2019-2020上海民办新竹园中学中考数学模拟试题(及答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020上海民办新竹园中学中考数学模拟试题(及答案)
一、选择题
1.如图A ,B ,C 是
上的三个点,若
,则
等于( )
A .50°
B .80°
C .100°
D .130°
2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×106
3.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )
A .点A
B .点B
C .点C
D .点D
4.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点
的坐标为( )
A .(,)a b --
B .(,1)a b ---
C .(,1)a b --+
D .(,2)a b --+
5.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )
A .2
B .4
C .22
D 2
6.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是
A .
B .
C .
D .
7.如图,在△ABC 中,AC =BC ,有一动点P 从点A 出发,沿A →C →B →A 匀速运动.则CP 的长度s 与时间t 之间的函数关系用图象描述大致是( )
A .
B .
C .
D .
8.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=
,12
2
y y y +=.如图,已知点O 为坐标原点,点()30A -,
,O e 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )
A .22
9m n +=
B .22
3922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭
C .()()2
2
2323m n ++= D .()2
22349m n ++= 9.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )
A .2
B .3
C .5
D .7
10.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )
A .甲先到
B 点 B .乙先到B 点
C .甲、乙同时到B 点
D .无法确定
11.若关于x 的方程
333x m m
x x
++
--=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <
92
且m≠32
C .m >﹣9
4
D .m >﹣9
4且m≠﹣34
12.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )
A .1
B .2
C .3
D .4
二、填空题
13.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.
14.一列数123,,,a a a ……n a ,其中123121
111
1,,,,111n n a a a a a a a -=-===-
--L L ,则1232014a a a a ++++=L L __________.
15.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.
在第n 个图形中有______个三角形(用含n 的式子表示)
16.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k
y x
=
在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.
17.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与x 函数关系,那么,乙到达终点后_____秒与甲相遇.
18.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.
19.如图,在平面直角坐标系xOy 中,函数y=
k
x
(k >0,x >0)的图象经过菱形OACD 的顶点D 和边AC 的中点E ,若菱形OACD 的边长为3,则k 的值为_____.
20.已知M 、N 两点关于y 轴对称,且点M 在双曲线1
2y x
=
上,点N 在直线y=﹣x+3上,设点M 坐标为(a ,b ),则y=﹣abx 2+(a+b )x 的顶点坐标为 .
三、解答题
21.如图,AD 是ABC ∆的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .
(1)求证:四边形ADCE 是平行四边形;
(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是
1
3
S 的三角形.
22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;
C .仅家长自己参与;
D .家长和学生都未参与.
请根据图中提供的信息,解答下列问题:
(1)在这次抽样调查中,共调查了________名学生;
(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 23.如图,AB 是半圆O 的直径,AD 为弦,∠DBC=∠A .
(1)求证:BC是半圆O的切线;
(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.
24.某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:
销售单价x(元)8595105115
日销售量y(个)17512575m
日销售利润w
87518751875875
(元)
(注:日销售利润=日销售量×(销售单价﹣成本单价))
(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;
(2)根据以上信息,填空:
该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;
(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
25.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:
男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188
女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184.
根据统计数据制作了如下统计表:
个数x150≤x<170170≤x<185185≤x<190x≥190
男生5852
女生38a3
两组数据的极差、平均数、中位数、众数如表所示:
极差平均数中位数众数
(1)请将上面两个表格补充完整:a=____,b=_____,c=_____;
(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?
(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.
故选D
考点:圆周角定理
2.C
解析:C
【解析】
试题分析:384 000=3.84×105.故选C.
考点:科学记数法—表示较大的数.
3.B
解析:B
【解析】
【分析】
根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.
【详解】
解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,
∴连接PP1、NN1、MM1,
作PP1的垂直平分线过B、D、C,
作NN1的垂直平分线过B、A,
作MM1的垂直平分线过B,
∴三条线段的垂直平分线正好都过B,
即旋转中心是B . 故选:B .
【点睛】
此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.
4.D
解析:D 【解析】
试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则
0122
a x
b y
++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,
.故选D . 考点:坐标与图形变化-旋转.
5.C
解析:C 【解析】 【分析】
由A 、B 、P 是半径为2的⊙O 上的三点,∠APB=45°,可得△OAB 是等腰直角三角形,继而求得答案. 【详解】
解:连接OA ,OB . ∵∠APB =45°, ∴∠AOB =2∠APB =90°. ∵OA =OB =2,
∴AB =22OA OB +=22. 故选C .
6.C
解析:C 【解析】 【分析】
x=0,求出两个函数图象在y 轴上相交于同一点,再根据抛物线开口方向向上确定出a >0,然后确定出一次函数图象经过第一三象限,从而得解. 【详解】
x=0时,两个函数的函数值y=b ,
所以,两个函数图象与y 轴相交于同一点,故B 、D 选项错误; 由A 、C 选项可知,抛物线开口方向向上, 所以,a >0,
所以,一次函数y=ax+b 经过第一三象限, 所以,A 选项错误,C 选项正确. 故选C .
7.D
解析:D 【解析】 试题分析:
如图,过点C 作CD ⊥AB 于点D . ∵在△ABC 中,AC=BC ,∴AD=BD .
①点P 在边AC 上时,s 随t 的增大而减小.故A 、B 错误; ②当点P 在边BC 上时,s 随t 的增大而增大;
③当点P 在线段BD 上时,s 随t 的增大而减小,点P 与点D 重合时,s 最小,但是不等于零.故C 错误;
④当点P 在线段AD 上时,s 随t 的增大而增大.故D 正确.故答案选D . 考点:等腰三角形的性质,函数的图象;分段函数.
8.D
解析:D 【解析】 【分析】
根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可. 【详解】
∵点()30A -,
,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=
,02
b n +=, ∴23,2a m b n =+=,
又,a b 满足等式:229a b +=, ∴()2
22349m n ++=, 故选D .
【点睛】
本题考查了坐标与图形性质,解题的关键是理解中点坐标公式.9.C
解析:C
【解析】
试题解析:∵这组数据的众数为7,
∴x=7,
则这组数据按照从小到大的顺序排列为:2,3,5,7,7,
中位数为:5.
故选C.
考点:众数;中位数.
10.C
解析:C
【解析】
1 2π(AA1+A1A2+A2A3+A3B)=
1
2
π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半
圆的弧长相等,因此两个同时到B点。
故选C.
11.B
解析:B
【解析】
【分析】
【详解】
解:去分母得:x+m﹣3m=3x﹣9,
整理得:2x=﹣2m+9,解得:x=
29
2
m
-+
,
已知关于x的方程
3
33
x m m
x x
+
+
--
=3的解为正数,
所以﹣2m+9>0,解得m<9
2
,
当x=3时,x=
29
2
m
-+
=3,解得:m=
3
2
,
所以m的取值范围是:m<9
2
且m≠
3
2
.
故答案选B.12.C
解析:C
【解析】【详解】
①∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x ==﹣1,∴b =2a <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确;
②∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,∴4ac <b 2,所以②正确;
③∵b =2a ,∴2a ﹣b =0,所以③错误;
④∵x =﹣1时,y >0,∴a ﹣b +c >2,所以④正确.
故选C .
二、填空题
13.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半 解析:2
【解析】
分析:利用圆锥的底面周长等于侧面展开图的扇形弧长,列出方程进行计算即可. 详解:扇形的圆心角是120°,半径为6, 则扇形的弧长是:1206180
π⋅=4π, 所以圆锥的底面周长等于侧面展开图的扇形弧长是4π,
设圆锥的底面半径是r ,
则2πr =4π,
解得:r =2.
所以圆锥的底面半径是2.
故答案为2.
点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底面周长等于侧面展开图的扇形弧长是解题的关键.
14.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a 3+…+a2014=671×(-1++2 解析:20112
【解析】
【分析】
分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.
【详解】 解:1234123
11111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,
2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+
12+2)+(-1)=20112. 故答案为20112
. 考点:规律性:数字的变化类.
15.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分
解析:()43n -
【解析】
【分析】
分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就
是4与几的乘积减去3.如图③中三角形的个数为9=4×
3-3.按照这个规律即可求出第n 各图形中有多少三角形.
【详解】
分别数出图①、图②、图③中的三角形的个数,
图①中三角形的个数为1=4×
1-3; 图②中三角形的个数为5=4×
2-3; 图③中三角形的个数为9=4×
3-3; …
可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.
按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.
故答案为4n-3.
【点睛】
此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.
16.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E∴2x=x+2 解析:12
x x 【解析】
【分析】
设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.
【详解】
解:设D (x ,2)则E (x+2,1),
∵反比例函数
k
y
x
=在第一象限的图象经过点D、点E,
∴2x=x+2,
解得x=2,
∴D(2,2),
∴OA=AD=2,
∴2222,
OD OA OD
=+=
故答案为:2 2.
【点睛】
本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.
17.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s 故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出
解析:30
【解析】
【分析】
由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.
【详解】
由图象可得V甲==3m/s,V追==1m/s,
∴V乙=1+3=4m/s,
∴乙走完全程所用的时间为:=300s,
此时甲所走的路程为:(300+30)×3=990m.
此时甲乙相距:1200﹣990=210m
则最后相遇的时间为:=30s
故答案为:30
【点睛】
此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.
18.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中
1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n是正
解析:4×109
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
4400000000的小数点向左移动9位得到4.4,
所以4400000000用科学记数法可表示为:4.4×109,
故答案为4.4×109.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
19.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x 轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b即可请求出答案【详解】如图过D作DQ⊥x轴于Q
解析:25
【解析】
【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.
【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,
设D点的坐标为(a,b),则C点的坐标为(a+3,b),
∵E为AC的中点,
∴EF=1
2
CM=
1
2
b,AF=
1
2
AM=
1
2
OQ=
1
2
a,
E点的坐标为(3+1
2
a,
1
2
b),
把D、E的坐标代入y=k
x
得:k=ab=(3+
1
2
a)
1
2
b,
解得:a=2,
在Rt△DQO中,由勾股定理得:a2+b2=32,
即22+b 2=9,
解得:
∴
故答案为
【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a 、b 的方程是解此题的关键.
20.(±)【解析】【详解】∵MN 两点关于y 轴对称∴M 坐标为(ab )N 为(-ab )分别代入相应的函数中得b=①a+3=b②∴ab=(a+b )2=(a-b )
2+4ab=11a+b=∴y=-x2x∴顶点坐标为
解析:( ,
112). 【解析】
【详解】
∵M 、N 两点关于y 轴对称,
∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=
12a ①,a+3=b ②,
∴ab=
12,(a+b )2=(a-b )2+4ab=11,a+b=
∴y=-12
x 2,
∴顶点坐标为(2b a -=244ac b a -=112),即(112
). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.
三、解答题
21.(1)见解析;(2)ABD ∆,ACD ∆,ACE ∆,ABE ∆
【解析】
【分析】
(1)首先证明△AFE ≌△DFB 可得AE=BD ,进而可证明AE=CD ,再由AE ∥BC 可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE 是平行四边形;
(2)根据面积公式解答即可.
【详解】
证明:∵AD 是△ABC 的中线,
∴BD=CD ,
∵AE ∥BC ,
∴∠AEF=∠DBF ,
在△AFE 和△DFB 中,
AEF DBF AFE BFD AF DF ===∠∠⎧⎪∠∠⎨⎪⎩
,
∴△AFE ≌△DFB (AAS ),
∴AE=BD ,
∴AE=CD ,
∵AE ∥BC ,
∴四边形ADCE 是平行四边形;
(2)∵四边形ABCE 的面积为S ,
∵BD=DC ,
∴四边形ABCE 的面积可以分成三部分,即△ABD 的面积+△ADC 的面积+△AEC 的面积=S ,
∴面积是12
S 的三角形有△ABD ,△ACD ,△ACE ,△ABE . 【点睛】
此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
22.(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.
【解析】
分析:(1)根据A 类别人数及其所占百分比可得总人数;
(2)总人数减去A 、C 、D 三个类别人数求得B 的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;
(3)用总人数乘以样本中D 类别人数所占比例可得.
详解:(1)本次调查的总人数为80÷
20%=400人; (2)B 类别人数为400-(80+60+20)=240,
补全条形图如下:
C 类所对应扇形的圆心角的度数为360°×60400
=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统
计图中整理出进一步解题的信息.
23.(1)见解析;(2)AD=4.5.
【解析】
【分析】
(1)若证明BC 是半圆O 的切线,利用切线的判定定理:即证明AB ⊥BC 即可;
(2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利用相似三角形的性质:对应边的比值相等即可求出AD 的长.
【详解】
(1)证明:∵AB 是半圆O 的直径,
∴BD ⊥AD ,
∴∠DBA+∠A=90°,
∵∠DBC=∠A ,
∴∠DBA+∠DBC=90°即AB ⊥BC ,
∴BC 是半圆O 的切线;
(2)解:∵OC ∥AD ,
∴∠BEC=∠D=90°,
∵BD ⊥AD ,BD=6,
∴BE=DE=3,
∵∠DBC=∠A ,
∴△BCE ∽△BAD ,
∴
=CE BE BD AD ,即436=AD
; ∴AD=4.5
【点睛】 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.
24.(1)25;(2)80,100,2000;(3)该产品的成本单价应不超过65元.
【解析】
分析:(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式;
(2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值;
(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.
详解;(1)设y 关于x 的函数解析式为y=kx+b ,
8517595125k b k b +⎧⎨+⎩==,得5600k b ==-⎧⎨⎩
, 即y 关于x 的函数解析式是y=-5x+600,
当x=115时,y=-5×115+600=25,
即m 的值是25;
(2)设成本为a 元/个,
当x=85时,875=175×(85-a ),得a=80,
w=(-5x+600)(x-80)=-5x2+1000x-48000=-5(x-100)2+2000,
∴当x=100时,w取得最大值,此时w=2000,
(3)设科技创新后成本为b元,
当x=90时,
(-5×90+600)(90-b)≥3750,
解得,b≤65,
答:该产品的成本单价应不超过65元.
点睛:本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.
25.(1)a=6,b=179,c=188;(2)600;(3)详见解析.
【解析】
【分析】
(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.
【详解】
(1)满足185≤x<190的数据有:186,188,186,185,186,187.
∴a=6,
20名男生的跳绳成绩排序后最中间的两个数据为178和180,
∴b=(178+180)=179,
20名男生的跳绳成绩中出现次数最多的数据为188,
∴c=188,
故答案为:6;179;188;
(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,
∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=
600(人);
(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.
【点睛】
本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.。