高中数学分层抽样人教版必修三
人教A版高中数学必修三213《分层抽样》教案
![人教A版高中数学必修三213《分层抽样》教案](https://img.taocdn.com/s3/m/2688e5604a35eefdc8d376eeaeaad1f3469311cf.png)
人教A版高中数学必修三213《分层抽样》教案教案主题:分层抽样授课对象:人教A版高中数学必修三教案大纲:一、教学目标:1.理解分层抽样的定义和原理;2.掌握分层抽样的步骤和方法;3.能够运用分层抽样解决实际问题;4.培养学生的抽样技能和数据分析能力。
二、教学重点与难点:1.理解和应用分层抽样的原理;2.掌握分层抽样的步骤和方法;3.运用分层抽样解决实际问题。
三、教学过程:1.导入(5分钟)向学生介绍分层抽样的概念和重要性,引发学生的学习兴趣和探究欲望。
2.知识讲解(20分钟)2.1什么是分层抽样:解释分层抽样的定义,并举例说明。
2.2分层抽样的原理:介绍分层抽样的原理,即将总体分成多个层次,然后从每个层次中随机选择一部分样本。
2.3分层抽样的步骤和方法:具体讲解分层抽样的步骤和方法,包括确定总体和层次、确定样本容量和比例等。
3.示例分析(30分钟)以一个实际问题为例,让学生分析问题并设计相应的分层抽样方案,并对样本数据进行分析和总结。
4.练习与拓展(20分钟)4.1练习题:布置一些练习题,让学生进行独立思考和解答。
4.2拓展问题:提出一些拓展问题,让学生运用分层抽样解决实际问题,并进行总结与讨论。
5.归纳总结(10分钟)让学生总结分层抽样的基本原理、步骤和方法,并强调分层抽样在实际应用中的重要性。
四、教学资源:1.PPT课件:准备一份包含分层抽样的相关概念、原理、步骤和方法的PPT课件,便于学生理解和记忆。
2.实例材料:准备一些实例材料,例如人口数据、市场调查数据等,用于示范和练习。
五、教学评价:1.学生的问题解答能力和实际应用能力;2.学生课后练习的完成情况和答题质量;3.学生的课堂表现和参与度。
六、教学反思:通过本节课的教学实践,学生对分层抽样的概念和方法应该有了初步的了解,并且能够初步运用分层抽样解决一些实际问题。
但是,可能部分学生对分层抽样的原理和步骤还不够理解,需要进一步进行巩固和拓展。
人教版高中数学必修三课件:2.1.3 分层抽样(共15张PPT)
![人教版高中数学必修三课件:2.1.3 分层抽样(共15张PPT)](https://img.taocdn.com/s3/m/eb44e8b8a8114431b90dd8ee.png)
晚会,要产生两名“幸运者”,则合适的抽样方法分别为( C )
A.系统抽样,系统抽样,简单随机抽样
B.简单随机抽样,分层抽样,简单随机抽样
C.系统抽样,分层抽样,简单随机抽样
D.分层抽样,简单随机抽样,简单随机抽样
4、某校高三一班有学生54人,二班有学生42人,现在要用分层抽
样的方法从两个班抽出16人参加军训表演,则一班和二班分别被
抽取的人数是( C )
A.8,8
B.10,6
C.9,7
D.12,4
5、某大学为了解在校本科生对参加某项社会实践活动的意向,拟
采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量
为300的样本进行调查,已知该校一年级、二年级、三年级、四年
级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取
A.将总体分成几部分,按预先设定的规则在各部分抽取
B.抽样过程中每个个体被抽到的机会均等
C.将总体分成几层,然后分层按照比例抽取
D.没有共同点
目标检测
3、①教育局到某学校检查工作,打算在每个班各抽调2人参加座
谈;②某班期中考试有10人在85分以上,25人在60~84分,5人
不及格,欲从中抽出8人参加改进教与学研讨;③某班级举行元旦
适应范围
总体中 的个体 数较少
总体中 的个体 数较多
总体由 差异明 显的几 部分组 成
样本的是( B )
A.从10名同学中抽取3人参加座谈会 B.某社区有500个家庭,其中高收入的家 庭125户,中等收入的家庭280户,低收入的 家庭95户,为了了解生活购买力的某项指标, 要从中抽取一个容量为100户的样本 C.从1 000名工人中,抽取100人调查上班 途中所用时间 D.从生产流水线上,抽取样本检查产品质 量
人教版高一数学必修三第二章分层抽样
![人教版高一数学必修三第二章分层抽样](https://img.taocdn.com/s3/m/3e819d88a8114431b80dd81a.png)
2.1.3分层抽样考点学习目标核心素养分层抽样的概念理解分层抽样的概念数学抽象分层抽样的使用条件和操作步骤掌握分层抽样的使用条件和操作步骤,会用分层抽样法进行抽样逻辑推理、数学运算问题导学(1)什么叫分层抽样?(2)分层抽样适用于什么情况?(3)分层抽样时,每个个体被抽到的机会是相等的吗?1.分层抽样的概念一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的特点(1)适用于总体由差异明显的几部分组成的情况.(2)更充分地反映了总体的情况,使样本具有较强的代表性. (3)等可能抽样,每个个体被抽到的可能性都是nN .3.分层抽样中分层原则(1)层内样本的差异要小,各层之间样本的差异要大. (2)分层后总体中的每个个体互不重叠,也不遗漏. 4.抽样比(1)分层抽样也称“按比例抽样”,这里的“按比例”是指: ①样本中第n 层的个体数总体中第n 层的个体数=样本容量总体容量;②总体中第m 层的个体数总体中第n 层的个体数=样本中第m 层的个体数样本中第n 层的个体数.(2)分层抽样中,每个个体被抽到的可能性是相等的,与层数、分层情况无关. ■名师点拨如果总体的个数为N ,样本容量为n ,N i 为第i 层的个体数,则第i 层抽取的个体数n i=n ·N i N ,每个个体被抽到的可能性是n i N i =1N i ·n ·N i N =n N.判断正误(对的打“√”,错的打“×”)(1)系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样,故系统抽样就是一种特殊的分层抽样.()(2)在分层抽样时,每层可以不等可能抽样.()(3)在分层抽样的过程中,每个个体被抽到的可能性是相同的,与层数及分层有关.()解析:(1)因为分层抽样是从各层独立地抽取个体,而系统抽样各段上抽取时是按事先定好的规则进行的,各层编号有联系,不是独立的,故系统抽样不同于分层抽样.(2)分层抽样时,每层仍然要等可能抽样.(3)与层数及分层无关.答案:(1)×(2)×(3)×(2019·江西省临川第一中学期末考试)为创建文明城市,共建美好家园,某市教育局拟从3 000名小学生,2 500名初中生和1 500名高中生中抽取700人参与“城市文明知识”问卷调查活动,应采用的最佳抽样方法是()A.简单随机抽样法B.分层抽样法C.系统抽样法D.简单随机抽样法或系统抽样法解析:选B.根据题意,所有学生明显分成互不交叉的三层,即小学生,初中生,高中生,故采用分层抽样法.故选B.为了保证分层抽样时每个个体被等可能地抽取,必须要求()A.每层等可能抽取B .每层抽取的个体数相等C .每层抽取的个体数可以不一样多,但必须满足抽取n i =n ·N iN (i =1,2,…,k )个个体(其中i 是层的序号,k 是总层数,n 为抽取的样本容量,N i 是第i 层中的个体数,N 是总体容量)D .只要抽取的样本容量一定,每层抽取的个体数没有限制解析:选C.分层抽样时,在各层中按层中所含个体在总体中所占的比例进行抽样. A 中,虽然每层等可能地抽样,但是没有指明各层中应抽取几个个体,故A 不正确; B 中,由于每层的个体数不一定相等,每层抽取同样多的个体数,显然从总体来看,各层的个体被抽取的可能性就不相等了,因此B 也不正确;C 中,对于第i 层的每个个体,它被抽到的可能性与层数i 无关,即对于每个个体来说,被抽取为样本的可能性是相同的,故C 正确;D 显然不正确.一个班共有54人,其中男同学、女同学之比为5∶4,若抽取9人参加教改调查会,则每个男同学被抽取的可能性为________,每个女同学被抽取的可能性为________.解析:男、女每人被抽取的可能性是相同的,因为男同学共有54×59=30(人),女同学共有54×49=24(人),所以每个男同学被抽取的可能性为530=16,每个女同学被抽取的可能性为424=16.答案:16 16分层抽样的判断某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取一个容量为100的样本,记作①;某学校高一年级有18名女排运动员,要从中选出4人调查学习负担情况,记作②.那么完成上述两项调查应采用的抽样方法是() A.①用简单随机抽样法,②用系统抽样法B.①用分层抽样法,②用简单随机抽样法C.①用系统抽样法,②用分层抽样法D.①用分层抽样法,②用系统抽样法【解析】①因家庭收入不同其社会购买力也不同,宜用分层抽样的方法.②因总体个数较小,宜用简单随机抽样法.【答案】 B判断一个抽样方法是不是分层抽样的条件(1)看它是否具有分层抽样的特点,如总体中个体差异是否明显.(2)是否按照相同比例从各层中抽取.至于各层内用什么方法抽样是灵活的,可采用简单随机抽样,也可采用系统抽样.(3)在分层抽样中,无论哪一层的个体,被抽中的机会都是相等的,体现了抽样的公平性.(2018·高考全国卷Ⅲ)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.解析:因为不同年龄段的客户对公司的服务评价有较大差异,所以需按年龄进行分层抽样,才能了解到不同年龄段的客户对公司服务的客观评价.答案:分层抽样分层抽样中的有关计算(1)某单位共有老、中、青年职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为________.(2)某高中学校为了促进学生个体的全面发展,针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:剪纸 x y z其中x ∶y ∶z =5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取________人.【解析】 (1)设该单位老年职工人数为x ,由题意得3x =430-160,解得x =90.则样本中的老年职工人数为90×32160=18.(2)法一:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以“剪纸”社团的人数为800×25=320;因为“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.法二:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以抽取的50人的样本中,“剪纸”社团中的人数为50×25=20.又“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以从高二年级“剪纸”社团中抽取的人数为20×310=6.【答案】 (1)18 (2)6分层抽样中有关计算的方法(1)抽样比=样本容量n总体容量N =该层抽取的个体数该层的个体数.(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.对于分层抽样中求某层个体数,或某层要抽取的样本个体数,都可以通过上面两个等量关系求解.1.为了调查城市PM2.5的情况,按地域把48个城市分成大型、中型、小型三组,相应的城市数分别为8,16,24.若用分层抽样的方法抽取12个城市,则应抽取的中型城市数为( )A .3B .4C .5D .6解析:选 B.根据分层抽样的特点可知,抽样比例为1248=14,则应抽取的中型城市数为16×14=4.2.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,则应抽取超过45岁的职工为________人.解析:抽样比为25∶200=1∶8,而超过45岁的职工有80人,则从中应抽取的个体数为80×18=10.答案:10分层抽样的设计与应用一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.【解】因为疾病的发病率与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法.具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层.(2)按照样本容量的比例求得各乡镇应抽取的人数分别为60人、40人、100人、40人、60人.(3)按照各层抽取的人数随机抽取各乡镇应抽取的样本.(4)将300人合到一起,即得到一个样本.分层抽样的操作步骤第一步,计算样本容量与总体的个体数之比.第二步,将总体分成互不交叉的层,按比例确定各层要抽取的个体数.第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的个体.第四步,将各层抽取的个体合在一起,就得到所取样本.在100个产品中,有一等品20个,二等品30个,三等品50个,现要抽取一个容量为30的样本,请说明抽样过程.解:先将产品按等级分成三层:第一层,一等品20个;第二层,二等品30个;第三层,三等品50个.然后确定每一层抽取的个体数,因为20∶30∶50=2∶3∶5,所以应在第一层中抽取产品6个,在第二层中抽取产品9个,在第三层中抽取产品15个.再分别给这些产品编号并贴上标签,用抽签法或随机数表法在各层中抽取,取到一等品6个,二等品9个,三等品15个,这样就通过分层抽样得到了一个容量为30的样本.三种抽样方法的选择及应用为了考察某学校的教学水平,将抽取这个学校高三年级的部分学生本学年的考试成绩进行统计分析,为了全面反映实际情况,采取以下三种方式进行抽查(已知该学校高三年级共有20个教学班,并且每个班内的学生按随机方式编好了学号,假定该校每班学生人数都相同):①从全年级20个班中任意抽取一个班,再从该班任意抽取20人,考察他们的学习成绩;②每个班都抽取1人,共计20人,考察这20个学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从中共抽取100名学生进行考察(已知若按成绩分,该校高三学生中优秀生共150人,良好生共600人,普通生共250人).根据上面的叙述,回答下列问题:(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式中各自采用何种抽样方法?【解】(1)三种抽取方式中,其总体都是高三全体学生本学年的考试成绩,个体都是指高三年级每个学生本学年的考试成绩.第一种抽取方式中,样本为所抽取的20名学生本学年的考试成绩,样本容量为20;第二种抽取方式中,样本为所抽取的20名学生本学年的考试成绩,样本容量为20;第三种抽取方式中,样本为所抽取的100名学生本学年的考试成绩,样本容量为100.(2)三种抽取方式中,第一种方式采用的是简单随机抽样法;第二种方式采用的是系统抽样法和简单随机抽样法;第三种方式采用的是分层抽样法和简单随机抽样法.选择抽样方法的思路(1)判断总体是否由差异明显的几部分组成,若是,则选用分层抽样;否则,考虑用简单随机抽样或系统抽样.(2)判断总体容量和样本容量的大小.当总体容量较小时,采用抽签法;当总体容量较大、样本容量较小时,采用随机数表法;当总体容量较大、样本容量也较大时,采用系统抽样.某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各岗位中的人数情况如下表所示:管理技术开发营销生产合计老年40404080200 中年80120160240600 青年40160280720 1 200(2)若要开一个有25人参与的讨论单位发展与薪金调整方案的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对某运动会筹备情况的了解程度,则应怎样抽样?解:(1)用分层抽样法,并按老年职工4人,中年职工12人,青年职工24人抽取.(2)用分层抽样法,并按管理岗位2人,技术开发岗位4人,营销岗位6人,生产岗位13人抽取.(3)用系统抽样法,对全部2 000人随机编号,号码为0001~2000,每100号分为一组,从第一组中用简单随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,所得到的号码对应的20人即为要抽取的人.1.(2019·贵州省铜仁市第一中学期末考试)某高校有男学生3 000名,女学生7 000名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取男学生300名,女学生700名进行调查,则这种抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法解析:选D.总体由男生和女生组成,比例为3 000∶7 000=3∶7,所抽取的比例也是3∶7,这种抽样方法是分层抽样法.故选D.2.(2019·广西钦州市期末考试)某中学共有1 000名学生,其中高一年级350人,该校为了了解本校学生视力情况,用分层抽样的方法从该校学生中抽出一个容量为100的样本进行调查,则应从高一年级抽取的人数为()A .20B .25C .30D .35解析:选D.高一年级抽取的人数为3501 000×100=35.故选D. 3.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人进行某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,3,…,270;使用系统抽样时,将学生统一随机编号为1,2,3,…,270,并将整个编号平均分为10段.如果抽得的号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④36,62,88,114,140,166,192,218,244,270.关于上述样本的下列结论中,正确的是( )A .②③都不能为系统抽样B .②④都不能为分层抽样C .①④都可能为系统抽样D .①③都可能为分层抽样解析:选D.系统抽样又名“等距抽样”,做到等距的有①③④,但只做到等距还不一定是系统抽样,还应做到10段中每段要抽1个,检查这一点只需看第一个元素是否在1~27 范围内,结果发现④不符合,同时,若为系统抽样,则分段间隔k =27010=27,④也不符合这一要求,所以可能是系统抽样的为①③,因此排除A ,C ;若采用分层抽样,一、二、三年级的人数比例为4∶3∶3,由于共抽取10人,所以三个年级应分别抽取4人、3人、3人,即在1~108范围内要有4个编号,在109~189和190~270范围内要分别有3个编号,符合此要求的有①②③,即它们都可能为分层抽样(其中①③在每一层内采用了系统抽样,②在每一层内采用了简单随机抽样),所以排除B.4.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.解析:设应抽取的男生人数为x ,则x 900-400=45900,解得x =25. 答案:25[A基础达标]1.为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是() A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样解析:选C.我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理,故选C.2.(2019·黑龙江省哈尔滨市第六中学期末考试)某校共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,用分层抽样抽取一个容量为20的样本,则应抽取的后勤人员人数是() A.3 B.2C.15 D.4解析:选A.因为160人抽取20人,所以抽取的比例为20160=18,因为后勤人数为24,所以应抽取24×18=3.故选A.3.(2019·河北省枣强中学期末考试)某中学高二年级共有学生2 400人,为了解他们的身体状况,用分层抽样的方法从中抽取一个容量为80的样本,若样本中共有男生42人,则该校高二年级共有女生()A.1 260 B.1 230C.1 200 D.1 140解析:选D.设女生总人数为x人,由分层抽样的方法,可得抽取女生人数为80-42=38(人),所以802 400=38x,解得x=1 140.故选D.4.(2019·河北省石家庄市期末考试)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中取一个容量为36的样本,则老年人、中年人、青年人依次抽取的人数是()A.7,11,19 B.7,12,17C.6,13,17 D.6,12,18解析:选D.由题意,老年人27人,中年人54人,青年人81人的比例为1∶2∶3,所以抽取人数:老年人:16×36=6,中年人:26×36=12,青年人:36×36=18.故选D.5.某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为() A.100 B.150C.200 D.250解析:选A.抽样比为703 500=150,该校总人数为1 500+3 500=5 000,则n5 000=150,故n=100.6.(2019·四川省遂宁市期末考试)已知某地区中小学生人数如图所示,用分层抽样的方法抽取200名学生进行调查,则抽取的高中生人数为________.解析:由题意知,抽取的高中生人数为200× 2 0003 500+2 000+4 500=40. 答案:407.(2019·福建省三明市期末质量检测)某校为了解学生的身体素质情况,采用按年级分层抽样的方法,从高一、高二、高三学生中抽取一个300人的样本进行调查,已知高一、高二、高三学生人数之比为k ∶5∶4,抽取的样本中高一学生为120人,则实数k 的值为________.解析:由题意可得,120300=k k +5+4,解得k =6. 答案:68.(2019·湖南省张家界市期末联考)我国古代数学算经十书之一的《九章算术》中有一“衰分”问题“今有北乡八千七百五十人,西乡七千二百五十人,南乡八千三百五十人,凡三乡,发役四百八十七人,则西乡遣____________人”.解析:今有北乡八千七百五十人,西乡七千二百五十人,南乡八千三百五十人,凡三乡,发役四百八十七人,则西乡遣487×7 2508 750+7 250+8 350=145(人). 答案:1459.某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作为样本,用系统抽样法将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).(1)若第5组抽出的号码为22,则第8组抽出的号码应是多少?(2)若用分层抽样法,则应从40岁以下年龄段的职工中抽取多少名?解:(1)由分组可知,分段的间隔为5.又第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.(2)由题意知,40岁以下年龄段的职工人数为200×50%=100.若用分层抽样法,则应从40岁以下年龄段的职工中抽取40200×100=20(名). 10.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人所占比例分别为a 、b 、c ,则有x ×40%+3xb 4x =47.5%,x ×10%+3xc 4x=10%, 解得b =50%,c =10%,故a =100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人所占比例分别为40%、50%、10%.(2)游泳组中,抽取的青年人人数为200×34×40%=60(人); 抽取的中年人人数为200×34×50%=75(人); 抽取的老年人人数为200×34×10%=15(人). 即游泳组中,青年人、中年人、老年人分别应抽取的人数为60人,75人,15人.[B 能力提升]11.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A .4B .5C .6D .7解析:选C.四类食品的种数比为4∶1∶3∶2,则抽取的植物油类的种数为20×110=2,抽取的果蔬类的种数为20×210=4,二者之和为6种,故选C. 12.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.解析:由分层抽样中各层的抽样比相同.样本中甲设备生产的有50件,则乙设备生产的有30件,所以在4 800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品总数为4 800×35+3=1 800(件). 答案:1 80013.某单位有工程师6人、技术员12人、技工18人.要从这些人中抽取一个容量为n 的样本,如果采用系统抽样和分层抽样的方法抽取,那么不用剔除个体;如果样本容量增加一个,那么在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n .解:依题意,知总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的抽样比是n 36,抽取工程师的人数为n 36×6=n 6,技术员的人数为n 36×12=n 3,技工的人数为n 36×18=n 2,所以n 应是36的约数且是6的倍数,即n =6,12,18.当样本容量为n +1时,系统抽样的间隔为35n +1. 因为35n +1必须为整数,所以n 只能取6,即样本容量n =6. 14.(选做题)为了对某课题进行讨论研究,用分层抽样的方法从三所高校A ,B ,C 的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).(2)若从高校B 相关人员中选2人作专题发言,应采用什么抽样法,请写出合理的抽样过程.解:(1)分层抽样是按各层相关人数和抽取人数的比例进行的,所以有x 54=13⇒x =18,3654=y 3⇒y =2.故x =18,y =2. (2)总体容量和样本容量较小,所以应采用抽签法,过程如下:第一步,将36人随机编号,号码为1,2,3, (36)第二步,将号码分别写在相同的纸片上,揉成团,制成号签;第三步,将号签放入一个不透明的容器中,充分搅匀,依次不放回地抽取2个号码,并记录上面的编号;第四步,把与号码相对应的人抽出,即可得到所要的样本.。
课件_人教版高中数学必修三分层抽样课件_PPT课件_优秀版
![课件_人教版高中数学必修三分层抽样课件_PPT课件_优秀版](https://img.taocdn.com/s3/m/82e4fb0d9e31433238689394.png)
2000 1 10 200
巩固练习
2、某工厂生产A、 B、C三种不同型 号的产品,产品数量 之比为2:3:5,现用 分层抽样方法抽取 一个容量为n的样 本,样本中A型产品 有16种,那么此样 本容量n= .
解:A、B、C三种型号 产品数量之比也是相应 三种产品样本数之比 2:3:5,所以A型产品的样
分层抽样的定义
一般地,在抽样时, 将总体分成互不交叉 的层,然后按照一定 的比例,从各层独立 地抽取一定数量的个 体,将各层取出的个 体合在一起作为样本, 这种抽样方法是一种 分层抽样.
例 1 某单位有500名职工,其中不到35岁的有125人, 35~49岁的有280人,50岁以上的有95人.为了了解该单 位职工年龄与身体状况的有关指标,从中抽取100名职工作 为样本,应该怎样抽取?
之和为 ; 对调查对象(总体)事先掌握的各种信息.
(4)分利➢别用分抽简取单层2随5抽机,抽5样6样,或中19系人分统;抽多样的少方层法,、从各如年何龄段分层要视具体情况而定,要尽量利用调查者 全(面为调第查对全层班所调同包查学含的的对平个均体象身数(高),使总并得与各体抽)样统事计的先结掌果进握行比的较各,你种能发信现息什么.问题?
解:(1)分三层:不到35岁的职工,35~49岁的职工,50岁以上的
职工;
所以三种型号轿4车、依次抽抽取样数为—: —在各个层中,按步骤3中确定的数目在各
解:设“不喜欢”的 人,则“喜欢”的为 人,“一般”的为 人 .
层中随机抽取个体; 统计思想、类比思想、随机思想
为了了解我班50名同学的近视情况,准备抽取10名学生进行检查,应怎样进行抽取?
本数占样本容量的 2 , 10
即 2 n16,
10
高中数学(人教版A版必修三)配套课件:2.1.3分层抽样
![高中数学(人教版A版必修三)配套课件:2.1.3分层抽样](https://img.taocdn.com/s3/m/fbf41b6ac77da26924c5b00d.png)
类型二 分层抽样的实施步骤 例2 写出跟踪训练1的实施步骤. 解 (1)按年龄将500名职工分成三层:35岁以下的职工;35岁~49岁的 职工;50岁以上的职工. (2)确定每层抽取个体的个数.抽样比为150000=15,则在 35 岁以下的职工中
抽取 125×51=25(人);在 35 岁~49 岁的职工中抽取 280×51=56(人);
答案
返回
题型探究
重点难点 个个击破
类型一 分层抽样的适用情景 例1 某地区有高中生2 400人,初中生10 900人,小学生11 000人.当地教育 部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小 学生中抽取1%的学生进行调查,你认为应当怎样抽取样本? 解 (1)从总体来看,因为不同年龄阶段的学生的近视情况可能存在明显差异, 为了使样本具有较好的代表性,应该分高中、初中、小学三个层次分别抽样. (2)从三类学生的数量来看,人数较多,所以在各层抽样时可以采用系统抽样. (3)采用系统抽样分好组之后,确定第一组人选时,可以采用简单随机抽样.
第二章 §2.1 随机抽样
2.1.3 分层抽样
学习目标
1.理解分层抽样的基本思想和适用情形; 2.掌握分层抽样的实施步骤; 3.了解三种抽样方法的区别和联系.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 分层抽样的基本思想和适用情形 思考 中国共产党第十八次代表大会2 270名代表是从40个单位中产生的, 这40个单位分别是1─31为省(自治区、直辖市)、32中央直属机关、33中央
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
目 录/contents
人教A版高中数学必修三213分层抽样课件共17张
![人教A版高中数学必修三213分层抽样课件共17张](https://img.taocdn.com/s3/m/d76ea20c5022aaea988f0fab.png)
所要抽取的个体数 .
创设情景
假设某地区有高中生2400人,初中生10900人,小学生 11000人.此地区教育部门为了了解本地区中小学生的近视 情况及其形成原因,要从本地区的中小学生中抽取1%的学 生进行调查,你认为应当怎样抽取样本?
后勤人员24名。为了了解教职工对学校在校务公开方面的意
见,拟抽取一个容量为20的样本。
③分层抽样
知识应用
例 某高中共有900人,其中高一年级
300人,高二年级200人,高三年级400
人,现采用分层抽样抽取容量为45的
样本,那么高一、高二、高三各年级
抽取的人数分别为( D )
A.15,5,25
B.15,15,15
抽样
成
作业
? 课本62页,课后练习第一题,要求按学习小组合 作写出统计报告,要求体现统计数据、抽样过程 和结论。
222126200 134123040 4343300
258215080 1112190 63600
问题一 总体容量是多少? 问题二 应该采用哪种抽样?
分层抽样时,若某层中按 抽样比算不是整数时,则 需先剔除几个个体,在剔
问题三
如何确定每层的样本数?
除时要随机剔除以保证每 个个体被抽取的机会相等.
问题四 实际抽样过程中遇到什么问题?
解: 高中生人数 :2400×1%=24
初中生人数 :10900×1%=109
小学生人数 : 11000×1%=110
然后分别在各个学段运用系统抽样方法抽取 .
说课稿 人教版 高中数学必修三 第二章第一节《分层抽样》
![说课稿 人教版 高中数学必修三 第二章第一节《分层抽样》](https://img.taocdn.com/s3/m/9c171d0b19e8b8f67d1cb977.png)
分层抽样一、说教材1.教材分析《分层抽样》是人教版高中数学必修第三册第二章第一节的内容。
本节是在学习了前两节简单随机抽样和系统抽样的基础上,结合此两种随机抽样特点和适用范围,针对总体的复杂性,为提高样本的代表性,有学习掌握分层抽样这种随机抽样的必要性;而且本节为下节“用样本估计总体”的学习打下了基础。
因此,本节内容在学习统计学知识的过程中起到承上启下的重要过渡作用。
2. 教学目标根据以上对教学内容和结构的分析,又考虑到高二年级学生的知识水平,我制定了以下三维教学目标:首先,知识与技能目标是:理解分层抽样的概念;掌握分层抽样的一般步骤;能区分简单随机抽样、系统抽样和分层抽样,会选择适当的方法进行抽样。
其次,过程与方法目标是:通过对现实生活中实际问题进行分层抽样,感知有具体到一般的数学研究方法,培养概括和归纳的能力。
最后,情感态度和价值观目标是:通过对统计学知识的研究,感知数学知识中“估计”与“精确”性的矛盾统一,激发思考、分析、探求的学习激情。
3.教学重点和难点根据本节课的地位和作用以及新课程标准的具体要求,确定本节课的教学重点为:正确理解分层抽样的定义,灵活应用分层抽样抽取样本。
根据本节课的内容,以及学生的心理特点和认知水平,确定本节课的教学难点为:恰当的选择三种抽样方法解决现实生活中的抽样问题。
二、说学情掌握学生的基本情况,对于把握和处理教材具有重要作用,所以接下来我来说一下学生情况。
高二的学生思维活跃,积极性高,已初步形成解决数学问题的合作探究能力。
知识经验较为丰富,具备了较强的抽象逻辑思维能力和演绎推理能力。
根据学生的这一心理发展特点,应在教学过程中注意引导和启发,从而促进学生思维发展水平的提高。
三、说教法教师是学习的组织者,引导者。
我会采取直观演示法、指导发现法、讲练结合法,三法结合并辅以多媒体教学工具,帮助学生理解体会本课的内容,突出本课的重点,突破难点,实现教学目标。
四、说学法科学的学习方法十分重要,它是打开知识宝库的“金钥匙”,是通向成功的“桥梁”。
人教A版高中数学必修三 2.1.3《分层抽样》教案
![人教A版高中数学必修三 2.1.3《分层抽样》教案](https://img.taocdn.com/s3/m/9015df4c00f69e3143323968011ca300a6c3f61e.png)
人教A版高中数学必修三2.1.3《分层抽样》教案人教a版高中数学必修三2.1.3《分层抽样》教案2.1.3分层抽样教学计划【教学目标】1.通过实例了解分层抽样的概念、意义及适用场景2.通过对现实生活中实际问题会用分层抽样的方法从总体中抽出样本,并能写出具体问题的分层抽样的步骤.3.知道在分层抽样的过程中,人口中的每个个体都有相同的被选择的机会4.区分简单随机抽样?系统抽样和分层抽样,并选择适当正确的方法进行抽样.【教学重难点】教学重点:正确理解分层抽样的定义,灵活运用分层抽样进行抽样,正确选择三种抽样方法,解决现实生活中的抽样问题教学难点:应用分层抽样解决实际问题,并恰当的选择三种抽样方法解决现实生活中的抽样问题.[教学过程]我复习复习系统抽样有什么优缺点?它的一般步骤是什么?答:优点是比简单随机抽样更易操,缺点是系统抽样有规律性,样本有可能代表性很差;(1)人口中的n个个体(2)确定分段间隔k,对编号进行分段,当NN(n是样本量)是一个整数,取K=nn;当NN不是整数时,首先从总体中随机移除几个个体,以便对总体中剩余的个体进行采样容量整除.(3)在第一段中,数字L(LWK)通过简单的随机抽样确定起始个体的数量(4)按照一定的规则抽取样本,通常是将起始编号l加上间隔k得到第2个个体编号l+k,再加上k得到第3个个体编号l+2k,这样继续下去,直到获取整个样本.二.创设情境.假设一个地区有2400名高中生、10900名初中生和11000名小学生。
为了了解该地区中小学近视的情况和原因,教育部门应选择该地区1%的中小学生进行调查。
你认为应该如何取样?答:高中生2400Xl%=24人,初中生10900Xl%=109人,小学生11000Xl%=110人,作为样本.这样,如果从学生人数这个角度来看,按照这种抽样方法所获得样本结构与这一地区全体中小学生的结构是基本相同的.三、探索新知识(一)分层抽样的定义.一般来说,在抽样过程中,将种群划分为不相交的层,然后根据一定比例从每个层中独立选择一定数量的个体,并将从每个层中提取的个体组合为样本。
人教版高二数学必修三统计知识点:分层抽样
![人教版高二数学必修三统计知识点:分层抽样](https://img.taocdn.com/s3/m/3d8460e4250c844769eae009581b6bd97e19bc48.png)
人教版高二数学必修三统计知识点:分层抽样(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!人教版高二数学必修三统计知识点:分层抽样本店铺高二频道为正在拼搏的你整理了《人教版高二数学必修三统计知识点:分层抽样》希望你喜欢!(1)分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
人教版高中数学必修三第二章第1节 2.1.3分层抽样 课件(共23张PPT)
![人教版高中数学必修三第二章第1节 2.1.3分层抽样 课件(共23张PPT)](https://img.taocdn.com/s3/m/a1adefb0d15abe23482f4d90.png)
预测结果出错的原因是什么?
类别
简单 随机 抽样
共同点
系统 抽样
各自特点
分层 抽样
联系
适用范围
B
192
学段 小学 初中 高中
城市 357000 226200 112000
县镇 221600 134200 43300
农村 258100 11、城市初中、城 市高中等九层各层被抽个体数如下表
学段
城市
县镇
农村
小学
357
222
258
初中
226
134
11
高中
112
43
6
1、理解分层抽样的概念。
2、掌握分层抽样的一般步骤。
(重点)
3、区分简单随机抽样,系统抽样和
分层抽样,并恰当地选择三种抽样方
法解决现实中的抽样问题。 (难点)
一般地,在抽样时,将总体分成互不交 叉的层,然后按照一定的比例,从各层 独立地抽取一定数量的个体,将各层 取出的个体合在一起作为样本,这种
性别 女 女 女 女 女 女 女 女 女 女 女 女 女
消费 50 50 100 70 100 50 75 75 50 65 80 150 100
性别 女 女 女 女 女 女 女 女 女 女 女 女 女
消费 60 60 30 70 80 50 70 100 50 60 70 100 70
案例分析
大家认为哪个小组的统计调查是 相对来说比较成功的? 为什么?
抽样方法是分层抽样。
例:
(1) 将总体按一定的标准分层; (2)总体与样本容量确定抽取的比例;
(3) 确定各层抽取的样本数;
(4)在每一层进行抽样;(可用简单 随机抽样或系统抽样); (5)综合每层抽样,组成样本。
人教版高中数学必修三第6讲:分层抽样(学生版)
![人教版高中数学必修三第6讲:分层抽样(学生版)](https://img.taocdn.com/s3/m/9cef4dbb6529647d26285213.png)
人教版高中数学分层抽样____________________________________________________________________________________________________________________________________________________________________1.理解分层抽样的概念,掌握其实施步骤,培养学生发现问题和解决问题的能力;2.掌握分层抽样与简单随机抽样和系统抽样的区别与联系,提高学生的总结和归纳能力,让学生领会到客观世界的普遍联系性.1.简单随机抽样和系统抽样两种抽样方法都适合总体中个体分布较为均匀的总体的抽样问题,简单随机抽样适合个体_______的总体的抽样,而系统抽样适合个体______的总体的抽样.但是,当总体中的个体之间差异较大,分成具有明显差异的几部分时,如果利用上述两种抽样的方法都不能保证抽出的样本具有很好的代表性,这就迫切需要一种更为合理的抽样方法,就是本节要学习的______抽样.在学习过程中,一是要把握分层抽样方法的特点;二是要与前面的两种抽样方法对比学习,加深对三种抽样方法的理解.2.分层抽样(1)定义:一般地,在抽样时,将总体分成_________的层,然后按照一定的______,从各层______地抽取一定数量的个体,将各层取出的个体_________作为样本,这种抽样的方法是一种分层抽样.(2)步骤:①分层:按_________将总体分成若干部分(层);②按_________确定每层抽取个体的个数;③各层分别按______________或___________的方法抽取样本;④综合每层抽样,组成样本.3. 分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,遵循不重复、不遗漏的原则.(2)分层抽样为保证每个个体都等可能入样,需遵循在各层中进行简单随机抽样或系统抽样,每层样本数量与每层个体数量的比和样本容量与总体容量的比相等.(3)当总体由差异明显的几部分组成时,往往采用分层抽样. 4.三种抽样方法的区别与联系为了方便使用,这里以表格的形式给出三种抽样方法的对比:类型一 分层抽样的概念例1:(1)如果采用分层抽样,从个体数为N 的总体中抽取一个容量为n 的样本,那么每个个体被抽到的可能性为( )A.1NB.1nC.nND.N n(2)下列问题中,最适合用分层抽样抽取样本的是( ) A .从10名同学中抽取3人参加座谈会B .某社区有500个家庭,其中高收入的家庭125个,中等收入的家庭280个,低收入的家庭95个,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C .从1000名工人中,抽取100名调查上班途中所用时间D .从生产流水线上,抽取样本检查产品质量练习1:某校高三年级有男生500人,女生400人.为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数表法D .分层抽样法练习2:对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2、p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3练习3:某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法类型二 分层抽样各层中样本容量的计算例2:一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7 C.8,15,12,5 D.8,16,10,6练习1:某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为() A.100 B.150 C.200 D.250练习2:甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测,若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.练习3:有一批产品,其中一等品10件,二等品25件,次品5件,用分层抽样从这批产品中抽出8件进行质量分析,则抽样比为________.类型三分层抽样的操作步骤例3:一个单位有职工160人,其中有业务人员112人,管理人员16人,后勤服务人员32人,为了了解职工的某种情况,要从中抽取一个容量为20的样本,写出用分层抽样的方法抽取样本的过程.练习1:某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取________名学生.练习2:某政府机关有在编人员100人,其中科级以上干部10人,科员70人,办事员20人.上级机关为了了解他们对政府机构改革的看法,要从中抽取一个容量为20的样本,试确定用何种方法抽取,并写出具体的抽样过程.类型四三种抽样方法的比较例4:为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样练习1:在一批电视机中,有甲厂生产的56台,乙厂生产的42台,用分层抽样的方法从中抽取一个容量为14的样本.练习2:某社区有700户家庭,其中高收入家庭225户,中等收入家庭400户,低收入家庭75户.为了调查社会购买力的某项指标,要从中抽取一个容量为100户的样本,记作①;某中学高二年级有12名篮球运动员,要从中选出3人调查投篮命中率情况,记作②;从某厂生产的802辆轿车中抽取40辆测试某项性能,记作③.为完成上述三项抽样,则应采取的抽样方法是() A.①简单随机抽样,②系统抽样,③分层抽样B.①分层抽样,②简单随机抽样,③系统抽样C.①简单随机抽样,②分层抽样,③系统抽样D.①分层抽样,②系统抽样,③简单随机抽样练习3:某单位有老、中、青年人各32人,50人,20人,现用分层抽样从三个群体中共抽取20人进行某项调查,问:老、中、青每组应各抽取多少人?每人被抽中的机会是否相等?1.某市为了了解职工家庭生活状况,先把职工按所从事的行业分为8类(每类家庭数不完全相同),再对每个行业抽取的职工家庭进行调查,这种抽样方法是( )A.简单随机抽样 B.系统抽样C.分层抽样D.不属于以上几类抽样2.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A.6 B.8 C.10 D.123.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )A.9 B.10 C.12 D.134.从某地区15 000位老人中按性别分层抽取一个容量为500的样本,调查其生活能否自理的情况如下表所示.则该地区生活不能自理的老人中男性比女性多的人数约为( )A.60 B.100 C.1 500 D.2 0005.一个单位有职工160人,其中业务人员120人,管理人员16人,后勤服务人员24人.为了了解职工的家庭收入情况,要从中抽取一个容量为20的样本,请确定抽样方法,并简述抽样过程.__________________________________________________________________________________________________________________________________________________________________基础巩固一、选择题1.分层抽样适合的总体是()A.总体容量较多B.样本容量较多C.总体中个体有差异D.任何总体2.某学院有四个饲养房,分别养有18、54、24、48只白鼠供试验用,某项试验需抽取24只白鼠,你认为最合适的抽样方法为()A.在每个饲养房中各抽取6只B.把所有白鼠都加上编有不同号码的颈圈,用随机抽样的方法确定24只C.在四个饲养房分别随手抽取3、9、4、8只D.先确定在这四个饲养房应分别抽取3、9、4、8只,再由各饲养房自己加号码颈圈,用简单随机抽样法确定各自要抽取的对象3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为()A.7 B.15C.25 D.354.(2015·北京师大附中月考)某橘子园有平地和山地共120亩,现在要估计平均亩产量,按一定的比例用分层抽样的方法共抽取10亩进行调查,如果所抽山地的亩数是平地亩数的2倍多1,则这个橘子园的平地与山地的亩数分别为()A.45,75 B.40,80C.36,84 D.30,905.问题:①有1 000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.简单随机抽样;Ⅱ.系统抽样;Ⅲ.分层抽样.其中问题与方法能配对的是()A.①Ⅰ,②ⅡB.①Ⅲ,②ⅠC.①Ⅱ,②ⅢD.①Ⅲ,②Ⅱ6.某商场有四类食品,其中粮食类、植物油类、肉食品类、果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5C.6 D. 7二、填空题7.防疫站对学生进行身体健康调查.红星中学共有学生1 600名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是________.8.某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.三、解答题9.一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.10.为了对某课题进行讨论研究,用分层抽样的方法从三所高校A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)(1)求x,y;(2)若从高校B相关的人中选2人作专题发言,应采用什么抽样法,请写出合理的抽样过程.能力提升一、选择题1.(2015·石家庄高一检测)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有10个特大型销售点,要从中抽取7个销售点调查其销售收入和售后服务等情况,记这项调查为②,则完成①②这两项调查宜采用的抽样方法依次为()A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法2.某校共有学生2000名,各年级男、女生人数如下表所示:( ) A .24 B .18 C .16D .123.(2015·河北衡水中学高一调研)某初级中学有270人,其中七年级108人,八、九年级各81人.现在要抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,将学生按年级从低到高的顺序依次统一编号为1,2,…,270.如果抽得的号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270. 则下列结论正确的是( ) A .②③都不可能为系统抽样 B .②④都不可能为分层抽样 C .①④都可能为系统抽样 D .①③都能为分层抽样4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本. ①采用随机抽样法,将零件编号为00,01,…,99,抽签取出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,从一级品中随机抽取4个,从二级品中随机抽取6个.从三级品中随机抽取10个,对于上述抽样方式,下面说法正确的是( )A .不论哪一种抽样方法,这100个零件中每一个个体被抽到的概率都是15B .①②两种抽样方法中,这100个零件每一个个体被抽到的概率为15.③并非如此C .①③两种抽样方法中,这100个零件中每一个个体被抽到的概率为15,②并非如此D .采用不同的抽样方法,这100个零件中每一个个体被抽到的概率是不同的 二、填空题5.某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.6.一工厂生产了某种产品16 800件,它们来自甲、乙、丙3条生产线.为检查这批产品的质量,决定采用分层抽样的方法进行抽样.已知从甲、乙、丙3条生产线抽取的个体数分别是a,b,c,且2b=a+c,则乙生产线生产了________件产品.三、解答题7.某单位有2000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:(1)若要抽取(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对巴西世界杯筹备情况的了解,则应怎样抽样?8.为了考察某校的教学水平,将对这个学校高三年级的部分学生的本学年考试成绩进行考察,为了全面地反映实际情况,采取以下三种方式进行抽查:(已知该校高三年级共有20个教学班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生人数都相同)(1)从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考察他们的学习成绩;(2)每个班都抽取1人,共计20人,考察这20个学生的成绩;(3)把学生按成绩分成优秀、良好、普通三个级别,从其中共抽取100名学生进行考察.(已知若按成绩分,该校高三学生中优秀生共150人,良好生共600人,普通生共250人) 根据上面的叙述,试回答下列问题.(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式中各自采用何种抽取样本的方法?(3)试分别写出上面三种抽取方式各自抽取样本的步骤.。
人教版高中数学必修三_2.1.3分层抽样课件
![人教版高中数学必修三_2.1.3分层抽样课件](https://img.taocdn.com/s3/m/d1e983c2b1717fd5360cba1aa8114431b90d8e2a.png)
分层抽样
复习回顾
已经学过的两种抽样方法?
◆简单随机抽样:
{①抽签法; ②随机数表法; 适用范围:总体中个体较少。
◆系统抽样:
{步骤: 编号
分段
抽取
适用范围:总体中个体较多。
问题情景:
某校小学六年级、初中三年级和高中三年级分别 有1000,800和700名同学,为了了解全校毕业班学生的 视力情况,从以上三个年级中抽取容量为100的样本, 你认为应当怎样抽取样本较为合理?
思考:(1)总体、个体、样本、样本容量分别是 什么?
(2)如果在2500名学生中随机抽取100名学 生,有无不足之处?
问题情景:
某校小学六年级、初中三年级和高中三年级分别 有1000,800和700名同学,为了了解全校毕业班学生的 视力情况,从以上三个年级中抽取容量为100的样本, 你认为应当怎样抽取样本较为合理? 思考:(4)三个年级同学有较大差别,应如何提高样
一、分层抽样的定义
指抽样时,将总体分成互不交叉层然 后按照一定的比例,从各层独立地抽取一 定数量的个体,将各层取出的个体合在一 起作为样本。
要点分析: (1) 当总体是由差异明显的几个部分组成时 ,往往选用分层抽样的方法.
(2)每个个体被抽中的可能性相同
该层个体数
(3)每一层抽取的数=
总体个体数
பைடு நூலகம்
样本容量 总体个体数
户,中等收入家庭 400 户,低收入家庭 75 户,为
了调查社会购买力的某项指标,要从中抽取一个容
量为 100 户的样本,记作①;某中学高二年级有 12
名足球运动员,要从中选出 3 人调查学习负担情况,
记作②;从某厂生产的 802 辆轿车中抽取 8 辆测试
高中数学,人教A版必修三, 2.1.3, 分层抽样课件
![高中数学,人教A版必修三, 2.1.3, 分层抽样课件](https://img.taocdn.com/s3/m/996c9f1ee87101f69e319547.png)
W.
20 1 = ,故各年龄段抽取的人 100 5
由于样本容量与总体个体数之比为
1 1 数依次为 45× =9(人),25× =5(人),20-9-5=6(人). 5 5
答案:
9,5,6
第二章
统计
分层抽样的概念 自主练透型 某企业共有 3 200 名职工,其中青、中、老年职工的比例为 3∶5∶2. 若从所有职工中抽取一个容量为 400 的样本,则采用哪种抽样方法更合理?青、 中、老年职工应分别抽取多少人?每人被抽到的可能性相同吗?
第二章
统计
(2)三种抽样方法的异同点
第二章
统计
1.某政府机关在编人员共 100 人,其中副处级以上干部 10 人,一般干部 70 人,工人 20 人,上级部门为了了解该机关对政府机构改革的意见,要从中抽取 20 人,用下列哪种方法最合适( A.系统抽样法 C.分层抽样法
解析:
) B.简单随机抽样法 D.随机数法
A.简单随机抽样 C.按学段分层抽样
解析:
结合三种抽样的特点及抽样要求求解.
由于三个学段学生的视力情况差别较大,故需按学段分层抽样.
ห้องสมุดไป่ตู้答案:
C
第二章
统计
3.某单位有职工 100 人,不到 35 岁的有 45 人,35 岁到 49 岁的有 25 人,剩 下的为 50 岁以上(包括 50 岁)的人,用分层抽样的方法从中抽 20 人,各年龄段 分别抽取的人数为
第二章
统计
[归纳升华] 1.使用分层抽样的前提 分层抽样的适用前提条件是总体可以分层、 层与层之间有明显区别, 而层内 个体间差异较小.
第二章
统计
2.使用分层抽样应遵循的原则 (1)将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉, 即遵循不重复、不遗漏的原则; (2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽 样,每层样本数量与每层个体数量的比等于抽样比 . 3.确定每层抽取个数方法 n 首先确定抽样比 ,然后确定每层抽取的个数 . N
人教版高中数学必修三课件:2.1.3分层抽样
![人教版高中数学必修三课件:2.1.3分层抽样](https://img.taocdn.com/s3/m/909b5e40ddccda38376bafdc.png)
A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法 C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法
【答案】 B
(2)某中学有学生 270 人,其中一年级 108 人,二、三年级各 81 人,现要利用抽样方法抽取 10 人参加某项调查,考虑选用简 单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样 和分层抽样时, 将学生按一、 二、 三年级依次统一编号为 1, 2, …, 270,并将整个编号依次分为 10 段.
关于上述样本的下列结论中,正确的是( A.②③都不能为系统抽样 B.②④都不能为分层抽样 C.①④都可能为系统抽样 D.①③都可能为分层抽样
)
【解析】 因为一、二、三年级的人数之比为108∶81∶81 =4∶3∶3,又因为共抽取10人,根据系统抽样和分层抽样的特 点可知,①②③都可能为分层抽样,②④不可能为系统抽样, 故选D. 【答案】 D
(2)分层抽样的特点: ①适用于总体由差异明显的几部分组成的情况. ②更充分的反映了总体的情况. ③等可能抽样,每个个体被抽到的可能性都相等. (3)分层抽样的公平性: 在分层抽样的过程中每个个体被抽到的可能性是相同的, 与层数及分层无关.
三种抽样方法有何区别与联系?
答:
类 别 简单随 机抽样 共同点 (1)抽样过程 中每个个体 被抽到的可 系统抽样 能性相等; (2)每次抽出 个体后不再 放回,即不 分层抽样 放回抽样 各自特点 从总体中 逐个抽取 将总体均分成几个 部分,按事先确定 的规则在各部分抽 取 将总体分成几层, 分层次进行抽取 在各层抽样时采用简 单随机抽样或系统抽 样 总体由存在明 显差异的几部 分组成 在起始部分采用简单 随机抽样 总体中的个体 数较多 相互联系 适用范围 总体中的 个体数较少
人教版高中数学高一-必修三教学设计分层抽样
![人教版高中数学高一-必修三教学设计分层抽样](https://img.taocdn.com/s3/m/aa041141dd88d0d232d46ac1.png)
§2.1.3分层抽样【知识与技能】1.当总体中一部分个体与另一部分个体有明显的差异且易于区别时,常将相近的个体归成一组,然后按照各部分所占的比例进行抽样,这种抽样称为分层抽样,其中所分成的各部分称为层,分层抽样时,每一个个体被抽到的概率都是相等的,分层抽样适用于总体由差别明显的几部分组成的情况;在每一层抽样时,采用简单随机抽样或系统抽样。
分层抽样是等概率抽样,它也是公平的,用分层抽样从个体数为N的总体中抽取一个容量n。
为n的样本时,在整个抽样过程中每个个体被抽到的概率相等,都等于N2.分层抽样的步骤:第一步:分层第二步:按比例确定每层抽取的个体的个数;第三步:各层抽样;第四步:综合每层抽样,抽取样本。
【过程与方法】知识探究(三):分层抽样的基本思想思考1:某地区有高中生2400人,初中生10800人,小学生11100人.当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?样本容量与总体个数的比例为1:100,则高中应抽取人数为2400*1/100=24人,初中应抽取人数为10800*1/100=108人,小学应抽取人数为11100*1/100=111人.思考2:具体在三类学生中抽取样本时(如在10800名初中生中抽取108人),可以用哪种抽样方法进行抽样?思考3:在上述抽样过程中,每个学生被抽到的概率相等吗?归纳:1.分层抽样:若总体由差异明显的几部分组成,抽样时,先将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,再将各层取出的个体合在一起作为样本.分层抽样又称类型抽样2. 应用分层抽样应遵循以下要求:(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。
(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1第3课时抽样方法(3)——分层抽样
教学目标
(1)理解分层抽样的概念与特征,巩固简单随机抽样、系统抽样两种抽样方法;
(2)掌握简单随机抽样、系统抽样、分层抽样的区别与联系.
教学重点、难点
正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。
教学过程
一、问题情境:
1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.
2.实例:某校高一、高二和高三年级分别有学生1000,800,700名,为了了解全校学生的视力情况,从中抽取容量为100的样本,怎样抽取较为合理?
二、学生活动
能否用简单随机抽样或系统抽样进行抽样,为什么?
指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。
由于样本的容量与总体的个体数的比为100:2500=1:25,
所以在各年级抽取的个体数依次是1000
25
,
800
25
,
700
25
,即40,32,28.
三、建构数学
1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.
说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;
②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽
样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.
2
3
(1)分层:将总体按某种特征分成若干部分。
(2)确定比例:计算各层的个体数与总体的个体数的比。
(3)确定各层应抽取的样本容量。
(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本。
注:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.实际抽样多采用不放回抽样,我们介绍的三种抽样都是不放回抽样,而放回抽样则在理论研究中用得较多.
四、数学运用
1.例题:
例1.( 1)工厂生产的某种产品用传输带将产品送入包装车间,检验人员从传送带上每隔5分钟抽一件产品进行检验,问这是一种什么抽样法?
(2)已知甲、乙、丙三个车间一天内生产的产品分别是150件、130件、120件,为了掌握各车间产品质量情况,从中取出一个容量为40的样本,该用什么抽样方法?简述抽样过程?
解:(1)这是将总体分成均衡的若干部分,再从每一部分按照预先订出的规则抽取一个个体,得到所需要的样本,故它是系统抽样.
(2)因总体来自三个不同车间,故适宜用分层抽样法,
因抽取产品数与产品总数之比为40:400=1:10,
所以,各车间抽取产品数量分别为15件、13件、12件,
具体抽样过程在各车间产品中用随机抽样的方法依次抽取(过程略).
例2.一电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的总人数为12000
解:抽取人数与总的比是60:12000=1:200,
则各层抽取的人数依次是175.12,835.22,63.19,36.5,
取近似值得各层人数分别是12,23,20,5.
然后在各层用简单随机抽样方法抽取.
答:用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人数分别为12,23,20,5.
说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.
例3.下列问题中,采用怎样的抽样方法较为合理?
(1) 从10台电冰箱中抽取3台进行质量检查;
(2) 某电影院有32排座位,每排有40个座位 ,座位号为140 。
有一次报告会坐满了听众,
报告会结束后,为听取意见,需留下32名听众进行座谈;
(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本。
分析:(1)总体容量较小,用抽签法或随机数表法都很方便。
(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样。
(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法。
解:(略)
2.练习:课本第42页第2、3题、第47页第1、2、3题.
五、回顾小结:
1.分层抽样的概念与特征;
2.三种抽样方法相互之间的区别与联系。
六、课外作业:
课本第49页第1、2、3、8题。