函数单元测试卷.doc
第二十二章-二次函数-单元测试(含答案)
第二十二章二次函数学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知二次函数223y x x =--,点P 在该函数的图象上,点P 到x 轴、y 轴的距离分别为1d 、2d .设d d d =+,下列结论中:①④231(x 4点B C .52D .535.已知二次函数2y x bx c =++的图象上有三个点()11,y -)、()21,y 、()33,y ,若13y y =,则( ).A .21y c y >>B .12c y y <<C .12c y y >>D .21y c y <<6.已知二次函数y=ax 2+bx+c (a≠0)的图象如图,在下列代数式中(1)a+b+c >0;(2)﹣4a <b <﹣2a (3)abc >0;(4)5a ﹣b+2c <0; 其中正确的个数为( )78①93的“特征数”为[1,2,3]-.若“特征数”为12,2,2m m m --⎢⎥⎣⎦的二次函数的图象与x 轴只有一个交点,则m的值为( )A .2-或2B .12-C .2-D .210.某同学在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()21349y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则该同学此次掷球的成绩(即OA 的长度)是( )A .4mB .6mC .8mD .9m11.已知函数223y x x =-+,当0x m ≤≤时,有最大值3,最小值2,则m 的取值范围是( )A .1m ≥B .02m ≤≤C .12m ≤≤D .2m ≤12.有一拱桥洞呈抛物线状,这个桥洞的最大高度是16 m ,跨度为40 m ,现把它的示意图(如图)放在平面直角坐标系中,则抛物线的表达式为( )A .281255x y x =+B .218255y x x =-+C .251825y x x =--D .25125168y x x +=+ 二、填空题13.已知抛物线22161y x x =-+,则这条抛物线的对称轴是直线 .14.已知抛物线()21433y x =--的部分图象如图所示,则图象再次与x 轴相交时的坐标是 .15.已知抛物线()20y ax bx c a =++≠图象的顶点为()2,3P -,且过()3,0A -,则抛物线的关系式为 .16.已知222b c c a a bk a b c+++===,0a b c ++≠,将抛物线22y x =向右平移k 个单位,再向上平移2k 个单位后,所得抛物线的表达式为 .对于平移后的抛物线,当25x ……时,y 的取值范围是 .17.设关于x 的方程()2440x k x k +--=有两个不相等的实数根12,x x ,且1202x x <<<,那么k 的取值范围是 .三、解答题18.己知二次函数y =ax 2+bx +c (a ,b ,c 均为常数且0a ≠).(1)若该函数图象过点(1,0)A -,点(3,0)B 和点(0,3)C ,求二次函数表达式:(2)若21b a =+,2c =,且无论a 取任何实数,该函数的图象恒过定点,求出定点的坐标.(4)将这个函数的图象向右平移2个单位长,向上平移1个单位长,写出平移后的二次函数解析式.20.高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x (元),年销售量为y(万件),年获利(年获利=年销售额一生产成本—投资)为z(万元).(1)试写出y与x之间的函数关系式(不写x的取值范围);(2)试写出z与x之间的函数关系式(不写x的取值范围);(3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?21.珊珊度假村共有客房50间供游客居住,当每个房间的定价为每天200元时,所有房间刚好可以住满,根据经验发现,每个房间的定价每增加10元,就会有1个房间空闲,对有游客入住的房间,宾馆需对每个房间支出每天20元的各种费用.设每个房间的定价增加x元,每天的入住量为y个,度假村住宿每天的利润为w元.(1)求y与x的函数关系式;(2)求w与x的函数关系式,并求客房收入每天的最大利润是多少?(3)当x为何值时,客房收入每天的利润不低于10350元?22.篮球是一项广受喜爱的运动.学习了二次函数后,小江同学打篮球时发现,篮球投出时在空中的运动可近似看作一条抛物线,于是建立模型,展开如下研究:如图,篮框距离地面3m,某同学身高2m,站在距离篮球架4mL 处,从靠近头部的O点将球正对篮框投出,球经过最高点时恰好进入篮框,球全程在同一水平面内运动,轨迹可看作一条抛物线C.不计篮框和球的大小、篮板厚度等.(1)求抛物线C的表达式;(2)研究发现,当球击在篮框上方0.2m及以内范围的篮板上时,球会打板进框.若该同学正对篮框,改用跳投的方式,出手点O位置升高了0.5m,要能保证进球,求L的取值范围.(计算结果保留小数点后一位)23.如图1,在平面直角坐标系中,是坐标原点,抛物线与轴正半轴交于点,与轴交于点,连接,点分别是的中点.,且始终保持边经过点,边经过点,边与轴交于点,边与轴交于点.(1)填空,的长是 ,的度数是 度(2)如图2,当,连接①求证:四边形是平行四边形;②判断点是否在抛物线的对称轴上,并说明理由;(3)如图3,当边经过点时(此时点与点重合),过点作,交延长线上于点,延长到点,使,过点作,在上取一点,使得(若在直线的同侧),连接,请直接写出的长.24.如图,抛物线239344y x x =-++与x 轴交于点A ,与y 轴交于点B .在线段OA 上有一动点(m,0)E (不与,O A 重合),过点E 作x 轴的垂线交AB 于点N ,交抛物线于点P ,过点P 作PM AB ⊥于点M .(1)求直线AB的函数解析式;(参考答案:题号12345678910答案B D B A D A C D C D 题号1112 答案CB1.B 2.D 3.B 4.A 5.D 6.A 7.C 8.D 9.C 10.D 11.C 12.B 13.4x =14.(7,0)15.23129y x x =---16.22(1)2y x =+-1670x ……17.-2<k <0 18.(1)223y x x =-++(2)()0,2,()2,0-19.(1)221y x =-;(2)17;(3)略;(4)2288y x x =-+.20.(1)y=-110x+30;(2)z=-110x 2+34x-3200;(3)第二年的销售单价应确定在不低于120元且不高于220元的范围内.21.(1)5010x y =-(2)(3)22(2)2312 24。
一次函数单元测试题(含答案)
一次函数测试题一、相信你一定能填对!(每小题3分,共24分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=12x - C .y=24x - D .y=2x +·2x - 2.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 3.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四4.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-125.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<36.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-17.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 8.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二、你能填得又快又对吗?(每小题4分,共40分)9.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 10.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.11.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 12.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方. 13.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.14.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)15.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.16.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.17.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.18.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、认真解答,一定要细心哟!(共36分)23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(12分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?xy1234-2-1CA-14321O答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。
二次函数单元测试卷(含答案)
二次函数单元测试卷(含答案) 二次函数单元测试卷一、选择题(每小题3分,共30分)1.当-2≤x≦1,二次函数y=-(x-m)²+ m+1有最大值4,则实数m值为()A。
-7/4 B。
3或-3 C。
2或-3 D。
2或3或-742.二次函数y=ax²+bx+c(a≠0)的图像与x轴的交点个数为()A。
0个 B。
1个 C。
2个 D。
1个或2个3.关于二次函数y=ax²+bx+c,下列命题中正确的个数是()①当c=0时,函数的图像经过原点;②当c>0,且函数图像开口向下时,方程ax²+bx+c=0必有两个不相等的实根;③函数图像最高点的纵坐标是4ac-b²/4a;④当b=0时,函数的图像关于y轴对称。
A。
1个 B。
2个 C。
3个 D。
4个4.二次函数y=2mx+(8m+1)x+8m的图像与x轴有交点,则m的范围是()A。
m-1/16 D。
m≥1/16且m≠-1/165.下列二次函数中有一个函数的图像与x轴有两个不同的交点,这个函数是()A。
y=x² B。
y=x+4 C。
y=3x²-2x+5 D。
y=3x+5x²-16.若二次函数y=ax+c,当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为()A。
a+c B。
a-c C。
-c D。
c7.下列二次函数中有一个函数的图像与坐标轴有一个交点,这个函数是()A。
y=x²-2x+1 B。
y=x²+4 C。
y=x²-2x+1 D。
y=3x+5x²-18.抛物线y=-3x²+2x-1的图像与坐标轴交点的个数是()A。
没有交点B。
只有一个交点C。
有且只有两个交点D。
有且只有三个交点9.函数y=ax²+bx+c的图像如图所示,关于x的一元二次方程ax²+bx+c-3=0的根的情况是()A。
中职数学《函数》单元测试题
中职数学《函数》单元测试题1.函数y=1/(2x-3)的定义域为(-∞。
3/2)∪(3/2.+∞)。
2.函数f(x)=x+3/x在x=0处无定义,不是奇函数也不是偶函数。
3.函数f(x)在(-∞。
+∞)上是奇函数,且f(-1)=2,则f(1)=-2.4.二次函数f(x)=-x^2+2x-8的最大值是6.5.在区间(-1,1)上单调递减的函数是y=logx。
6.函数y=3x-1的图像上的点是(0.-1)。
7.函数y=-cos2x/(x^2+1)+2是非奇非偶函数。
8.已知定义域为R的偶函数f(x)在区间[0.+∞)上为增函数,则f(-4)<f(-3)<f(2)。
9.函数f(x)=ax+2x^2的定义域上是偶函数,则a=0.10.函数f(x)=x^2+bx+c的图像经过点(1.4),对称轴为x=2,则b=4,c=3.11.函数y=-x^2-2x+1的图像是开口向下,顶点为(-1.2)的抛物线。
12.函数f(x)=ax^2+bx+c满足a,b,c和Δ=b^2-4ac均为正数,则f(x)的图像不通过第三象限。
1.函数y=1/(2x-3)的定义域为(-∞。
3/2)∪(3/2.+∞)。
2.函数f(x)=x+3/x在x=0处无定义,不属于奇偶函数。
3.函数f(x)在(-∞。
+∞)上为奇函数,且f(-1)=2,则f(1)=-2.4.二次函数f(x)=-x^2+2x-8的最大值为6.5.在区间(-1,1)上单调递减的函数是y=logx。
6.函数y=3x-1的图像上的点为(0.-1)。
7.函数y=-cos2x/(x^2+1)+2为非奇非偶函数。
8.已知定义域为R的偶函数f(x)在区间[0.+∞)上为增函数,则f(-4)<f(-3)<f(2)。
9.函数f(x)=ax+2x^2的定义域上为偶函数,则a=0.10.函数f(x)=x^2+bx+c的图像经过点(1.4),对称轴为x=2,则b=4,c=3.11.函数y=-x^2-2x+1的图像是开口向下,顶点为(-1.2)的抛物线。
函数单元测试题及答案
函数单元测试题及答案一、选择题1. 函数f(x) = x^2 + 3x + 2的图像与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个2. 若函数f(x) = 2x - 1在区间[1, 3]上是增函数,则f(2)与f(1)的大小关系是:A. f(2) > f(1)B. f(2) < f(1)C. f(2) = f(1)D. 不能确定二、填空题3. 函数y = 3x + 5的斜率为______。
4. 若函数f(x) = ax^2 + bx + c的顶点坐标为(-1, -4),则a的值为______。
三、简答题5. 描述函数y = x^3 - 6x^2 + 9x的单调性。
6. 给定函数f(x) = x^2 + 2x + 1,求它的反函数。
四、计算题7. 求函数f(x) = 4x^3 - 3x^2 + 2x - 1在x = 2处的导数。
8. 已知函数f(x) = ln(x),求f(x)在区间[1, e]上的定积分。
五、证明题9. 证明函数f(x) = x^3是奇函数。
10. 证明函数f(x) = sin(x)在区间[0, π]上是增函数。
答案:一、选择题1. C2. A二、填空题3. 34. -1三、简答题5. 函数y = x^3 - 6x^2 + 9x在x = 3处取得极小值,当x < 3时单调递减,当x > 3时单调递增。
6. 反函数为f^(-1)(x) = (-1 - √(1 - 4x))/2。
四、计算题7. 导数为12x^2 - 6x + 2,代入x = 2得导数为28。
8. 定积分为1。
五、证明题9. 令f(x) = x^3,计算f(-x) = (-x)^3 = -x^3 = -f(x),因此f(x)是奇函数。
10. 计算导数f'(x) = cos(x),当x ∈ [0, π]时,cos(x) ≤ 1,因此f(x)在此区间上单调递增。
函数极限连续单元测试及标准答案
函数单元测试(A )一、填充题:1、设的定义域为[]1,0,则)2(+x f 的定义域是________________。
2、1sin )(,)(2+==x x q x x f ,则[]=)(x q f ________,()[]=x f q __________。
3、设()2212++=+x x x f ,则()=x f _____________。
4、()_________)2(_________,)4(,1 ,01,sin =-=⎪⎩⎪⎨⎧≥=ππf f x x x x f 。
5、已知函数()x f 是偶函数,且在()+∞,0上是减函数,则函数()x f 在()0,∞-上必是____________函数。
6、设x v v u u y arccos , 1 ,3=+==,则复合函数()_____________==x f y 。
7、______________,cos sin )(22其周期为设函数x x x f -=。
二、选择题:1、函数⎪⎪⎩⎪⎪⎨⎧>≤+=2,sin 2,)1ln()(ππx x x x x f 则)4(πf 等于( )(A ))41ln(π+ (B)22 (C )2π (D)4π2、设x e x g x x f ==)(,)(2,则=)]([x g f ( )(A)2x e (B )x e 2 (C)2x x (D)x e3、设函数()x f 的定义域是]1,0[,则()2x f 的定义域是( )(A)[-1,1] (B )[0,1] (C)[-1,0] (D )(- ∞,+∞)4、函数()x x x f -+=1010是( )ﻩ(A)奇函数 (B )偶函数(C)非奇非偶函 (D)既是奇函数又是偶函数5、函数()[]213arcsin +=x y 的复合过程是( )()()13sin ,sin ,(D) 13,arcsin ,)(13,arcsin B) ( 13arcsin ,)(2222+===+===+==+==x v v u u y x v v u u y C x u u y x u u y A6、34x y -=的反函数是( )()()33334(D)4C) ( 4(B) 4)(x y x y x y x y A -=-=-=-=7、下列函数中为基本初等函数的是( )123)()( )15arctan()()(0,10,0)()( 1)ln()()(-=+=⎩⎨⎧≥=+=x x f D x x f C x x x f B x x f A三、判断题:1、确定函数的两个要素是定义域和对应关系。
函数单元测试题及答案
函数单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个是Python中定义函数的关键字?A. defB. ifC. whileD. for2. 在Python中,函数的返回值是通过哪个关键字实现的?A. returnB. printC. inputD. yield3. 以下哪个选项是正确的函数调用方式?A. my_function()B. my_functionC. my_function = callD. call my_function4. 如果函数没有返回值,Python将返回什么?A. NoneB. TrueC. FalseD. Error5. 以下哪个是Python中函数的参数默认值的正确用法?A. def func(a, b=5)B. def func(a=5, b)C. def func(a, b=5)D. def func(a=5, b=5)6. 可变参数在Python函数中是如何定义的?A. *argsB. &argsC. args*D. *&args7. 关键字参数在Python函数中是如何定义的?A. *kwargsB. argsC. &kwargsD. params8. 下列哪个是Python中装饰器的基本语法?A. @decoratorB. #decoratorC. $decoratorD. %decorator9. 在Python中,如何使用函数的文档字符串?A. print(func.__doc__)B. print(func.doc())C. print(func())D. print(func)10. 下列哪个选项是Python中匿名函数的表示方式?A. anonymous()B. lambda x: xC. def anonymous(x): xD. anonymous = x答案:1. A2. A3. A4. A5. C6. A7. A8. A9. A10. B二、简答题(每题5分,共20分)1. 简述Python中函数的作用。
二次函数单元测试卷
二次函数单元测试卷一、选择题(每题3分,共30分)1. 二次函数y = x² - 2x + 1的顶点坐标是()A. (1, 0)B. (-1, 0)C. (0, 1)D. (0, -1)2. 二次函数y = -2x² + 4x - 5的对称轴是()A. x = 1B. x = -1C. x = 2D. x = -23. 二次函数y = 3(x - 1)² + 2的图象的开口方向是()A. 向上B. 向下C. 向左D. 向右4. 把二次函数y = x²的图象向右平移2个单位,再向上平移3个单位后,所得图象的函数表达式是()A. y=(x - 2)²+3B. y=(x + 2)²+3C. y=(x - 2)² - 3D. y=(x + 2)² - 35. 二次函数y = ax²+bx + c(a≠0),当y = 0时,得到一元二次方程ax²+bx + c = 0,若方程有两个相等的实数根,则二次函数的图象与x轴()A. 有两个交点B. 有一个交点C. 没有交点D. 无法确定6. 二次函数y = 2x² - 3x + 1与y轴的交点坐标是()A. (0, 1)B. (0, -1)C. (1, 0)D. (-1, 0)7. 已知二次函数y = ax²+bx + c(a≠0)的图象经过点(0, -1),(5, -1),则它的对称轴是()A. x = 0B. x = 2.5C. x = 5D. 无法确定8. 二次函数y = x²+bx + c的图象向左平移2个单位,再向上平移3个单位,得到二次函数y = x² - 2x + 1的图象,则b、c的值分别为()A. b = -6,c = 6B. b = -8,c = 14C. b = -8,c = 18D. b = -6,c = 89. 若二次函数y = kx² - 6x + 3的图象与x轴有交点,则k的取值范围是()A. k<3B. k≤3C. k<3且k≠0D. k≤3且k≠010. 对于二次函数y = ax²+bx + c(a≠0),若a>0,b = 0,c<0,则它的图象()A. 开口向上,对称轴是y轴,与y轴的交点在y轴负半轴B. 开口向上,对称轴是y轴,与y轴的交点在y轴正半轴C. 开口向下,对称轴是y轴,与y轴的交点在y轴负半轴D. 开口向下,对称轴是y轴,与y轴的交点在y轴正半轴二、填空题(每题3分,共15分)11. 二次函数y = -x²+2x - 3的二次项系数是______,一次项系数是______,常数项是______。
二次函数单元测试卷及答案
二次函数单元测试卷及答案第一部分:选择题(共10题,每题2分)1. 若 $f(x)=2x^2+6x+1$,则该函数的抛物线开口向上()。
A. 对B. 错2. 对于函数 $f(x)=ax^2+bx+c$,若 $a>0$,则抛物线开口()。
A. 向上B. 向下3. 已知 $f(x)=x^2+bx+c$,若 $b^2-4c>0$,则该函数()。
A. 有两个实根B. 无实根C. 有一个实根4. 若 $f(x)=\frac{1}{2}x^2+ax+b$ 的导函数为 $f'(x)=x+1$,则 $f(x)$ 的解析式为()。
A. $\frac{1}{2}x^2+x+1$B. $\frac{1}{2}x^2+2x+1$C.$\frac{1}{2}x^2+x+2$5. 设 $f(x)=2x^2-10x+8$,$g(x)=x^2-3x+7$,则 $f(x)-g(x)$ 的值域为()。
A. $(0,+\infty)$B. $(-\infty,0)$C. $[0,+\infty)$6. 函数 $f(x)=x^2-2mx+1$ 与 $y=0$ 交点的横坐标为 $4$,则 $m$ 的值为()。
A. $1$B. $2$C. $-1$7. 若 $f(x)=x^2+1$,则 $f(2x+1)$ 的最小值为()。
A. $2$B. $5$C. $6$8. 已知函数 $f(x)=ax^2+bx+c$ 在 $x=1$ 处有极值 $0$,则 $a+b+c$ 等于()。
A. $-1$B. $0$C. $1$9. 函数 $f(x)=x^2-2x+5$ 与 $g(x)=2x-1$ 的交点横坐标之和为()。
A. $0$B. $1$C. $2$10. 若 $f(x)=x^2-2x-15$,则 $f(x)$ 的零点为()。
A. $-3,5$B. $-5,3$C. $-3,-5$答案:1.A 2.A 3.A 4.B 5.A 6.C 7.C 8.B 9.C 10.A第二部分:填空题(共5题,每题4分)1. 函数 $f(x)=x^2+2x+1$ 的零点是 _____________。
北师大版九年级数学下册第二章 二次函数 单元测试训练卷(word 含答案)
北师大版九年级数学下册第二章 二次函数单元测试训练卷一、选择题(共8小题,4*8=32)1. 下列函数中,不是二次函数的是( )A .y =1-2x 2B .y =2(x -1)2+4C .y =12(x -1)(x +4) D .y =(x -2)2-x 2 2. 如图是有相同对称轴的两条抛物线,下列关系不正确的是( )A .h =mB .k =nC .k >nD .h <0,k >03. 已知二次函数y =x 2-4x +a ,下列说法错误的是( )A .当x<1时,y 随x 的增大而减小B .若图象与x 轴有交点,则a≤4C .当a =3时,不等式x 2-4x +3>0的解集是1<x<3D .若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a =-34. 下列关于二次函数的说法错误的是( )A .抛物线y =-2x 2+12x +1的对称轴是直线x =3B .对于抛物线y =x 2-2x -3,点A(3,0)不在它的图象上C .二次函数y =(x +3)2-3的顶点坐标是(-3,-3)D .函数y =2x 2+4x -3的图象的最低点是(-1,-5)5. 点P(m ,n)在以y 轴为对称轴的二次函数y =x 2+ax +4的图像上.则m -n 的最大值等于( )A .154B .4C .-154D .-1746. 函数y =ax +b 和y =ax 2+bx +c 在同一直角坐标系内的图象可能是( )7. 如图是抛物线y =ax 2+bx +c(a≠0)的部分图象,其顶点坐标为(1,n),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a -b +c >0;②3a +b =0;③b 2=4a(c -n);④一元二次方程ax 2+bx +c =n -1有两个不相等的实数根.其中正确结论的个数是( )A .1B .2C .3D .48. 如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )二.填空题(共6小题,4*6=24)9.抛物线y =-x 2+15有最________点,其坐标是________.10. 若二次函数y =x 2+2x +a 的图象与x 轴有两个不同的交点,则a 的取值范围是__________.11. 如图,已知二次函数y =x 2+bx +c 的图象的对称轴是直线x =1,过抛物线上两点的直线AB 平行于x 轴,若点A 的坐标为⎝⎛⎭⎫0,32,则点B 的坐标为 .12. 已知二次函数y =x 2+2mx +2,当x>2时,y 随x 的增大而增大,则实数m 的取值范围是________.13. 抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,则a +b +c =________.14. 如图,二次函数y =ax 2+bx +c 的对称轴在y 轴的右侧,其图象与x 轴交于点A(-1,0),点C(x 2,0),且与y 轴交于点B(0,-2),小强得到以下结论:①0<a <2;②-1<b <0;③c=-1;④当|a|=|b|时,x2>5-1.以上结论中,正确的结论序号是________.三.解答题(共5小题,44分)15.(6分) 已知抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),求a,b的值.16.(8分)如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的表达式;(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)17.(8分) 抛物线y=-x2+bx+c的对称轴为直线x=2,且顶点在x轴上.(1)求b、c的值;(2)在如图所示的平面直角坐标系中画出抛物线并写出它与y轴的交点C的坐标;(3)根据图像直接写出:点C关于直线x=2的对称点D的坐标为________;若E(m,n)为抛物线上一点,则点E关于直线x=2的对称点的坐标为________(用含m、n的式子表示).18.(10分) 如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的表达式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.19.(12分) 如图是某同学正在设计的一动画示意图,x轴上依次有A,O,N三个点,且AO=2,在ON上方有五个台阶T1~T5(各拐角均为90°),每个台阶的高、宽分别是1和1.5,台阶T1到x轴的距离OK=10.从点A处向右上方沿抛物线L:y=-x2+4x+12发出一个带光的点P.(1)求点A的横坐标,且在图中补画出y轴,并指出点P会落在哪个台阶上;(2)当点P落到台阶上后立即弹起,又形成了另一条与L形状相同的抛物线C,且最大高度为11,求C的表达式,并说明其对称轴是否与台阶T5有交点;(3)在x轴上从左到右有两点D,E,且DE=1,从点E向上作EB⊥x轴,且BE=2.在△BDE 沿x轴左右平移时,必须保证(2)中沿抛物线C下落的点P能落在边BD(包括端点)上,则点B横坐标的最大值比最小值大多少?[注:(2)中不必写x的取值范围]参考答案1-4 DBCB 5-8CCCA9.高,(0,15)10.a <111.⎝⎛⎭⎫2,32 12.m≥-213.014.①④15.解:把(-1,0),(3,0)分别代入y =ax 2+bx -3,得⎩⎪⎨⎪⎧0=a -b -3,0=9a +3b -3,解得⎩⎪⎨⎪⎧a =1,b =-2. 即a 的值为1,b 的值为-2.16.解: (1)∵直线y =x +m 经过点A(1,0),∴0=1+m .∴m =-1.∴y =x -1.∵抛物线y =x 2+bx +c 经过点A(1,0),B(3,2),∴⎩⎪⎨⎪⎧0=1+b +c ,2=9+3b +c ,解得⎩⎪⎨⎪⎧b =-3,c =2.∴抛物线的表达式为y =x 2-3x +2 (2)x<1或x>317.解:(1)∵抛物线y =-x 2+bx +c 的对称轴为直线x =2,且顶点在x 轴上,∴顶点为(2,0).∴抛物线为y =-(x -2)2=-x 2+4x -4,∴b =4,c =-4.(2)画出抛物线如图:点C 的坐标为(0,-4).(3)(4,-4);(4-m ,n)18.(1)将点A(1,0)代入y =(x -2)2+m 中得(1-2)2+m =0,解得m =-1,所以二次函数的表达式为y =(x -2)2-1.当x =0时,y =4-1=3,所以点C 坐标为(0,3),由于点C 和点B 关于对称轴对称,而抛物线的对称轴为直线x =2,所以点B 坐标为(4,3),将A(1,0),B(4,3)代入y =kx +b 中,得⎩⎪⎨⎪⎧k +b =0,4k +b =3,解得⎩⎪⎨⎪⎧k =1,b =-1.所以一次函数的表达式为y =x -1 (2)当kx +b≥(x -2)2+m 时,1≤x≤419.解:(1)对于抛物线y =-x 2+4x +12,令y =0,则-x 2+4x +12=0,解得x =-2或x =6,∵OA =2,∴A(-2,0),∴点A 的横坐标为-2.补画y 轴,如图所示,由题意知台阶T 4左边的端点坐标为(4.5,7),右边的端点为(6,7).当x =4.5时,y =9.75>7,当x =6时,y =0<7,对于y =-x 2+4x +12,当y =7时,7=-x 2+4x +12,解得x =-1或x =5,∴抛物线与台阶T 4有交点,∴点P 会落在台阶T 4上.(2)设抛物线C 的表达式为y =-x 2+bx +c ,抛物线y =-x 2+4x +12与台阶T 4的交点为R ,则R(5,7).由题意知抛物线C :y =-x 2+bx +c 经过R(5,7),最高点的纵坐标为11,∴⎩⎪⎨⎪⎧-4c -b 2-4=11,-25+5b +c =7,解得⎩⎪⎨⎪⎧b =14,c =-38或⎩⎪⎨⎪⎧b =6,c =2(舍去),∴抛物线C 的表达式为y =-x 2+14x -38,∴抛物线C 的对称轴为直线x =7,易知台阶T 5的左边的端点为(6,6),右边的端点为(7.5,6),∴抛物线C 的对称轴与台阶T 5有交点.(3)对于抛物线C :y =-x 2+14x -38,令y =0,得到-x 2+14x -38=0,解得x =7+11或x =7-11(舍去),∴抛物线C 交x 轴于(7+11,0),当y =2时,2=-x 2+14x -38,解得x =4(舍去)或x =10,∴抛物线经过(10,2),在Rt △BDE 中,∠DEB =90°,DE =1,BE =2,∴当点D 与(7+11,0)重合时,点B 的横坐标最大,最大值为8+11,当点B 与(10,2)重合时,点B 的横坐标最小,最小值为10,∴点B 横坐标的最大值比最小值大11-2.。
必修一第二单元《函数》测试(答案解析)
一、选择题1.我们把定义域为[)0,+∞且同时满足以下两个条件的函数()f x 称为“Ω函数”:①对任意的[)0,x ∈+∞,总有()0f x ≥;②若0x ≥,0y ≥,则有()()()f x y f x f y +≥+成立,给出下列四个结论:(1)若()f x 为“Ω函数”,则()00f =;(2)若()f x 为“Ω函数”,则()f x 在[)0,+∞上为增函数;(3)函数()0,1,x Qg x x Q∈⎧=⎨∉⎩在[)0,+∞上是“Ω函数”(Q 为有理数集);(4)函数()2g x x x =+在[)0,+∞上是“Ω函数”;其中正确结论的个数是( ) A .1B .2C .3D .42.若关于x 的不等式342xx a +-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( )A .(-∞,1]2-B .(0,1]C .1[2-,1]D .[1,)+∞3.函数()(3)()f x x ax b =--为偶函数,且在(0,)+∞上单调递增,则(2)0f x ->的解集为( ) A .{|22}x x -<< B .{|5x x >或1}x <- C .{|04}x x <<D .{|4x x >或0}x <4.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .1y x=B .y =C .2x y =D .||y x x =-5.对二次函数()2f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( ). A .1-是()0f x =的一个解 B .直线1x =是()f x 的对称轴 C .3是()f x 的最大值或最小值D .点()2,8在()f x 的图象上6.对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零,则x 的取值范围是( ) A .13x <<B .1x <或3x >C .12x <<D .1x <或2x >7.高斯函数属于初等函数,以大数学家约翰·卡尔·弗里德里希·高斯的名字命名,其图形在形状上像一个倒悬着的钟,高斯函数应用范围很广,在自然科学、社会科学、数学以及工程学等领域都能看到它的身影,设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.14-=-,[]4.84=.则函数21()122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为( ) A .{}0,1B .{}1,1-C .{}1,0-D .{}1,0,1-8.若定义运算,,b a b a b a a b≥⎧*=⎨<⎩,则函数()()()2242g x x x x =--+*-+的值域为( )A .(],4-∞B .(],2-∞C .[)1,+∞D .(),4-∞9.已知函数()y f x =的定义域为[]0,4,则函数0(2)y x =-的定义域是( ) A .[1,5]B .((1,2)(2,5) C .(1,2)(2,3]⋃D .[1,2)(2,3]⋃10.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( ) A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确11.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),且对任意的x 1,x 2∈(-∞,1](x 1≠x 2)有(x 1-x 2)(f (x 1)-f (x 2))<0.则( ) A .()()()211f f f <-< B .()()()121f f f <<- C .()()()112f f f <-<D .()()()211f f f <<-12.定义{},,max a b c 为,,a b c 中的最大值,设()28,,63⎧⎫=-⎨⎬⎩⎭h x max x x x ,则()h x 的最小值为( ) A .1811B .3C .4811D .4二、填空题13.若函数()()21,f x ax bx a b =++∈R 满足:()()123f x f x x +-=+.设()f x 在[](),2t t t R +∈上的最小值为()g t ,则()g t =____.14.自然下垂的铁链;空旷的田野上,两根电线杆之间的电线等这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()xxf ae ex b -=+(其中a ,b 是非零常数,无理数 2.71828e =…)(1)如果()f x 为单调函数.写出满足条件的一-组值:a =______,b =______. (2)如果()f x 的最小值为2,则+a b 的最小值为______.15.已知函数()225f x x ax =-+在(],2-∞上是减函数,且对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则实数a 的取值范围是________.16.已知定义在R 上的函数()f x 满足:①(1)0f =;②对任意x ∈R 的都有()()f x f x -=-;③对任意的12,(0,)x x ∈+∞且12x x ≠时,都有()()12120f x f x x x ->-.记2()3()()1f x f xg x x --=-,则不等式()0g x ≤的解集______.17.定义在R 上的奇函数()f x 在(0,)+∞上是增函数,又(3)0f -=,则不等式()0xf x <的解集为______.18.若对任意02x ≤≤,恒有2x ax b c ++≤成立,则当c 取最小值时,函数()24f x x a x b x c =-+-+-的最小值为________.19.函数y =a x (a >0且a ≠1)在[1,2]上的最大值比最小值大2a,则a =______. 20.函数()()122x x f x x N +⎡⎤⎡⎤=-∈⎢⎥⎢⎥⎣⎦⎣⎦的值域为_______(其中[]x 表示不大于x 的最大整数)三、解答题21.已知函数()22mf x x x =-. (1)当1m =时,判断()f x 在()0,∞+上的单调性,并用定义法加以证明. (2)已知二次函数()g x 满足()()2446g x g x x =++,()13g =-.若不等式()()g x f x >恒成立,求m 的取值范围.22.(1)已知()()43f x x a =-+时,当实数a 为何值时,()f x 是偶函数?(2)已知()g x 是偶函数,且()g x 在[)0,+∞是增函数,如果当[]1,2x ∈时()()6g x a g x +≤-恒成立,求实数a 的取值范围.23.已知函数()243f x x x =-+.(1)若函数()f x 在区间[]1,2t t ++上是单调的,求t 的取值范围;(2)在区间[]1,1-上,()y f x =的图象恒在22y x m =+-的图象上方,求实数m 的取值范围.24.定义在[]1,1-上的奇函数()f x ,当10x -≤<时,23()6x x xf x +=. (1)求()f x 在[]1,1-上的解析式;(2)求()f x 的值域;(3)若实数a 满足1()()0a f f a a-+<,求实数a 的取值范围. 25.已知函数f (x )=x 2+(1-x )·|x -a |. (1)若a =0,解不等式f (x )>3;(2)若函数f (x )在[2a ,a +2]上的最小值为g (a ),求g (a )的解析式.26.设函数()()2288f x x x ax a R x x=++-+∈. (1)若函数()f x 为偶函数,求实数a 的值; (2)若关于x 的不等式()16f x x ≤-在区间0,上有解,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用“Ω函数”的定义依次判断即可,必须同时满足“Ω函数”的两个条件,才是“Ω函数”. 【详解】解:对(1),由①得()00f ≥, 在②中令0x y ==, 即()()020f f =, 解得:()00f ≤,()00f ∴=,故(1)正确;对(2),当()0f x =时,满足①②,但在[)0,+∞不是增函数,故(2)错误; 对(3),当x ,y 都为正无理数时,不满足②,故(3)错误; 对(4),()2g x x x =+,当[)0,x ∈+∞时,min ()(0)00g x g ==≥,即满足条件①,222()()()()20g x y g x g y x y x y x x y y xy +--=+++----=≥,即满足条件②,∴函数2()g x x x =+在[0,)+∞上是“Ω函数”,故(4)正确.故选:B. 【点睛】关键点点睛:本题解题的关键是理解“Ω函数”的定义,必须同时满足“Ω函数”的两个条件,才是“Ω函数”.2.D解析:D 【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论. 【详解】解:由题意知,342xx a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-,则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a , 故选:D . 【点睛】 关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.3.B解析:B 【分析】根据函数是偶函数,求出a ,b 关系,结合单调性确定a 的符号即可得到结论. 【详解】2()(3)()(3)3f x x ax b ax a b x b =--=-++为偶函数, 所以22()(3)3(3)3f x ax a b x b ax a b x b -=+++-=++ 30a b ∴+=,即3b a =-,则2()(3)(3)(3)(3)9f x x ax a a x x ax a =-+=-+=-, 在(0,)+∞上单调递增,0a ∴>,则由(2)(1)(5)0f x a x x -=--->,得(1)(5)0x x +->, 解得1x <-或5x >,故不等式的解集为{|1x x <-或5}x >. 故选:B【点睛】思路点睛:解答本题只要按部就班化简转化函数为偶函数和单调性即可得解.由函数的奇偶性得到3b a =-,由函数的单调性得到0a >.4.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误;选项B 中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2xy =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-,当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).5.A解析:A 【分析】可采取排除法,分别考虑A 、B 、C 、D 中有一个错误,通过解方程求得a ,判断a 是否为非零整数,即可得出结论. 【详解】①若A 错,则B 、C 、D 正确,直线1x =是()f x 的对称轴,则12ba-=, 3是()f x 的最大值或最小值,则2434ac b a-=,点()2,8在()f x 的图象上,则()2428f a b c =++=,可得212434428b a ac baa b c ⎧-=⎪⎪-⎪=⎨⎪++=⎪⎪⎩,解得5108a b c =⎧⎪=-⎨⎪=⎩,合乎题意; ②若B 错,则A 、C 、D 正确,1-是()0f x =的一个解,则()10f a b c -=-+=,3是()f x 的最大值或最小值,则2434ac b a-=,点()2,8在()f x 的图象上,则()2428f a b c =++=,可得20434428a b c ac b a a b c -+=⎧⎪-⎪=⎨⎪++=⎪⎩,该方程组无解,不合乎题意; ③若C 错误,则A 、B 、D 正确,1-是()0f x =的一个解,则()10f a b c -=-+=, 直线1x =是()f x 的对称轴,则12ba-=, 点()2,8在()f x 的图象上,则()2428f a b c =++=,可得012428a b c b a a b c -+=⎧⎪⎪-=⎨⎪++=⎪⎩,解得831638a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,不合乎题意;④若D 错误,则A 、B 、C 正确,1-是()0f x =的一个解,则()10f a b c -=-+=, 直线1x =是()f x 的对称轴,则12ba-=, 3是()f x 的最大值或最小值,则2434ac b a-=,可得2012434a b c b a ac b a⎧⎪-+=⎪⎪-=⎨⎪⎪-=⎪⎩,解得343294a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,不合乎题意. 故选:A.【点睛】关键点点睛:本题考查利用二次函数的基本性质求解参数,解本题的关键就是根据已知信息列出关于a 、b 、c 的方程组,解出参数的值,再逐一判断.6.B解析:B 【分析】将函数()f x 的解析式变形为()2()244f x x a x x =-+-+,并构造函数()2()244g a x a x x =-+-+,由题意得出()()1010g g ⎧->⎪⎨>⎪⎩,解此不等式组可得出实数x 的取值范围 【详解】对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零设()()2244g a x a x x =-+-+,即()0g a >在[]1,1a ∈-上恒成立.()g a 在[]1,1a ∈-上是关于a 的一次函数或常数函数,其图象为一条线段.则只需线段的两个端点在x 轴上方,即()()2215601320g x x g x x ⎧-=-+>⎪⎨=-+>⎪⎩,解得3x >或1x < 故选:B 【点睛】关键点睛:本题考查不等式在区间上恒成立问题,解答本题的关键是构造函数()()2244g a x a x x =-+-+,将问题转化为()0g a >在[]1,1a ∈-上恒成立,从而得到()()1010g g ⎧->⎪⎨>⎪⎩,属于中档题.7.C解析:C 【分析】先求出函数()21122x x f x =-+的值域,再根据题干中要求即可得出()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域. 【详解】()21121111=122122212x x x x xf x +-=--=-+++, ()121,x +∈+∞,()10,112x∴∈+,()11,012x∴-∈-+, 1111,21222x ⎛⎫∴-∈- ⎪+⎝⎭, 即函数()21122x xf x =-+的值域为11,22⎛⎫- ⎪⎝⎭, 由高斯函数定义可知:函数()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为{}1,0- 故选:C. 【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.8.A解析:A 【分析】 根据,,b a ba b a a b≥⎧*=⎨<⎩可得()g x 的解析式,画出图象可得答案.【详解】由,,b a ba b a a b ≥⎧*=⎨<⎩,得()()()222,[2,1]24224,(1,)(,2)x x g x x x x x x x -+∈-⎧=--+*-+=⎨--+∈+∞⋃-∞-⎩,当[2,1]x ∈-,()2[1,4g x x =-+∈], 当(1,)(,2)x ∈+∞-∞-,()2()154g x x =-++<,可得()4g x ≤- 故选:A. 【点睛】本题的关键点是根据已知定义求出函数解析式,然后画出图象求解.9.C解析:C 【分析】由函数定义域的定义,结合函数0(2)1y x x =--有意义,列出相应的不等式组,即可求解. 【详解】由题意,函数()y f x =的定义域为[]0,4,即[]0,4x ∈,则函数0(2)1y x x =--满足0141020x x x ≤+≤⎧⎪->⎨⎪-≠⎩,解得13x <≤且2x ≠, 所以函数0(2)1y x x =+--的定义域是(1,2)(2,3]⋃. 故选:C. 【点睛】本题主要考查了抽象函数的定义域的求解,其中解答中熟记函数的定义域的定义,根据题设条件和函数的解析式有意义,列出不等式组是解答的关键,着重考查推理与运算能力.10.D解析:D 【分析】可举出反例判断①错误;根据奇偶性的性质可判断②正确,结合选项可得答案. 【详解】①错误,可举反例:21()31xx f x x x ⎧=⎨-+>⎩,230()30121x x g x x x x x +⎧⎪=-+<⎨⎪>⎩,0()20x x h x x x -⎧=⎨>⎩,均不是增函数; 但()()f x g x +、()()f x h x +、()()g x h x +均为增函数;故①错误;②()()f x g x +,()()f x h x +,()()g x h x +均是奇函数;()()()()[()()]2()f x g x f x h x g x h x f x ∴+++-+=为奇函数;()f x ∴为奇函数;同理,()g x ,()h x 均是奇函数;故②正确.故选:D .【点睛】本题考查增函数的定义,一次函数和分段函数的单调性,举反例说明命题错误的方法,以及奇函数的定义与性质,知道()f x 和()g x 均是奇函数时,()()f x g x ±也是奇函数. 11.B解析:B【分析】由已知得函数f (x )图象关于x=1对称且在(-∞,1]上单调递减,在(1,+∞)上单调递增,从而可判断出大小关系.【详解】解:∵当x 1,x 2∈(-∞,1](x 1≠x 2)时有(x 1-x 2)(f (x 1)-f (x 2))<0,∴f (x )在(-∞,1]上单调递减,∵f (x )=f (2-x ),∴函数f (x )的图象关于x=1对称,则f (x )在∈(1,+∞)上单调递增,∴f (-1)=f (3)>f (2)>f (1)即f (-1)>f (2)>f (1)故选B .【点睛】本题考查函数的对称性及单调性的应用,解题的关键是函数性质的灵活应用. 12.C解析:C【分析】首先根据题意画出()h x 的图象,再根据图象即可得到()h x 的最小值.【详解】分别画出2y x ,83y x =,6y x =-的图象, 则函数()h x 的图象为图中实线部分.由图知:函数()h x 的最低点为A ,836y x y x ⎧=⎪⎨⎪=-⎩,解得1848,1111⎛⎫ ⎪⎝⎭A . 所以()h x 的最小值为4811. 故选:C.【点睛】本题主要考查根据函数的图象求函数的最值,考查了数形结合的思想,属于中档题. 二、填空题13.【分析】根据题意求得ab 的值可得的解析式分别讨论三种情况结合二次函数图像与性质即可求得结果【详解】由题意得:所以所以解得所以为开口向上对称轴为的抛物线当即时在上单调递减所以当即时在上单调递减在上单调解析:22(3),30,31(1),1t t t t t ⎧+<-⎪-≤≤-⎨⎪+>-⎩【分析】根据题意,求得a ,b 的值,可得()f x 的解析式,分别讨论3t <-,31t -≤≤-,1t >-三种情况,结合二次函数图像与性质,即可求得结果.【详解】由题意得:22(1)(1)(1)121f x a x b x ax a ax bx b +=++++=+++++,所以()()222111223ax a ax bx b ax bx ax a f b x x x f +++++---=++=-=++, 所以223ax x a b =⎧⎨+=⎩,解得1,2a b ==,所以22()21(1)f x x x x =++=+,为开口向上,对称轴为1x =-的抛物线,当21t +<-,即3t <-时,()f x 在[],2t t +上单调递减,所以2()(2)(3)g t f t t =+=+,当12t t ≤-≤+,即31t -≤≤-时,()f x 在[,1)t -上单调递减,在[1,2]t -+上单调递增,所以()(1)0g t f =-=;当1t >-时,()f x 在[],2t t +上单调递增,所以2()()(1)g t f t t ==+,综上:22(3),3()0,31(1),1t t g t t t t ⎧+<-⎪=-≤≤-⎨⎪+>-⎩故答案为:22(3),30,31(1),1t t t t t ⎧+<-⎪-≤≤-⎨⎪+>-⎩【点睛】求二次函数在区间[,]a b 上最值时,一般用分类讨论的方法求解,讨论对称轴位于区间的左右两侧,位于区间内,再根据二次函数图像与性质,求解即可,考查分析求解的能力,属中档题.14.2【分析】(1)取结合函数是单调函数利用复合函数的单调性求解的值即可;(2)根据的最小值为2分类讨论确定结合基本不等式进行求解即可【详解】(1)令则是增函数是减函数要使是单调函数只需综上当时时为增函 解析:1- 2【分析】(1)取1a =,结合函数是单调函数,利用复合函数的单调性求解b 的值即可;(2)根据()f x 的最小值为2,分类讨论确定0a >,0b >,结合基本不等式进行求解即可.【详解】(1)令1a =,则()x x f x e be -=+,x y e =是增函数,x y e -=是减函数,要使()x x f x e be -=+是单调函数,只需1b =-.综上,当1a =时,1b =-时,()x xf x e e -=-为增函数.(2)当0ab 时,()f x 为单调函数,此时函数没有最小值,当0a <,0b <,()f x 有最大值,无最小值,所以,若()f x 有最小值为2,则必有0a >,0b >,此时()22x x x f x ae be ae be -=+⨯,1=,即1ab =, 则22a b ab +=,当1a b ==时等号成立,即+a b 的最小值为2.故答案为:1,1,2-【点睛】利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).15.【分析】根据二次函数的单调性求得求得函数在区间上的最大值和最小值由题意可得出可得出关于实数的不等式进而可求得实数的取值范围【详解】二次函数的图象开口向上对称轴为直线由于函数在上是减函数则则所以函数在 解析:[]2,3【分析】根据二次函数()y f x =的单调性求得2a ≥,求得函数()y f x =在区间[]1,1a +上的最大值和最小值,由题意可得出()()max min 4f x f x -≤,可得出关于实数a 的不等式,进而可求得实数a 的取值范围.【详解】二次函数()225f x x ax =-+的图象开口向上,对称轴为直线x a =,由于函数()225f x x ax =-+在(],2-∞上是减函数,则2a ≥,则()1,1a a ∈+, 所以,函数()y f x =在区间[)1,a 上单调递减,在区间(],1a a +上单调递增, 所以,()()2min 5f x f a a ==-, 又()162f a =-,()216f a a +=-,则()()()211220f f a a a a a -+=-=-≥, ()()max 162f x f a ∴==-,对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则()()()()22max min 625214f x f x a a a a -=---=-+≤,即2230a a --≤,解得13a -≤≤,又2a ≥,则23a ≤≤,因此,实数a 的取值范围是[]2,3.故答案为:[]2,3.【点睛】本题考查利用不等式恒成立求参数值,同时也考查了利用二次函数在区间上的单调性求参数,考查计算能力,属于中等题.16.【分析】根据题意分析可得函数为奇函数且结合单调性的定义可得在上为增函数结合(1)以及函数奇偶性的性质分析可得与的的取值范围转化为或或可得的取值范围即可得答案【详解】根据题意满足对任意的都有即函数为奇 解析:[]1,0-【分析】根据题意,分析可得函数()f x 为奇函数且(0)0f =,结合单调性的定义可得()f x 在(0,)+∞上为增函数,结合f (1)0=以及函数奇偶性的性质分析可得()0f x >与()0f x <的x 的取值范围,转化为()010f x x <⎧⎨->⎩或()010f x x >⎧⎨-<⎩或()010f x x =⎧⎨-≠⎩,可得x 的取值范围,即可得答案.【详解】根据题意,()f x 满足对任意x ∈R 的都有()()f x f x -=-,即函数()f x 为奇函数,则有(0)0f =;又由对任意的1x ,2(0,)x ∈+∞且12x x ≠时,总有1212()()0f x f x x x ->-,即函数()f x 在(0,)+∞上为增函数,若f (1)0=,则在区间(0,1)上,()0f x <,在区间(1,)+∞上,()0f x >,又由()f x 为奇函数,则在区间(,1)-∞-上,()0f x <,在区间(1,0)-上,()0f x >, 则()0g x 即2()3()5()()011f x f x f x g x x x --==--,即()010f x x <⎧⎨->⎩或()010f x x >⎧⎨-<⎩或()010f x x =⎧⎨-≠⎩, 解可得:10x -,即不等式()0g x 的解集为[1-,0];故答案为:[]1,0-.【点睛】本题考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,属于中档题. 17.【分析】由条件确定原点两侧函数的单调性和零点由函数的草图确定不等式的解集【详解】在R 上是奇函数且在上是增函数∴在上也是增函数由得由得作出的草图如图所示:则或由图象得所以或所以的解集为故答案为:【点睛 解析:(3,0)(0,3)-⋃【分析】由条件确定原点两侧函数的单调性和零点,由函数()f x 的草图确定不等式的解集.【详解】()f x 在R 上是奇函数,且()f x 在(0,)+∞上是增函数,∴()f x 在(,0)-∞上也是增函数,由(3)0f -=,得(3)0f =,由(0)(0)f f =--,得(0)0f =,作出()f x 的草图,如图所示:()0xf x <,则0()0x f x >⎧⎨<⎩ 或0()0x f x <⎧⎨>⎩,由图象得, 所以03x <<或30x -<<,所以()0xf x <的解集为(3,0)(0,3)-⋃.故答案为:(3,0)(0,3)-⋃.【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.属于中档题.18.【分析】由题意结合二次函数的图象与性质可得当c 可取最小值时再由零点分段法可得分段函数的解析式即可得解【详解】令由题意知当时c 可取最小值此时解得则所以所以的最小值为故答案为:【点睛】本题考查了二次函数 解析:198【分析】 由题意结合二次函数的图象与性质可得当c 可取最小值时,2a =-、12==b c ,再由零点分段法可得分段函数()f x 的解析式,即可得解.【详解】令()2h x x ax b =++,由题意知当()()()021h h h ==-时,c 可取最小值, 此时()421b a b b a b =++⎧⎨=-++⎩,解得212a b =-⎧⎪⎨=⎪⎩,则()102c h ==, 所以()112422422f x x a x b x c x x x =-+-+-=++-+- 171,41132,84153,2871,2x x x x x x x x ⎧+≥⎪⎪⎪+<<⎪=⎨⎪-+-<≤⎪⎪⎪--≤-⎩,所以()f x 的最小值为15193888f ⎛⎫=-+= ⎪⎝⎭. 故答案为:198. 【点睛】 本题考查了二次函数的图象与性质与应用,考查了零点分段法的应用及分段函数最值的求解,属于中档题.19.或【分析】由题意按照分类结合指数函数的性质可得方程即可得解【详解】当时是增函数则解得或(舍去);当时是减函数则解得或(舍去);综上或故答案为:或【点睛】关键点点睛:涉及指数函数单调性问题底数为参数时 解析:12或32【分析】由题意按照1a >、01a <<分类,结合指数函数的性质可得方程,即可得解.【详解】当1a >时,x y a =是增函数,则22a a a -=,解得32a =或0a =(舍去); 当01a <<时,x y a =是减函数,则22a a a -=,解得12a =或0a =(舍去); 综上,12或32故答案为:12或32 【点睛】关键点点睛:涉及指数函数单调性问题,底数为参数时,一般都要分类讨论,分底数大于1与底数大于0小于1两种情况解决.本题考查了指数函数单调性的应用,考查了运算求解能力及分类讨论思想.20.【分析】由题设中的定义可对分区间讨论设表示整数综合此四类即可得到函数的值域【详解】解:设表示整数①当时此时恒有②当时此时恒有③当时此时恒有④当时此时此时恒有综上可知故答案为:【点睛】此题是新定义一个 解析:{}0,1【分析】由题设中的定义,可对x 分区间讨论,设m 表示整数,综合此四类即可得到函数的值域【详解】解:设m 表示整数.①当2x m =时,1[0.5]2x m m +⎡⎤=+=⎢⎥⎣⎦,[]2x m m ⎡⎤==⎢⎥⎣⎦. ∴此时恒有0y =.②当21x m =+时,1[1]12x m m +⎡⎤=+=+⎢⎥⎣⎦,[0.5]2x m m ⎡⎤=+=⎢⎥⎣⎦. ∴此时恒有1y =.③当221m x m <<+时,21122m x m +<+<+0.52x m m ∴<<+ 10.512x m m ++<<+ 2x m ⎡⎤∴=⎢⎥⎣⎦,12x m +⎡⎤=⎢⎥⎣⎦∴此时恒有0y =④当2122m x m +<<+时,22123m x m +<+<+0.512x m m ∴+<<+ 11 1.52x m m ++<<+ ∴此时2x m ⎡⎤=⎢⎥⎣⎦,112x m +⎡⎤=+⎢⎥⎣⎦∴此时恒有1y =.综上可知,{}0,1y ∈.故答案为:{}0,1.【点睛】此题是新定义一个函数,根据所给的规则求函数的值域,求解的关键是理解所给的定义,一般从函数的解析式入手,要找出准确的切入点,理解[]x 表示数x 的整数部分,考察了分析理解,判断推理的能力及分类讨论的思想 三、解答题21.(1)减函数,证明见解析;(2)1m <-.【分析】(1)()212f x x x=-在区间()0+∞,上为减函数,运用单调性的定义证明,注意取值、作差和变形、定符号、下结论等步骤; (2)设()()20g x ax bx c a =++≠,由题意可得关于,,a b c 的方程,解得,,a b c 的值,可得222m x x ->,由参数分离和二次函数的最值求法,可得所求范围. 【详解】(1)当1m =时,()212f x x x=-,函数()f x 是区间()0+∞,上的减函数, 证明如下: 设1x ,2x 是区间()0+∞,上的任意两个实数,且12x x <, 则()()121222121122f x f x x x x x -=--+ ()()22212121212222121222x x x x x x x x x x x x ⎛⎫-+=+-=-+ ⎪⎝⎭. ∵120x x <<,∴210x x ->,210x x +>,22120x x >,∴()()120f x f x ->,()()12f x f x >,∴函数()f x 是区间()0,∞+上的减函数.(2)设()()20g x ax bx c a =++≠,则()2242g x ax bx c =++, ()()244644446g x x ax b x c ++=++++.又∵()()2446g x g x x =++,∴442,46,b b c c +=⎧⎨+=⎩∴2b =-,2c =-, 又∵()13g a b c =++=-,∴1a =,∴()222g x x x =--.∵()()g x f x >,∴222m x x->,∴()4220m x x x <-≠, 又∵()2422211x x x -=--,∴1m <-.【点睛】 方法点睛:该题考查的是有关函数的问题,解题方法如下:(1)先判断函数()f x 在()0,∞+上的单调性,再用定义证明,在证明的过程中,注意其步骤要求;(2)先用待定系数法求得函数()g x 的解析式,将恒成立问题转化为最值来处理,求得结果.22.(1)0a =;(2)62a -≤≤.【分析】(1)当0a =时,由()43f x x =+判断,当0a ≠时,由()(),f a f a -的关系判断; (2)根据()g x 是偶函数,将()()6g x a g x +≤-,转化为 ()()6g x a g x +≤-,再根据()g x 在[)0,+∞是增函数,转化为[]1,2x ∈时,6x a x +≤-恒成立求解.【详解】(1)当0a =时,()43f x x =+是偶函数, 当0a ≠时,a a ≠-,而()()()420f a f a a --=≠,()f x 不可能是偶函数, 所以当0a =时,()f x 是偶函数;(2)由()g x 是偶函数知()()g x a g x a +=+,()()66g x g x -=-,且x a +,60x -≥,因为()g x 在[)0,+∞是增函数,及()()6g x a g x +≤-,所以当[]1,2x ∈时,6x a x +≤-恒成立,即当[]1,2x ∈时,6x a x +≤-恒成立,即当[]1,2x ∈时,66x x a x -≤+≤-恒成立,即当[]1,2x ∈时,662a x -≤≤-恒成立, 所以62a -≤≤.【点睛】方法点睛:函数奇偶性与单调性求参数问题,当涉及到偶函数时,要利用()()()f x f x f x -==转化为求解.23.(1)(][),01,-∞⋃+∞;(2)【分析】(1)分函数()f x 在区间[]1,2t t ++上单调递增和单调递减两种情况讨论,可得出关于实数t 的不等式,由此可解得实数t 的取值范围;(2)由题意可得出24322x x x m -+>+-对任意的[]1,1x ∈-恒成立,利用参变量分离法可得出265m x x <-+,利用二次函数求出函数()265g x x x =-+在区间[]1,1-上的最小值,由此可得出实数m 的取值范围.【详解】(1)二次函数()243f x x x =-+的图象开口向上,对称轴为直线2x =. ①若函数()f x 在区间[]1,2t t ++上单调递增,则12t +≥,解得1t ≥;②若函数()f x 在区间[]1,2t t ++上单调递减,则22t +≤,解得0t ≤.综上所述,实数t 的取值范围是(][),01,-∞⋃+∞;(2)由题意可得出24322x x x m -+>+-对任意的[]1,1x ∈-恒成立,则265m x x <-+对任意的[]1,1x ∈-恒成立,令()()226534g x x x x =-+=--,则函数()g x 在区间[]1,1-上单调递减, 所以,()()min 10g x g ==,0m ∴<.因此,实数m 的取值范围是(),0-∞.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.24.(1)23,106()0,0(23),01x xx x x x f x x x ⎧+-≤<⎪⎪⎪==⎨⎪-+<≤⎪⎪⎩;(2) [){}(]5,202,5--;(3)⎤⎥⎝⎦. 【分析】 (1)利用函数为奇函数有()()f x f x -=-求(0,1]x ∈上的解析式,且(0)0f =即可得()f x 的解析式;(2)根据(1)所得解析式及对应定义域即可求其值域;(3)讨论10a -≤<、01a <<、1a =时不等式成立,结合()f x 的区间单调性即可求得a 的取值范围.【详解】(1)由题意,令(0,1]x ∈,则[1,0)x -∈-,即23()236x xx x x f x ---+-==+, 又∵()()f x f x -=-,有(0,1]x ∈时,()(23)x x f x =-+, ∴23,106()0,0(23),01x xx x x x f x x x ⎧+-≤<⎪⎪⎪==⎨⎪-+<≤⎪⎪⎩. (2)由(1)解析式知:()f x 在[1,0)-和(0,1]上递减,对应值域分别为(2,5]、[5,2)--,则有:()f x 的值域[){}(]5,202,5--. (3)1()()0a f f a a -+<,即1()(1)f a f a<-,有[1,0)(0,1]a ∈-,∴当10a -≤<时,11a a >-,解得12a +<-或12a >,无解; 当01a <<时,11a a >-,解得a <a >1a <<; 当1a =时,1()(1)5(1)(0)0f a f f f a ==-<-==成立;∴综上有1,1]2a ∈. 【点睛】关键点点睛:首先利用函数奇偶性求函数解析式,并依据所得解析式和定义域求值域,再由函数不等式,结合区间单调性,在区间[1,0)(0,1]-⋃上讨论参数使不等式成立,求参数范围. 25.(1)(,1)(3,)-∞-+∞;(2)()222221{102,02a a a g a a a a a a ++<-=-<+<.【分析】(1)通过讨论x 的范围,去掉绝对值号,得到关于x 的不等式,解出即可;(2)通过讨论a 的范围,求出()f x 的最小值,得g (a )的解析式即可.【详解】(1)当0a =时,220()(1)||20x x f x x x x x x x ⎧=+-=⎨-<⎩, 因为f (x )>3,03x x ⎧∴⎨>⎩或203230x x x x <⎧∴>⎨-->⎩或1x <-. 所以不等式的解集为(,1)(3,)-∞-+∞. (2)由222(1)()(1)||(1)x a x a x a f x x x x a a x a x a ⎧-++<=+--=⎨+-⎩由22a a <+得2a <.①当1a <-时:122,4a a a a a +<<+>,所以函数在(2,)a a 上单调递减, 又10a +<,所以函数在(,2)a a +上单调递减, 所以函数()f x 在R 上单调递减,则g (a )2()(2)(1)(2)22min f x f a a a a a a ==+=++-=++②当10a -<时:此时22a a a <+,14a a +>,所以函数在(2,)a a 上单调递减, 又10a +≥,所以函数在(,2)a a +上单调递增,所以函数()f x 在[2x a ∈,]a 上单调递减,在[x a ∈,2]a +上单调递增,则2()()()(1)min g a f x f a a a a a ===+-=③当02a <时:此时22a a a <+,因为10a +>,所以函数()f x 在[2x a ∈,2]a +上单调递增,则2()()(2)(1)22min g a f x f a a a a a a ===+-=+综上()222221{102,02a a a g a a a a a a ++<-=-<+<.【点睛】关键点睛:解答本题的关键是通过图象分析出每一种情况下分段函数的单调性,再利用函数的单调性得到函数的最小值.26.(1)0;(2)1a ≤-.【分析】(1)由()f x 为偶函数有()(11)f f -=即可求a 的值;(2)由绝对值不等式及函数不等式在区间有解,讨论2,02x x ><≤,应用参变分离将问题转化为不等式能成立问题即可求a 的取值范围.【详解】(1)因为()f x 为偶函数,则有()(11)f f -=,即1616a a -=+,解得0a =. (2)①当2x >时,()16f x x ≤-有解,即2216x ax x +≤-有解,1621a x x≤--+,所以max 16211a x x ⎛⎫≤--+=- ⎪⎝⎭当且仅当x = ②当02x <≤时,()16f x x ≤-有解,即1616ax x x+≤-有解, 216161a x x≤--+,所以2max 1616111a x x ⎛⎫≤--+=- ⎪⎝⎭当2x =时等号成立; 综上,实数a的取值范围是1a ≤-.【点睛】结论点睛:本题考查不等式的有解问题,可按如下规则转化:一般地,将函数不等式转化为()a f x ≤或()a f x ≥在区间能成立.(1)()a f x ≤即在相应区间内仅需()max a f x ≤即可.(2)()a f x ≥即在相应区间内仅需()min a f x ≥即可.。
函数及其图象单元测试卷
函数及其图象单元测试卷一、选择题(本题有10小题,每题4分,共40分)每小题给出4个答案,其中只有一个是正确的.请把正确答案的字母代号填在相应的括号内......... 1. 如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t ,大正方形内除去小正方形部分的面积为S (阴影部分),那么S 与t 的大致图象应为( )2.将点(22)P -,沿x 轴的正方向平移4个单位得到点P '的坐标是( ) A.(26)-,B.(62)-,C.(22),D.(22)-,3.一次函数2y x =-的大致图象是( )4.函数(0)ky k x=≠的图象如左图所示,那么函数y kx k =-的图象大致是( )tOS t OS tOS tOSA.B.C.D.A. B. C. D.x yO xy OxyOxyO xy Oxy Oxy Oxy Oxy OA .B .C .D .5.二次函数2y ax bx =+和反比例函数by x=在同一坐标系中的图象大致是( )6.若抛物线22y x x a =++的顶点在x 轴的下方,则a 的取值范围是( )A.1a >B.1a <C.1a ≥D.1a ≤7.如图,抛物线的函数表达式是( )A .22y x x =-+B .22y x x =++C .22y x x =--+D .22y x x =-++8.若123111,,,,,242M y N y P y ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭三点都在函数()0ky k x=<的图象上, 则123,,y y y 的大小关系是( )A .231y y y >>B .213y y y >>C .312y y y >>D .321y y y >>9.二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论:①0a >; ②0c >; ③240b ac ->,其中正确的个数是( )A. 0个B. 1个C. 2个D. 3个10.如图,在Rt ABC △中,904cm 6cm C AC BC ===,,∠,动点P 从点C 沿CA ,以1cm/s 的速度向点A 运动,同时动点Q 从点C 沿CB ,以2cm/s 的速度向点B 运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的CPQ △的面积2(cm )y 与运动时间(s)x 之间的函xy O22 1- A.xy OB.xyOC.xy OD.xyO数图象大致是( )二、填空题(本题有8小题,每题3分,共24分)11.函数x y -=2中自变量x 的取值范围是 .12.已知函数23y x =-+,当1x =-时,y =____. 13.反比例函数22)12(--=mx m y ,当0x >时,y 随x 的增大而增大,则m 的值是 .14.抛物线216212y x x =--+的顶点坐标是 . 15.如果直线b ax y +=经过第一、二、三象限,那么ab 0.(填“>”“<”“=”)16.平移抛物线228y x x =+-,使它经过原点,写出平移后抛物线的一个解析式 . 17.已知二次函数2(0)y ax bx c a =++≠的顶点坐标()1, 3.2-- 及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是1 1.3x =和2x =____.18.二次函数2(0)y ax bx c a =++>的图像与坐标轴分别交于点(-1,0)和(0,-1), 顶点在第四象限,则a b c ++的取值范围是______.三、解答题(本大题有4题,共36分)19.(9分)如图,一次函数b kx y +=的图象与反比例函数xmy = 图象交于()2,1A -、()1,B n 两点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.9 O(s)x2(cm )y 3 A.9 O (s)x2(cm )y 3 B.9 O (s)x2(cm )y 3 C.9O (s)x2(cm )y3 D.20.(9分)现有铝合金窗框料8米,准备用它做一个如图7所示的长方形窗架.一般来说,当窗户总面积最大时,窗户的透光最好,那么,要使这个窗户透光最好,窗架的宽应为多少米?此时窗户的总面积是多少平方米?21.(9分)如图,直线112y x =+分别交x 轴,y 轴于点A C ,,点P 是直线AC 与双曲线k y x =在第一象限内的交点,PB x ⊥轴,垂足为点B ,APB △的面积为4.(1)求点P 的坐标;(2)求双曲线的解析式及直线与双曲线另一交点Q 的坐标.O ABxyABCPQO xy22.(9分)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C 距守门员多少米?(取437=)(3)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取265=)《函数及其图象单元测试卷》参考答案yOBCD 1Mx2 4A E FN一、 选择题(本大题共10小题,每小题4分,共40分)ACBCB BDBCC二、填空题(本大题共8小题,每小题3分,共24分)11.2x ≤; 12.5; 13 .-1; 14.()6,3; 15. >; 16.22y x x =+或2y x =等等; 17.-3.3; 18.-2<a+b+c<0.三、解答题(本大题有7题,共66分)19.(9分)(1)2y x=-;1y x =--;(2)2x <-或01x <<. 21.(9分)设窗架的宽为x 米,则长为832x-米,所以窗户的总面积2833422x S x x x -=⋅=- 222383416348.23239233x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=--=---=--+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦因为302a =-<,所以当43x =时,S 有最大值83.所以当窗架的宽为43米时,这个窗户的透光最好,此时窗户的总面积是83平方米.22.(9分)(1)112y x =+,令0x =,则1y =;令0y =,则2x =-,所以点A 的坐标为()20-,,点C 的坐标为()01,. 因为点P 在直线112y x =+上,可设点P 的坐标为112m m ⎛⎫+ ⎪⎝⎭,, 又因为142APB S AB PB == △,所以()1121422m m ⎛⎫++= ⎪⎝⎭. 即:24120m m +-=,所以1262m m =-=,. 因为点P 在第一象限,所以2m =. 所以点P 的坐标为()22,.(2)因为点P 在双曲线ky x=上,所以224k xy ==⨯=. 所以双曲线的解析式为4y x=. 解方程组4112y xy x ⎧=⎪⎪⎨⎪=+⎪⎩ 得1122x y =⎧⎨=⎩,2241x y =-⎧⎨=-⎩ 所以直线与双曲线另一交点Q 的坐标为()41--,. 23.(9分)(1)如图,设第一次落地时,抛物线的表达式为2(6)4y a x =-+.由已知:当0x =时1y =.即1364a =+,所以112a =-.所以表达式为21(6)412y x =--+.即21112y x x =-++. (2)令210(6)4012y x =--+=,. 所以212(6)48436134360x x x -==+=-+<.≈,(舍去). 所以足球第一次落地距守门员约13米.(3)如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位) 212(6)412x =--+,解得 12626626x x =-=+,. 所以124610CD x x =-=≈. 所以1361017BD =-+=(米).答:他应再向前跑17米.y OBCD 1Mx2 4 A E FN。
高一数学函数单元测试题及答案
高一数学函数单元测试题及答案单元测试题一、填空题1、设全集U=Z,集合A={-1,1,2},B={-1,1,2},从A到B的一个映射为x→y=f(x)=x/|x|,其中x∈A,y∈B,P={y|y=f(x)},则B∩(C∪P)={-1,1}。
2、已知x1是方程x+lgx=3的根,x2是方程x+10=3的根,则x1+x2值为2.3、已知函数y=f(x)的图象关于直线x=-1对称,且当x>0时f(x)=x/1,则当x<-2时f(x)=-x/1.4、函数y=f(x)的反函数y=f^-1(x)的图像与y轴交于点P(0,2),则方程f(x)=0在[1,4]上的根是x=2.5、设f(x)=2log(x-1),x≥2;f(x)=3x-1,x<2,则f(f(2))的值为1.6、从甲城市到乙城市m分钟的电话费由函数f(m)=1.06×([m]+44)给出,其中[m]表示不大于m的最大整数(如[3]=3,[3.9]=3,[3.1]=3),则从甲城市到乙城市5.8分钟的电话费为7.7、函数f(x)=2-2/(x-1),x≤2;f(x)=1-x/2,x>2,则f(0)=-1.8、函数y=(1-x)/(1+x),x≠-1,的值域为(-1,1)。
9、若f(5/2x-1)=x-2,则f(125)=48.10、已知映射f:A→B,其中A=B=R,对应法则为f:x→y=x+2x+3.若对实数k∈B,在集合A中不存在原象,则k 的取值范围是(-3/2,-3)∪(-3,-2)∪(-2,-3/2)。
11、偶函数f(x)在(-∞,0)上是减函数,若f(-1)<f(lgx),则实数x的取值范围是(1,e)。
12、关于x的方程|x-4x+3|-a=0有三个不相等的实数根,则实数a的值是1/2.13、关于x的方程(2x-1)/(x+2)+a=1有正根,则实数a的取值范围是(-∞,1/2)。
二、改写后的答案1、已知集合A={-1,1,2},B={-1,1,2},全集U=Z,映射f:A→B,f(x)=x/|x|,其中x∈A,y∈B,P={y|y=f(x)},求B∩(C∪P)的值。
北师大版八年级上册数学第四章 一次函数 单元测试卷(Word版,含答案)
第 1 页 共 9 页 北师大版八年级上册数学第四章 一次函数 单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.下面四个函数中,符合当自变量x 为1时,函数值为1的函数是( ) A .22y x =- B .2y x = C .2y x D .1y x =+2.下列图象中表示y 是x 的函数的有几个( )A .1个B .2个C .3个D .4个 3.点(3,5)-在正比例函数y kx =(0k ≠)的图象上,则k 的值为( ) A .-15 B .15 C .35 D .53-4.甲、乙两种物质的溶解度(g)y 与温度()t ℃之间的对应关系如图所示,则下列说法中,错误的是()A .甲、乙两种物质的溶解度均随着温度的升高而增大B .当温度升高至2t ℃时,甲的溶解度比乙的溶解度大C .当温度为0℃时,甲、乙的溶解度都小于20g第 2 页 共 9 页 D .当温度为30℃时,甲、乙的溶解度相等5.若关于x 的方程﹣2x +b =0的解为x =2,则直线y =﹣2x +b 一定经过点( )A .(2,0)B .(0,3)C .(4,0)D .(2,5) 6.甲乙两车从 A 城出发匀速驶向 B 城,在整个行驶过程中,两车离开 A 城的距离()km y 与甲车行驶的时间()h t 之间的函数关系如图,则下列结论错误的是( )①A 、B 两城相距 300 千米①甲车比乙车早出发 1 小时,却晚到 1 小时①相遇时乙车行驶了 2.5 小时①当甲乙两车相距 50 千米时,t 的或54或56或156或 254A .①①B .①①C .①①D .①① 7.下列等式:①y =2x +1;①1y x =;①y x =,①y 2=5x -8;①y =y 是x 的函数有() A .1个 B .2个 C .3个 D .4个8.下列函数关系式中,自变量x 的取值范围错误的是( )A .y =2x 2中,x 为全体实数B .yx ≠﹣1C .yx =0 D .yx >﹣79.下列表达式中,y 是x 的函数的是( )。
函数单元测试
8.直线 y x 2 不经过第
A. b 1
B. b
பைடு நூலகம்3 2
C. 1 b
3 2
D. b 1
6. 关 于 函 数 (
y 2 x
10.已知点 A(-2, y1 ) 、B(-1, y 2 ) 、C(3, y 3 )都在反比例函 数
, 下 列 叙 述 正 确 是
) A.函数图象经过点(1,2) C. y 随 x 的增大而减小
2.小华准备将平时的零用钱节约一些储存起来,他已存有 62 元,从 现在起每个月存 12 元;小华的同学小丽以前没有存过零用钱,听到小华在 存零用钱,表示从现在起每个月存 20 元,争取超过小华. (1) 试写出小华的存款总数 y1 与从现在开始的月数 x 之间的函数关系 式以及小丽存款数 y2 与月数 x 之间的函数关系式; (2)从第几个月开始小丽的存款数可以超过小华?
m 的图象交于 x
八年级数学自我评价练习题
参考答案
第Ⅰ卷 一、填空题: 1.二;2.(-1,2) ;3. x 7. m
1 ;8.三;9.反;10.-6. 2
1 D 2 C 3 D
3 ;4.减小;5.-10;6. y 2 x 3 ; 2
二、选择题: 题号 答案 4 A 5 B 6 C 7 A 8 C 9 D
y
.
二、单项选择题(每小题 3 分,共 30 分)
第Ⅰ卷 [基础测试卷]
一、填空题(每小题 2 分,共 20 分) 1.点 M (-2,3)在坐标平面内的第 2.点 P (1,2)关于 y 轴对称点的坐标是 3.函数 y 象限. . . . . .
1. 点 M ( - 2 , 3 ) 关 于 原 点 对 称 , 则 的 点 的 坐 标 是 ( ) A.(2,3) B.(-2,3) C.(-2,-3 D.(2,-3)
一元二次函数单元测试卷(含答案)
一元二次函数单元测试卷(含答案)一元二次函数单元测试卷(含答案)一、选择题(每题4分,共40分)1. 已知一元二次函数的图像是开口向上的抛物线,那么函数的开口方向是:A. 向上B. 向下C. 不确定D. 无法确定答案:A2. 若一元二次函数的顶点是(2,3),则它的对称轴方程为:A. x = 2B. x = 3C. y = 2D. y = 3答案:A3. 函数y = x^2 - 4x + 3的判别式的值为:A. -4B. -3C. 4D. 3答案:C4. 已知函数y = ax^2 + bx + c的判别式为0,那么函数的图像与x轴的交点个数为:A. 0个B. 1个C. 2个D. 无法确定答案:B5. 函数y = 2x^2 - 6x + 4的对称轴方程为:A. x = -3/2B. x = 3/2C. y = 3/2D. y = -3/2答案:A6. 函数y = x^2 + px + q的顶点坐标为(-1,2),则p和q的值分别为:A. p = -1, q = 2B. p = 1, q = 2C. p = 2, q = 1D. p = -2, q = -1答案:A7. 若函数y = ax^2 + bx + c的图像与x轴相切,那么判别式的值为:A. -b/aB. -4acC. b^2 - 4acD. 无法确定答案:C8. 已知函数的图像过点(1,4)和(3,4),则函数的表达式为:A. y = x^2 + 2x + 3B. y = 2x^2 - 4x + 4C. y = -2x^2 + 8x - 3D. y = 2x^2 - 6x + 3答案:B9. 函数y = x^2 + 2x - 3的最小值为:A. -3B. -2C. 3D. 2答案:A10. 函数y = x^2 - 4x + 4的判别式的值为:A. 0B. 4C. -4D. 16答案:A二、填空题(共20分)1. 函数y = 2x^2 - 3x + 1的顶点坐标为(x, y) = (_____, _____)。
必修一第二单元《函数》测试卷(含答案解析)
一、选择题1.函数()f x 的定义域为D ,若对于任意的12,x x D ∈,当12x x <时,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数.设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00f =;②()132x f f x ⎛⎫= ⎪⎝⎭;③()()11f x f x -=-,则12017f ⎛⎫⎪⎝⎭等于( ) A .116B .132 C .164D .11282.下列各函数中,表示相等函数的是( ) A .lg y x =与21lg 2y x =B .211x y x -=-与1y x =+C .1y =与1y x =-D .y x =与log xa y a =(0a >且1a ≠)3.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞4.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦5.已知定义域为(0,)+∞的函数()f x 满足:()()()1f xy f x f y =++,当1x >时,()1f x <-,且128f ⎛⎫= ⎪⎝⎭,则不等式()(3)3f x f x +->-的解集为( )A .(0,3)B .(1,2)C .(1,3)D .(0,1)(2,3)6.方程2x =所表示的曲线大致形状为( )A .B .C .D .7.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4D .3,2⎡⎫+∞⎪⎢⎣⎭8.某兴趣小组对函数()f x 的性质进行研究,发现函数()f x 是偶函数,在定义域R 上满足(1)(1)(1)f x f x f +=-+,且在区间[1,0]-为减函数.则(3)f -与5()2f -的关系为( )A .5(3)()2f f -≥- B .5(3)()2f f ->- C .5(3)()2f f -≤-D .5(3)()2f f -<-9.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2 C .()1,2 D .(],1-∞10.已知函数的定义域为R ,且对任意的12,x x ,且12x x ≠都有()()()12120f x f x x x -->⎡⎤⎣⎦成立,若()()2211f x f m m +>--对x ∈R 恒成立,则实数m 的取值范围是( )A .(1,2)-B .[1,2]-C .(,1)(2,)-∞-+∞D .(,1][2,)-∞-+∞11.已知函数log ,0(),0a xx x f x a x >⎧=⎨≤⎩(0a >,且1a ≠),则((1))f f -=( ) A .1 B .0 C .-1 D .a12.如图是定义在区间[]5,5-上的函数()y f x =的图象,则下列关于函数()f x 的说法错误的是( )A .函数在区间[]53-,-上单调递增B .函数在区间[]1,4上单调递增C .函数在区间][3,14,5⎡⎤⋃⎣⎦-上单调递减D .函数在区间[]5,5-上没有单调性二、填空题13.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i Aϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i AB ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+; ③设{}*2,A x x n n N==∈,{}*42,B x x n n N ==-=,对任意*i N∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.14.已知函数()2f x x =,()1g x a x =-,a 为常数,若对于任意1x ,[]20,2x ∈,且12x x <,都有()()()()1212f x f x g x g x -<-则实数a 的取值范围为________.15.已知函数()()14f x a ax =--[]0,2上是减函数,则实数a 的取值范围是_____.16.函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式()cos f x x<0的解集为________.17.已知集合{1,A B ==2,3},f :A B →为从集合A 到集合B 的一个函数,那么该函数的值域的不同情况有______种.18.已知定义在R 上的函数()f x 满足:①(1)0f =;②对任意x ∈R 的都有()()f x f x -=-;③对任意的12,(0,)x x ∈+∞且12x x ≠时,都有()()12120f x f x x x ->-.记2()3()()1f x f xg x x --=-,则不等式()0g x ≤的解集______.19.设集合10,2A ⎡⎫=⎪⎢⎣⎭,1,12B ⎡⎤=⎢⎥⎣⎦,函数()()1,221,x x A f x x x B⎧+∈⎪=⎨⎪-∈⎩,若()()0f f x A ∈,则0x 的取值范围是__________.20.函数()()122x x f x x N +⎡⎤⎡⎤=-∈⎢⎥⎢⎥⎣⎦⎣⎦的值域为_______(其中[]x 表示不大于x 的最大整数)三、解答题21.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由.22.(1)已知()()43f x x a =-+时,当实数a 为何值时,()f x 是偶函数?(2)已知()g x 是偶函数,且()g x 在[)0,+∞是增函数,如果当[]1,2x ∈时()()6g x a g x +≤-恒成立,求实数a 的取值范围.23.已知函数()y f u =的定义域为A ,值域为B .如果存在函数()u g x =,使得函数[]()y f g x =的值域仍为B ,则称()u g x =是函数()y f u =的一个“等值域变换”.(1)若函数2()1y f u u ==+,1()u g x x x==+(x >0),请判断()u g x =是不是函数()y f u =的一个“等值域变换”?并说明理由;(2)已知单调函数()y f u =的定义域为{}12A u u =≤≤,若221()1x ax u g x x x ++==++是函数函数()y f u =的一个“等值域变换”,求实数a 的取值范围.24.已知函数f (x )=x 2+(1-x )·|x -a |. (1)若a =0,解不等式f (x )>3;(2)若函数f (x )在[2a ,a +2]上的最小值为g (a ),求g (a )的解析式. 25.已知函数()2mf x x x=++(m 为实常数). (1)当4m =时,试判断函数在[)2,+∞上的单调性,并用定义证明; (2)设0m <,若不等式()f x kx ≤在1[,1]2x ∈有解,求实数k 的取值范围. 26.已知a R ∈,奇函数()f x 与偶函数()g x 的定义域均为(,0)(0,)-∞+∞,且满足()()2af xg x x x-=+-. (1)分别求()f x 和()g x 的解析式: (2)若对任意[1,),()()0x f x g x ∞∈++>恒成立,试求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由③可得()11f =,1122f ⎛⎫=⎪⎝⎭,然后由②可得111113232n n n f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭,然后结合()f x 在[0,1]上非减函数可得答案. 【详解】由③得(10)1(0)1f f -=-=,111122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,∴()11f =,1122f ⎛⎫= ⎪⎝⎭. 由②得()12201111111111323232322n n n n n n f f f f f --⎛⎫⎛⎫⎛⎫⎛⎫======⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 12231011111111232232232232n n n n nf f f f ----⎛⎫⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭⎝⎭⎝⎭.∵761113201723<<⨯且61123128f ⎛⎫= ⎪⨯⎝⎭,7113128f ⎛⎫= ⎪⎝⎭. 又()f x 在[0,1]上非减函数,∴112017128f ⎛⎫= ⎪⎝⎭, 故选:D 【点睛】关键点睛:解答本题的关键是由条件得到111113232n n n f f -⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭. 2.D解析:D 【分析】本题可依次判断四个选项中函数的定义域、对应关系、值域是否相同,即可得出结果. 【详解】A 项:函数lg y x =定义域为()0,∞+,函数21lg 2y x =定义域为{}0x x ≠,A 错误; B 项:函数211x y x -=-定义域为{}1x x ≠,函数1y x =+定义域为R ,B 错误;C 项:函数1y =值域为[)1,-+∞,函数1y x =-值域为R ,C 错误;D 项:函数y x =与函数log xa y a =(0a >且1a ≠)定义域相同,对应关系相同,D 正确. 故选:D 【点睛】方法点睛:判断两个函数是否相同,首先可以判断函数的定义域是否相同,然后判断两个函数的对应关系以及值域是否相同即可,考查函数定义域和值域的求法,是中档题.3.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围 【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->,解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题 4.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学测试卷2(基本初等函数、函数的应用)
班级: 姓名: 学号:
一、 选择题:(4分×10=40分)
1、函数()x y -=2lg 的定义域为( )
A 、()+∞∞-,
B 、(]2,-∞-
C 、(]0,∞-
D 、(]1,∞-
2、当a >1时,在同一坐标系中,x a y =与x y a log =的图像大致是( )
A B C D
3、已知41=--x x ,那么22-+x x 的值为( )
A 、16
B 、4
C 、14
D 、18
4、若b a ,是任意实数,且有b a ≥,则下列结论恒成立的是( )
A 、22b a ≥
B 、b a ⎪⎭
⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛2121 C 、()0lg ≥-b a D 、1≤a b 5、下列函数中随x 的增大,增长率最终最大的是( )
A 、x y 1000=
B 、2x y =
C 、x y ln =
D 、()x y 01.1=
6、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,n 年后这批设备的价值为 ( )
A 、(1%)na b -
B 、(1%)a b -
C 、1(%)n a b ⎡⎤-⎣⎦
D 、(1%)n a b -
7、函数()()1log 2+=x x f 的反函数的图像经过点( )
A 、(1,2)
B 、(1,0)
C 、(2,3)
D 、(3,2)
8、若0<a <1,在区间(0,1)上,函数()()1log +=x x f a 是( )
A 、增函数且()x f <0
B 、减函数且()x f <0
C 、增函数且()x f >0
D 、减函数且()x f >0
9、向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图像如图所示,那么水瓶的形状是( )
A B C D
10、函数()⎪⎩
⎪⎨⎧≥〈〈--≤+=2221122
x x x x x x x f ,若()21=a f ,则a 的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个
11、所有指数函数的图像都通过点 ,所有对数函数的图像都通过点 ,所有幂函数的图像都通过点 。
12、已知()x f x =10,则()5f =
13、若函数()13+-=x x x f 在区间()b a ,上有一个零点。
(b a ,是整数,且1=-a b ),则=+b a
14、函数x x x f 2231)(-⎪⎭⎫ ⎝⎛=的单调递增区间为
三、 解答题:(共44分)
15、已知:3102lg ==b a ,,求(1)18lg ;(2)12log 5.(8分)
16、若实数a 满足2
1log a <1,求a 的取值范围.(8分)
17、已知函数()121
2+-=x x
x f ,
(1)判断函数的奇偶性; (2)证明:
()x f 在()+∞∞-,上是增函数.(10分)
18、设30≤≤x 时,求()()()2212-⋅-=x x x f 的值域.(8分)
19、某商店进货单价为45元,若按50元一个销售,能卖出50个;若销售单价每涨1元,销售量就减少2个。
设所获利润为y ,销售单价为x ,
(1)销售单价为55元时,求所获利润为多少元?
(2)请写出y 与x 之间的函数关系式;
(3)为了获得最大利润,此商品的最佳售价应为多少元?(10分)。