大值为8134.(7分)解图2(3)①当0<t ≤2时,线段PQ 的中垂线经过点C(如解图1).可得方程(332t )2+(14-32t )2=(14-t )2.解得t 1=74,t 2=0(舍去),此时t =74.(8分)解图3②当2<t ≤6时,线段PQ 的中垂线经过点A(如解图2). 可得方程(33)2+(t -3)2=[3(t -2)]2.解得t 1=3+572,∵t 2=3-572(舍去),此时t =3+572. ③当6<t ≤10时,(1)线段PQ 的中垂线经过点C(如解图3).可得方程14-t =25-52t ,解得t =223.(10分)解图4(2)线段PQ 的中垂线经过点B(如解图4).可得方程(53)2+(t -9)2=[52(t -6)]2. 解得t 1=38+2027,t 2=38-2027(舍去). 此时t =38+2027.(11分) 综上所述,t 的值为74,3+572,223,38+2027.(12分)【难点突破】解决本题的关键点在于对PQ 的垂直平分线过四边形顶点的情况进行分类讨论,在不同阶段列方程求解.2. 【答案】[分析] (1)将点A ,D 的坐标分别代入直线表达式、抛物线的表达式,即可求解; (2)设出P 点坐标,用参数表示PE ,PF 的长,利用二次函数求最值的方法.求解; (3)分NC 是平行四边形的一条边或NC 是平行四边形的对角线两种情况,分别求解即可.解:(1)将点A ,D 的坐标代入y=kx +n 得:解得:故直线l 的表达式为y=-x -1.将点A ,D 的坐标代入抛物线表达式, 得解得故抛物线的表达式为:y=-x 2+3x +4. (2)∵直线l 的表达式为y=-x -1,∴C (0,-1),则直线l 与x 轴的夹角为45°,即∠OAC=45°, ∵PE ∥x 轴,∴∠PEF=∠OAC=45°.又∵PF ∥y 轴,∴∠EPF=90°,∴∠EFP=45°.则PE=PF .设点P 坐标为(x ,-x 2+3x +4), 则点F (x ,-x -1),∴PE +PF=2PF=2(-x 2+3x +4+x +1)=-2(x -2)2+18,∵-2<0,∴当x=2时,PE +PF 有最大值,其最大值为18. (3)由题意知N (0,4),C (0,-1),∴NC=5,①当NC 是平行四边形的一条边时,有NC ∥PM ,NC=PM. 设点P 坐标为(x ,-x 2+3x +4),则点M 的坐标为(x ,-x -1), ∴|y M -y P |=5,即|-x 2+3x +4+x +1|=5, 解得x=2±或x=0或x=4(舍去x=0),则点M 坐标为(2+,-3-)或(2-,-3+)或(4,-5);②当NC 是平行四边形的对角线时,线段NC 与PM 互相平分. 由题意,NC 的中点坐标为0,,设点P 坐标为(m ,-m 2+3m +4), 则点M (n',-n'-1), ∴0==,解得:n'=0或-4(舍去n'=0), 故点M (-4,3).综上所述,存在点M ,使得以N ,C ,M ,P 为顶点的四边形为平行四边形,点M 的坐标分别为: (2+,-3-),(2-,-3+),(4,-5),(-4,3).3. 【答案】(1)212y x x =-+。
动点问题1
1.1 因动点产生的相似三角形问题如图1,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A 和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.图1动感体验请打开几何画板文件名“13上海24”,拖动点C在x轴上运动,可以体验到,点C在点B的右侧,有两种情况,△ABC与△AOM相似.请打开超级画板文件名“13上海24”,拖动点C在x轴上运动,可以体验到,点C在点B的右侧,有两种情况,△ABC与△AOM相似.点击按钮的左部和中部,可到达相似的准确位置。
思路点拨1.第(2)题把求∠AOM的大小,转化为求∠BOM的大小.2.因为∠BOM=∠ABO=30°,因此点C在点B的右侧时,恰好有∠ABC=∠AOM.3.根据夹角相等对应边成比例,分两种情况讨论△ABC与△AOM相似.满分解答(1)如图2,过点A作AH⊥y轴,垂足为H.在Rt△AOH中,AO=2,∠AOH=30°,-.所以AH=1,OH A(1因为抛物线与x轴交于O、B(2,0)两点,-,可得设y=ax(x-2),代入点A(1a=.图23所以抛物线的表达式为2(2)333y x x x x =-=-.(2)由221)y x x ==-得抛物线的顶点M 的坐标为(1,.所以tan BOM ∠=. 所以∠BOM =30°.所以∠AOM =150°.(3)由A (1-、B (2,0)、M (1,)3-,得tan ABO ∠=AB =OM =所以∠ABO =30°,OAOM= 因此当点C 在点B 右侧时,∠ABC =∠AOM =150°. △ABC 与△AOM 相似,存在两种情况:①如图3,当BA OABC OM ==时,2BC ===.此时C (4,0).②如图4,当BC OABA OM==时,6BC =.此时C (8,0).图3 图4考点伸展在本题情境下,如果△ABC 与△BOM 相似,求点C 的坐标.如图5,因为△BOM 是30°底角的等腰三角形,∠ABO =30°,因此△ABC 也是底角为30°的等腰三角形,AB =AC ,根据对称性,点C 的坐标为(-4,0).图51.2因动点产生的等腰三角形问题例1 2013年上海市虹口区中考模拟第25题如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC 交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图动感体验请打开几何画板文件名“13虹口25”,拖动点P在射线AB上运动,可以体验到,△PDM 与△QDN保持相似.观察△PDF,可以看到,P、F可以落在对边的垂直平分线上,不存在DF=DP的情况.请打开超级画板文件名“13虹口25”,拖动点P在射线AB上运动,可以体验到,△PDM 与△QDN保持相似.观察△PDF,可以看到,P、F可以落在对边的垂直平分线上,不存在DF=DP的情况.思路点拨1.第(2)题BP=2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.满分解答(1)在Rt△ABC中,AB=6,AC=8,所以BC=10.在Rt△CDE中,CD=5,所以315tan544ED CD C=⋅∠=⨯=,254EC=.(2)如图2,过点D 作DM ⊥AB ,DN ⊥AC ,垂足分别为M 、N ,那么DM 、DN 是 △ABC 的两条中位线,DM =4,DN =3.由∠PDQ =90°,∠MDN =90°,可得∠PDM =∠QDN . 因此△PDM ∽△QDN .所以43PM DM QN DN ==.所以34QN PM =,43PM QN =.图2 图3 图4①如图3,当BP =2,P 在BM 上时,PM =1. 此时3344QN PM ==.所以319444CQ CN QN =+=+=. ②如图4,当BP =2,P 在MB 的延长线上时,PM =5.此时31544QN PM ==.所以1531444CQ CN QN =+=+=. (3)如图5,如图2,在Rt △PDQ 中,3tan 4QD DN QPD PD DM ∠===.在Rt △ABC 中,3tan 4BA C CA ∠==.所以∠QPD =∠C .由∠PDQ =90°,∠CDE =90°,可得∠PDF =∠CDQ . 因此△PDF ∽△CDQ .当△PDF 是等腰三角形时,△CDQ 也是等腰三角形.①如图5,当CQ =CD =5时,QN =CQ -CN =5-4=1(如图3所示). 此时4433PM QN ==.所以45333BP BM PM =-=-=. ②如图6,当QC =QD 时,由cos CHC CQ=,可得5425258CQ =÷=.所以QN =CN -CQ =257488-=(如图2所示). 此时4736PM QN ==.所以725366BP BM PM =+=+=. ③不存在DP =DF 的情况.这是因为∠DFP ≥∠DQP >∠DPQ (如图5,图6所示).1.3 因动点产生的直角三角形问题例1 2013年山西省中考第26题如图1,抛物线213442y x x =--与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“13山西26”,拖动点P 在线段OB 上运动,可以体验到,当P 运动到OB 的中点时,四边形CQMD 和四边形CQBM 都是平行四边形.拖动点P 在线段EB 上运动,可以体验到,∠DBQ 和∠BDQ 可以成为直角.请打开超级画板文件名“13山西26”,拖动点P 在线段OB 上运动,可以体验到,当P 运动到OB 的中点时,四边形CQMD 和四边形CQBM 都是平行四边形.拖动点P 在线段EB 上运动,可以体验到,∠DBQ 和∠BDQ 可以成为直角.思路点拨1.第(2)题先用含m 的式子表示线段MQ 的长,再根据MQ =DC 列方程.2.第(2)题要判断四边形CQBM 的形状,最直接的方法就是根据求得的m 的值画一个准确的示意图,先得到结论.3.第(3)题△BDQ 为直角三角形要分两种情况求解,一般过直角顶点作坐标轴的垂线可以构造相似三角形.满分解答(1)由21314(2)(8)424y x x x x =--=+-,得A (-2,0),B (8,0),C (0,-4).(2)直线DB 的解析式为142y x =-+. 由点P 的坐标为(m , 0),可得1(,4)2M m m --,213(,4)42Q m m m --.所以MQ =221131(4)(4)82424m m m m m -+---=-++.当MQ =DC =8时,四边形CQMD 是平行四边形. 解方程21884m m -++=,得m =4,或m =0(舍去). 此时点P 是OB 的中点,N 是BC 的中点,N (4,-2),Q (4,-6). 所以MN =NQ =4.所以BC 与MQ 互相平分. 所以四边形CQBM 是平行四边形.图2 图3(3)存在两个符合题意的点Q ,分别是(-2,0),(6,-4).考点伸展第(3)题可以这样解:设点Q 的坐标为1(,(2)(8))4x x x +-.①如图3,当∠DBQ =90°时, 12QG BH GB HD ==.所以1(2)(8)1482x x x -+-=-.解得x =6.此时Q (6,-4).②如图4,当∠BDQ =90°时, 2QG DH GD HB ==.所以14(2)(8)42x x x-+-=-.解得x =-2.此时Q (-2,0).图3 图41.4 因动点产生的平行四边形问题例1 2013年上海市松江区中考模拟第24题如图1,已知抛物线y =-x 2+bx +c 经过A (0, 1)、B (4, 3)两点. (1)求抛物线的解析式; (2)求tan ∠ABO 的值;(3)过点B 作BC ⊥x 轴,垂足为C ,在对称轴的左侧且平行于y 轴的直线交线段AB 于点N ,交抛物线于点M ,若四边形MNCB 为平行四边形,求点M 的坐标.图1动感体验请打开几何画板文件名“13松江24”,拖动点N 在直线AB 上运动,可以体验到,以M 、N 、C 、B 为顶点的平行四边形有4个,符合MN 在抛物线的对称轴的左侧的平行四边形MNCB 只有一个.请打开超级画板文件名“13松江24”,拖动点N 在直线AB 上运动,可以体验到,MN 有4次机会等于3,这说明以M 、N 、C 、B 为顶点的平行四边形有4个,而符合MN 在抛物线的对称轴的左侧的平行四边形MNCB 只有一个.思路点拨1.第(2)题求∠ABO 的正切值,要构造包含锐角∠ABO 的角直角三角形. 2.第(3)题解方程MN =y M -y N =BC ,并且检验x 的值是否在对称轴左侧.满分解答(1)将A (0, 1)、B (4, 3)分别代入y =-x 2+bx +c ,得1,164 3.c b c =⎧⎨-++=⎩解得92b =,c =1. 所以抛物线的解析式是2912y x x =-++. (2)在Rt △BOC 中,OC =4,BC =3,所以OB =5. 如图2,过点A 作AH ⊥OB ,垂足为H .在Rt △AOH 中,OA =1,4sin sin 5AOH OBC ∠=∠=,所以4sin 5AH OA AOH =⋅∠=. 图2 所以35OH =,225BH OB OH =-=.在Rt △ABH 中,4222tan 5511AH ABO BH ∠==÷=.(3)直线AB 的解析式为112y x =+.设点M 的坐标为29(,1)2x x x -++,点N 的坐标为1(,1)2x x +,那么2291(1)(1)422MN x x x x x =-++-+=-+.当四边形MNCB 是平行四边形时,MN =BC =3.解方程-x 2+4x =3,得x =1或x =3.因为x =3在对称轴的右侧(如图4),所以符合题意的点M 的坐标为9(1,)2(如图3).图3 图4考点伸展第(3)题如果改为:点M 是抛物线上的一个点,直线MN 平行于y 轴交直线AB 于N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点M 的坐标.那么求点M 的坐标要考虑两种情况:MN =y M -y N 或MN =y N -y M .由y N -y M =4x -x 2,解方程x 2-4x =3,得2x =5).所以符合题意的点M 有4个:9(1,)2,11(3,)2,(2,(2+.1.5 因动点产生的梯形问题例1 2012年上海市松江区中考模拟第24题已知直线y =3x -3分别与x 轴、y 轴交于点A ,B ,抛物线y =ax 2+2x +c 经过点A ,B . (1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,点B 关于直线l 的对称点为C ,若点D 在y 轴的正半轴上,且四边形ABCD 为梯形.①求点D 的坐标;②将此抛物线向右平移,平移后抛物线的顶点为P ,其对称轴与直线y =3x -3交于点E ,若73t a n =∠D P E ,求四边形BDEP 的面积.图1动感体验请打开几何画板文件名“12松江24”,拖动点P 向右运动,可以体验到,D 、P 间的垂直距离等于7保持不变,∠DPE 与∠PDH 保持相等.请打开超级画板文件名“12松江24”, 拖动点P 向右运动,可以体验到,D 、P 间的垂直距离等于7保持不变,∠DPE 与∠PDH 保持相等,tan 0.43DPE ∠≈,四边形BDEP 的面积为24.思路点拨1.这道题的最大障碍是画图,A 、B 、C 、D 四个点必须画准确,其实抛物线不必画出,画出对称轴就可以了.2.抛物线向右平移,不变的是顶点的纵坐标,不变的是D 、P 两点间的垂直距离等于7.3.已知∠DPE 的正切值中的7的几何意义就是D 、P 两点间的垂直距离等于7,那么点P 向右平移到直线x =3时,就停止平移.满分解答(1)直线y =3x -3与x 轴的交点为A (1,0),与y 轴的交点为B (0,-3). 将A (1,0)、B (0,-3)分别代入y =ax 2+2x +c , 得20,3.a c c ++=⎧⎨=-⎩ 解得1,3.a c =⎧⎨=-⎩所以抛物线的表达式为y =x 2+2x -3. 对称轴为直线x =-1,顶点为(-1,-4).(2)①如图2,点B 关于直线l 的对称点C 的坐标为(-2,-3). 因为CD //AB ,设直线CD 的解析式为y =3x +b , 代入点C (-2,-3),可得b =3.所以点D 的坐标为(0,3).②过点P 作PH ⊥y 轴,垂足为H ,那么∠PDH =∠DPE .由73tan =∠DPE ,得3tan 7PH PDH DH ∠==.而DH =7,所以PH =3.因此点E 的坐标为(3,6). 所以1()242BDEP S BD EP PH =+⋅=梯形.图2 图3考点伸展第(2)①用几何法求点D 的坐标更简便: 因为CD //AB ,所以∠CDB =∠ABO .因此13BC OA BD OB ==.所以BD =3BC =6,OD =3.因此D (0,3).1.6 因动点产生的面积问题例1 2013年苏州市中考第29题如图1,已知抛物线212y x bx c =++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0).(1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示);(2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S .①求S 的取值范围;②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个.图1动感体验请打开几何画板文件名“13苏州29”,拖动点C 在y 轴负半轴上运动,可以体验到,△EHA 与△COB 保持相似.点击按钮“C 、D 、E 三点共线”,此时△EHD ∽△COD .拖动点P 从A 经过C 到达B ,数一数面积的正整数值共有11个.请打开超级画板文件名“13苏州29”,拖动点C 在y 轴负半轴上运动,可以体验到,△EHA 与△COB 保持相似.点击按钮“C 、D 、E 三点共线”,此时△EHD ∽△COD .拖动点P 从A 经过C 到达B ,数一数面积的正整数值共有11个.思路点拨1.用c 表示b 以后,把抛物线的一般式改写为两点式,会发现OB =2OC . 2.当C 、D 、E 三点共线时,△EHA ∽△COB ,△EHD ∽△COD .3.求△PBC 面积的取值范围,要分两种情况计算,P 在BC 上方或下方. 4.求得了S 的取值范围,然后罗列P 从A 经过C 运动到B 的过程中,面积的正整数值,再数一数个数.注意排除点A 、C 、B 三个时刻的值.满分解答(1)b =12c +,点B 的横坐标为-2c . (2)由2111()(1)(2)222y x c x c x x c =+++=++,设E 1(,(1)(2))2x x x c ++.过点E 作EH ⊥x 轴于H .由于OB =2OC ,当AE //BC 时,AH =2EH .所以1(1)(2)x x x c +=++.因此12x c =-.所以(12,1)E c c --. 当C 、D 、E 三点在同一直线上时,EH CO DH DO =.所以1212c cc --=--.整理,得2c 2+3c -2=0.解得c =-2或12c =(舍去). 所以抛物线的解析式为213222y x x =--.(3)①当P 在BC 下方时,过点P 作x 轴的垂线交BC 于F . 直线BC 的解析式为122y x =-. 设213(,2)22P m m m --,那么1(,2)2F m m -,2122FP m m =-+. 所以S △PBC =S △PBF +S △PCF =221()24(2)42B C FP x x FP m m m -==-+=--+.因此当P 在BC 下方时,△PBC 的最大值为4.当P 在BC 上方时,因为S △ABC =5,所以S △PBC <5. 综上所述,0<S <5.②若△PBC 的面积S 为正整数,则这样的△PBC 共有11个.考点伸展点P 沿抛物线从A 经过C 到达B 的过程中,△PBC 的面积为整数,依次为(5),4,3,2,1,(0),1,2,3,4,3,2,1,(0).当P 在BC 下方,S =4时,点P 在BC 的中点的正下方,F 是BC 的中点.1.7 因动点产生的相切问题例 1 2013年上海市杨浦区中考模拟第25题如图1,已知⊙O 的半径长为3,点A 是⊙O 上一定点,点P 为⊙O 上不同于点A 的动点.(1)当1tan 2A =时,求AP 的长;(2)如果⊙Q 过点P 、O ,且点Q 在直线AP 上(如图2),设AP =x ,QP =y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)在(2)的条件下,当4tan 3A =时(如图3),存在⊙M 与⊙O 相内切,同时与⊙Q相外切,且OM ⊥OQ ,试求⊙M 的半径的长.图1 图2 图3动感体验请打开几何画板文件名“13杨浦25”,拖动点P 在⊙O 上运动,可以体验到,等腰三角形QPO 与等腰三角形OAP 保持相似,y 与x 成反比例.⊙M 、⊙O 和⊙Q 三个圆的圆心距围成一个直角三角形.请打开超级画板文件名“13杨浦25”,拖动点P 在⊙O 上运动,可以体验到, y 与x 成反比例.拖动点P 使得52QP =,拖动点M 使得⊙M 的半径约为0.82,⊙M 与⊙O 相内切,同时与⊙Q 相外切.拖动点P 使得52QP =,拖动点M 使得⊙M 的半径约为9,⊙M 与⊙O 、⊙Q 都内切.思路点拨1.第(1)题的计算用到垂径定理和勾股定理.2.第(2)题中有一个典型的图,有公共底角的两个等腰三角形相似.3.第(3)题先把三个圆心距罗列出来,三个圆心距围成一个直角三角形,根据勾股定理列方程.满分解答(1)如图4,过点O 作OH ⊥AP ,那么AP =2AH .在Rt △OAH 中,OA =3,1tan 2A =,设OH =m ,AH =2m ,那么m 2+(2m )2=32.解得m =24AP AH m ===.(2)如图5,联结OQ 、OP ,那么△QPO 、△OAP 是等腰三角形.又因为底角∠P 公用,所以△QPO ∽△OAP . 因此QP OP POPA=,即33y x=.由此得到9y x=.定义域是0<x ≤6.图4 图5(3)如图6,联结OP ,作OP 的垂直平分线交AP 于Q ,垂足为D ,那么QP 、QO 是⊙Q 的半径.在Rt △QPD 中,1322PD PO ==,4tan tan 3P A ==,因此52QP =.如图7,设⊙M 的半径为r .由⊙M 与⊙O 内切,3O r =,可得圆心距OM =3-r . 由⊙M 与⊙Q 外切,52Q r QP ==,可得圆心距52QM r =+.在Rt △QOM 中,52QO =,OM =3-r ,52QM r =+,由勾股定理,得22255()(3)()22r r +=-+.解得911r =.图6 图7 图8考点伸展如图8,在第(3)题情景下,如果⊙M 与⊙O 、⊙Q 都内切,那么⊙M 的半径是多少? 同样的,设⊙M 的半径为r .由⊙M 与⊙O 内切,3O r =,可得圆心距OM =r -3. 由⊙M 与⊙Q 内切,52Q r QP ==,可得圆心距52QM r =-.在Rt △QOM 中,由勾股定理,得22255()(3)()22r r -=-+.解得r =9.1.8 因动点产生的线段和差问题例1 2013年天津市中考第25题在平面直角坐标系中,已知点A(-2,0),B(0,4),点E在OB上,且∠OAE=∠OBA.(1)如图1,求点E的坐标;(2)如图2,将△AEO沿x轴向右平移得到△AE′O′,连结A′B、BE′.①设AA′=m,其中0<m<2,使用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).图1 图2动感体验请打开几何画板文件名“13天津25”,拖动点A′在线段AO上运动,可以体验到,当A′运动到AO的中点时,A′B2+BE′2取得最小值.当A′、B、E′′三点共线时,A′B+BE′取得最小值.请打开超级画板文件名“13天津25”,拖动点A′在线段AO上运动,可以体验到,当A′运动到AO的中点时,A′B2+BE′2取得最小值.当A′、B、E′′三点共线时,A′B+BE′取得最小值.思路点拨1.图形在平移的过程中,对应点的连线平行且相等,EE′=AA′=m.2.求A′B2+BE′2的最小值,第一感觉是用勾股定理列关于m的式子.3.求A′B+BE′的最小值,第一感觉是典型的“牛喝水”问题——轴对称,两点之间线段最短.满分解答(1)由∠OAE=∠OBA,∠AOE=∠BOA,得△AOE∽△BOA.所以AO BOOE OA=.因此242OE=.解得OE=1.所以E(0,1).(2)①如图3,在Rt△A′OB中,OB=4,OA′=2-m,所以A′B2=16+(2-m)2.在Rt △BEE ′中,BE =3,EE ′=m ,所以BE ′2=9+m 2. 所以A ′B 2+BE ′2=16+(2-m )2+9+m 2=2(m -1)2+27. 所以当m =1时,A ′B 2+BE ′2取得最小值,最小值为27.此时点A ′是AO 的中点,点E ′向右平移了1个单位,所以E ′(1,1). ②如图4,当A ′B +BE ′取得最小值时,求点E ′的坐标为8(,1)7.图3 图4考点伸展第(2)②题这样解:如图4,过点B 作y 轴的垂线l ,作点E ′关于直线l 的对称点E ′′, 所以A ′B +BE ′=A ′B +BE ′′.当A ′、B 、E ′′三点共线时,A ′B +BE ′′取得最小值,最小值为线段A ′E ′′.在Rt △A ′O ′E ′′中,A ′O ′=2,O ′E ′′=7,所以A ′E ′′ 当A ′、B 、E ′′三点共线时,''''''A O A O BO E O =.所以247m =. 解得87m =.此时8'(,1)7E .。
八年级数学下册动点问题构成平行四边形解题技巧(一)
八年级数学下册动点问题构成平行四边形解题技巧(一)八年级数学下册动点问题构成平行四边形解题技巧什么是动点问题?动点问题是数学中经常遇到的一类问题,它通常涉及到平行四边形的性质和特点。
解决动点问题需要一定的技巧和方法。
动点问题解题技巧以下是一些解决八年级数学下册动点问题的技巧:•确定动点的位置和性质在解决动点问题时,首先要确定动点的位置和性质。
根据问题所给条件,我们可以确定动点在平行四边形内部、边界上还是延长线上。
这些信息有助于我们确定动点的坐标。
•确定平行四边形的特点平行四边形有一些独特的性质,利用这些性质可以解决动点问题。
例如,平行四边形的对角线相互平分,对角线长相等等。
通过确定平行四边形的特点,我们可以推断出关于动点的一些性质。
•运用向量法或坐标法求解在解决动点问题时,我们可以运用向量法或坐标法来求解。
向量法常用于证明或推导问题,而坐标法常用于具体计算。
具体选择使用哪种方法要根据问题的特点和要求来决定。
•画图辅助解题绘制图形是解决动点问题的重要步骤。
通过画图,我们可以更好地理解问题,并帮助我们找到解题的思路。
画图时,注意要准确绘制出平行四边形的形状和各个元素的位置关系。
•通过推理和运算得出答案在完成前面步骤后,我们可以通过推理和运算来得出最终的答案。
根据题目所要求的内容,进行逻辑推理和数学运算,得出问题的解答。
总结解决八年级数学下册动点问题需要我们熟悉平行四边形的性质和特点,并掌握相应的解题技巧。
通过确定动点的位置和性质、确定平行四边形的特点、运用向量法或坐标法、画图辅助解题以及通过推理和运算得出答案,我们可以有效地解决动点问题。
希望以上技巧能帮助到你解决八年级数学下册动点问题,在数学学习中取得更好的成绩!对于八年级数学下册动点问题构成平行四边形解题,下面给出了更具体的步骤和实例来帮助你更好地理解和应用这些技巧。
1.确定动点的位置和性质首先,从题目中找出关于动点的相关信息,然后根据这些信息来确定动点的位置和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
_______
动态问题探究
五十二中学
例1、如图:梯形ABCD中,AD//BC, AD=9cm,BC=6cm,点P、Q分别从点A、C同时出发, 点P以2cm/s的速度由点A向点D运动,点Q以1cm/s的速 度由点C向点B运动。
(1)运动多少秒时,四边形APQB是平行四边形? (2)运动多少秒时,四边形APQB的面积和四边形PDCQ 的面积相等?
y
C
B
O
A
P
x
8<t≤12
例3、如图已知
ABCD中,AB=7,BC=4,∠A=30°
(1)点P从点A沿AB边向点B运动,速度为1cm/s。 若设运动时间为t(s),连接PC,当t为何值时,△PBC为等腰三 角形?
若△PBC为等腰三角形
D C
则PB=BC
A
30°
7 P
B
4
∴7-t=4
∴t=3
如图:已知 ABCD中,AB=7,BC=4,∠A=30° (2)若点P从点A沿射线 AB运动,速度仍是1cm/s。 当t为何值时,△PBC为等腰三角形?
B
Q
C
A
P
D
例1、如图:梯形ABCD中,AD//BC, AD=9cm,BC=6cm,点P、Q分别从点A、C同时出发, 点P以2cm/s的速度由点A向点D运动,点Q以1cm/s的速 度由点C向点B运动。 1)运动多少秒时,四边形APQB是平行四边形? 2)运动多少秒时,四边形APQB的面积和四边形PDCQ 的面积相等?
P
B Q
C
B
O
A
x
例2.直角坐标系中菱形OABC的位置如图,A点坐标(4,0), ∠AOC=60°。经过点O的一条直线a沿x轴的正方向以每秒1 单位长度的速度运动,且始终保持与OC垂直. (1)求点B的坐标。
(2)设直线运动时扫过的菱形的面积为S,运动时间为t秒, 求S与t的函数关系式。(0≤t≤12) y C
F
C
B
E O A P x
例2.直角坐标系中菱形OABC的位置如图,A点坐标(4,0), ∠AOC=60°。经过点O的一条直线a沿x轴的正方向以每秒1 单位长度的速度运动,且始终保持与OC垂直. (1)求点B的坐标。
(2)设直线运动时扫过的菱形的面积为S,运动时间为t秒, 求S与t的函数关系式。(0≤t≤12) y C (F)
D C
D C
P
A
4
B
A
4 7
B
P
7
D
当BP=BC时 (钝角)
4
30°
t=3
C
当BP=BC时 (锐角)
D
t=11
C
E
4
P
A
7
B
2 3
E
t 7 4 3 4 3 t 3,11,7 4 3或7 时三角形PBC是等腰三角形 3
当CB=CP时
∟
P
A
7
B
4 3 t 7 当PB=PC时 3
如图:已知
ABCD中,AB=7,BC=4,∠A=30°
(3)当t>7时,是否存在某一时刻t,使得线段 DP将线段BC三等分?
D C
E
A B
P
D
C
E
A
B
P
显身手
如图,在等腰梯形ABCD 中, AD∥BC,AB=DC=5,AD=6,BC=12.动点P从 D点出发 沿DC以每秒1个单位的速度向终C点运动,动点Q从C点 出发沿CB以每秒2个单位的速度向B点运动.两点同时 出发,当P点到达C点时,Q点随之停止运动. (1)梯形ABCD的面积等于 ;(2)当PQ∥AB 时,点P离开D点的时间等于 秒; (3)当P、Q、C三点构成直角三角形时,P点离开D点 D A 多少时间?
F E B
O
A
P x
例2.直角坐标系中菱形OABC的位置如图,A点坐标(4,0), ∠AOC=60°。经过点O的一条直线a沿x轴的正方向以每秒1 单位长度的速度运动,且始终保持与OC垂直. (1)求点B的坐标。
(2)设直线运动时扫过的菱形的面积为S,运动时间为t秒, 求S与t
例2.直角坐标系中菱形OABC的位置如图,A点坐标(4,0), ∠AOC=60°。经过点O的一条直线a沿x轴的正方向以每秒1 单位长度的速度运动,且始终保持与OC垂直. (1)求点B的坐标。
(2)设直线运动时扫过的菱形的面积为S,运动时间为t秒, 求S与t的函数关系式。(0≤t≤12) y C
E O A P x B
4<t≤8
例2.直角坐标系中菱形OABC的位置如图,A点坐标(4,0), ∠AOC=60°。经过点O的一条直线a沿x轴的正方向以每秒1 单位长度的速度运动,且始终保持与OC垂直. (1)求点B的坐标。
(2)设直线运动时扫过的菱形的面积为S,运动时间为t秒, 求S与t的函数关系式。(0≤t≤12) y C
F B
O
A (E)
x
0≤t≤4
例2.直角坐标系中菱形OABC的位置如图,A点坐标(4,0), ∠AOC=60°。经过点O的一条直线a沿x轴的正方向以每秒1 单位长度的速度运动,且始终保持与OC垂直. (1)求点B的坐标。
(2)设直线运动时扫过的菱形的面积为S,运动时间为t秒, 求S与t的函数关系式。(0≤t≤12) y
D C
P
A
4
B
7
D
C
D
C
P
A
4
B
A
4 7
B
P
7
BP=BC
(钝角) D
4
30°
BP=BC
C
(锐角)
D C
E
4
P
A
7
B
2 3
E
CB=CP
∟
P
A
7
B
PB=PC时
如图: 已知 ABCD中,AB=7,BC=4,∠A=30° (2)若点P从点A沿射线AB运动,速度仍是1cm/s。 当t为何值时,△PBC为等腰三角形?
F O E A x B
例2.直角坐标系中菱形OABC的位置如图,A点坐标(4,0), ∠AOC=60°。经过点O的一条直线a沿x轴的正方向以每秒1 单位长度的速度运动,且始终保持与OC垂直. (1)求点B的坐标。
(2)设直线运动时扫过的菱形的面积为S,运动时间为t秒, 求S与t的函数关系式。(0≤t≤12) y C