七年级数学平行线的判定练习题

合集下载

平行线的判定与性质 专项强化练习 2022-2023学年人教版七年级数学下册

平行线的判定与性质 专项强化练习 2022-2023学年人教版七年级数学下册

人教版七年级数学下册《平行线的判定与性质》专项强化练习一、选择题1.如图,AB∥CD,EF∥GH,且∠1=50°,下列结论错误的是( )A.∠2=130°B.∠3=50°C.∠4=130°D.∠5=50°2.如图,在下列条件中,不能判定直线a与b平行的是( )A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°3.如图,直线a,b被直线c所截,下列条件能判断a∥b的是( )A.∠1=∠2B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°4.如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为( )A.135° B.125° C.115° D.105°5.一条公路两次转弯后又回到到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么∠C应是( )A.40°B.140°C.100°D.180°6.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有( )A.4个B.3个C.2个D.1个7.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F;三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0B.1C.2D.38.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°9.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为( )A.20° B.30° C.40° D.50°10.如图,直线AE∥CD,∠EBF=135°,∠BFD=60°,则∠D等于( )A.75°B.45°C.30°D.15°11.如图,l1∥l2,则下列式子成立的是( )A.∠α+∠β+∠γ=180°B.∠α+∠β-∠γ=180°C.∠β+∠γ-∠α=180°D.∠α-∠β+∠γ=180°12.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°. 则下列结论:①∠BOE=12(180-a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题13.如图,请你添加一个条件,使得AD∥BC,你添加的条件是__________.14.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=________.15.如图,a∥b,∠1=110°,∠3=40°,则∠2=.16.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有_____(填写所有正确的序号).17.已知一副三角板如图1摆放,其中两条斜边互相平行,则图2中∠1=________.18.如图,已知AB∥EF,∠C=90°,则α、β与γ的关系是.三、解答题19.如图,已知∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.20.如图,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并证明.21.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.(1)试证明∠2=∠DCB;(2)试证明DG∥BC;(3)求∠BCA的度数.22.如图,已知AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.23.如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.24.如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,直线l3上有一点P.(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试直接写出∠PAC,∠APB,∠PBD之间的关系,不必写理由.25.(1)读读做做:平行线是平面几何中最基本、也是非常重要的图形.在解决某些平面几何问题时,若能依据问题的需要,添加恰当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决教材中的问题:如图①,AB∥CD,则∠B+∠D ∠E(用“>”、“=”或“<”填空);(2)倒过来想:写出(1)中命题的逆命题,判断逆命题的真假并说明理由.(3)灵活应用如图②,已知AB∥CD,在∠ACD的平分线上取两个点M、N,使得∠AMN=∠ANM.求证:∠CAM=∠BAN.答案1.C2.C.3.B.4.D.5.B6.A.7.D8.C9.C10.D11.B12.C13.答案为:本题答案不唯一,如∠1=∠B.14.答案为:63°30′15.答案为:70°.16.答案为:①③④17.答案为:15°.18.答案为:α+β﹣γ=90°.19.证明:(1)∵∠A=∠ADE,∴AC∥DE.∴∠EDC+∠C=180°.又∵∠EDC=3∠C,∴4∠C=180°.即∠C=45°.(2)证明:∵AC∥DE,∴∠E=∠ABE.又∵∠C=∠E,∴∠C=∠ABE.∴BE∥CD.20.解:∠ACB与∠DEB相等,理由如下:证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),∴∠2=∠DFE(同角的补角相等),∴AB∥EF(内错角相等两直线平行),∴∠BDE=∠DEF(两直线平行,内错角相等),∵∠DEF=∠A(已知),∴∠BDE=∠A(等量代换),∴DE∥AC(同位角相等两直线平行),∴∠ACB=∠DEB(两直线平行,同位角相等).21.(1)证明:∵CD⊥AB于D,FE⊥AB,∴CD∥EF,∴∠2=∠DCB(2)证明:∵∠2=∠DCB,∠1=∠2,∴DG∥BC(3)解:∵DG∥BC,∠3=80°,∴∠BCA=∠3=80°22.解:(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF.∴∠2=∠A.∵∠1=∠2,∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD,∴∠D+∠CBD+∠3=180°.∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°.∵AB∥CD,∴∠C=∠3=25°.23.证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,∴∠1=∠2.24.解:(1)当P点在C,D之间运动时,∠APB=∠PAC+∠PBD. 理由:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1.∴∠PAC=∠APE,∠PBD=∠BPE.∴∠APB=∠APE+∠BPE=∠PAC+∠PBD.(2)当点P在C,D两点的外侧运动时,在l2下方时,则∠PAC=∠PBD+∠APB;在l1上方时,则∠PBD=∠PAC+∠APB.25.(1)解:过E作EF∥AB,如图①所示:则EF∥AB∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠B+∠D=∠BEF+∠DEF,即∠B+∠D=∠BED;故答案为:=;(2)解:逆命题为:若∠B+∠D=∠BED,则AB∥CD;该逆命题为真命题;理由如下:过E作EF∥AB,如图①所示:则∠B=∠BEF,∵∠B+∠D=∠BED,∠BEF+∠DEF=∠BED,∴∠D=∠BED﹣∠B,∠DEF=∠BED﹣∠BEF,∴∠D=∠DEF,∴EF∥CD,∵EF∥AB,∴AB∥CD;(3)证明:过点N作NG∥AB,交AM于点G,如图②所示:则NG∥AB∥CD,∴∠BAN=∠ANG,∠GNC=∠NCD,∵∠AMN是△ACM的一个外角,∴∠AMN=∠ACM+∠CAM,又∵∠AMN=∠ANM,∠ANM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠BAN+∠NCD,∵CN平分∠ACD,∴∠ACM=∠NCD,∴∠CAM=∠BAN.。

七年级数学上册第5章相交线与平行线5-2-2平行线的判定同步测试题新版华东师大版

七年级数学上册第5章相交线与平行线5-2-2平行线的判定同步测试题新版华东师大版

第五章 5.2.2平行线的判定同步测试题一、选择题1.如图是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等2.如图所示,下列条件:①∠1=∠3;②∠2=∠3;③∠4=∠5;④∠2+∠4=180°.不能判断直线l1∥l2的是()A.①②B.②③ C.④ D.②3.如图,若∠1与∠2互补,∠2与∠3互补,则一定有( )A.l1∥l2 B.l3∥l4C.l1∥l4 D.l2∥l44.如图所示,若∠1=50°,当∠2=()时,AB∥CD.A.50°B.60° C.70° D.80°5.如图,在四边形ABCD中,已知∠B=60°,∠C=2∠B,由这些条件你能判断平行的两条直线是().A.AB∥CD B.AD∥BCC.AC∥BD D.AD∥AB二、填空题6.如图,∠1=50°,∠2=50°,则a,b的位置关系是______.7.如图,要使AC∥BD,则需______=______或______=______.8.如图所示,用两个相同的三角形按照如图方式作平行线,能解释其中道理的定理是______9.如图,已知∠2=∠3,则______.10.如图,一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD,是根据______11.已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是______.12.如图,在下列条件中:①∠DAC=∠ACB;②∠BAC=∠ACD;③∠BAD+∠ADC=180°;④∠BAD+∠ABC=180°.其中能使直线AB∥CD成立的是______.(填序号)三、解答题13.根据图形填空:(1)∵∠1=∠2(已知),∴______∥______;(2)∵∠3+∠4=180°(已知),∴______∥______;(3)∵∠4+∠5=180°(已知),∴______∥______;(4)∵∠2=∠4(已知),∴______∥______.14.如图,AB⊥AC,EF⊥AC,∠1=∠2,那么AB与CD是否平行?填空注明推理的依据.解:∵AB⊥AC,EF⊥AC(______),∴AB∥EF(______).∵∠1=∠2(______),∴EF∥DC(______).∴AB∥CD(______).15.如图,已知∠B=∠1,∠ECD+∠1=180°,试说明:AB∥CD,BF∥CE.16.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.试说明:AB∥CD.17.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中∠A=60°,∠D=30°,∠E=∠B=45°):(1)①若∠DCE=45°,则∠ACB的度数为______;②若∠ACB=140°,求∠DCE的度数;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE度数所有可能的值(不必说明理由);若不存在,请说明理由.参考答案一、选择题1.如图是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是(A)A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等2.如图所示,下列条件:①∠1=∠3;②∠2=∠3;③∠4=∠5;④∠2+∠4=180°.不能判断直线l1∥l2的是(D)A.①②B.②③ C.④ D.②3.如图,若∠1与∠2互补,∠2与∠3互补,则一定有(B)A.l1∥l2 B.l3∥l4C.l1∥l4 D.l2∥l44.如图所示,若∠1=50°,当∠2=( A )时,AB∥CD.A.50°B.60° C.70° D.80°5.如图,在四边形ABCD中,已知∠B=60°,∠C=2∠B,由这些条件你能判断平行的两条直线是( A).A.AB∥CD B.AD∥BCC.AC∥BD D.AD∥AB二、填空题6.如图,∠1=50°,∠2=50°,则a,b的位置关系是a∥b.7.如图,要使AC∥BD,则需∠A=∠B或∠C=∠D.8.如图所示,用两个相同的三角形按照如图方式作平行线,能解释其中道理的定理是内错角相等,两直线平行.9.如图,已知∠2=∠3,则AD∥BC.10.如图,一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD,是根据同旁内角互补,两直线平行.11.已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是a∥c.12.如图,在下列条件中:①∠DAC=∠ACB;②∠BAC=∠ACD;③∠BAD+∠ADC=180°;④∠BAD+∠ABC=180°.其中能使直线AB∥CD成立的是②③.(填序号)三、解答题13.根据图形填空:(1)∵∠1=∠2(已知),∴CF∥AD;(2)∵∠3+∠4=180°(已知),∴CF∥AD;(3)∵∠4+∠5=180°(已知),∴BC∥DE;(4)∵∠2=∠4(已知),∴BC∥DE.14.如图,AB⊥AC,EF⊥AC,∠1=∠2,那么AB与CD是否平行?填空注明推理的依据.解:∵AB⊥AC,EF⊥AC(已知),∴AB∥EF(在同一平面内,垂直于同一条直线的两条直线平行).∵∠1=∠2(已知),∴EF∥DC(内错角相等,两直线平行).∴AB∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行).15.如图,已知∠B=∠1,∠ECD+∠1=180°,试说明:AB∥CD,BF∥CE.解:∵∠B=∠1,∴AB∥CD.∵∠1=∠2,且∠ECD+∠1=180°,∴∠ECD+∠2=180°.∴BF∥CE.16.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.试说明:AB∥CD.解:∵EG⊥FG,∴∠G=90°.∴∠1+∠3=90°.∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,即∠EFD+∠BEF=180°.∴AB∥CD.17.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中∠A=60°,∠D=30°,∠E=∠B=45°):(1)①若∠DCE=45°,则∠ACB的度数为135°;②若∠ACB=140°,求∠DCE的度数;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE度数所有可能的值(不必说明理由);若不存在,请说明理由.解:(1)②∵∠ACB=140°,∠ACD=90°,∴∠DCB=140°-90°=50°.∴∠DCE=90°-50°=40°.(2)∠ACB+∠DCE=180°.理由:∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°.(3)存在.当∠ACE=30°时,AD∥BC;当∠ACE=45°时,AC∥BE;当∠ACE=120°时,AD∥CE;当∠ACE=135°时,BE∥CD;当∠ACE=165°时,BE∥AD.。

人教版七年级下册数学平行线的判定与性质综合题集

人教版七年级下册数学平行线的判定与性质综合题集

人教版七年级下册数学平行线的判定与性质综合题集一.平行线的判定(共1小题)1.将一副三角板中的两个直角顶点C叠放在一起(如图),其中∠A=30°,∠B=60°,∠D=∠E=45°.(1)若∠BCD=112°,求∠ACE的度数;(2)试猜想∠BCD与∠ACE的数量关系,请说明理由;(3)若三角板ABC保持不动,绕顶点C转动三角板DCE,在转动过程中,试探究∠BCD等于多少度时,CD ∥AB?请你直接写出答案.二.平行线的性质(共20小题)2.(2021春•阜南县期末)如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.3.(2021春•铁锋区期末)背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行,两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM∥CN,点B为平面内一点,AB⊥BC于B.问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC=.4.(2017秋•雨花区期末)已知AM∥CN,点B为平面内一点,AB⊥BC于B(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度数.5.(2019春•韶关期末)将一副三角板中的两个直角顶点C叠放在一起(如图①),其中∠A=30°,∠B=60°,∠D=∠E=45°.(1)猜想∠BCD与∠ACE的数量关系,并说明理由;(2)若∠BCD=3∠ACE,求∠BCD的度数;(3)若按住三角板ABC不动,绕顶点C转动三角板DCE,试探究∠BCD等于多少度时CE∥AB,并简要说明理由.6.(2021春•龙岗区校级期中)如图,已知直线AB∥射线CD,∠CEB=100°,P是射线EB上一动点,过点P作PQ∥EC交射线CD于点Q,连接CP,作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF,交直线AB于点G.(1)若点P,F,G都在点E的右侧,求∠PCG的度数;(2)在(1)的条件下,若∠EGC﹣∠ECG=40°,求∠CPQ的度数;(3)在点P的运动过程中,是否存在这样的情形,使=?若存在,求出∠CPQ的度数;若不存在,请说明理由.7.(2021秋•揭东区期末)已知:如图所示,直线MN∥GH,另一直线交GH于A,交MN于B,且∠MBA=80°,点C为直线GH上一动点,点D为直线MN上一动点,且∠GCD=50°.(1)如图1,当点C在点A右边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC 的度数;(2)如图2,当点C在点A右边且点D在点B右边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC 的度数;(3)当点C在点A左边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线所在直线交于点P,请直接写出∠BPC的度数,不说明理由.8.(2021春•奉化区校级期末)已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.9.(2020秋•罗湖区校级期末)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.10.(2021春•临邑县期末)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.11.(2017春•南安市期末)“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.12.(2021春•奉化区校级期末)如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P 作PQ∥EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧.①求∠PCG的度数;②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ的度数;若不存在,请说明理由.13.(2019春•河东区期末)已知:点A、C、B不在同一条直线上,AD∥BE(1)如图①,当∠A=58°,∠B=118°时,求∠C的度数;(2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB的数量关系;(3)如图③,在(2)的前提下,且有AC∥QB,QP⊥PB,直接写出∠DAC:∠ACB:∠CBE的值.14.(2021春•济南期中)如图,直线PQ∥MN,点C是PQ、MN之间(不在直线PQ,MN上)的一个动点.(1)如图1,若∠1与∠2都是锐角,请写出∠C与∠1,∠2之间的数量关系并说明理由.(2)把直角三角形ABC如图2摆放,直角顶点C在两条平行线之间,CB与PQ交于点D,CA与MN交于点E,BA与PQ交于点F,点G在线段CE上,连接DG,有∠BDF=∠GDF,求的值.(3)如图3,若点D是MN下方一点,BC平分∠PBD,AM平分∠CAD,已知∠PBC=25°,求∠ACB+∠ADB 的度数.15.(2016春•深圳校级期中)平面内的两条直线有相交和平行两种位置关系(1)已知AB平行于CD,如a图,当点P在AB、CD外部时,∠BPD+∠D=∠B即∠BPD=∠B﹣∠D,为什么?请说明理由.如b图,将点P移动到AB、CD内部,以上结论是否仍然成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.16.(2019秋•道里区校级期中)已知:AF平分∠BAE,CF平分∠DCE.(1)如图①,已知AB∥CD,求证:∠AEC=∠C﹣∠A;(2)如图②,在(1)的条件下,直接写出∠E与∠F的关系.∠E=(用含有∠F的式子表示);(3)如图③,BD⊥AB,垂足为B,∠BDC=110°,∠AEC=40°,求∠AFC的度数.17.(2019春•荔湾区期末)如图,已知AB∥CD,直线FG分别与AB、CD交于点F、点G.(1)如图1,当点E在线段FG上,若∠EAF=40°,∠EDG=30°,则∠AED=°.(2)如图2,当点E在线段FG的延长线上,CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请证明你的结论;(3)如图3,在(2)的条件下,DM平分∠EDG,交AE于点K,射线AN将∠EAB分成∠EAN:∠NAB=1:2,且与DM交于点I,若∠DEA=22°,∠DIA=20°,求∠DKE的度数.18.(2019春•香洲区期末)如图1.直线AD∥EF,点B,C分别在EF和AD上,∠A=∠ABC,BD平分∠CBF.(1)求证:AB⊥BD;(2)如图2,BG⊥AD于点G,求证:∠ACB=2∠ABG;(3)在(2)的条件下,如图3,CH平分∠ACB交BG于点H,设∠ABG=α,请直接写出∠BHC的度数.(用含α的式子表示)19.(2020春•阳西县期末)已知AB∥CD,点C在点D的右侧,连接AD,BC,BE平分∠ABC,DE平分∠ADC,BE,DE相交于点E.(1)如图1,当点B在点A的左侧时,①若∠ABC=50°,∠ADC=70°,求∠BED的度数;②请直接写出∠BED与∠ABC,∠ADC的数量关系;(2)如图2,当点B在点A的右侧时,试猜想∠BED与∠ABC,∠ADC的数量关系,并说明理由.20.(2021春•利州区期末)小明同学在完成七年级上册数学的学习后,遇到了一些问题,请你帮他解决下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由;(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠FAD=60°,∠ABC=40°,求∠BED的度数;(3)将图2中的点B移到点A的右侧,得到图3,其他条件不变,若∠FAD=α°,∠ABC=β°,请你求出∠BED的度数(用含α,β的式子表示).21.(2019春•赣州期末)如图1,已知AB∥CD,∠B=20°,∠D=110°.(1)若∠E=50°,请直接写出∠F的度数;(2)探索∠E与∠F之间满足的数量关系,并说明理由;(3)如图2,EP平分∠BEF,FG平分∠EFD,FG的反向延长线交EP于点P,求∠P的度数.三.平行线的性质(共1小题)22.(2021春•鼓楼区校级期中)如图,已知:点A、C、B不在同一条直线,AD∥BE.(1)求证:∠B+∠C﹣∠A=180°.(2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB的数量关系;(3)如图③,在(2)的前提下,且有AC∥QB,直线AQ、BC交于点P,QP⊥PB,请求出∠DAC:∠ACB:∠CBE的值.四.平行线的判定与性质(共22小题)23.(2021秋•深圳期末)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F=135°,其中正确的有()A.1个B.2个C.3个D.4个24.(2021秋•禅城区期末)已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG =∠AGE,∠C=∠DGC.(1)求证:AB∥CD;(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.25.(2021秋•福田区校级期末)点E在射线DA上,点F、G为射线BC上两个动点,满足∠DBF=∠DEF,∠BDG =∠BGD,DG平分∠BDE.(1)如图1,当点G在F右侧时,求证:BD∥EF;(2)如图2,当点G在F左侧时,求证:∠DGE=∠BDG+∠FEG;(3)如图3,在(2)的条件下,P为BD延长线上一点,DM平分∠BDG,交BC于点M,DN平分∠PDM,交EF于点N,连接NG,若DG⊥NG,∠B﹣∠DNG=∠EDN,则∠B的度数为.26.(2021秋•嵩县期末)图1展示了光线反射定律:EF是镜面AB的垂线,一束光线m射到平面镜AB上,被AB 反射后的光线为n,则入射光线m,反射光线n与垂线EF所夹的锐角θ1=θ2.(1)在图1中,证明:∠1=∠2.(2)图2中,AB,BC是平面镜,入射光线m经过两次反射后得到反射光线n,已知∠1=30°,∠4=60°,判断直线m与直线n的位置关系,并说明理由.(3)图3是潜望镜工作原理示意图,AB,CD是平行放置的两面平面镜.请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?27.(2021秋•九龙县期末)如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)求证:EF∥BC;(2)若FP⊥AC,∠2+∠C=90°,求证:∠1=∠B;(3)若∠3+∠4=180°,∠BAF=3∠F﹣20°,求∠B的度数.28.(2019•重庆开学)如图1,直线MN与直线AB、CD分别交于点E、F,∠MEB与∠DFN互补.(1)若∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(2)如图2,在(1)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ 的大小是否发生变化?若不变,请求出其值;若变化,请说明理由.29.(2021秋•南岗区校级期末)已知:直线AB∥CD,一块三角板EFH,其中∠EFH=90°,∠EHF=60°.(1)如图1,三角板EFH的顶点H落在直线CD上,并使EH与直线AB相交于点G,若∠2=2∠1,求∠1的度数;(2)如图2,当三角板EFH的顶点F落在直线AB上,且顶点H仍在直线CD上时,EF与直线CD相交于点M,试确定∠E、∠AFE、∠MHE的数量关系;(3)如图3,当三角板EFH的顶点F落在直线AB上,顶点H在AB、CD之间,而顶点E恰好落在直线CD上时得△EFH,在线段EH上取点P,连接FP并延长交直线CD于点T,在线段EF上取点K,连接PK并延长交∠CEH的角平分线于点Q,若∠Q﹣∠HFT=15°,且∠EFT=∠ETF,求证:PQ∥FH.30.(2021春•庆云县期末)已知:如图(1)直线AB、CD被直线MN所截,∠1=∠2.(1)求证:AB∥CD;(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分∠BPE,QF平分∠EQD,则∠PEQ和∠PFQ之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P点作PH∥EQ交CD于点H,连接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度数.31.(2021春•鼓楼区期末)珠江某河段两岸安置了两座可旋转探照灯A,B.如图1,2所示,假如河道两岸是平行的,PQ∥MN,且∠BAM=2∠BAN,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视,且灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图3,若两灯同时转动,在灯A射线到达AN之前,若两灯发出的射线AC与BC交于点C,过C作∠ACD 交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系,并说明理由.32.(2021春•福田区校级月考)某学习小组发现一个结论:已知直线a∥b,若直线c∥a,则c∥b.他们发现这个结论运用很广,请你利用这个结论解决以下问题:已知直线AB∥CD,点E在AB、CD之间,点P、Q分别在直线AB、CD上,连接PE、EQ.(1)如图1,运用上述结论,探究∠PEQ与∠APE+∠CQE之间的数量关系.并说明理由;(2)如图2,PF平分∠BPE,QF平分∠EQD,当∠PEQ=130°时,求出∠PFQ的度数;(3)如图3,若点E在CD的下方,PF平分∠BPE,QH平分∠EQD,QH的反向延长线交PF于点F,当∠PEQ =80°时,请直接写出∠PFQ的度数.33.(2021春•罗湖区校级期末)如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.34.(2021春•饶平县校级期末)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.35.(2020春•湘桥区期末)(1)如图1,AB∥CD,∠AEP=40°,∠PFD=130°.求∠EPF的度数.小明想到了以下方法(不完整),请填写以下结论的依据:如图1,过点P作PM∥AB,∴∠1=∠AEP=40°()∵AB∥CD,(已知)∴PM∥CD,()∴∠2+∠PFD=180°.()∵∠PFD=130°,∴∠2=180°﹣130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)如图2,AB∥CD,点P在AB,CD外,问∠PEA,∠PFC,∠P之间有何数量关系?请说明理由;(3)如图3所示,在(2)的条件下,已知∠P=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数是.(直接写出答案,不需要写出过程)36.(2020春•香洲区校级期中)如图,AD交BC于点D,点F在BA的延长线上,点E在线段CD上,EF与AC 相交于点G,∠BDA+∠CEG=180°.(1)证明AD∥EF;(2)若点H在FE的延长线上,且∠EDH=∠C,∠F=∠H,则∠BAD和∠CAD相等吗?请说明理由;(3)在(2)的条件下,若FH⊥BC,∠C=30°,求∠F的度数.37.(2020春•海勃湾区期末)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,求∠HPQ 的度数.38.(2020春•广宁县期末)探索:小明在研究数学问题:已知AB∥CD,AB和CD都不经过点P,探索∠P与∠C 的数量关系.发现:在图1中,:∠APC=∠A+∠C;如图5小明是这样证明的:过点P作PQ∥AB∴∠APQ=∠A()∵PQ∥AB,AB∥CD.∴PQ∥CD()∴∠CPQ=∠C∴∠APQ+∠CPQ=∠A+∠C即∠APC=∠A+∠C(1)为小明的证明填上推理的依据;(2)应用:①在图2中,∠P与∠A、∠C的数量关系为;②在图3中,若∠A=30°,∠C=70°,则∠P的度数为;(3)拓展:在图4中,探究∠P与∠A,∠C的数量关系,并说明理由.39.(2019春•茂名期中)如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.(1)请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当∠E=90°保持不变时,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,请确定∠BAE与∠MCD的数量关系,并说明理由;(3)如图3,在(1)的结论下,P为线段AC上的一个定点,点Q为直线CD上的一个动点,当点Q在射线CD上运动时(点C除外)∠BAC与∠CPQ+∠CQP有何数量关系?为什么?40.(2019春•东莞市校级月考)(1)如图①,AB∥CD,点E在直线AB与CD之间,连接AE、CE.证明:∠A+∠C=∠E;(2)当点E在如图②的位置时,AB∥CD,证明:∠A+∠E+∠C=360°;(3)如图③,点E、F、G在直线AB与CD之间,AB∥CD,连接AE、EF、FG、CG,若∠EFG=28°,则∠A+∠E+∠G+∠C=°.41.(2017春•广州期末)图1展示了光线反射定律:EF是镜面AB的垂线,一束光线m射到平面镜AB上,被AB 反射后的光线为n,则入射光线m,反射光线n与垂线EF所夹的锐角θ1=θ2.(1)在图1中,证明:∠1=∠2.(2)图2是潜望镜工作原理示意图,AB,CD是平行放置的两面平面镜.请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?(3)图3中,AB,BC是平面镜,入射光线m经过两次反射后,反射光线n与m平行但方向相反,求∠ABC的度数.42.(2017春•长兴县期末)如图甲所示,已知点E在直线AB上,点F,G在直线CD上,且∠EFG=∠FEG,EF 平分∠AEG.(1)判断直线AB与直线CD是否平行,并说明理由.(2)如图乙所示,H是AB上点E右侧一动点,∠EGH的平分线GQ交FE的延长线于点Q,设∠Q=α,∠EHG =β①若∠HEG=40°,∠QGH=20°,求∠Q的度数.②判断:点H在运动过程中,α和β的数量关系是否发生变化?若不变,求出α和β的数量关系;若变化,请说明理由.43.(2015春•越秀区期末)如图1,在四边形ABCD中,∠ABC+∠ADC=180°,BE、DF分别是∠ABC与∠ADC 的平分线,∠ADF与∠AFD互余.(1)试判断直线BE与DF的位置关系,并说明理由;(2)如图2,延长CB、DF相交于点G,过点B作BH⊥FG,垂足为点H,试判断∠FBH与∠GBH的大小关系,并说明理由.44.(2013春•福田区期末)把下面的说理过程补充完整.已知:如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的关系,并说明理由.解:∠AED=∠C∵∠1+∠ADG=180°(平角定义),∠1+∠2=180°(已知)∴∠2=∠ADG()∴EF∥AB()∴∠3=∠ADE()∵∠3=∠B(已知)∴∠B=()∴DE∥BC()∴∠AED=∠C()五.平移的性质(共2小题)45.(2017春•硚口区期末)如图1,将线段AB平移至DC,使点A与点D对应,点B与点C对应,连AD、BC.(1)填空:AB与CD的位置关系为,BC与AD的位置关系为;(2)点E、G都在直线CD上,∠AGE=∠GAE,AF平分∠DAE交直线CD于F,①如图2,若G、E为射线DC上的点,∠FAG=30°,求∠B的度数;②如图3,若G、E为射线CD上的点,∠FAG=α,求∠C的度数.46.(2016秋•吉林期末)如图,点C、M、N在射线DQ上,点B在射线AP上,且AP∥DQ,∠D=∠ABC=80°,∠1=∠2,AN平分∠DAM.(1)试说明AD∥BC的理由;(2)试求∠CAN的度数;(3)平移线段BC.①试问∠AMD:∠ACD的值是否发生变化?若不会,请求出这个比值;若会,请找出相应变化规律;②若在平移过程中存在某种位置,使得∠AND=∠ACB,试求此时∠ACB的度数.。

七年级数学下册平行线的判定练习题

七年级数学下册平行线的判定练习题

七年级数学下册平行线的判定练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,下列四个结论:①①1=①3;①①B =①5;①①B +①BAD =180º;①①2=①4;①①D +①BCD =180º.能判断AB ①CD 的个数有 ( )A .2个B .3个C .4个D .5个2.如图,//AB CD ,120BAE ∠=︒,40DCE ∠=︒,则AEC ∠=( )A .70︒B .80︒C .90︒D .100︒3.如图,已知直线a ,b 被直线c 所截,下列条件不能判断a ①b 的是( )A .①2=①6B .①2+①3=180°C .①1=①4D .①5+①6=180°4.如图点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是( )A .①1=①2B .①B =①DCEC .①3=①4D .①D +①DAB =180°5.如图所示,在下列四组条件中,能判断//AB CD 的是( )A .12∠=∠B .180BAD ABC ∠+∠=︒ C .34∠=∠D .ABD BDC ∠=∠6.下列给出的条件能够推理出a b ∥的是( )A .12∠=∠B .24∠∠=C .34∠=∠D .14180∠+∠=︒二、填空题7.如图,木工师傅用角尺画平行线的依据是_________________________.8.已知:如图,在三角形ABC 中,CD AB ⊥于点D ,连接DE ,当1290∠+∠=︒时,求证:DE ∥BC . 证明:①CD AB ⊥(已知),①90ADC ∠=︒(垂直的定义).①1∠+________90=︒,①1290∠+∠=︒(已知),①________2=∠(依据1:________),①∥DE BC (依据2:________).9.如图,写出能判定AB①CD的一对角的数量关系:___________________.BC ,DO①AB,则①O的半径10.如图,AB是①O的直径,CB切①O于B,连结AC交①O于D,若8cmOA=___________cm.11.如图,用符号语言表达定理“内错角相等,两直线平行”的推理形式:①_____,①a①b.三、解答题12.请完成下面的推理过程:如图,已知①D=108°,①BAD=72°,AC①BC于C,EF①BC于F.求证:①1=①2.证明:①①D=108°,①BAD=72°(已知)①①D+①BAD=180°AB CD()①//①①1= ( )又①AC ①BC 于C ,EF ①BC 于F (已知)①EF // ( )①①2= ( )①①1=①2( )13.如图,四边形ABCD 中,①A =①C =90°,BE 平分①ABC ,DF 平分①ADC ,则BE 与DF 有何位置关系?试说明理由.14.如图,已知AC ①BC 于点C ,①B =70º,①ACD =20º.(1)求证:AB //CD ;(2)在不添加任何辅助线的情况下,请补充一个条件________,使BC //AD .15.如图所示,在四边形ABCD 中,ABC ∠的角平分线及外角DCE ∠的平分线所在的直线相交于点F ,若A α∠=,D β∠=.(1)如图(a )所示,180αβ+>,试用α,β表示F ∠,直接写出结论.(2)如图(b )所示,180αβ+<,请在图中画出F ∠,并试用α,β表示F ∠.(3)一定存在F ∠吗?若有,写出F ∠的值;若不一定,直接写出α,β满足什么条件时,不存在F ∠.16.下面是王倩同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,直线12l l ∥,ABC 与DBC △的面积相等吗?为什么?解:相等.理由如下:设1l 与2l 之间的距离为h ,则12ABC SBC h =⋅,12DBC S BC h =⋅△. ①ABC DBC S S =.【探究】(1)如图①,当点D 在1l ,2l 之间时,设点A ,D 到直线2l 的距离分别为h ,h ',则ABC DBC S h S h ='△△.证明:①ABC S(2)如图①,当点D 在1l ,2l 之间时,连接AD 并延长交2l 于点M ,则ABC DBC S AM S DM=△△.证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒, ①AE ∥ .①AEM △∽ . ①AE AM DF DM=. 由【探究】(1)可知ABC DBCS S =△△ , ①ABC DBC S AM S DM=△△. (3)如图①,当点D 在2l 下方时,连接AD 交2l 于点E .若点A ,E ,D 所对应的刻度值分别为5,1.5,0,ABC DBCS S △△的值为 .17.如图,在下列括号中填写推理理由①①1=135°(已知),①①3=①135°( )又①①2=45°(已知),①①2+①3=45°+135°=180°,①a ①b ( )18.已知:如图,点E在线段CD上,EA、EB分别平分①DAB和①ABC,①AEB=90°,设AD=x,BC=y,且(x﹣2)2+|y﹣5|=0.(1)求AD和BC的长.(2)试说线段AD与BC有怎样的位置关系?并证明你的结论.(3)你能求出AB的长吗?若能,请写出推理过程,若不能,说明理由.19.如图,AB=CD,BC=DA,求证:AB①CD,BC①DA.参考答案:1.A【分析】根据同位角相等、内错角相等、同旁内角互补的两直线平行分别判断即可.【详解】解:①①13∠=∠,①//AD BC ,无法推出//AB CD ;①①5B ∠=∠,①//AB CD ;①①180B BAD ∠+∠=°,①//AD BC ,无法推出//AB CD ;①①24∠∠=,①//AB CD ;①①180D BCD ∠+∠=︒①//AD BC ,无法推出//AB CD ,综上所述,能判断//AB CD 的是:①①,有2个,故选:A .【点睛】题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2.D【分析】过点E 作//EF AB ,先根据平行线的判定可得//EF CD ,再根据平行线的性质分别可得AEF ∠和CEF ∠的度数,然后根据角的和差即可得.【详解】如图,过点E 作//EF AB ,120BAE ∠=︒,18060AEF BAE ∴∠=︒-∠=︒,又//AB CD ,//EF CD ∴,40DCE CEF ∴=∠=∠︒,6040100AEC AEF CEF ∴∠=∠+∠=︒+︒=︒,故选:D .【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.3.D【分析】根据同位角相等,内错角相等,同旁内角互补来判定两直线平行.【详解】解:A ,①2和①6是内错角,内错角相等两直线平行,能判定a ①b ,不符合题意;B ,①2+①3=180°,①2和①3是同旁内角,同旁内角互补两直线平行,能判定a ①b ,不符合题意;C ,①1=①4,由图可知①1与①2是对顶角,①①1=①2=①4,①2和①4互为同位角,能判定a ①b ,不符合D ,①5+①6=180°,①5和①6是邻补角,和为180°,不能判定a ①b ,符合题意;故选:D .【点睛】此题主要考查了平行线的判定,结合平行线判定的条件是解决这道题的关键.4.C【分析】根据平行线的判定定理进行逐一分析解答即可.【详解】解:A 、正确,符合“内错角相等,两条直线平行”的判定定理;B 、正确,符合“同位角相等,两条直线平行”的判定定理;C 、错误,若①3=①4,则AD ①BE ;D 、正确,符合“同旁内角互补,两条直线平行”的判定定理;故选:C .【点睛】本题考查的是平行线的判定定理,比较简单.5.D【分析】根据平行线的判定定理求解判断即可.【详解】解:A 、①①1=①2,①AD //BC (内错角相等,两直线平行),故此选项不符合题意;B 、①①BAD +①ABC =180°,①AD //BC (同旁内角互补,两直线平行),故此选项不符合题意;C 、①①3=①4,①AD //BC (内错角相等,两直线平行),故此选项不符合题意;D 、①①ABD =①BDC ,①AB //CD (内错角相等,两直线平行),故此选项符合题意;故选:D .【点睛】此题主要考查了平行线的判定,熟记平行线的判定定理是解题关键.6.D【分析】根据平行线的判定逐一判定即可.【详解】解:A.由12∠=∠不能推理出a b ∥,故不符合题意;B.由24∠∠=不能推理出a b ∥,故不符合题意;C.由34∠=∠不能推理出a b ∥,故不符合题意;D. ①①4+①5=180°时能推出a b ∥,又①①1=①5,①由14180∠+∠=︒能推理出a b ∥,故符合题意;【点睛】本题考查了平行线的判定定理,解决此题的关键是清楚平行线的判定定理同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.【分析】在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.【详解】解:在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行. 故答案为在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行【点睛】本题考查的是平行线的判定,熟知平行线的判定方法是解答此题的关键8. EDC ∠ EDC ∠ 同角的余角相等 内错角相等,两直线平行【分析】根据垂直的定义及平行线的判定定理即可填空.【详解】①CD AB ⊥(已知),①90ADC ∠=︒(垂直的定义).①1∠+EDC ∠90=︒,①1290∠+∠=︒(已知),①EDC ∠2=∠(同角的余角相等),①//DE BC (内错角相等,两直线平行).故答案为:EDC ∠;EDC ∠;同角的余角相等;内错角相等,两直线平行.【点睛】此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.9.①BAC =①ACD (或①B +①BCD =180°或①D +①BAD =180°)【分析】根据平行线的判定定理进行填空.【详解】解:由“内错角相等,两直线平行”可以添加条件①BAC =①ACD .由“同旁内角互补,两直线平行”可以添加条件①B +①BCD =180°,或①D +①BAD =180°.故答案为:①BAC =①ACD (或①B +①BCD =180°或①D +①BAD =180°).【点睛】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力. 10.4【分析】先根据切线的性质得出BC①AB,再根据平行线的判定得出BC OD∥,再根据平行线分线段成比例,得出OD AOBC AB=,根据点O是AB的中点,8BC=cm,求出OD,即可得出结果.【详解】解:①CB切①O于B,①BC①AB,①DO①AB,①BC OD∥,①OD AOBC AB=,①点O是AB的中点,①2AB AO=,①12 OD AOBC AB==,①8BC=cm,①OD=4cm,①OA=OD,①OA=4cm.故答案是:4.【点睛】本题主要考查了切线的性质,平行线的判定,平行线分线段成比例,根据切线的性质,结合已知条件,求出BC OD∥,是解题的关键.11.①4=①1【分析】两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.【详解】解:①①4=①1,①a①b.故答案为:①4=①1.【点睛】本题主要考查平行线的判定,熟记判定方法是解题的关键.12.见解析【分析】由直线相交及平行的相关定理性质即可得到答案.【详解】解:①①D=108°,①BAD=72°(已知)①①D+①BAD=180°①//AB CD(同旁内角互补,两直线平行)①①1=3∠(两直线平行,内错角相等)又①AC ①BC 于C ,EF ①BC 于F (已知)①EF //AC (垂直于同一直线的两条直线平行)①①2=3∠(两直线平行,同位角相等)①①1=①2(等量代换)【点睛】本题考查直线相交及平行的相关定理性质,熟练掌握相关知识是解题的关键.13.BE ①DF ,理由见解析【分析】根据四边形的内角和定理和①A =①C =90°,得①ABC +①ADC =180°;根据角平分线定义、等角的余角相等易证明和BE 与DF 两条直线有关的一对同位角相等,从而证明两条直线平行.【详解】解:BE ①DF .理由如下:①①A =①C =90°,①①ABC +①ADC =180°①BE 平分①ABC ,DF 平分①ADC ,①①1=①2=12①ABC ,①3=①4=12①ADC ,①①1+①3=12(①ABC +①ADC )=12×180°=90°, 又①①1+①AEB =90°,①①3=①AEB①BE ①DF【点睛】本题考查了四边形的内角和是360°、角平分线定义、等角的余角相等和平行线的判定,考察的知识点较多,只有熟练掌握,才能运用自如.14.(1)证明见解析(2)AC ①AD (答案不唯一)【分析】(1)由题意易求出110BCD BCA ACD ∠=∠+∠=︒,即可利用同旁内角互补,两直线平行证明; (2)由在同一平面内,垂直于同一条直线的两条直线互相平行,即可补充条件为:AC ①AD .(答案不唯一)(1)证明:①AC ①BC ,①90ACB ∠=︒,①110BCD BCA ACD ∠=∠+∠=︒,①180BCD B ∠+∠=︒,①AB CD ;(2)补充条件:AC ①AD ,①AC ①AD ,AC ①BC①BC //AD .故答案为:AC ①AD .【点睛】本题考查垂直的定义,平行线的判定.掌握平行线的判定条件是解题关键.15.(1)()1902F αβ∠=+-︒;(2)图见解析,()1902F αβ∠=︒-+,证明见解析;(3)180αβ+=︒时,不存在F ∠,证明见解析.【分析】(1)先根据四边形的内角和求出360D ABC CB βα∠=︒-∠-+,再根据角平分线的定义、邻补角的定义得出1,19022ABC F FBC DC E B C ∠=︒-∠∠∠=,然后根据三角形的外角性质即可得; (2)先根据角平分线的定义画出图形,再参照题(1):由四边形的内角和求出360D ABC CB βα∠=︒-∠-+,再根据角平分线的定义、对顶角的性质得出11,9022GBC ABC BCF DCB ∠=∠∠=︒-∠,然后根据三角形的外角性质即可得;(3)由题(1)和(2)可知,当180αβ+>︒和180αβ+<︒时,存在F ∠的值,因此,考虑当180αβ+=︒时,F ∠是否存在.证明如下:先根据四边形的内角和得出180ABC DCB ∠+∠=︒,再根据邻补角的定义得出180DCE DCB ∠+∠=︒,从而得出ABC DCE ∠=∠,然后根据角平分线的定义可得出GBC ECF ∠=∠,最后根据平行线的判定得出//BG CF ,即可得证.【详解】(1)()1902F αβ∠=+-︒,求解过程如下: 在四边形ABCD 中,,A D αβ∠=∠=360360DCB ABC D A αβ∠=︒-∠-=︒∴∠-+-∠ BF 平分ABC ∠,CF 平分DCE ∠1,2111(180)90222FBC DCE DCB DCB ABC FCE ∴∠=∠=︒-∠=︒-∠∠∠= F FC FB E C ∠=∠-∴∠119022DC AB B C =︒∠-∠- 902)1(DCB ABC =︒-∠+∠ 190(362)0αβ=︒-︒--)1(902βα=-+︒; (2)由题意,画ABC ∠的角平分线及外角DCE ∠的平分线所在的直线相交于点F ,则所要画的F ∠如下图所示.求解过程如下:①()360ABC DCB A D ∠+∠=︒-∠+∠,且A α∠=,D β∠=①360D ABC CB βα∠=︒-∠-+①BG 平分ABC ∠,CH 平分DCE ∠ ①1111,(180)902222GBC ABC ECH DCE DCB DCB ∠=∠∠=∠=︒-∠=︒-∠ 1902BCF ECH DCB ∴∠=∠=︒-∠ ①GBC ∠是BCF ∆的一个外角①GBC F BCF ∠=∠+∠①F GBC BCF ∠=∠-∠11(90)22ABC DCB =∠-︒-∠ 1()902ABC DCB =∠+∠-︒ 1(360)902αβ=︒---︒ 190()2αβ=︒-+;(3)当180αβ+=︒时,不存在F ∠.证明过程如下:①()360ABC DCB A D ∠+∠=︒-∠+∠,且A α∠=,D β∠=①360180ABC DCB αβ∠+∠=︒--=︒180DCE DCB ∠+∠=︒ABC DCE ∴∠=∠①BG 平分ABC ∠,CF 平分DCE ∠ ①11,22GBC ABC ECF DCE ∠=∠∠=∠GBC ECF ∴∠=∠①//BG CF故当180αβ+=︒时,不存在F ∠.【点睛】本题考查了四边形的内角和、三角形的外角性质、角平分线的定义、平行线的判定等知识点,较难的是题(3),综合题(1)和(2)的题设与结论,正确提出假设是解题关键.16.(1)证明见解析(2)证明见解析 (3)73【分析】(1)根据三角形的面积公式可得11,22ABC DBC S S BC h BC h '=⋅=⋅,由此即可得证; (2)过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,先根据平行线的判定可得AE DF ,再根据相似三角形的判定可证AEM DFM ~,根据相似三角形的性质可得AE AM DF DM =,然后结合【探究】(1)的结论即可得证;(3)过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,先根据相似三角形的判定证出AME DNE ~,再根据相似三角形的性质可得73AM AE DN DE ==,然后根据三角形的面积公式可得12ABC S BC AM =⋅,12DBC S BC DN =⋅,由此即可得出答案. (1) 证明:12ABC SBC h =⋅,12DBC BC h S '=⋅, ABC DBC Sh S h ∴='. (2)证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,AE DF ∴∥.AEM DFM ~∴.AE AM DF DM∴=. 由【探究】(1)可知ABC DBC SAE S DF =, ABC DBC SAM S DM∴=. (3)解:过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,则90AME DNE ∠=∠=︒,AM DN ∴, AME DNE ∴~, AM AE DN DE∴=, 点,,A E D 所对应的刻度值分别为5,1.5,0,5 1.5 3.5AE ∴=-=, 1.5DE =,3.571.53AM DN ∴==, 又12ABC S BC AM =⋅,12DBC S BC DN =⋅, 73ABC DBC S AM S DN =∴=, 故答案为:73.【点睛】本题考查了相似三角形的判定与性质、平行线的判定、三角形的面积等知识点,熟练掌握相似三角形的判定与性质是解题关键.17.对顶角相等,同旁内角互补,两直线平行【分析】根据图形由对顶角相等,及平行线的判定中同旁内角互补,两直线平行可直接得出理由;【详解】①①1=135°(已知),①①3=①135°(对顶角相等)又①①2=45°(已知),①①2+①3=45°+135°=180°,①a ①b (同旁内角互补,两直线平行)故答案为:对顶角相等;同旁内角互补,两直线平行【点睛】本题考查了对顶角相等;平行线的判定中同旁内角互补,两直线平行;重点掌握平行线判定定理. 18.(1)2AD =,5BC =;(2)//AD BC ,见解析;(3)能,见解析【分析】(1)根据算术平方根和绝对值的非负性即可得出AD 、BC 的长度;(2)根据题意证明180BAD ABC ∠+∠=︒即可得出结果;(3)延长AE 交直线BC 于F ,先证明①AEB ①①FEB ,然后证明()ADE FCE ASA ∆≅∆,即可得出结果.【详解】解:(1)2(2)|5|0x y -+-=,20x ∴-=,50y -=,解得2x =,5y =,即2AD =,5BC =;(2)//AD BC .理由如下:EA 、EB 分别平分DAB ∠和ABC ∠,12BAE BAD ∴∠=∠,12ABE ABC ∠=∠, 1()2BAE ABE BAD ABC ∴∠+∠=∠+∠, 90AEB ∠=︒,90BAE ABE ∴∠+∠=︒,180BAD ABC ∴∠+∠=︒,//AD BC ∴;(3)能.理由如下:延长AE 交直线BC 于F ,如图,//AD BC ,DAF F ∴∠=∠,而DAF BAF ∠=∠,BAF F ∴∠=∠,在①AEB 和①FEB 中90BAE F BEA BEF BE BE ⎧∠=∠⎪∠=∠=⎨⎪=⎩,①①AEB ①①FEB (AAS )AB FB ∴=,AE =EF .在①ADE 和①FCE 中DAE F AE FEAED FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ADE FCE ASA ∴∆≅∆,2AD CF ∴==,527AB BF ∴==+=.【点睛】本题考查了算术平方根和绝对值的非负性,角平分线的定义,平行线的判定,全等三角形的判定与性质,熟知相关性质定理是解本题的关键.19.见解析【分析】连接AC ,利用SSS 得到ABC CDA △△≌,利用全等三角形的对应角相等得到两对内错角相等,利用内错角相等两直线平行即可得证.【详解】证明:连接AC ,在ABC 和CDA 中,AB CD BC AD AC CA =⎧⎪=⎨⎪=⎩,①()ABC CDA SSS ≌,①BAC DCA ACB CAD ∠=∠∠=∠, ,①//AB DC ,//AD BC .【点睛】此题考查了全等三角形的判定与性质,以及平行线的判定,熟练掌握全等三角形的判定与性质是解本题的关键.。

平行线及其判定(基础篇)(专项练习七年级数学下册基础知识专项讲练(人教版)

平行线及其判定(基础篇)(专项练习七年级数学下册基础知识专项讲练(人教版)

专题5.11 平行线及其判定(基础篇)(专项练习)一、单选题知识点一、平行公理的应用1.下列说法:①和为180°且有一条公共边的两个角是邻补角;①过一点有且只有一条直线与已知直线垂直;①同位角相等;①经过直线外一点,有且只有一条直线与这条直线平行,其中正确的有( )A .0个B .1个C .2个D .3个 2.下列说法中,错误的有( ).①若a 与c 相交, b 与c 相交,则a 与b 相交;①若//,//a b b c ,那么//a c ;①过一点有且只有一条直线与已知直线平行;①在同一平面内,两条直线的位置关系有平行、相交、垂直三种.A .3个B .2个C .1个D .0个 3.下列说法正确的是( )A .在同一平面内,a ,b ,c 是直线,且//a b ,//b c ,则//a cB .在同一平面内,a ,b ,c 是直线,且a b ⊥,b c ⊥,则a c⊥C .在同一平面内,a ,b ,c 是直线,且//a b ,b c ⊥,则//a cD .在同一平面内,a ,b ,c 是直线,且//a b ,//b c ,则a c ⊥知识点二、平行公理推论的应用4.下列说法正确的个数是( ).(1)两条直线不相交就平行;(2)在同一平面内,两条平行的直线有且只有一个交点;(3)过一点有且只有一条直线与已知直线平行;(4)平行于同一直线的两条直线互相平行;(5)两直线的位置关系只有相交、平行与垂直.A .0B .1C .2D .45.下列说法:①同位角相等;①在同一平面内,过一点有且只有一条直线与已知直线垂直;①平行于同一条直线的两条直线一定平行;①连接直线外一点与直线上各点的线段中,垂线段最短.其中正确的是( )A .①①①B .①①①C .①①①D .①①①6.已知直线a ,b ,c 是同一平面内的三条不同直线,下面四个结论:①若//,//,a b b c 则//a c ;①若//,,a b a c ⊥则b c ⊥;①若,,a b b c ⊥⊥则a c ⊥;①若a c ⊥且c 与b 相交,则a 与b 相交,其中,结论正确的是( )A .①①B .①①C .①①①D .①①①知识点三、同位角相等,两直线平行7.如图所示,下列条件中,不能推出AB ①CE 成立的条件是( )A .①A =①ACEB .①B =①ACEC .①B =①ECD D .①B +①BCE =180° 8.如图所示,给出了过直线l 外一点P 作已知直线l 的平行线的方法,其依据是( ).A .同位角相等,两直线平行.B .内错角相等,两直线平行.C .同旁内角互补,两直线平行.D .以上都不对.9.如图,下面哪个条件不能判断EF ①DC 的是( )A .①1=①2B .①4=①C C .①1+①3=180°D .①3+①C =180°知识点四、内错角相等,两直线平行10.在同一平面内,将两个完全相同的三角板按如图摆放(直角边重合),可以画出两条互相平行的直线a ,b .这样操作的依据是( )A .两直线平行,同位角相等B .同位角相等,两直线平行C .两直线平行,内错角相等D .内错角相等,两直线平行11.如图,已知12∠=∠,那么下列结论正确的是( ).A .//CD AB B .//AD BC C .34∠=∠D .A C ∠=∠ 12.如图,点E 在BC 的延长线上,下列条件不能判定//AB CD 的是( )A .180D DAB ∠+∠=︒B .B DCE ∠=∠C .42∠=∠D .34∠=∠知识点五、同旁内角互补,两直线平行13.如图,点E 在AC 的延长线上,下列条件中不能判定BD //AE 的是( )A .①1=①2B .①3=①4C .①D =①DCE D .①A +①ABD =180°14.如图,点D ,E 分别是AB ,AC 上的点,连接DE ,CD ,则下列条件不能判定DE ①BC的是( )A .①AED =①ACDB .①ADE =①BC .①EDC =①DCBD .①DEC +①ACB =180°15.如图所示,下列条件( )成立时,//AD BC .A .23∠∠=B .14∠=∠C .1234∠+∠=∠+∠D .180A C ∠+∠=︒ 知识点六、垂直于同一直线的两直线平行16.下列说法正确的个数为( ).①一条直线的垂线只能画一条.①垂直于同一直线的两条直线互相垂直.①平面内,过线段AB 外一点有且只有一条直线与AB 垂直.A .0B .1C .2D .317.已知,三条直线a 、b 、c 在同一平面内,下列命题是假命题的是( )A .若a c ⊥,b c ⊥,则//a bB .若//a c ,//b c ,则//a bC .若//a b ,b c ⊥,则a c ⊥D .若a c ⊥,b c ⊥,则a b ⊥18.下列四个命题其中正确的个数是( )①对顶角相等;①在同一平面内,若//a b ,c 与a 相交,则b 与c 也相交;①邻补角的平分线互相垂直;①在同一平面内,垂直于同一条直线的两条直线互相垂直A .1个B .2个C .3个D .4个二、填空题 知识点一、平行公理的应用19.(1)平行公理是:____________________________________________.(2)平行公理的推论是如果两条直线都与______________,那么这两条直线也________.即三条直线,,a b c ,若//,//a b b c ,则_________.20.现有下列说法:①过一点有且只有一条直线与已知直线垂直;①过一点有且只有一条直线与已知直线平行;①若//b c ,//a c ,则//b a ;①若140∠=︒,2∠的两边与1∠的两边分别平行,则240∠=︒或140︒;①若b c ⊥,a c ⊥,则//b a .其中正确的是_______(填写序号).21.如图,在三角形ABC 中,已知AB AC ⊥,AD BC ⊥,3AC =,4AB =,5BC =,有下列结论:①B 与C ∠不是同旁内角;①点A 到直线BC 的距离为2.4;①过点A 仅能作一条直线与BC 垂直;①过直线AC 外一点有且只有一条直线与直线AC 平行.其中正确的结论序号有________.知识点二、平行公理推论的应用22.在同一平面内,三条直线a 、b 、c ,若a ①b ,a ①c ,则_____.23.下列说法正确的是________(填序号).①同位角相等;①对顶角相等;①在同一平面内,不相交也不重合的两条射线一定平行;①过直线外一点有且只有一条直线与这条直线平行;①如果直线,a b c d ⊥⊥,那么//a c ;①垂线段最短;①过一点有且只有一条直线与已知直线垂直.24.a ,b ,c 是直线,且a①b ,b①c ,则________ .知识点三、同位角相等,两直线平行25.如图,请写一个条件________________,使//AC EF .(不添加辅助线)26.如图,点A ,B ,C ,D 在同一条直线上,若满足条件____,则有CE ①DF ,理由是____.(要求:不再添加辅助线,只需填一个答案即可)27.两条直线平行的条件(除平行线定义和平行公理推论外):两条直线被第三条直线所截,如果___________,那么这两条直线平行.这个判定方法可简述为:_________,两直线平行.知识点四、内错角相等,两直线平行28.如图所示,过点P 画直线a 的平行线b 的作法的依据是___________.29.在同一平面内,4条直线的位置如图所示,已知65A ∠=︒,请添加一个条件______,使//AD BC (填一个即可).30.如图,要使//AC BD ,可以添加的条件是______(填写一个你认为正确的即可).知识点五、同旁内角互补,两直线平行31.根据图完成下列填空(括号内填写定理或公理)(1)14∠=∠(已知)①__//____(__________________________________) (2)ABC ∠+∠_____180=︒(已知)//AB CD ∴(________________________) (3)∠_____=∠__(已知) //AD BC ∴(______________________________) (4)5∠=∠____(已知) //AB CD ∴(_______________________________) 32.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果______________,那么____________. 这个判定方法2可简述为:____________,____________.几何语言表述为:如图,∠_______=∠________ //AB CD ∴(2)两条直线被第三条直线所截,如果_______________,那么_____________. 这个判定方法3可简述为:___________,_________________.几何语言表述为:∠______ +∠______180=︒ //AB CD ∴33.如图所示,若162,2118∠=︒∠=︒,则________//_______,根据是_____________________.知识点六、垂直于同一直线的两直线平行34.规律探究:同一平面内有直线a 1,a 2,a 3…,a 100,若a 1①a 2,a 2①a 3,a 3①a 4…,按此规律,a 1和a 100的位置是________.35.如图, a ①c ,b ①c ,则直线a 、b 的关系是________36.若直线//,,a b b c c d ⊥⊥,则a 与d 的位置关系是_______.(填垂直或平行)三、解答题37.完成下面的证明:如图,BE 平分ABD ∠,DE 平分BDC ∠,且90αβ∠+∠=︒,求证//AB CD .证明:①BE 平分ABD ∠(已知),①2ABD α∠=∠( ).①DE 平分BDC ∠(已知),①BDC ∠=________( ).①22)2(ABD BDC αβαβ∠+∠=∠+∠=∠+∠( ).①90αβ∠+∠=︒(已知),①∠+∠=ABD BDC ________( ).①//AB CD ( ).38.如图,AB //CD .①1=①2,①3=①4,试说明AD //BE ,请你将下面解答过程填写完整.解:①AB //CD ,①①4= ( )①①3=①4①①3= ( )①①1=①2①①1+①CAF =①2+①CAE即①BAE = .①①3= )①AD //BE ( )39.已知:如图,点D ,E 分别在AB 和AC 上,CD 平分ACB ∠,40DCB ∠=︒,80AED ∠=︒.求证:DE BC ∥.40.如图,四边形ABCD 中,90A C ∠=∠=,BE 平分ABC ∠,DF 平分ADC ∠,试问BE 与DF 平行吗?为什么?参考答案1.B【分析】根据举反例可判断①,根据垂线的定义可判断①,根据举反例可判断①,根据平行线的基本事实可判断①.【详解】解:①如图①AOC=①2=150°,①BOC=①1=30°,满足①1+①2=180°,射线OC是两角的共用边,但①1与①2不是邻补角,故①不正确;①在同一个面内,过一点有且只有一条直线与已知直线垂直,故①不正确;①如图直线a、b被直线c所截,①1与①2是同位角,但①1>①2,故①不正确;①经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故①正确;其中正确的有①一共1个.故选择B.【点睛】本题考查基本概念的理解,掌握基本概念是解题关键.2.A【分析】依次判断所给内容的正误,即可得.【详解】解:①若a与c相交,b与c相交,则a与b相交;错误,符合题意,a与b还有可能平行,如图所示:①若a//b,b//c那么a//c;正确,不符合题意;①过一点有且只有一条直线与已知直线平行;错误,符合题意;应为“经过直线外一点,有且只有一条直线与已知直线平行,”①在同一平面内,两条直线的位置关系有平行、相交、垂直三种;错误,符合题意,因为垂直是相交的特殊情况,综上,①①①错误,故选A.【点睛】本题考查了平行线,解题的关键是熟记平行公理及其推论和平面内两条直线的位置关系.3.A【分析】根据平行线的判定判断即可.【详解】解:A、在同一平面内,a、b、c是直线,如果a①b,b①c,则a①c,故正确;B、在同一平面内,a、b、c是直线,如果a①b,b①c,则a①c,故错误;C、在同一平面内,a、b、c是直线,如果a①b,b①c,则a①c,故错误;D、在同一平面内,a、b、c是直线,如果a①b,b①c,则a①c,故错误;故选:A.【点睛】本题主要考查的是平行线的判定,平行公理,解题的关键是熟练掌握基本知识,属于中考常考题型.4.B【分析】(1)(5),根据同一平面内,两直线的位置关系只有相交和平行进行判断即可;(2),根据平行线的定义进行判断即可;(3)(4),根据平行线的公理以及公理的推论进行判断即可.【详解】(1)应该是在同一平面内,两直线不相交就平行,故错误;(2)在同一平面内,两条平行的直线没有交点,故错误;(3)应为过直线外一点有且只有一条直线与已知直线平行,故错误;(4)平行于同一直线的两条直线互相平行,是平行公理的推论,故正确;(5)应为在同一平面内,两直线的位置关系只有相交与平行,故错误,所以只有(4)一项正确,故选:B.【点睛】本题是一道有关两直线位置关系的题目,涉及同一平面内两直线的位置关系以及平行线的知识,掌握这些概念和定理是解题的关键.5.C【分析】利用所学的公理,定理,判断选择即可.【详解】解:①根据平行线的性质:两直线平行,同位角相等;故此选项错误;①根据垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项正确;①由平行的公理知:平行于同一条直线的两条直线一定平行,故本选项正确;①连接直线外一点与直线上各点的所有线段中,垂线段最短,故本选项正确;所以正确的有①①①,故选:C.【点睛】此题主要考查了平行公理以及其推论和垂线的定义等,正确把握相关定义是解题关键. 6.A【分析】根据平行公理及其推论:在同一平面内,垂直于同一条直线的两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可求解.【详解】①根据“同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也互相平行”判定:若//,//,a b b c 则//a c ;故说法正确;①若//,,a b a c ⊥则b c ⊥,故说法正确;①根据“在同一平面内,垂直于同一条直线的两直线平行”判定:若,,a b b c ⊥⊥则a c ⊥;说法错误;①若a c ⊥且c 与b 相交,则a 与b 不一定相交,故说法错误故正确的有:①①故选:A【点睛】本题主要考查平行公理及其推论,解题的关键是熟练掌握同一平面内两直线的位置关系. 7.B【分析】根据平行线的判定定理分析即可.【详解】A 、①A 和①ACE 是AB 与CE 被AC 所截形成的内错角,则①A =①ACE 时,可以推出AB ①CE ,不符合题意;B 、①B 和①ACE 不属于AB 与CE 被第三条直线所截形成的任何角,则①B =①ACE 时,无法推出AB ①CE ,符合题意;C 、①B 和①ECD 是AB 与CE 被BD 所截形成的同位角,则①B =①ECD 时,可以推出AB ①CE ,不符合题意;D 、①B 和①BCE AB 与CE 被BD 所截形成的同旁内角,则①B +①BCE =180°时,可以推出AB ①CE ,不符合题意;故选:B .【点睛】本题考查平行线的判定,理解并熟练运用平行线的判定定理是解题关键.8.A由作图可得同位角相等,根据平行线的判定可作答.【详解】解:由图形得,有两个相等的同位角,所以依据为:同位角相等,两直线平行.故选:A.【点睛】本题考查的是作平行线,熟知过直线外一点,作已知直线的平行线的方法和平行线的判定定理是解答此题的关键.9.C【分析】根据平行线的判定定理进行逐一判断即可.【详解】选项A:因为①1=①2,所以EF①DC,故本选项能判断EF①DC;选项B:因为①4=①C,所以EF①DC,故本选项能判断EF①DC;选项C:因为①1+①3=180°,所以ED①BC,故本选项能不判断EF①DC;选项D:因为①3+①C=180°,所以EF①DC,故本选项能判断EF①DC,故选:C【点睛】本题考查了平行线的判定定理的应用,考查了数学推理论证能力.10.D【分析】a b.利用三角形板的特征可确定12∠=∠,然后根据内错角相等,两直线平行可判断//【详解】解:如图,由题意得12∠=∠,a b.根据内错角相等,两直线平行可得//【点睛】本题考查了平行线的判定与性质,解题的关键是熟练掌握内错角相等,两直线平行.11.A【分析】由″内错角相等,两直线平行″即可求解.【详解】解:①①1=①2,①CD①AB.故选:A.【点睛】此题考查了平行线的判定,熟记平行线判定定理是解题的关键.12.D【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析.【详解】解:A、根据“同旁内角互补,两直线平行”可判定AB①CD,故此选项不合题意;B、根据“同位角相等,两直线平行”可判定AB①CD,故此选项不合题意;C、根据“内错角相等,两直线平行”可判定AB①CD,故此选项不合题意;D、①1与①2属于直线AB和CD的内错角、同位角、同旁内角,无法判定AB①CD,故此选项符合题意;故选:D.【点睛】本题考查了平行线的判定,解题的关键是掌握平行线的判定定理.13.A【分析】根据平行线的判定方法逐项判断即得答案.【详解】解:A 、1∠与2∠不是直线BD 与AE 被BC 所截的同位角或内错角,若12∠=∠,不能判定//BD AE ,故本选项符合题意;B 、若34∠=∠,则可根据内错角相等,两直线平行判定//BD AE ,故本选项不符合题意;C 、若D DCE ∠=∠,则可根据内错角相等,两直线平行判定//BD AE ,故本选项不符合题意;D 、若180A ABD ∠+∠=,则可根据同旁内角互补,两直线平行判定//BD AE ,故本选项不符合题意.故选:A .【点睛】本题考查了平行线的判定,属于基础题型,熟练掌握平行线的判定方法是解题的关键. 14.A【分析】同位角相等,则两直线平行;内错角相等,则两直线平行 ;同旁内角互补,则两直线平行;根据这三点对四个选项逐一判断.【详解】A 、①AED =①ACD ,不能判定DE ①BC ,不符合题意;B 、①ADE =①B ,同位角相等,则两直线平行,能判定DE ①BC ,符合题意;C 、①EDC =①DCB ,内错角相等,则两直线平行,能判定DE ①BC ,符合题意;D 、①DEC +①ACB =180°,同旁内角互补,则两直线平行,能判定DE ①BC ,符合题意. 故选:A .【点睛】本题考查两直线平行的判定,掌握相关角度之间的关系推断平行时本题解题关键. 15.A【分析】根据平行线的判定定理逐一判断,排除错误答案.【详解】解:A 、正确,根据内错角相等,两直线平行;B 、错误,由内错角相等,两直线平行,得出AB //CD ,而不是//AD BC ;C 、错误,①1+①2=①3+①4,即①ABC =①ADC ,无法说明//AD BC ;D、错误,①A+①C=180°,但这两个角不是同旁内角,所以无法说明//AD BC.故选:A.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.16.B【分析】根据平行线的性质与垂线的定义进行逐一判断即可.【详解】解:①一条直线的垂线能画无数条,此说法错误;①垂直于同一直线的两条直线互相平行,此说法错误;①平面内,过线段AB外一点有且只有一条直线与AB垂直,此说法正确;故选B.【点睛】本题主要考查了平行线的性质和垂线的定义,解题的关键在于能够熟练掌握相关知识进行求解.17.D【分析】根据垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行,逐条分析每个命题的真假即可.【详解】解:A、若a①c,b①c,则a①b,是真命题;B、若a①c,b①c,则a①b,是真命题;C、若a①b,b①c,则a①c,是真命题;D、若a①c,b①c,则a①b,原命题是假命题;故选:D.【点睛】本题主要考查同一平面内两条直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.18.D【分析】分别根据对顶角、邻补角、平行线的判定方法即可解答.【详解】①对顶角相等,正确;①在同一平面内,若//a b ,c 与a 相交,则b 与c 也相交,正确;①邻补角之和为180°,所以它们平分线的夹角为180=902︒︒,即邻补角的平分线互相垂直,正确;①在同一平面内,垂直于同一条直线的两条直线互相垂直,正确.故选:D .【点睛】本题考查了平行线定理,两直线位置关系和对顶角、邻补角等知识,熟练掌握定理并灵活运用是解题关键.19.过直线外一点有且只有一条直线与已知直线平行 第三条直线平行 平行 //a c【分析】根据平行公理以及平行公理的推论解答即可.【详解】(1)平行公理是:过直线外一点有且只有一条直线与已知直线平行;(2)平行公理的推论是如果两条直线都与第三条直线平行,那么这两条直线也平行,即三条直线,,a b c ,若//,//a b b c ,则//a c . 故答案为:过直线外一点有且只有一条直线与已知直线平行;第三条直线平行,平行,//a c . 【点睛】本题主要考查了平行公理以及平行公理的推论,属于基础题,掌握平行公理以及平行公理的推论是解题的关键.20.①①【分析】根据平行线的判定与性质,平行公理及推论进行逐一判断即可.【详解】在同一平面内,过一点有且只有一条直线与已知直线垂直,故①错误;过直线外一点有且只有一条直线与已知直线平行,故①错误;若b ①c ,a ①c ,则b ①a ,故①正确;若①1=40°,①2的两边与①1的两边分别平行,则①2=40°或140°,故①正确;若在同一平面内,b ①c ,a ①c ,则b ①a ,故①错误.所以其中正确的是①①.故答案为:①①.【点睛】本题考查了平行线的判定与性质,平行公理及推论,解决本题的关键是掌握平行线的判定与性质.21.①①①【分析】根据同旁内角的定义,对①进行判断;根据三角形的面积公式,对①进行判断;根据垂线的性质对①进行判断;根据平行线的性质,对①进行判断【详解】解:B 与C ∠是直线AB 和AC 被直线BC 所截的同旁内角,故①错误;①AB AC ⊥,AD BC ⊥,3AC =,4AB =,5BC =,①三角形ABC 的面积=12AB ⨯AC==1⨯AD ①3⨯4=5⨯AD ,①AD=2.4①点A 到直线BC 的距离=AD=2.4,故①正确;①在同一平面内,过一点有且只有一条直线与已知直线垂直,①过点A 仅能作一条直线与BC 垂直,故①正确①在同一平面内,过直线外一点有且只有一条直线与已知直线平行,①过直线AC 外一点有且只有一条直线与直线AC 平行,故①正确故答案为:①①①【点睛】本题考查了点到直线的距离、同旁内角、平行线的性质、垂线的性质,解决本题的关键是熟练掌握相关的知识.22.b ①c .【分析】根据平行线的判定得出即可.【详解】①同一平面内三条直线a 、b 、c ,a ①b ,a ①c ,①b ①c ,故答案为:b ①c .【点睛】本题考查了平行线的性质和判定,平行公理及推理的应用,能熟记知识点(平行于同一直线的两直线平行)是解此题的关键.23.①①①【分析】根据同位角、对顶角、平行线的性质、垂线的性质即可依次判断.【详解】①两直线平行,同位角相等,故错误;①对顶角相等,正确;①在同一平面内,不相交也不重合的两条直线一定平行,故错误;①过直线外一点有且只有一条直线与这条直线平行,正确;①如果直线,a b c d ⊥⊥,那么a,c 的位置关系不确定,故错误;①垂线段最短,正确;①在同一平面内,过一点有且只有一条直线与已知直线垂直,故错误.故答案为:①①①.【点睛】此题主要考查同位角、对顶角、平行线的性质、垂线的性质,解题的关键是熟知各自的性质及特点.24.a①c【分析】根据平行公理推论,即可求解.【详解】①a ,b ,c 是直线,且a①b ,b①c①a①c故答案为:a①c【点睛】本题考查了平行公理及推论,如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.∠=∠(答案不唯一)25.BEF EAC【分析】根据平行线的判定,即可求解.【详解】∠=∠,解:①BEF EAC①//AC EF(同位角相等,两直线平行),也可以写:AFE CAD∠=∠.∠=∠(答案不唯一).故答案为:BEF EAC【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.26.①3=①F同位角相等,两直线平行【分析】根据平行线的判定定理可得.【详解】解:若①3=①F,则CE①DF,理由是:同位角相等,两直线平行,故答案为:①3=①F,同位角相等,两直线平行.(答案不唯一)【点睛】本题考查了平行线的判定定理,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.27.同位角相等(答案不唯一)同位角相等(答案不唯一)【分析】根据平行线的判定定理解答即可.【详解】两条直线平行的条件(除平行线定义和平行公理推论外):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.这个判定方法可简述为:同位角相等,两直线平行.故答案为:同位角相等,同位角相等.【点睛】本题主要考查平行线的判定定理,属于基础题,熟练掌握平行线的判定定理是解题关键. 28.内错角相等,两直线平行【分析】根据平行线的判定方法解决问题即可.【详解】解:由作图可知,12∠=∠12∠=∠,a //b ∴(内错角相等两直线平行),故答案为:内错角相等,两直线平行.【点睛】本题考查作图,平行线的判定等知识,熟练掌握平行线的判定定理是解题的关键,属于中考常考题型.29.65ABF ∠=︒【分析】根据平行线的判定条件求解即可.【详解】解:①AD ①BC①①A =①ABF =65°故答案为:①ABF =65°.【点睛】本题主要考查了平行线的判定,解题的关键在于能够熟练掌握平行线的判定条件. 30.C CBD ∠=∠(答案不唯一,只要正确即可得分)【分析】根据平行线的判定方法即可解答.【详解】解:①C CBD ∠=∠①//AC BD (内错角相等,两直线平行).故答案为:C CBD ∠=∠(答案不唯一,只要正确即可得分).【点睛】本题主要考查了平行线的判定,熟练掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.31.AB CD 内错角相等,两直线平行 BCD 同旁内角互补,两直线平行 3 2 内错角相等,两直线平行 ABC 同位角相等,两直线平行【分析】(1)根据内错角相等,两直线平行得出即可;(2)根据同旁内角互补,两直线平行得出即可;(3)根据内错角相等,两直线平行得出即可;(4)根据同位角相等,两直线平行得出即可.【详解】解:(1)14∠=∠(已知),//AB CD ∴(内错角相等,两直线平行),(2)ABC ∠+∠BCD 180=︒(已知),//AB CD ∴(同旁内角互补,两直线平行),(3)∠3=∠2(已知),//AD BC ∴(内错角相等,两直线平行)(4)5∠=∠ABC (已知),//AB CD ∴(同位角相等,两直线平行),故答案为:AB;CD;内错角相等,两直线平行;BCD;同旁内角互补,两直线平行;3;2;内错角相等,两直线平行;ABC;同位角相等,两直线平行.【点睛】本题考查了平行线的判定,能正确运用定理进行推理是解此题的关键,注意:平行线的判定有:①同位角相等,两直线平行,①内错角相等,两直线平行,①同旁内角互补,两直线平行.32.内错角相等两直线平行内错角相等两直线平行 2 8 同旁内角互补两直线平行同旁内角互补两直线平行 2 5【分析】(1)根据“内错角相等,两直线平行”回答即可;(2)根据“同旁内角互补,两直线平行”回答即可.【详解】解:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行.这个判定方法2可简述为:内错角相等,两直线平行.几何语言表述为:如图,①①2=①8,①AB//CD;(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行.这个判定方法3可简述为:同旁内角互补,两直线平行.几何语言表述为:①①2+①5=180°,①AB//CD.故答案为:内错角相等;两直线平行;内错角相等;两直线平行;2;8;同旁内角互补;两直线平行;同旁内角互补;两直线平行;2;5.【点睛】本题考查了平行线的判定,掌握“内错角相等,两直线平行”以及“同旁内角互补,两直线平行”是解题的关键.33.AD BC同旁内角互补,两直线平行【分析】根据平行线的判定(同旁内角互补,两直线平行)回答即可.【详解】∠=︒∠=︒,解:①162,2118∠+∠=︒,①12180AD BC(同旁内角互补,两直线平行),①//故答案为:AD;BC;同旁内角互补,两直线平行.【点睛】本题考查了平行线的判定:同旁内角互补,两直线平行,熟练掌握平行线的判定定理是解决本题的关键.34.a1①a100;【分析】从已知两直线的位置关系,运用平行线的性质,观察分析得几条特殊直线与a1的位置关系为a1①a4,a1①a5;a1①a2,a1①a3;且a1与a n的位置关系是4为周期进行循环,下角标的余数为0或1时与a1平行,下角标的余数为2或3时与a1垂直,计算100=4×25,余数为0判定两直线的位置关系为a1①a100.【详解】解:在同一平面内有直线两直线的位置,关系是相交或平行,如图所示:①a1①a2,a2①a3,①a1①a3,又①a3①a4,①a1①a4,又①a4①a s,①a1①a5,又①a5①a6,①a1①a6,又①a6①a7,①a1①a7,…。

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题含答案

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题含答案

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面几种说法中,正确的是A.同一平面内不相交的两条线段平行B.同一平面内不相交的两条射线平行C.同一平面内不相交的两条直线平行D.以上三种说法都不正确【答案】C2.如图所示,若∠1与∠2互补,∠2与∠4互补,则A.l3∥l4B.l2∥l5C.l1∥l5D.l1∥l2【答案】D【解析】因为∠1与∠2互补,∠2与∠4互补,可知∠1+∠2=180°,∠2+∠4=180°,所以∠1=∠4,根据内错角相等,两直线平行可得l1∥l2,故选D.3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是A.第一次向右拐40°,第二次向左拐140°B.第一次向右拐40°,第二次向右拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向左拐40°,第二次向右拐40°【答案】D4.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【答案】A【解析】三角板的∠CAB,沿着FE进行平移后角的大小没变,而平移前后的两个角是同位角,所以画图原理是“同位角相等,两直线平行”.5.如图,给出下面的推理:①∵∠B=∠BEF,∴AB∥EF;②∵∠B=∠CDE,∴AB∥CD;③∵∠B+∠BEC=180°,∴AB∥EF;④∵AB∥CD,CD∥EF,∴AB∥EF.其中正确的是A.①②③B.①②④C.①③④D.②③④【答案】B二、填空题:请将答案填在题中横线上.6.在同一平面内有四条直线a、b、c、d,已知:a∥d,b∥c,b∥d,则a和c的位置关系是__________.【答案】a∥c【解析】∵a∥d,b∥c,b∥d,∴a∥c.故答案为:a∥c.7.如图,直线a、b被直线c所截,若要a∥b,需增加条件__________(填一个即可).【答案】答案不唯一,如∠1=∠3.【解析】∵∠1=∠3,∴a∥b(同位角相等,两直线平行),故答案为:∠1=∠3.8.如图所示,若∠1=70°,∠2=50°,∠3=60°,则________________∥________________.【答案】DE;AC三、解答题:解答应写出文字说明、证明过程或演算步骤.9.如图,已知∠1=∠3,AC平分∠DAB,你能推断出哪两条直线平行?请说明理由.【解析】可以推断出DC∥AB,理由如下:∵AC平分∠DAB,∴∠1=∠2(角平分线的定义),又∵∠1=∠3,∴∠2=∠3(等量代换),∴DC∥AB(内错角相等,两直线平行).10.如图,若∠1与∠B互为补角,∠B=∠E,那么直线AB与直线DE平行吗?直线BC与直线EF平行吗?为什么?【解析】BC∥EF,理由如下:∵∠1+∠B=180°,∴AB∥DE,∵∠1+∠B=180°,∠B=∠E.∴∠1+∠E=180°,又∠1=∠2,∴∠2+∠E=180°,∴BC∥EF.11.如图,已知∠A+∠ACD+∠D=360°,试说明:AB∥DE.12.如图,∠1=65°,∠2=65°,∠3=115°.试说明:DE∥BC,DF∥AB.根据图形,完成下面的推理:因为∠1=65°,∠2=65°,所以∠1=∠2.所以__________∥__________.(__________)因为AB与DE相交,所以∠1=∠4(__________),所以∠4=65°.又因为∠3=115°,所以∠3+∠4=180°.所以__________∥__________.(__________)。

人教版七年级下册数学平行线的判定及性质证明题训练(含答案)

人教版七年级下册数学平行线的判定及性质证明题训练(含答案)

人教版七年级下册数学平行线的判定及性质证明题训练(含答案)1.如图,三角形ABC 中,点D 在AB 上,点E 在BC 上,点F ,G 在AG 上,连接,,DG BG EF .己知12∠=∠,3180ABC ∠+∠=︒,求证:∥BG EF .将证明过程补充完整,并在括号内填写推理依据.证明:∵_____________(已知)∴∥DG BC (_______________________)∴.CBG ∠=________(____________________)∵12∠=∠(已知)∴2∠=________(等量代换)∴∥BG EF (___________________)2.如图,已知12∠=∠,A F ∠=∠,试说明C D ∠=∠的理由.解:把1∠的对顶角记作3∠,所以13∠=∠(对顶角相等).因为12∠=∠(已知),所以23∠∠=( ),所以 ∥ ( ).(请继续完成接下去的说理过程)3.如图,CD ∥AB ,点O 在直线AB 上,OE 平分∠BOD ,OF ⊥OE ,∠D =110°,求∠DOF 的度数.4.如图,DH 交BF 于点E ,CH 交BF 于点G ,12∠=∠,34∠=∠,5B ∠=∠.试判断CH 和DF 的位置关系并说明理由.5.已知:如图,直线DE//AB.求证:∠B+∠D=∠BCD.6.如图,已知AB CD∥,BE平分ABC∠,CE平分BCD∠,求证1290∠+∠=︒.证明:∵BE平分ABC∠(已知),∴2∠=(),同理1∠=,∴1122∠+∠=,又∵AB CD∥(已知)∴ABC BCD∠+∠=(),∴1290∠+∠=︒.7.请把下列证明过程及理由补充完整(填在横线上):已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠4.求证:AB∥CD.证明:∵AD∥BC(已知),∴∠3=().∵∠3=∠4(已知),∴∠4=().∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF().即∠BAF=.∴∠4=∠BAF.().∴AB∥CD().8.如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.解:∵∠A=120°,∠FEC=120°(已知),∴∠A=().∴AB∥().又∵∠1=∠2(已知),∴EF ∥ ( ).∴∠FDG =∠EFD ( ).9.在三角形ABC 中,CD AB ⊥于D ,F 是BC 上一点,FH AB ⊥于H ,E 在AC 上,EDC BFH ∠=∠.(1)如图1,求证:∥DE BC ;(2)如图2,若90ACB ∠=︒,请直接写出图中与ECD ∠互余的角,不需要证明.10.已知:如图,直线MN HQ ∥,直线MN 交EF ,PO 于点A ,B ,直线HQ 交EF ,PO 于点D ,C ,DG 与OP 交于点G ,若1103∠=︒,277∠=︒,396∠=︒.(1)求证:EF OP ∥;(2)请直接写出CDG ∠的度数.11.如图直线a b ∥,直线EF 与,a b 分别和交于点,,A B AC AB AC ⊥、交直线b 于点C .(1)若160∠=︒,直接写出2∠= ;(2)若3,4,5AC AB BC ===,则点B 到直线AC 的距离是 ;(3)在图中直接画出并求出点A 到直线BC 的距离.12.如图,已知AB CD ,BE 平分∠ABC ,∠CDE = 150°,求∠C 的度数.13.如图,在ABC 中,CD 平分ACB ∠交AB 于D ,EF 平分AED ∠交AB 于F ,已知ADE B ∠=∠,求证:EF CD ∥.14.已知:如图,AB ∥CD ∥EF ,点G 、H 、M 分别在AB 、CD 、EF 上.求证:GHM AGH EMH ∠∠∠=+.15.如图所示,点B 、E 分别在AC 、DF 上,BD 、CE 均与AF 相交,A F ∠=∠,C D ∠=∠,求证:12∠=∠.16.如图,在ABC 中,DE ∥AC ,DF ∥AB .(1)判断∠A 与∠EDF 之间的大小关系,并说明理由.(2)求∠A +∠B +∠C 的度数.17.已知:如图,ABC 中,点D 、E 分别在AB 、AC 上,EF 交DC 于点F ,32180∠+∠=︒ ,1B ∠=∠.(1)求证:∥DE BC ;(2)若DE 平分ADC ∠,33B ∠=∠,求2∠的度数.18.如图,AB ∥DG ,∠1+∠2=180°.(1)试说明:AD ∥EF ;(2)若DG 是∠ADC 的平分线,∠2=142°,求∠B 的度数.19.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ∥,通过平行线性质,可得APC ∠=______.问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.20.直线AB CD∠.∥,直线EF分别交AB、CD于点M、N,NP平分MND(1)如图1,若MR平分EMB∠,则MR与NP的位置关系是.∠,则MR与NP有怎样的位置关系?请说明理由.(2)如图2,若MR平分AMN(3)如图3,若MR平分BMN∠,则MR与NP有怎样的位置关系?请说明理由.参考答案:1.解:证明:∵3180ABC ∠+∠=︒(已知)∴∥DG BC (同旁内角互补,两直线平行)∴.1CBG ∠=∠(两直线平行,内错角相等)∵12∠=∠(已知)∴2CBG ∠=∠(等量代换)∴∥BG EF (同位角相等,两直线平行)2.解:把1∠的对顶角记作3∠,所以13∠=∠(对顶角相等).因为12∠=∠(已知),所以23∠∠=(等量代换),所以//BD CE (同位角相等,两直线平行),所以4C ∠=∠(两直线平行,同位角相等),又因为A F ∠=∠,所以//DF AC (同位角相等,两直线平行),所以4D ∠=∠(两直线平行,内错角相等),所以C D ∠=∠(等量代换).故答案为:等量代换;BD ;CE ;同位角相等,两直线平行.3.解:∵CD AB ∥∴110DOB D ∠=∠=︒∵OE 平分∠BOD ∴1552DOE DOB ∠=∠=︒ 又∵OF ⊥OE∴90EOF ∠=︒∴905535DOF EOF DOE ∠=∠-∠=︒-︒=︒故答案为:35︒4.解:CH DF,理由如下:∵34∠=∠,∴CD BF,∴5180BED∠+∠=︒,∵5B∠=∠,∴180B BED∠+∠=︒,∴BC DH,∴2H∠=∠,∵12∠=∠,∴1H∠=∠,∴CH DF.5.证明:过点C作CF∥AB,∴∠B=∠BCF,∵DE//AB.CF∥AB,∴CF∥DE,∴∠D=∠DCF,∴∠BCD=∠BCF+∠DCF=∠B+∠D.6.证明:∵BE平分∠ABC(已知),∴∠2=12∠ABC(角平分线的定义),同理∠1=12∠BCD,∴∠1+∠2=12(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC +∠BCD =180°(两直线平行,同旁内角互补 ),∴∠1+∠2=90°. 故答案为:12∠ABC ;角平分线的定义;12∠BCD ;(∠ABC +∠BCD );180°;两直线平行,同旁内角互补.7.证明:∵AD ∥BC (已知),∴∠3=∠CAD (两直线平行,内错角相等).∵∠3=∠4(已知),∴∠4=∠CAD (等量代换).∵∠1=∠2(已知),∴∠1+∠CAF =∠2+∠CAF (等式的性质).即∠BAF =∠CAD .∴∠4=∠BAF .(等量代换).∴AB ∥CD (同位角相等,两直线平行).8.解:∵∠A =120°,∠FEC =120°(已知),∴∠A =∠FEC (等量代换),∴AB ∥EF (同位角相等,两直线平行),又∵∠1=∠2(已知),∴AB ∥CD (内错角相等,两直线平行),∴EF ∥CD (平行于同一条直线的两直线互相平行),∴∠FDG =∠EFD (两直线平行,内错角相等),故答案为:∠FEC ;等量代换;EF ;同位角相等,两直线平行;内错角相等,两直线平行;CD ;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.9.证明:∵CD AB ⊥,FH AB ⊥,∴//CD FH ,∴BCD BFH ∠=∠.∵EDC BFH ∠=∠,∴BCD EDC ∠=∠,∴//ED BC .(2)与ECD ∠互余的角有:EDC BCD BFH A ∠∠∠∠,,,.证明:∵//ED BC ,∴90DEC ACB ∠=∠=︒,EDC BCD ∠=∠,∴90ECD EDC ∠+∠=︒,90ECD BCD ∠+∠=︒.∵//CD FH ,∴BCD BFH ∠=∠,∴90ECD BFH ∠+∠=︒.∵CD AB ⊥,∴90ACD A ∠+∠=︒,即90ECD A ∠+∠=︒.综上,可知与ECD ∠互余的角有:EDC BCD BFH A ∠∠∠∠,,,.10.解:(1)∵1103∠=︒,∴77∠=︒ABC ,∵277∠=︒,∴2ABC ∠=∠,∴EF OP ∥;(2)∵MN HQ ∥,EF OP ∥,∴1103∠=∠=∠=︒FDC FAB ,3180∠+∠=︒FDG ,∵396∠=︒,∴180********∠=︒-∠=︒-︒=︒FDG ,∴1038419∠=∠-∠=︒-︒=︒CDG FDC FDG .11.解:(1)∵a b ∥,∴12180BAC ∠+∠+∠=︒,∵AC AB ⊥,160∠=︒,∴230∠=︒,故答案为:30︒;(2)∵AC AB⊥,∴点B到直线AC的距离为线段4AB=,故答案为:4;(3)如图所示:过点A作AD BC⊥,点A到直线BC的距离为线段AD的长度,∵AC AB⊥,∴ABC∆为直角三角形,∴1122ABCS AC AB BC AD∆=⨯⨯=⨯⨯,即1134522AD ⨯⨯=⨯⨯,解得:125 AD=,∴点A到直线BC的距离为125.12.解:∵∠CDE=150°,∴∠CDB=180°-∠CDE=30°,又∵AB CD,∴∠ABD=∠CDB=30°,∵BE平分∠ABC,∴∠ABC=2∠ABD=60°,∵AB CD,∴∠C=180°-∠ABC=120°.13.证明:ADE B∠=∠(已知),DE//BC∴(同位角相等,两直线平行),ACB AED∴∠=∠(两直线平行,同位角相等),CD 平分ACB ∠,EF 平分AED ∠(已知),12ACD ACB ∴∠=∠,12AEF AED ∠=∠(角平分线的定义), ACD AEF ∴∠=∠(等量代换).EF //CD ∴(同位角相等,两直线平行).14.证明:∵AB ∥CD (已知)∴1AGH ∠=∠(两直线平行,内错角相等) 又 ∵CD ∥EF (已知)∴2EMH ∠=∠,(两直线平行,内错角相等) ∵12GHM ∠∠∠=+(已知)∴GHM AGH EMH ∠∠∠=+(等式性质)15.证明:∵A F ∠=∠,∴AC DF ∥,∴ABD D ∠=∠,又∵C D ∠=∠,∴ABD C ∠=∠,∴DB CE ∥,∴13∠=∠,∵23∠∠=,∴12∠=∠.16.(1)两角相等,理由如下:∵DE ∥AC ,∴∠A =∠BED (两直线平行,同位角相等).∵DF ∥AB ,∴∠EDF =∠BED (两直线平行,内错角相等), ∴∠A =∠EDF (等量代换).(2)∵DE ∥AC ,∴∠C =∠EDB (两直线平行,同位角相等).∵DF ∥AB ,∴∠B =∠FDC (两直线平行,同位角相等).∵∠EDB +∠EDF +∠FDC =180°,∴∠A +∠B +∠C =180°(等量代换).17.解:(1)∵32180∠+∠=︒,∠2+∠DFE =180°, ∴∠3=∠DFE ,∴EF //AB ,∴∠ADE =∠1,又∵1B ∠=∠,∴∠ADE =∠B ,∴DE //BC ,(2)∵DE 平分ADC ∠,∴∠ADE =∠EDC ,∵DE //BC ,∴∠ADE =∠B ,∵33B ∠=∠∴∠5+∠ADE +∠EDC =3B B B ∠+∠+∠=180°, 解得:36B ∠=︒,∴∠ADC =2∠B =72°,∵EF //AB ,∴∠2=∠ADC =180°-108°=72°,18.(1)∵AB ∥DG ,∴∠BAD =∠1,∵∠1+∠2=180°,∴∠BAD +∠2=180°.∵AD ∥EF .(2)∵∠1+∠2=180°且∠2=142°,∴∠1=38°,∵DG 是∠ADC 的平分线,∴∠CDG =∠1=38°,∵AB ∥DG ,∴∠B =∠CDG =38°.19.解:问题情境:∵AB ∥CD ,PE ∥AB ,∴PE ∥AB ∥CD ,∴∠A +∠APE =180°,∠C +∠CPE =180°,∵∠P AB =130°,∠PCD =120°,∴∠APE =50°,∠CPE =60°,∴∠APC =∠APE +∠CPE =50°+60°=110°;(1)CPD αβ∠=∠+∠;过点P 作PQ AD ∥,又因为AD BC ∥,所以PQ AD BC ∥∥,则ADP DPE ∠=∠,BCP CPE ∠=∠,所以CPD DPE CPE ADP BCP ∠=∠+∠=∠+∠;(2)情况1:如图所示,当点P 在B 、O 两点之间时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE =∠ADP =∠α,∠CPE =∠BCP =∠β, ∴∠CPD =∠DPE -∠CPE =∠α-∠β,情况2:如图所示,点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE =∠ADP =∠α,∠CPE =∠BCP =∠β, ∴∠CPD =∠CPE -∠DPE =∠β-∠α20.(1)如题图1,AB CD ∥EMB END ∴∠=∠MR 平分EMB ∠,NP 平分MND ∠.11,22EMR EMB ENP END ∴∠=∠∠=∠ EMR ENP ∴∠=∠∴MR ∥NP ;(2)如题图2,AB CD ∥AMN END ∴∠=∠MR 平分AMN ∠,NP 平分MND ∠.11,22RMN AMN ENP END ∴∠=∠∠=∠ RMN ENP ∴∠=∠∴MR ∥NP ;(3)如图,设,MR PN 交于点Q ,过点Q 作QG AB ∥AB CD ∥180BMN END ∴∠+∠=︒,QG CD ∥ ,MQG BMR GQN PND ∴∠=∠∠=∠ MR 平分BMN ∠,NP 平分MND ∠.11,22BMR BMN PND END ∴∠=∠∠=∠ 90BMR PND ∴∠+∠=︒90MQN MQG NQG ∴∠=∠+∠=︒ ∴MR ⊥NP ;。

2022-2023学年人教版初中下册数学七年级经典精练---平行线及其判定

2022-2023学年人教版初中下册数学七年级经典精练---平行线及其判定

2022-2023学年人教版初中下册数学七年级经典精练---平行线及其判定综合题一.选择题(共6小题)1.下列说法中,正确的是()A.有公共顶点且有一条公共边的两个角互为邻补角B.不相交的两条直线叫做平行线C.同一平面内,过一点有且只有一条直线与已知直线垂直D.两条直线被第三条直线所截,同位角相等2.下列说法正确的是()A.垂直于同一条直线的两直线互相垂直B.经过一点有且只有一条直线与已知直线平行C.如果两条直线被第三条直线所截,那么同位角相等D.从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离3.在同一个平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.无法确定4.若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行5.如图,在下列条件中,能够证明AD∥CB的条件是()A.∠1=∠4B.∠B=∠5C.∠1+∠2+∠D=180°D.∠2=∠36.如图,若AB∥CD,CD∥EF,那么∠BCE等于()A.∠1+∠2B.∠2﹣∠1C.180°﹣∠2+∠1D.180°﹣∠1+∠2二.填空题(共6小题)7.如图,这是顺义区第一座互通式立交桥——燕京桥,如果将顺平路和通顺路看做是两条直线,那么这两条直线的位置关系是.①相交②不相交③平行④在同一平面内⑤不在同一平面内8.经过直线外一点,有且只有直线与这条直线平行.9.如图,在长方体ABCD﹣EFGH中,与棱EF异面且与平面EFGH平行的棱是.10.不相交的两条直线是平行线..(判断对错)11.如图,直线AB,CD被直线CE所截,∠C=100°,请写出能判定AB∥CD的一个条件:.12.在同一平面内,与已知直线a平行的直线有条;而经过直线外一点P,与已知直线a平行的直线有且只有条.三.解答题(共3小题)13.在同一个平面内,两条直线有哪几种位置关系?14.请举出生活中平行线的例子.15.如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(),∠AGC+∠AGD=180°(),所以∠BAG=∠AGC().因为EA平分∠BAG,所以∠1=().因为FG平分∠AGC,所以∠2=,得∠1=∠2(),所以AE∥GF().平行线及其判定综合题参考答案与解析一.选择题(共6小题)1.下列说法中,正确的是()A.有公共顶点且有一条公共边的两个角互为邻补角B.不相交的两条直线叫做平行线C.同一平面内,过一点有且只有一条直线与已知直线垂直D.两条直线被第三条直线所截,同位角相等【解答】解:A、只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角,原说法错误,故本选项不符合题意;B、在同一平面内,不相交的两条直线叫平行线,原说法错误,故本选项不符合题意;C、在同一平面内,过一点有且只有一条直线与已知直线垂直,说法正确,故本选项符合题意;D、两直线平行,同位角相等,原说法错误,故本选项不符合题意.故选:C.【点评】本题考查了邻补角、平行线的概念、垂直的性质、同位角的概念,解题的关键是熟记相关概念并灵活运用.2.下列说法正确的是()A.垂直于同一条直线的两直线互相垂直B.经过一点有且只有一条直线与已知直线平行C.如果两条直线被第三条直线所截,那么同位角相等D.从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离【解答】解:A、同一平面内,垂直于同一条直线的两直线应是平行不是垂直,故该选项错误;B、根据平行线的性质可知经过直线外一点有且只有一条直线与已知直线平行,该选项错误;C、如果两条平行的直线被第三条直线所截,那么同位角才相等,故该选项错误;D、从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,这一说法是正确的,【点评】本题考查了平行线的性质和判定以及点到直线的距离定义,属于基础性题目.3.在同一个平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.无法确定【解答】解:在同一平面内两条不重合的直线的位置关系是平行和相交.故选:C.【点评】本题主要考查对平行线和相交线的理解和掌握,能熟练地运用性质进行说理是解此题的关键.4.若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行【解答】解:PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选:C.【点评】本题考查了平行线、相交线、垂线的性质,掌握相关定义和性质是解题的关键.5.如图,在下列条件中,能够证明AD∥CB的条件是()A.∠1=∠4B.∠B=∠5C.∠1+∠2+∠D=180°D.∠2=∠3【解答】解:A、∠1=∠4,则AB∥DE,故选项错误;B、∠B=∠5,则AB∥DE,故选项错误;C、∵∠1+∠2+∠D=180°,即∠BAD+∠D=180°,∴AB∥DE,故选项错误;D、正确.【点评】本题考查了平行线的判定定理,正确理解同位角、内错角、同旁内角的定义是关键.6.如图,若AB∥CD,CD∥EF,那么∠BCE等于()A.∠1+∠2B.∠2﹣∠1C.180°﹣∠2+∠1D.180°﹣∠1+∠2【解答】解:∵AB∥CD,CD∥EF,∴∠1=∠BCD,∠DCE+∠2=180°,∴∠BCE=∠BCD+∠DCE=∠1+180°﹣∠2.故选:C.【点评】此题主要考查了平行公理及推论,正确掌握平行线的性质是解题关键.二.填空题(共6小题)7.如图,这是顺义区第一座互通式立交桥——燕京桥,如果将顺平路和通顺路看做是两条直线,那么这两条直线的位置关系是⑤.①相交②不相交③平行④在同一平面内⑤不在同一平面内【解答】解:如果将顺平路和通顺路看做是两条直线,那么这两条直线的位置关系是不在同一平面内.故答案为:⑤.【点评】本题考查了平行线和相交线,掌握相关定义是解答本题的关键.8.经过直线外一点,有且只有一条直线与这条直线平行.【解答】解:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:一条.【点评】本题考查了平行公理,平行公理:经过直线外一点,有且只有一条直线与这条直线平行.9.如图,在长方体ABCD﹣EFGH中,与棱EF异面且与平面EFGH平行的棱是棱AD,棱BC..【解答】解:与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.故答案为:棱AD和棱BC.【点评】本题主要考查了平行线与立体图形,熟练掌握平行线与立体图形的特征进行求解是解决本题的关键.10.不相交的两条直线是平行线.×.(判断对错)【解答】解:不相交的两条直线是平行线,错误,应为同一平面内,不相交的两条直线是平行线.故答案为:×.【点评】此题主要考查了平行线的定义,关键是注意“同一平面”.11.如图,直线AB,CD被直线CE所截,∠C=100°,请写出能判定AB∥CD的一个条件:∠1=100°(答案不唯一).【解答】解:能判定AB∥CD的一个条件:∠1=100°(答案不唯一),理由如下:∵∠C=100°,∠1=100°,∴∠C=∠1,∴AB∥CD,故答案为:∠1=100°(答案不唯一).【点评】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.12.在同一平面内,与已知直线a平行的直线有无数条;而经过直线外一点P,与已知直线a平行的直线有且只有1条.【解答】解:在同一平面内,与已知直线a平行的直线有无数条;而经过直线外一点P,与已知直线a平行的直线有且只有1条.【点评】本题主要考查平行公理,注意成立的条件.三.解答题(共3小题)13.在同一个平面内,两条直线有哪几种位置关系?【解答】解:在同一个平面内的两条直线一定是平行或相交两种位置关系.【点评】本题考查了同一平面两条直线的位置关系,解决本题的关键是在同一平面内不重合的两条直线,有两种位置关系:相交或平行.14.请举出生活中平行线的例子.【解答】解:①马路上斑马线;②笔直的火车铁轨;③练习簿上的横线;④长方形黑板的上下边沿.【点评】本题主要考查了平行线,熟练掌握平行线的定义是解题的关键.15.如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等).因为EA平分∠BAG,所以∠1=∠BAG(角平分线的定义).因为FG平分∠AGC,所以∠2=∠AGC,得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).【解答】解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等),因为EA平分∠BAG,所以∠1=∠BAG(角平分线的定义),因为FG平分∠AGC,所以∠2=∠AGC,得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).故答案为:已知;邻补角的定义;同角的补角相等;∠BAG;角平分线的定义;∠AGC;等量代换;内错角相等,两直线平行.【点评】此题考查了平行线的判定,熟记“内错角相等,两直线平行”是解题的关键。

七年级数学平行线的判定练习题

七年级数学平行线的判定练习题

精心整理七年级数学平行线的判定练习题一、填空1.如图1若∠A=∠3,则 ∥ ;若∠2=∠E ,则 ∥ ;若∠ A +∠ = 180°,234 57 8的条件: .9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空:(1)∵∠A =∠ (已知),∴AC∥ED1 3 C D B 图8( );(2)∵∠2 =∠ (已知),∴AC∥ED ( );(3)∵∠A +∠ = 180°(已知),∴AB∥FD ( );(4)∵∠2 +∠ = 180°(已知),∴AC∥ED ( )11.如图③ ∵∠1=∠2,∴______∥_____( ( 13.线有141.如图:∠1=︒53,∠2=︒127,∠3=︒53,试说明直线AB 与CD ,BC 与DE 的位置关系。

2.如图10,∠1∶∠2∶∠3 = 2∶3∶4 ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由. 3.如图9,∠D =∠A ,∠B =∠FCB ,求证:ED∥CF . 4.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME 。

求证:AB∥CD ,MP∥NQ . E B A F D C 图9 1 3 2 A E C D B F 图10 A BE 1 M5.如图,AB 、CD 被EF 所截,MG 平分∠BMN ,NH 平分∠DNM ,已知∠GMN+ ∠HNM=90°,试问:AB ∥CD 吗?请说明理由。

6、如图,直线EF 交直线AB 、CD 于点M 、N ,∠EMB= ∠END ,MG 平分∠EMB ,NH 平分∠END ,试问:图中哪两些直线互相平行?为什么? C D F A B N M G H。

初一数学平行线的判定试题

初一数学平行线的判定试题

初一数学平行线的判定试题1.如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠5=∠4C.∠5+∠3=180°D.∠4+∠2=180°【答案】 B【解析】A、已知∠1=∠3,根据内错角相等,两直线平行可以判断,故命题正确;B、不能判断;C、同旁内角互补,两直线平行,可以判断,故命题正确;D、同旁内角互补,两直线平行,可以判断,故命题正确.2.如图,以下条件能判定GE∥CH的是()A.∠FEB=∠ECDB.∠AEG=∠DCHC.∠GEC=∠HCFD.∠HCE=∠AEG【答案】 C【解析】∠FEB=∠ECD,∠AEG=∠DCH,∠HCE=∠AEG错误,因为它们不是GE、CH被截得的同位角或内错角;∠GEC=∠HCF正确,因为它们是GE、CH被截得的内错角.3.如图,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB,要使DF∥BC,只需满足下列条件中的()A.∠1=∠2 B.∠2=∠AFD C.∠1=∠AFD D.∠1=∠DFE【答案】D【解析】∵EF∥AB,∴∠1=∠2(两直线平行,同位角相等).∵∠1=∠DFE,∴∠2=∠DFE (等量代换),∴DF∥BC(内错角相等,两直线平行).所以只需满足下列条件中的∠1=∠DFE.4.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD,其中能使AD∥BC的条件是()A.①②B.③④C.②④D.①③④【答案】C【解析】①AC=BD,不能判断两直线平行,故错误;②∠DAC=∠BCA,根据内错角相等,两直线平行可得AD∥BC,故正确;③∠ABD和∠CDB是直线AB、CD被BD所截形成的内错角,故可得AB∥CD,故错误;④∠ADB=∠CBD,根据内错角相等,两直线平行可得AD∥BC,故正确.5.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCE C.∠1=∠2D.∠D+∠ACD=180°【答案】C【解析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.6.如图,能判定EB∥AC的条件是()A.∠C="∠ABE"B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE【答案】D【解析】A和B中的角不是三线八角中的角;C中的角是同一三角形中的角,故不能判定两直线平行.D中内错角∠A=∠ABE,则EB∥AC.7.如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是()A.同位角相等,两直线平行B.两直线平行,同位角相等C.内错角相等,两直线平行D.两直线平行,内错角相等【答案】A【解析】根据∠BAC=∠EDC,由同位角相等,两直线平行,即可判定AB∥DE.8.如图所示,当________时,有CE∥AB成立.(只需要写出一个条件即可)【答案】∠1="∠2"【解析】先假设CE∥AB,由平行线的性质可知∠1=∠2,故可得出结论.9.如图,已知∠1=70°,∠2=70°,∠3=60°,则∠4=_______度.【答案】60°【解析】根据∠1=∠2可得a∥b,再根据两直线平行,内错角相等,求出∠4.10.如图,AC、BD相交于O,AB∥DC,AB=BC,∠D=40°,∠ACB=35°,则∠AOD=_______________.【答案】75°【解析】∵AB=BC,∴∠BAC=∠ACB=35°,∵AB∥CD,∴∠D=∠ABD=40°,∴∠AOD=∠ABD+∠BAC=75°.。

华东师大版七年级数学上册《4.2.2平行线的判定》同步测试题及答案

华东师大版七年级数学上册《4.2.2平行线的判定》同步测试题及答案

华东师大版七年级数学上册《4.2.2平行线的判定》同步测试题及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如图,AC 与BD 交于点O ,下列条件中①12∠=∠;①34∠∠=;①256∠+∠=∠;①23180DAB ∠+∠+∠=︒,能判断AD BC ∥的有( )A .1个B .2个C .3个D .4个2.如图,下列条件中不能判定AB FD ∥的是( )A .14∠=∠B .3A ∠=∠C .2180A ∠+∠=︒D .1A ∠=∠3.如图,能判定AB //CE 的条件是( )A .B DCE ∠=∠ B .A DCE ∠=∠C .B ACE ∠=∠D .A ACD ∠=∠4.如图,下列条件中能判断AD BC ∥是 ( )A .12∠=∠B .14∠=∠C .23∠∠=D .B D ∠=∠5.如图,直线a b ,被直线c 所截,下列条件不能判断ab 的是( )A .14∠=∠B .24∠∠=C .23180∠+∠=︒D .34180∠+∠=︒6.如图,下列四个条件中能判定AD BC ∥的有( )①12∠=∠;①34∠=∠;①5DCE ∠=∠;①180BCD D ∠+∠=︒ A .①①B .①①C .①①D .①①7.直线1l 和2l ,被直线3l 所截,形成的夹角如图所示,那么添加下列哪个条件后,可判定1l 2l ∥的是( )A .12∠=∠B .13180∠+∠=︒C .12180∠+∠=︒D .15180∠+∠=︒8.如图,已知190∠=︒,为保证两条铁轨平行,添加的下列条件中,正确的是( )A .290∠=︒B .390∠=︒C .490∠=︒D .590∠=︒二、填空题9.如图,已知线段AC 和DE .点B 为DE 上一点,连接AB 、CD 相交于点O 、请添加一个条件 (只填一个即可).使AC DE ∥.10.如图,下列条件能判定AB CD ∥的是 . ①12∠=∠ ①180BAD ADC ∠+∠=︒ ①3ABC ∠=∠ ①3ADC ∠=∠11.如图所示,过点P 画直线a 的平行线b 的作法的依据是 .12.如图,请添加一个条件 ,可得AD BC ∥.13.如图,只需添加一个条件,即可以证明AB CD ∥,这个条件可以是 .(写出一个即可)三、解答题14.如图,直线AB CD ,与EF 交于M ,N 两点12∠=∠,且MQ 平分EMB ∠,NP 平分MND ∠,求证:直线AB CD ∥.15.如图,AC ①AE ,BD ①BF ,①1=35°,①2=35°.AC 与BD 平行吗?AE 与BF 平行吗?16.如图1,点A 、B 在直线1l 上,点C 、D 在直线2l 上,AE 平分BAC ∠,CE 平分ACD ∠,90EAC ACE ∠∠+=︒.判断1l 与2l 的位置关系并说明理由.17.如图,把含30︒角的直角三角尺()30FGE ∠=︒的两个顶点分别放在纸片ABCD 的两条边上,测得25FEA ∠=︒,65FGC ∠=︒直线AD 与BC 平行吗?为什么?题号 1 2 3 4 5 6 7 8 答案 CDACD ACC1.C【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行进行分析即可. 【详解】①12∠=∠①AD BC ∥ 故①符合题意; ①3=4∠∠ ①AB CD ∥ 故①不符合题意;①256∠+∠=∠ 156∠+∠=∠ ①12∠=∠ ①AD BC ∥ 故①符合题意;①23180DAB ∠+∠+∠=︒ ①180DAB ABC ∠+∠=︒ ①AD BC ∥ 故①符合题意;综上:可以判断AD BC ∥的有①①①; 故选:C .【点睛】本题考查了平行线的判定,正确掌握平行线的判定方法,找出被截直线是解题的关键. 2.D【分析】本题考查了平行线的判定定理,解题的关键是正确识别“三线八角”中的同位角、内错角、同旁内角,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行. 根据平行线的判定定理,对各项逐一进行判断即可.【详解】解:A 14∠=∠根据内错角相等,两直线平行可判定AB FD ∥,故此选项不符合题意;B 、3A ∠=∠根据同位角相等,两直线平行可判定AB FD ∥,故此选项不符合题意;C 、2180A ∠+∠=︒根据同旁内角互补,两直线平行可判定AB FD ∥,此选项不符合题意; D 、1A ∠=∠可判定AC DE ∥,无法判定AB FD ∥,故此选项符合题意; 故选:D . 3.A【分析】根据平行线的判定方法对各选项进行判断.【详解】解:当①B =①DCE 时AB ①CE ; 当①A =①ACE 时AB ①CE . 当①B +①BCE =180°时AB ①CE . 故答案选:A .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行. 4.C【分析】本题考查了平行线的判定.熟练掌握平行线的判定是解题的关键. 根据平行线的判定定理求解作答即可.【详解】解:A 中12∠=∠不能判断AD BC ∥,故不符合要求; B 中14∠=∠可得AB CD ∥,不能判断AD BC ∥,故不符合要求; C 中23∠∠=能判断AD BC ∥,故符合要求; D 中B D ∠=∠不能判断AD BC ∥,故不符合要求; 故选:C . 5.D【分析】本题考查的是平行线的判定,用到的知识点为:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行. 根据平行线的判定定理对各选项进行逐一判断即可. 【详解】解:A 14∠=∠同位角相等可以判定a b ;B 24∠∠=内错角相等可以判定ab ;C 23180∠+∠=︒同旁内角互补能判断直线a b ;D 34180∠+∠=︒不能判定a b ;故选D . 6.A【分析】本题主要考查了平行线的判定定理,运用“内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行”逐项分析判断即可,灵活运用平行线的判定定理是解题的关键.【详解】解:①1∠ 2∠是AD ,BC 被直线AC 所截的内错角,故12∠=∠可判定AD BC ∥,符合题意;①3∠,4∠是AB ,CD 被直线AC 所截的内错角,故3=4∠∠可判定AB CD ∥,但不能判定AD BC ∥,不符合题意;①DCE ∠,5∠是AB ,CD 被直线BE 所截的同位角,故5DCE ∠=∠可判定AB CD ∥,但不能判定AD BC ∥,不符合题意;①BCD ∠,D ∠是AD ,BC 被直线CD 所截的同旁内角,故180BCD D ∠+∠=︒可判定AD BC ∥,符合题意;①能判定AD BC ∥的有①① 故选:A . 7.C【分析】根据平行线的判定定理逐项分析即可.【详解】解:A .由12∠=∠不能判定12l l ∥,不符合题意; B .由13180∠+∠=︒不能判定12l l ∥,不符合题意;C .由12180∠+∠=︒可得2∠与1∠的对顶角的和是180︒,根据同旁内角互补,两直线平行可判定12l l ∥,符合题意;D .由15180∠+∠=︒不能判定12l l ∥,不符合题意; 故选:C .【点睛】本题考查了平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键. 8.C【分析】根据平行线的判定方法进行判断即可.【详解】解:A.①1与①2是邻补角,无法判断两条铁轨平行,故此选项不符合题意; B. ①1与①3与两条铁轨平行没有关系,故此选项不符合题意;C. ①1与①4是同位角,且①1=①4=90°,故两条铁轨平行,所以该选项正确;D. ①1与①5与两条铁轨平行没有关系,故此选项不符合题意; 故选:C .【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定是解答本题的关键. 9.C D ∠=∠(答案不唯一)【分析】根据平行线的判定条件即可得到答案. 【详解】解:因为C D ∠=∠,内错角相等,两直线平行所以,AC DE ∥ 故答案为:C D ∠=∠.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定条件是解题关键. 10.①①①【分析】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.由同位角,内错角相等及同旁内角互补等,判定两直线平行. 【详解】解:①、12∠=∠能判定AB CD ∥; ①、180BAD ADC ∠+∠=︒能判定AB CD ∥; ①、3ABC ∠=∠能判定AB CD ∥;①、3ADC ∠=∠能判定AD CB ∥,不能判定AB CD ∥; 故答案是:①①①11.内错角相等,两直线平行【分析】根据平行线的判定方法解决问题即可. 【详解】解:由作图可知12∠=∠12∠=∠a //b ∴(内错角相等两直线平行)故答案为:内错角相等,两直线平行.【点睛】本题考查作图,平行线的判定等知识,熟练掌握平行线的判定定理是解题的关键,属于中考常考题型. 12.5B ∠=∠(案不唯一)【分析】本题考查平行线的判定,关键是掌握平行线的判定方法. 由平行线的判定方法,即可得到答案. 【详解】解:①5B ∠=∠AD BC ∴∥∴添加一个条件5B ∠=∠,可得AD BC ∥.故答案为:5B ∠=∠(案不唯一)13.BAC ACD ∠=∠(答案不唯一) 【分析】根据平行线的判定即可求解. 【详解】解:①BAC ACD ∠=∠ ①AB CD ∥故答案为:BAC ACD ∠=∠(答案不唯一).【点睛】本题考查了平行线的判定,熟练掌握平行线的判定是解题的关键. 14.证明见解析【分析】本题主要考查了平行线的判定,角平分线的定义,只需要根据角平分线的定义和已知条件证明EMB MND ∠=∠,即可证明AB CD ∥. 【详解】证明:①MQ 平分EMB ∠,NP 平分MND ∠,求 ①2121EMB MND ∠=∠∠=∠, 又①12∠=∠ ①EMB MND ∠=∠ ①AB CD ∥.15.平行,,平行,理由见解析【分析】根据平行线的判定可得出AC BD ,再根据已知条件可得出EAC FBD ∠=∠,即可得出AE BF .【详解】解:AC BD ,AE BF 理由如下:135235,∠=︒∠=︒AC BD ∴(同位角相等,两直线平行)又AC AE ,BD BF ⊥⊥90EAC FBD ∴∠=∠=︒ 12EAC FBD ∴∠+∠=∠+∠AE BF ∴(同位角相等,两直线平行).【点睛】本题考查了平行线的判定,解题的关键是掌握平行线的判定的方法. 16.12l l ∥,理由见解析.【分析】先利用角平分线的定义可得2BAC EAC ∠=∠,2ACD ACE ∠=∠从而可得180BAC ACD ∠+∠=︒,然后利用平行线的判定,即可解答.【详解】解:12l l ∥,理由如下:第 11 页 共 11 页 理由:AE 平分BAC ∠,CE 平分ACD ∠2BAC EAC ∴∠=∠ 2ACD ACE ∠=∠90EAC ACE ∠+∠=︒180BAC ACD ∴∠+∠=︒12l l ∴∥.【点睛】本题考查了平行线的判定,角平分线的定义,熟知同旁内角互补,两直线平行是解题的关键.17.平行;理由见解析【分析】求出35AEG FEG FEA ∠=∠-∠=︒ 653035EGC FGC FGE ∠=∠-∠=︒-︒=︒从而得出EGC AEG ∠=∠,根据平行线的判定得出AD BC ∥.【详解】解:平行;理由如下:①30FGE ∠=︒①903060FEG ∠=︒-︒=︒①25FEA ∠=︒①35AEG FEG FEA ∠=∠-∠=︒①65FGC ∠=︒①653035EGC FGC FGE ∠=∠-∠=︒-︒=︒①EGC AEG ∠=∠①AD BC ∥.【点睛】本题主要考查了平行线的判定,三角板中的角度计算,解题的关键是熟练掌握内错角相等,两直线平行.。

人教版七年级数学下册平行线的判定同步练习题(含解析)

人教版七年级数学下册平行线的判定同步练习题(含解析)

人教版七年级数学下册平行线的判定同步练习题(含解析)人教版七年级数学下册平行线的判定同步练习题(含解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示,点E在线段AC的延长线上,下列条件中能判断的是(?)A.∠3=∠AB.∠1=∠2C.∠D=∠DCED.∠D+∠ACD=180°2.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,,则∠E的度数是(?)A.30°B.40°C.60°D.70°3.如图,直线a,b被直线c所截,下列条件不能判定直线a 与b平行的是()A.∠1=∠3B.∠2+∠3=180°C.∠1=∠4D.∠1+∠4=180°4.如图,点E在AC的延长线上,下列条件能判断ABCD的是(?)A.∠3=∠4B.∠D=∠DCEC.∠D+∠ACD=180°D.∠1=∠25.如图,下面条件不能判断的是(?)A.B.C.D.6.如图,要使,则需要添加的条件是(?)A .B.C.D.二、填空题7.如图,请你添加一个条件________,使AB∥CD.8.两条平行直线被第三条直线所截,内错角相等.简称:两直线平行,内错角_________.如图,因为a∥b (已知),所以∠1=_____(两直线平行,内错角相等). 9.如图所示,在下列条件中,不能判断的有___________.①.?②.③.?④.10.a、b、c是直线,且a∥b,b⊥c,则a与c的位置关系是________.11.如图,已知∠1=30°,∠2或∠3满足条件_________,则a∥b.三、解答题12.如图,在△ABC中,AD是BC边上的中线,F,E分别是AD及其延长线上的点.(1)如果CFBE,说明:△BDE≌△CDF;(2)若CF,BE是△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F,请猜想BF与CE的位置关系?并说明理由.13.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠A BC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)______(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是______(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.14.下列推理是否正确?为什么?(1)如图,∵,∴;(2)如图,∵,∴;(3)如图,∵,∴;(4)如图,∵,∴.15.如图,将绕点B顺时针旋转60度得到,点C的对应点E 恰好落在AB的延长线上,连接AD.(1)求证:;(2)若AB=4,BC=1,求A,C两点旋转所经过的路径长之和.16.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2(1)求角F的度数与DH的长;(2)求证:.17.如图,在四边形中,与有怎样的位置关系?为什么?与呢?18.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC//DE.19.请补全证明过程及推理依据.已知:如图,BC//ED,BD平分∠ABC,EF平分∠AED.求证:BD∥EF.证明:∵BD平分∠ABC,EF平分∠AED,∴∠1=∠AED,∠2=∠ABC(______________)∵BC∥ED(________)∴∠AED=________(________________)∴∠AED=∠ABC∴∠1=________∴BD∥EF(________________).参考答案:1.B【分析】根据平行线的判定条件逐一判断即可.【详解】A.由∠3=∠A无法判断,故A不符合题意;B.由∠1=∠2能判断,故B符合题意;C.由∠D=∠DCE可以判断,不能判断,故C不符合题意;D.∠D+∠ACD=180°可以判断,不能判断,故D不符合题意.故选:B.【点睛】本题主要考查平行线的判定,熟知平行线的判定条件,是解题的关键.2.A【分析】过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得.【详解】解:如图,过点作,,,,,,,,,故选:A.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键.3.D【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意;∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;(同位角相等,两直线平行)故C不符合题意;∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定故D符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.4.D【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由∠3=∠4,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;B、由∠D=∠DCE,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;C、由∠D+∠ACD=180°,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;D、由∠1=∠2,可以利用内错角相等,两直线平行得到得到,符合题意;故选D.【点睛】本题主要考查了平行线的判定,熟知内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,两直线平行是解题的关键.5.B【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由∠1=∠2,可以判断(内错角相等,两直线平行),故此选项不符合题意;B、由∠1+∠3=180°,可以判断(同旁内角互补,两直线平行),不能判断,故此选项符合题意;C、由,可以判断(同位角相等,两直线平行),故此选项不符合题意;D、由,可以判断(同旁内角互补,两直线平行),故此选项不符合题意;故选B.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.6.A【分析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可得到添加的条件.【详解】解:A.∵∠A=∠CBE,∴AD∥BC,符合题意;B.由∠A=∠C无法得到AD∥BC,不符合题意;C.由∠C=∠CBE,只能得到AB∥CD,无法得到AD∥BC,不符合题意;D.由∠A+∠D =180°,只能得到AB∥CD,无法得到AD∥BC,不符合题意;故选:A.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.∠1=∠5.【分析】根据平行线的判定进行解答,可以考虑同位角相等,或内错角相等,或同旁内角互补.【详解】添加∠1=∠5∵∠1=∠5,∴AB∥CD.故答案为∠1=∠5【点睛】本题属于开放题,主要考查了平行线的判定,解决问题的关键是掌握平行线的判定方法.8.相等 ∠2【解析】略9.②③##③②【分析】根据平行线的判定进行解答即可得.【详解】解:①∵,∴(内错角相等,两直线平行),说法正确,不符合题意;②∵和既不是同位角,也不是内错角,∴不能根据判定,说法错误,符合题意;③∵为同位角,∴不一定平行,符合题意;④∵,∴(同旁内角互补,两直线平行),说法正确,不符合题意;故答案为:②③.【点睛】本题考查了平行线的判定,解题的关键是熟记并理解平行线的判定.10.互相垂直【详解】且a∥b,b⊥c,a⊥c.故答案为互相垂直.11.∠2=150°或∠3=30°【解析】略12.(1)见解析(2)BFCE,证明见解析【分析】(1)根据已知条件,通过两角及其夹边对应相等即可证明△BDE≌△CDF;(2)先证CFBE,利用(1)中结论得△BDE≌△CDF,推出,利用SAS证明△BDF≌△CDE,推出,利用内错角相等,两直线平行,可得BFCE.(1)证明:∵CFBE,∴∠FCD﹦∠EBD.∵AD是BC边上的中线,∴.在△BDE和△CDF中,,∴△BDE≌△CDF.(2)解:BFCE.理由如下:如图,连接BF,CE.∵ C F⊥AD于F,BE⊥AD于E,∴CFBE.由(1)的结论可知△BDE≌△CDF,∴.∵AD是BC边上的中线,∴BD =CD.在△B DF和△CDE中,,∴△BDF≌△CDE.∴,∴BFCE.【点睛】本题考查全等三角形的判定与性质,平行线的性质与判定,三角形中线的定义等,熟练掌握全等三角形的判定方法、平行线的性质定理和判定定理是解题的关键.13.(1)①,SSS(2)见解析【分析】(1)根据SSS即可证明△ABC≌?DEF,即可解决问题;(2)根据全等三角形的性质可得可得∠A=∠EDF,再根据平行线的判定即可解决问题.(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.(注意:只需选一个条件,多选不得分)故答案为:①,SSS;(2)证明:∵△ABC ≌△DEF.∴∠A=∠EDF,∴AB∥DE.【点睛】本题考查了平行线的性质和全等三角形的性质,和判定定理,能熟记全等三角形的判定定理是解此题的关键.14.(1)正确;理由见解析;(2)不正确;理由见解析;(3)正确;理由见解析;(4)正确;理由见解析.【分析】(1)是被所截形成的同位角,再利用同位角相等,两直线平行可判断;(2)是被所截形成的同旁内角,再利用同旁内角互补,两直线平行可判断;(3)是被所截形成的内错角,再利用内错角相等,两直线平行可判断;(4)是被所截形成的同旁内角,再利用同旁内角互补,两直线平行可判断;【详解】解:(1)正确,理由:同位角相等,两直线平行;(2)不正确,因为由“”只能推出“”,推不出“”;(3)正确,理由:内错角相等,两直线平行;(4)正确,理由:同旁内角互补,两直线平行.【点睛】本题考查的是平行线的判定,掌握“平行线的判定方法”是解题的关键.15.(1)见解析;(2)【分析】(1)先利用旋转的性质证明△ABD为等边三角形,则可证,即再根据平行线的判定证明即可.(2)利用弧长公式分别计算路径,相加即可求解.【详解】(1)证明:由旋转性质得:是等边三角形所以∴;(2)依题意得:AB=BD=4,BC=BE=1,所以A,C两点经过的路径长之和为.【点睛】本题考查了旋转的性质、等边三角形的判定与性质、平行线的判定、弧长公式等知识,熟练掌握这些知识点之间的联系及弧长公式是解答的关键.16.(1)35°;6(2)见解析【分析】(1)根据三角形内角和定理求出∠ACB,根据全等三角形的性质得出AB=DE,∠F=∠ACB,即可得出答案;(2)根据全等三角形的性质得出∠B=∠DEF,再根据平行线的判定即可证得结论.(1)解:∵∠A=85°,∠B=60°,∴∠ACB=180°-∠A-∠B=180°-85°-60°=35°,∵△ABC≌△DEF,AB=8,∴∠F=∠ACB=35°,DE=AB=8,∵EH=2,∴DH=DE-EH=8-2=6;(2)证明:∵△ABC≌△DEF,∴∠B=∠DEF,∴.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,平行线的判定的应用,解此题的关键是能根据全等三角形的性质得出AB=DE,∠B=∠DEF,∠ACB=∠F,注意:全等三角形的对应边相等,对应角相等.17.,见解析【分析】四边形ABCD内角和360°,即,因为,所以,所以,同理.【详解】四边形ABCD内角和360°同理可得:【点睛】本题主要考查了四边形内角和以及平行线的判定,掌握该性质判定是解题的关键.18.见解析【分析】由BE平分∠ABC,可得∠1=∠3,再利用等量代换可得到一对内错角相等,即∠2=∠3,即可证明结论.【详解】证明:∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴B C//DE.【点睛】本题主要利用了角平分线的性质以及内错角相等、两直线平行等知识点,灵活运用平行线的判定定理成为解答本题的关键.19.角平分线的定义;已知;∠ABC;两直线平行,同位角相等;∠2;同位角相等,两直线平行【分析】根据角平分线的定义得出∠1=∠AED,∠2=∠ABC,根据平行线的性质定理得出∠AED=∠ABC,求出∠1=∠2,再根据平行线的判定定理推出即可.【详解】证明:∵BD平分∠ABC,EF平分∠AED,∴∠1=∠AED,∠2=∠ABC(角平分线的定义)∵BC∥ED(已知)∴∠AED=∠ABC(两直线平行,同位角相等)∴∠AED=∠ABC∴∠1=∠2 ∴BD∥EF(同位角相等,两直线平行).故答案为:角平分线的定义;已知;∠ABC;两直线平行,同位角相等;∠2;同位角相等,两直线平行.【点睛】本题考查了角平分线的定义,平行线的性质定理和判定定理等知识点,能熟记平行线的性质定理和判定定理是解此题的关键.答案第1页,共2页答案第1页,共2页试卷第1页,共3页试卷第1页,共3页。

5.2.2平行线的判定课时练2022-2023学年人教版七年级下册数学

5.2.2平行线的判定课时练2022-2023学年人教版七年级下册数学

平行线的判定练习题一、选择题1.两条直线被第三条直线所截,则()A、同位角必相等B、内错角必相等C、同旁内角必互补D、以上结论均不对2.下列说法正确的个数是()(1)不相交的两条直线互相平行;(2)a∥b,b∥c,则a∥c;(3)在同一平面内,a⊥b,c⊥b,则a⊥c;(4)同旁内角相等,两直线平行。

A、1个B、2个C、3个D、4个3.如图所示,能判定EB∥AC的条件是 ()A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE4.过一点画已知直线的平行线()A.有且只有一条 B.不存在C.有两条 D 不存在或有且只有一条5. 如图所示,能判断AB∥CE的条件是( )A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE二、填空题6.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A可以判断______∥______,根据是_________.(2)由∠CBE=∠C 可以判断______∥______,根据是_________7.在同一平面内的三条直线满足a ⊥b , a ⊥c, 则b 与c 的位置关系是 。

8.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边的位置关系是 .9.如图所示,若∠1=30°,∠2=80°,∠3=30°,∠4=70°,若AB ∥____.10.如图 因为∠1=∠2,所以______∥_______( )。

因为∠3=∠4,所以_____∥______( )。

三、解答题11.如图,已知DE 、BF 分别平分∠ADC 和∠ABC,∠1=∠2,∠ADC=∠ABC.能判定AB ∥CD 吗?为什么?12.如图所示,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=600,∠E=•-30°,试说明AB ∥CD.GHKF EDC B A ABC12FED13.如图,直线AB 、CD 被EF 所截,且21∠=∠,试说明直线AB 与CD 的位置关系(用多种方法)14.如图,已知CD ⊥AD,DA ⊥AB,∠1=∠2.则DF 与AE 平行吗?为什么?15.已知:如图所示,1∠和D ∠互余,AB DF CF ,⊥与CD 平行吗?16.已知:如图:∠AHF +∠FMD =180°,GH 平分∠AHM ,MN 平分∠DMH 。

七年级数学-平行线练习含解析

七年级数学-平行线练习含解析

七年级数学-平行线练习含解析一. 选择题(共10小题)1.①两点之间线段最短;②同旁内角互补;,则点C是线段AB的中点;④经过一点有且只有一条直线与这条直线平③若AC BC行,其中正确的说法有 ( )A.1个B.2个C.3个D.4个【答案】A【解析】根据“两点之间,线段最短”,可知①正确;根据“两直线平行,同旁内角互补” ,可知②错误;当点C在线段AB的垂直平分线上时,满足条件AC=BC,此时点C不一定是线段AB的中点,故③错误;根据“过直线外一点,有且只有一条直线与这条直线平行”,可知④错误.所以正确的说法只有1个.故选A.2.下列说法正确的是()A.有公共顶点且相等的两个角是对顶角B.已知线段AB=BC,则点B是线段AC的中点C.经过一点有且只有一条直线与已知直线平行D.在同一平面内,经过一点有且只有一条直线与已知直线垂直【答案】D【详解】A.有公共顶点且两边分别互为反向延长线的两个角是对顶角,故本选项错误;B.已知线段AB=BC,A、B、C三点不一定共线,所以,点B不一定是线段AC的中点,故本选项错误.C.经过直线外一点有且只有一条直线与已知直线平行,故本选项错误;D.在同一平面内,经过一点有且只有一条直线与已知直线垂直,故本选项正确;故选D.3.下列说法中正确的是()A.过一点有且只有一条直线与已知直线垂直B.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C.直线c外一点A与直线c上各点连接而成的所有线段中最短线段的长度是3cm,则点A到直线c的距离是3cmD.过一点有且只有一条直线与已知直线平行【答案】C【详解】A选项中,因为“在同一平面中,过一点有且只有一条直线与已知直线垂直”,所以A中说法错误;B选项中,因为“直线外一点到直线的垂线段的长度叫做这点到这条直线的距离”,所以B中说法错误;C选项中,说法“直线c外一点A与直线c上各点连接而成的所有线段中最短线段的长度是3cm,则点A到直线c的距离是3cm”是正确的;D选项中,因为“当点在直线上时,过这点无法作已知直线的平行线”,所以D中说法错误. 故选C.4.下列说法正确的是()A.经过已知一点有且只有一条直线与已知直线平行B.两个相等的角是对顶角C.互补的两个角一定是邻补角D.直线外一点与直线上各点连接的所有线段中,垂线段最短【答案】D【详解】解:A、应为在同一平面内,经过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、对顶角相等,但相等的两个角不一定是对顶角,故本选项错误;C、邻补角互补,但互补的两个角不一定是邻补角,故本选项错误;D、直线外一点与直线上各点连接的所有线段中,垂线段最短,故本选项正确.故选:D.5.下列说法错误的是().A.过一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两点之间的所有连线中,线段最短D.如果,,那么【答案】A【详解】A. 过直线外一点有且只有一条直线与已知直线平行,故A选项错误,符合题意;B. 过一点有且只有一条直线与已知直线垂直,正确,故不符合题意;C. 两点之间的所有连线中,线段最短,正确,故不符合题意;D. 如果,,那么,正确,故不符合题意,故选A.6.在同一平面内,不重合的两条直线的位置关系有()A.平行和相交 B.平行和垂直 C.平行、垂直和相交 D.垂直和相交【答案】A【解析】平面内的直线有平行和相交两种位置关系.故选A.7.在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c【答案】A【解析】解:A.在同一平面内,若a∥b,b∥c,则a∥c正确,故本选项正确;B.在同一平面内,若a⊥b,b⊥c,则a∥c,故本选项错误;C.在同一平面内,若a∥b,b⊥c,则a⊥c,故本选项错误;D.在同一平面内,若若a∥b,b∥c,则a∥c,故本选项错误.故选A.8.下列说法中错误..的个数是()(1)过一点有且只有一条直线与已知直线平行.(2)在同一平面内,两条直线的位置关系只有相交、平行两种.(3)不相交的两条直线叫做平行线.(4)相等的角是对顶角A.1个 B.2个 C.3个 D.4个【答案】C【解析】∵(1)“过一点有且只有一条直线与已知直线平行”的说法是错误的;(2)“在同一平面内,两条直线的位置关系只有相交、平行两种”的说法是正确的;(3)“不相交的两条直线叫做平行线”的说法是错误的;(4)“相等的两个角是对顶角”的说法是错误的;∴上述说法中错误的有3个.故选C.9.下列说法错误的是()A.内错角相等,两直线平行B.两直线平行,同旁内角互补C.相等的角是对顶角D.等角的补角相等【答案】C【详解】A、内错角相等,两直线平行,是平行线的判定方法之一,正确;B、两直线平行,同旁内角互补,是平行线的判定方法之一,正确;C、对顶角既有大小关系,又有位置关系,相等的角是对顶角的说法错误;D、根据数量关系,等角的补角一定相等,正确,故答案选C.10.在同一平面内,两条直线可能的位置关系是 ( )A.平行B.相交C.相交或平行D.垂直【答案】C【解析】解:在同一个平面内,两条直线只有两种位置关系,即平行或相交,故选C.二. 填空题(共5小题)11.已知:a∥b∥c,a与b之间的距离为3cm,b与c之间的距离为4cm,则a与c之间的距离为______.【答案】7cm或1cm.【详解】①如图1,当b在a、c之间时,a与c之间距离为3+4=7(cm);②如图2,c在b、a之间时,a与c之间距离为4﹣3=1(cm);故答案是:7cm或1cm.12.四条直线a、b、c、d互不重合,如果a∥b、b∥c、c∥d,那么直线a、d的位置关系为__________。

七年级数学下册平行线的判定【九大题型】(举一反三)(人教版)

七年级数学下册平行线的判定【九大题型】(举一反三)(人教版)

专题5.1 平行线的判定【九大题型】【人教版】【题型1 对顶角的识别及其性质】 (1)【题型2 平行、垂直】 (5)【题型3 平行公理及其推论】 (7)【题型4 同位角相等,两直线平行】 (10)【题型5 内错角相等,两直线平行】 (12)【题型6 同旁内角互补,两直线平行】 (14)【题型7 平行线的判定方法的综合运用】 (17)【题型8 角平分线与平行线的判定综合运用】 (20)【题型9 平行线判定的实际应用】 (24)【题型1 对顶角的识别及其性质】【例1】(2022·内蒙古呼伦贝尔·七年级期中)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.【答案】C【分析】根据对顶角的概念逐一判断即可.【详解】解:A、∠1与∠2的顶点不相同,故不是对顶角,此选项不符合题意;B、∠1与∠2的一边不是反向延长线,故不是对顶角,此选项不符合题意;C、∠1与∠2是对顶角,故此选项符合题意;D、∠1与∠2的一边不是反向延长线,故不是对顶角,此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的判断,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,解题关键是熟练掌握定义,正确判断.【变式1-1】(2022·广东·揭西县阳夏华侨中学七年级期末)已知:如图,直线AB、CD相∠COB.交于点O,OE平分∠AOC,∠EOC=25(1)图中的对顶角有对,它们是.(2)图中互补的角有对,它们是.(3)求∠EOD的度数.【答案】(1)两;∠AOC和∠BOD,∠BOC和∠AOD(2)八;∠AOC和∠BOC,∠AOC和∠AOD,∠BOD和∠AOD,∠BOD和∠BOC,∠AOE和∠BOE,∠EOC 和∠EOD,∠EOC和∠EOB,∠AOE和∠EOD(3)140°【分析】(1)根据对顶角的定义,判断即可;(2)根据补角的定义进行判断即可;x,列出关(3)根据OE平分∠AOC,得出∠EOC=∠AOE,设∠BOC=x,则∠EOC=∠AOE=25于x的方程,解方程即可得出∠BOC的度数,再求出∠DOE的度数,即可得出结果.(1)解:图中的对顶角有:∠AOC和∠BOD,∠BOC和∠AOD.故答案为:两;∠AOC和∠BOD,∠BOC和∠AOD.(2)图中互补的角有:∠AOC和∠BOC,∠AOC和∠AOD,∠BOD和∠AOD,∠BOD和∠BOC,∠AOE 和∠BOE,∠EOC和∠EOD,∠OE平分∠AOC,∠∠AOE=∠COE,∠∠AOE+∠BOE=180°,∠∠COE+∠BOE=180°,∠∠EOC和∠EOB互补,∠∠COE+∠EOD=180°,∠∠AOE+∠EOD=180°,∠∠AOE和∠EOD互补.故答案为:八;∠AOC 和∠BOC ,∠AOC 和∠AOD ,∠BOD 和∠AOD ,∠BOD 和∠BOC ,∠AOE 和∠BOE ,∠EOC 和∠EOD ,∠EOC 和∠EOB ,∠AOE 和∠EOD .(3)∠OE 平分∠AOC ,∠∠EOC =∠AOE ,设∠BOC =x ,则∠EOC =∠AOE =25x ,由平角定义得,25x +25x +x =180°, 解得:x =100°∠∠EOC =∠AOE =12(180°﹣100°)=40°,∠∠DOE =100°+40°=140°,答:∠EOD 的度数为140°. 【点睛】本题主要考查了对顶角的定义、补角的定义、角平分线的定义,熟练掌握相关定义,根据题意求出∠BOC 的度数,是解题的关键.【变式1-2】(2021·山东·济南市钢城区实验学校期末)如图,直线AB ,CD 相交于点O ,OE⊥CD ,OF 平分∠AOD ,若∠AOD=50°.求∠EOF 的度数.【答案】65°【分析】根据角平分线的定义可得∠FOD =∠AOF =12∠AOD =25°,根据垂线的性质可得∠EOD =90°,再进行解答即可.【详解】解:∠OF 平分∠AOD ,∠AOD =50°,∠∠FOD =∠AOF =12∠AOD =25°, ∠OE ∠CD ,∠∠EOD =90°,∠∠EOF =∠EOD -∠FOD =90°-25°=65°.【点睛】本题主要考查了垂线的性质和角平分线的定义,熟练掌握相关的性质是解答本题的关键.【变式1-3】(2022·辽宁·鞍山市第二中学七年级阶段练习)直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE .(1)若∠AOC=76°,∠BOF=______度.(2)若∠BOF=36°,∠AOC的度数是多少?【答案】(1)33(2)∠AOC的度数是72°【分析】(1)根据对顶角、邻补角、角平分线的定义,求出∠EOF和∠EOB的度数,再根据角的和差即可得∠BOF的度数;(2)根据对顶角、邻补角、角平分线的定义,先用∠BOE的等式表示∠AOC,再根据角分线的定义,列出等式即可求得结果.(1)∵∠AOC=76°,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∴∠BOE=∠DOE=38°,∵∠COE+∠DOE=180°,∴∠COE=180°−∠DOE=142°,∵OF平分∠COE,∴∠EOF=∠COF=71°,∵∠BOF+∠BOE=∠EOF,∴∠BOF=∠EOF−∠BOE=71°−38°=33°故答案为:33;(2)设∠AOC=x°,∴∠BOD=∠AOC=x°,∵OE平分∠BOD,x°,∴∠BOE=∠DOE=12∵∠COE+∠DOE=180°,【例2】(2022·福建·厦门双十中学海沧附属学校七年级期末)如图,点A在直线l1上,点B,C在直线l2上,AB∠l2,AC∠l1,AB=4,BC=3,则下列说法正确的是()A.点A到直线l2的距离等于4B.点C到直线l1的距离等于4C.点C到AB的距离等于4D.点B到AC的距离等于3A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥cB.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD.在同一平面内,a,b,c是直线,且,a∥b,b∥c则a⊥c【答案】A【分析】根据平行线的性质分析判断即可.【详解】A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥c,故选项正确,符合题意.B.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a//c,故选项错误,不符合题意.C.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a⊥c,故选项错误,不符合题意.D.在同一平面内,a,b,c是直线,且,a∥b,b∥c则a//c,故选项错误,不符合题意.故选:A.【点睛】本题主要考查了平行线的性质,准确分析判断是解题的关键.【变式2-2】(2022·吉林·公主岭市陶家中学七年级阶段练习)如图,因为AB⊥l,BC⊥l,B为垂足,所以AB和BC重合,其理由是()A.两点确定一条直线B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.垂直同一条直线的两条直线平行D.垂线段最短线l外,MB=6,MA=8,∠AMB=90°,若点P为直线l上一动点,连接MP,则线段MP的最小值是____.【答案】4.8【分析】根据垂线段最短可知:当MP∠AB时,MP有最小值,利用三角形的面积可列式计算求解MP的最小值.【详解】解:当MP∠AB时,MP有最小值,∠AB=10,MB=6,MA=8,∠AMB=90°,∠AB•MP=AM•BM,即10MP=6×8,解得MP=4.8.故答案为:4.8.【点睛】本题主要考查垂线段最短,三角形的面积,找到MP最小时的P点位置是解题的关③两直线被第三条直线所截,如果同旁内角互补,则这两条直线平行.(同旁内角互补,两直线平行.)【题型3 平行公理及其推论】【例3】(2022·江西上饶·七年级期中)同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥d B.b⊥d C.a⊥d D.b∥c【答案】C【分析】根据同一平面内,垂直于同一条直线的两条直线平行,可证a∥c,再结合c⊥d,可证a⊥d.【详解】解:∵a⊥b,b⊥c,∠a∥c,∠c⊥d,∠a⊥d,故选:C.【点睛】本题主要考查了平行线及垂线的性质,解题的关键是掌握同一平面内,垂直于同一条直线的两条直线平行.【变式3-1】(2022·河南漯河·七年级期末)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b,理由是()A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行钝角;③ a ,b ,c 是同一平面内的三条直线,若a//b,b// c ,则a// c ;④ a ,b ,c 是同一平面内的三条直线,若a ⊥b , b ⊥c ,则a ⊥c ;其中真命题的个数是()A.1个B.2 个C.3 个D.4 个【答案】A【分析】根据平行线性质可判断①,根据两锐角的大小求和可判断②,根据平行公理推论可判断③,根据垂直定义得出∠1=∠2=90°,然后利用同位角相等,两直线平行的判定可判断④.【详解】解:①两直线平行,内错角相等,故①不正确;②两个锐角的和可以是锐角,直角,钝角,故②不正确;③ a ,b ,c 是同一平面内的三条直线,若a//b,b// c ,则a// c ,故③正确;④ a ,b ,c 是同一平面内的三条直线,如图∠a ⊥b ,b ⊥c ,∠∠1=90°,∠2=90°,∠∠1=∠2∠a ∠ c ,故④不正确;∠真命题只有1个.故选A.【点睛】本题考查平行线的性质与判定,两锐角和的大小,掌握平行线的性质与判定,锐角定义是解题关键.【变式3-3】(2022·四川·甘孜藏族自治州教育局七年级期末)如图,AB∥CD,如果∠1=∠2,那么EF与AB平行吗?说说你的理由.解:因为∠1=∠2,所以____________∥___________.()又因为AB∥CD,所以AB∥EF.()【答案】CD∥EF;内错角相等,两直线平行;平行于同一直线的两条直线平行【分析】根据平行线的判定定理完成填空即可求解.【详解】解:因为∠1=∠2,所以CD∥EF.(内错角相等,两直线平行)又因为AB∥CD,所以AB∥EF.(平行于同一直线的两条直线平行)【点睛】本题考查了平行线的判定,平行公理,掌握平行线的判定定理是解题的关键.【题型4 同位角相等,两直线平行】【例4】(2022·甘肃·陇南育才学校七年级期末)如图,AB⊥MN,垂足为B,CD⊥MN,垂足为D,∠1=∠2.在下面括号中填上理由.因为AB⊥MN,CD⊥MN,所以∠ABM=∠CDM=90°.又因为∠1=∠2( ),所以∠ABM−∠1=∠CDM−∠2( ),即∠EBM=∠FDM.所以EB∥FD( )已知直线的平行线的方法叫“推平行线”法,其依据是______.【答案】同位角相等,两直线平行【分析】作图时保持∠1=∠2,根据同位角相等,两直线平行即可画出已知直线的平行线.【详解】解:过直线外一点画已知直线的平行线的方法叫“推平行线”法,其依据是:同位角相等,两直线平行.故答案为:同位角相等,两直线平行.【点睛】本题主要考查了平行线的判定和性质,平行公理,解决本题的关键是掌握平行线的判定和性质.【变式4-2】(2022·山东泰安·七年级期末)如图,AB⊥BC,∠1+∠2=90°,∠2=∠3.请说明线段BE与DF的位置关系?为什么?【答案】BE∥DF,见解析是它的补角的3倍,∠1−∠2=90°.判断AB与CD的位置关系,并说明理由.【答案】AB∥CD;理由见解析【分析】先根据补角的定义求出∠1的度数,然后求出∠CFE和∠2的度数,最后根据平行线的判定进行解答即可.【详解】解:AB∥CD;理由如下:∠∠1是它的补角的3倍,α,∠设∠1=α,则∠1的补角为13α=180°,∠α+13解得:α=135°,∠∠1=135°,∠∠CFE=180°−∠1=45°,∠∠1−∠2=90°,∠∠2=∠1−90°=45°,∠∠2=∠CFE=45°,∠AB∥CD.【点睛】本题主要考查了补角的有关计算,平行线的判定,根据题意求出∠2=∠CFE=45°,是解题的关键.【题型5 内错角相等,两直线平行】【例5】(2022·山东·曲阜九巨龙学校七年级阶段练习)如图,点A在直线DE上,AB∠AC 于A,∠1与∠C互余,DE和BC平行吗?若平行,请说明理由.【答案】平行,理由见解析【分析】由垂直定义可得∠BAC=90°,根据平角定义得∠1+∠BAC+∠CAE=180°,即可得出∠1+∠CAE=90°,由∠1与∠C互余,根据余角的性质即可得出∠CAE=∠C,根据平行线的判定定理即可得出结论.【详解】解:平行,理由如下:∠AB∠AC,∠∠BAC=90°,∠∠1+∠BAC+∠CAE=180°,∠∠1+∠CAE=90°,∠∠1与∠C互余,即∠1+∠C=90°,∠∠CAE=∠C,∠DE∥BC.【点睛】本题考查平行线的判定,余角的性质,熟练掌握平行线的判定定理是解题的关键.【变式5-1】(2022·北京市房山区燕山教委八年级期中)如图,已知∠1=75°,∠2=35°,∠3=40°,求证:a∥b.∵∠4=∠3+∠2=75°,的平分线,∠ACB=40°,∠A=70°,求证:AB∥CF.【答案】证明见解析【分析】由角平分线的定义及补角的定义可求得∠ACE的度数,即可得∠A=∠ACE,进而可证明结论.【详解】证明:∠∠ACB=40°,∠∠ACM=180°-40°=140°,∠CF是△ABC外角∠ACM的平分线,∠ACM=70°,∠∠ACF=12∠∠A=70°,∠∠A=∠ACF=70°,∠AB∥CF.【点睛】本题主要考查角平分线的定义、三角形外角的性质和平行线的判定,证得∠A=∠ACF 是解题的关键.【变式5-3】(2022·辽宁·阜新市第十中学七年级期中)如图,AB∥DE,∠1=∠ACB,∠CAB=1∠BAD,2试说明AD∥BC.【答案】见解析【例6】(2022·河北衡水·七年级阶段练习)已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.【答案】见解析【分析】根据同旁内角互补,两直线平行,再根据平行于同一条直线的两条直线平行即可证明结论.【详解】证明:∵∠A=∠C=120°,∠AEF=∠CEF=60°,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴AB∥EF,CD∥EF,∴AB∥CD.【点睛】本题考查了平行线的判定,解决本题的关键是掌握平行线的判定.【变式6-1】(2022·西藏昂仁县中学七年级期中)如图,∠CAD=20°,∠B=70°,AB∠AC,求证:AD∥BC.(1) ∠DAB+∠B等于多少度?(2)AD与BC平行吗?请说明理由.【答案】(1)∠DAB+∠B=180°(2)AD∥BC;理由见解析【分析】(1)由已知可求得∠DAB=120°,从而可求得∠DAB+∠B=180°;(2)根据同旁内角互补两直线平行可得AD∥BC.(1)解:∠AB∠AC,∠∠BAC=90°.又∠∠1=30°,∠∠BAD=120°,∠∠B=60°,∠∠DAB+∠B=180°.(2)解:AD∥BC.理由如下:∠∠DAB+∠B=180°,∠AD∥BC.【点睛】本题主要考查了平行线的判定,解题的关键是熟练掌握同旁内角互补,两直线平行.【变式6-3】(2022·北京市第五中学分校七年级期末)如图,已知点E在BC上,BD∠AC,EF∠AC,垂足分别为D,F,点M,G在AB上,GF交BD于点H,∠BMD+∠ABC=180°,∠1=∠2,求证:MD∥GF.下面是小颖同学的思考过程,请补全证明过程并在括号内填上证明依据.证明:∠BD∠AC,EF∠AC,∠∠BDC=90°,∠EFC=90°(①).∠∠BDC=∠EFC(等量代换).∠BD∥EF(同位角相等,两直线平行).∠∠2=∠CBD(②).∠∠1=∠2(已知).∠∠1=∠CBD(等量代换).∠③(内错角相等,两直线平行).∠∠BMD+∠ABC=180°(已知),∠MD∥BC(④).∠MD∥GF(⑤).【答案】垂直的定义;两直线平行,同位角相等;GF∠BC;同旁内角互补,两直线平行;平行于同一直线的两直线平行.【分析】根据垂直定义得出∠BDC=∠EFC,根据平行线的判定推出BD∠EF,根据平行线的性质得出∠CBD=∠2,求出∠CBD=∠1,根据平行线的判定得出GF∠BC,GF∠MD即可.【详解】证明:∠BD∠AC,EF∠AC,∠∠BDC=90°,∠EFC=90°(垂直的定义).∠∠BDC=∠EFC(等量代换).∠BD∠EF(同位角相等,两直线平行).∠∠2=∠CBD(两直线平行,同位角相等).∠∠1=∠2(已知).∠∠1=∠CBD(等量代换).∠GF∠BC(内错角相等,两直线平行).∠∠BMD+∠ABC=180°(已知),∠MD∠BC(同旁内角互补,两直线平行).∠MD∠GF(平行于同一直线的两直线平行).故答案为:垂直的定义;两直线平行,同位角相等;GF∠BC;同旁内角互补,两直线平行;平行于同一直线的两直线平行.【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键.【题型7 平行线的判定方法的综合运用】【例7】(2022·广西贺州·七年级期末)如图,有下列条件:①∠1=∠2;②∠3+∠4=180°;③∠5+∠6=180°;④∠2=∠3.其中,能判断直线a∥b的有()A.4个B.3个C.2个D.1个【答案】B【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.依据平行线的判定方法即可得出结论.【详解】解:①由∠1=∠2,可得a∥b;②由∠3+∠4=180°,可得a∥b;③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;④由∠2=∠3,不能得到a∥b;故能判断直线a∥b的有3个,故选:B.【点睛】本题主要考查平行线的判定,掌握平行线的判定方法是解决问题的关键.【变式7-1】(2022·浙江台州·七年级期末)在铺设铁轨时,两条直轨必须是互相平行的,如图,已经知道∠2是直角,那么再度量图中已标出的哪个角,不能..判断两条直轨是否平行()A.∠1B.∠3C.∠4D.∠512的是()A.B.C.D.【答案】D【分析】根据邻补角的定义,对顶角相等和平行线的判定定理即可求解.【详解】解:A.如图,∵∠1=∠2,∠1+∠3=180°,∴∠2+∠3=180°,∴不能推导出l1∥l2,不符合题意;B.如图,∵∠1=∠2,∠1+∠3=180°,∴∠2+∠3=180°,∴不能推导出l1∥l2,不符合题意;C.如图,∵∠1=∠2,∠1+∠3=180°,∴∠2+∠3=180°,∴不能推导出l1∥l2,不符合题意;D.如图,∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴一定能推导出l1∥l2,符合题意.故选:D.【点睛】本题考查了平行线的判定,关键是熟悉同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识点.【变式7-3】(2022·山东日照·七年级期末)如图,在下列给出的条件中,不能判定DE∥BC的是()A.∠1=∠2B.∠3=∠4C.∠5=∠C D.∠B+∠BDE=180°【答案】B【分析】根据平行线的判定定理逐一判断即可.【详解】因为∠1=∠2,所以DE∥BC,故A不符合题意;因为∠3=∠4,不能判断DE∥BC,故B符合题意;因为∠5=∠C,所以DE∥BC,故C不符合题意;因为∠B+∠BDE=180°,所以DE∥BC,故D不符合题意;故选B.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.【题型8 角平分线与平行线的判定综合运用】【例8】(2022·吉林·大安市乐胜乡中学校七年级阶段练习)如图,在四边形ABCD中,∠ADC+∠ABC=180°,∠ADF+∠AFD=90°,点E、F分别在DC、AB上,且BE、DF分别平分∠ABC、∠ ADC,判断BE、DF是否平行,并说明理由.【答案】平行,理由见解析【分析】先根据角平分线的定义可得∠ABE=12∠ABC,∠ADF=12∠ADC,从而可得∠ADF+∠ABE=90°,再结合∠ADF+∠AFD=90°可得∠ABE=∠AFD,然后根据平行线的判定即可得.【详解】解:BE∥DF,理由如下:∵BE,DF分别平分∠ABC,∠ADC,∴∠ABE=12∠ABC,∠ADF=12∠ADC,∵∠ADC+∠ABC=180°,∴∠ADF+∠ABE=12(∠ADC+∠ABC)=90°,又∵∠ADF+∠AFD=90°,∴∠ABE=∠AFD,∴BE∥DF.【点睛】本题考查了角平分线、平行线的判定,熟练掌握平行线的判定方法是解题关键.【变式8-1】(2022·江苏·扬州市邗江区实验学校七年级期末)将下列证明过程补充完整:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD.证明:∠CE平分∠ACD(已知),∠∠2=∠().∠∠1=∠2(已知),∠∠1=∠().∠AB∥CD().【答案】ECD;角平分线的性质;ECD;等量代换;内错角相等,两直线平行【分析】根据平行线的判定依据角平分线的性质即可解决问题.【详解】证明:∠CE平分∠ACD,∠∠2=∠ECD(角平分线的性质),∠∠1=∠2.(已知),∠∠1=∠ECD(等量代换),∠AB∠CD(内错角相等两直线平行).故答案为:ECD;角平分线的定义;ECD;等量代换;内错角相等,两直线平行.【点睛】本题主要考查平行线的性质和判定和角平分线的性质,解题的关键是根据平行线的判定解答.【变式8-2】(2022·辽宁沈阳·七年级期末)按逻辑填写步骤和理由,将下面的证明过程补充完整如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.求证:BE∥CF.证明:∠∠1=∠2(已知)∠ABF=∠1(对顶角相等)∠BFG=∠2(____________)∠∠ABF=______(等量代换)∠BE平分∠ABF(已知)______(____________)∠∠EBF=12∠FC平分∠BFG(已知)______(____________)∠∠CFB=12∠∠EBF=______∠BE∥CF(____________)【答案】对顶角相等;∠BFG;∠ABF;角平分线的定义;∠BFG;角平分线的定义;∠CFB;内错角相等,两直线平行;【分析】根据对顶角的定义,平行线的判定,角平分线的性质,结合上下文填空即可.【详解】证明:∠∠1=∠2(已知)知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC.请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(______),所以∠BAG=∠AGC(______).因为EA平分∠BAG,所以∠1=12∠BAG(______).因为FG平分∠AGC,所以∠2=12______,得∠1=∠2(等量代换),所以______(______).【答案】平角的定义;同角的补角相等;角平分线的定义;∠AGC;AE∥GF;内错角相等,两直线平行【分析】由题意可求得∠BAG=∠AGC,再由角平分线的定义得∠1=12∠BAG,∠2=12∠AGC,从而得∠1=∠2,即可判定AE∥GF.【详解】解:∵∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(平角的定义),∴∠BAG=∠AGC(同角的补角相等).∵EA平分∠BAG,∠BAG(角平分线的定义).∴∠1=12∵FG平分∠AGC,∴∠2=1∠AGC,2∴∠1=∠2(等量代换),∴AE∥GF(内错角相等,两直线平行).故答案为:平角的定义;同角的补角相等;角平分线的定义;∠AGC;AE∥GF;内错角相等,两直线平行.【点睛】本题主要考查角平分线的定义,补角的性质和平行线的判定,解答的关键是熟练掌握平行线的判定定理并灵活运用.【题型9 平行线判定的实际应用】【例9】(2022·全国·七年级课时练习)如图,若将木条a绕点O旋转后使其与木条b平行,则旋转的最小角度为()A.65°B.85°C.95°D.115°【答案】B【分析】根据同位角相等两直线平行可得当∠AOB=65°时,a∥b,进而算出答案.【详解】解:∠当∠AOB=65°时,a∥b∠旋转的最小角度为150°﹣65°=85°,故选:B【点睛】此题主要考查了平行线的判定,关键是掌握同位角相等两直线平行.【变式9-1】(2022·河南·郑州外国语学校经开校区七年级阶段练习)如图所示的四种沿AB 进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4 C.如图3,测得∠1=∠2D.在图4中,展开后测得∠1+∠2=180°向与原来的方向相同,那么这两次拐弯的角度可能是()A.第一次向右拐40°,第二次向右拐140°.B.第一次向右拐40°,第二次向左拐40°.C.第一次向左拐40°,第二次向右拐140°.D.第一次向右拐140°,第二次向左拐40°.【答案】B【分析】画出图形,根据平行线的判定分别判断即可得出.【详解】A.如图,由内错角相等可知,第二次拐弯后与原来平行,但方向相反,故不符合题意;B.如图,由同位角相等可知,第二次拐弯后与原来平行,且方向相同,故符合题意;C.如图,由内错角不相等可知,第二次拐弯后与原来不平行,故不符合题意;D.如图,由同位角不相等可知,第二次拐弯后与原来不平行,故不符合题意.故选:B.【点睛】本题考查了平行线的判定,正确画出图形,熟记判定定理是解题的关键.【变式9-3】(2022·江苏·南京外国语学校七年级期中)如图,a、b、c三根木棒钉在一起,∠1=70°,∠2=100°,现将木棒a、b同时顺时针旋转一周,速度分别为18度/秒和3度/秒,两根木棒都停止时运动结束,则___________秒后木棒a,b平行.解得:t=14;当t>20时,木棒a停止运动,时,70−3t=100,当20<t≤703解得:t=-10;(不合题意,舍去)时,3t−70=180−100或3t−70−180=180−100,当t>703解得:t=50或t=110;综上所述,2或14或50或110秒后木棒a,b平行.故答案为:2或14或50或110【点睛】本题主要考查了平行线的判定,一元一次方程的应用,明确题意,利用分类讨论思想解答是解题的关键.。

专题02 平行线的判定与性质(原卷版)七年级数学下册

专题02 平行线的判定与性质(原卷版)七年级数学下册

专题02平行线的判定与性质1.(2022秋•项城市期末)如图,已知∠B=∠ADE,∠EDC=∠GFB,GF⊥AB,求证:CD⊥AB.把以下证明过程补充完整,并在括号内填写理由或数学式.证明:∵∠B=∠ADE(已知)∴∥()∴∠EDC=∠DCB()又∠EDC=∠GFB(已知)∴∠DCB=(等量代换)∴∥()2.(2023秋•道里区校级期中)将下面的解答过程补充完整:如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知),所以∠DEF=∠CFE(①),因为EF平分∠CED(已知),所以∠DEF=②(角平分线的定义),所以∠CFE=∠CEF(③),因为∠A=∠CFE(已知),所以∠A=④(等量代换),所以EF∥AB(⑤).3.(2022秋•尤溪县期末)如图,∠1+∠2=180°,∠B=∠3.(1)求证:DE∥BC;(2)若∠C=76°,∠AED=2∠3,求∠CEF的度数.4.(2023秋•怀宁县期中)如图,已知EF∥CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小明添加的条件:∠B=∠ADG.请你帮小明将下面的证明过程补充完整.证明:∵EF∥CD()∴∠BEF=()∵∠B=∠ADG(添加条件)∴BC∥()∴∠CDG=()∴∠BEF=∠CDG().5.(2022秋•长春期末)请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A=∠D.求证:∠B=∠C证明:∵∠1=∠2,(已知)又:∵∠1=∠3,∴∠2=,(等量代换)∴AE∥FD∴∠A=∠BFD∵∠A=∠D(已知)∴∠D=(等量代换)∴∥CD∴∠B=∠C.6.(2022秋•闽清县期末)如图,AB∥CD,E是BC的延长线上的一点,AE交CD于点F,∠1=∠2,∠3=∠4.求证:(1)∠B=∠D;(2)AD∥BE.7.(2023春•石城县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.8.(2022秋•淇县期末)如图,已知AD∥FE,∠1=∠2.(1)试说明DG∥AC;(2)若∠BAC=70°,求∠AGD的度数.9.(2022秋•禅城区期末)已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DF∥CA,∠FDE=∠A;(1)求证:DE∥BA.(2)若∠BFD=∠BDF=2∠EDC,求∠B的度数.30.(2023春•驿城区校级期末)如图,AB∥DG,∠1+∠2=180°.(1)试说明:AD∥EF;(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.11.(2023秋•香坊区校级期中)完成下面推理过程,并在括号里填写推理依据:如图,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求证:AB∥CD.证明:∵AB∥EF(已知),∴∠APE=,∵EP⊥EQ(已知),∴∠PEQ=90°),即∠QEF+∠PEF=90°,∴∠QEF+∠APE=90°,∵∠EQC+∠APE=90°(已知),∴∠EQC=(),∴EF∥(),又∵AB∥EF,∴AB∥CD().12.(2022秋•邓州市期末)如图,点M在CD上,已知∠BAM+∠AMD=180°,AE平分∠BAM,MF平分∠AMC,请说明AE∥MF的理由.解:因为∠BAM+∠AMD=180°(),∠AMC+∠AMD=180°(),所以∠BAM=∠AMC().因为AE平分∠BAM,所以().因为MF平分∠AMC,所以,得(),所以().13.(2022秋•桐柏县期末)完成下面推理过程.如图:已知,∠A=112°,∠ABC=68°,BD⊥DC于点D,EF⊥DC于点F,求证:∠1=∠2.证明:∵∠A=112°,∠ABC=68°(已知)∴∠A+∠ABC=180°∴AD∥BC()∴∠1=()∵BD⊥DC,EF⊥DC(已知)∴∠BDF=90°,∠EFC=90°()∴∠BDF=∠EFC=90°∴BD∥EF()∴∠2=()∴∠1=∠2()14.(2023秋•天山区校级期中)已知,GP平分∠BGH,HP平分∠GHD,∠GPH=90°.(1)求证:AB∥CD;(2)若∠AGE=60°,求∠4的度数.15.(2023春•覃塘区期末)如图:已知,∠HCO=∠EBC,∠BHC+∠BEF=180°.(1)求证:EF∥BH;(2)若BH平分∠EBO,EF⊥AO于F,∠HCO=64°,求∠CHO的度数.16.(2023春•新化县期末)如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O.已知∠1=∠B,∠A+∠2=90°.(1)求证:AB∥CD;(2)若AF=12,BF=5,AB=13,求点F到直线AB的距离.17.(2023春•温州月考)如图,已知∠1=∠3,∠2=∠B.(1)试判断DE与BC的位置关系,并说明理由;(2)若DE平分∠ADC,∠1=3∠B,求∠EFC的度数.18.(2023春•仙居县期末)如图是一个汉字“互”字,其中,AB∥CD,HF∥GE,∠HGE=∠HFE,M、H、G三点在同一直线上,N、E、F三点在同一直线上.求证:(1)GH∥EF;(2)∠CMH=∠BNE.19.(2022秋•东阳市期末)如图,长方形纸片ABCD中,G、H分别是AB、CD边上的动点,连GH,将长方形纸片ABCD沿着GH翻折,使得点B,C分别落在点E,F位置.(1)若∠BGH=110°,求∠AGE的度数.(2)若∠FHD=20°,求∠CHG的度数.(3)已知∠BGH和∠CHG始终互补,若∠BGH=α,请直接写出∠FHC的度数(含α的代数式).20.(2023春•金牛区校级期中)如图1,直线GH与直线l1,l2分别交于B,A两点,点C在直线l2上,射线AD平分∠BAC交直线l1于点E,∠GBE=2∠BAE.(1)求证:直线l1∥l2;(2)如图2,点Q在直线l1上(B点左侧),AM平分∠BAQ交l1于点M,过点M作MN⊥AD交AD于点N,请猜想∠BQA与∠AMN的关系;并证明你的结论;(3)若点P是线段AB上一点,射线EP交直线l2于点F,∠GBE=130°.点N在射线AD上,且满足∠EBN=∠EFC连接BN,请补全图形,探究∠BNA与∠FEA满足的等量关系,并证明.21.(2023春•义乌市校级期中)今年除夕夜长江两岸的灯光秀璀璨夺目,照亮山城的山水桥梁城市楼阁,人民欢欣鼓舞.观看表演的小语同学发现两岸的灯光运动是有规律的,如图1所示,灯A射出的光线从AQ开始顺时针旋转至AP便立即回转,灯B射出的光线从BM开始顺时针旋转至BN便立即回转,两灯不停旋转.假设长江两岸是平行的,即PQ∥MN,点A在PQ上,B、C、D在MN上,连接AB、AC、AD,已知AC平分∠BAP,AD平分∠CAP.(1)如图1,若∠ABD=40°,则∠CAQ=;(2)如图2,在PQ上另有一点E,连接CE交AD于点F,点G在MN上,连接AG,若∠CAG=∠CAE,∠EFD+∠DAG=180°,试证明:EC∥AB.(3)如图3,已知灯A射出的光线旋转的速度是每秒10°,灯B射出的光线旋转的速度是每秒30°,若灯B射出的光线从BM出发先转动2秒,灯A射出的光线才从AQ出发开始转动,设灯A转动的时间为t秒,在转动过程中,当0≤t≤12时,请直接写出灯A射出的光线与灯B射出的光线相交且互相垂直时的时间t的值.22.(2022秋•萍乡期末)已知点A在射线CE上,∠C=∠ADB.(1)如图1,若AD∥BC,求证:AC∥BD;(2)如图2,若BD⊥BC,垂足为B,BD交CE于点G,请探究∠DAE与∠C的数量关系,写出你的探究结论,并说明理由;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线CE于点F,当∠BAC=∠BAD,∠DFE=8∠DAE时,求∠BAD的度数.23.(2022秋•鲤城区校级期末)如图①,已知AB∥CD,一条直线分别交AB、CD于点E、F,∠EFB=∠B,FH⊥FB,点Q在BF上,连接QH.(1)已知∠EFD=70°,求∠B的度数;(2)求证:FH平分∠GFD.(3)在(1)的条件下,若∠FQH=30°,将△FHQ绕着点F顺时针旋转,如图②,若当边FH转至线段EF上时停止转动,记旋转角为α,请求出当α为多少度时,QH与△EBF某一边平行?(4)在(3)的条件下,直接写出∠DFQ与∠GFH之间的关系.24.(2023秋•香坊区校级期中)如图1,直线MN与直线AB、CD分别交于点E、F,∠1+∠2=180°.(1)求证:AB∥CD;(2)如图2,∠BEF与∠EFD的角平分线交于点P,延长EP交CD于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,∠HPQ=45°,K是GH上一点,连接PK,作PQ平分∠EPK,若∠PHG=15°,求∠QPK的度数.25.(2023秋•吉林期中)如图①,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠ACB=∠E=90°,∠EDF=36°,∠ABC=40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,如图②,记∠ADF为α(0°<α<180°),在旋转的过程中:(1)当∠α=°时,DE∥BC,当∠α=°时,DE⊥BC;(2)如图③,当顶点C在△DEF的内部时,边DF、DE分别交BC、AC的延长线于点M、N.①求出此时∠α的度数范围;②∠1与∠2的度数和是否变化?若不变,请直接写出∠1与∠2的度数和;若变化,请说明理由.。

精品 七年级数学下册 平行线的判定练习题

精品 七年级数学下册 平行线的判定练习题

平行线的判定
1.如图,下列判断不正确的是(
)A.因为∠1=∠2,所以AE∥BD.
B.因为∠3=∠4,所以AB∥CD.
C.因为∠1=∠2,所以AB∥DE.
D.因为∠5=∠BDC,所以AE∥BD.
2.探照灯、锅形天线、汽车灯以及其他很多灯具都与抛物线形状有关,如图所示是一个探照灯碗的纵剖面,从位于O 点的灯泡发出的两束光线OB、OC 经灯碗反射以后平行射出,如果图中∠ABO=α,∠DCO=β,则∠BOC 的度数为(
)A.1800-α-β B.α+β C.21(α+β) D.900+(β-α)
3.如图,直线a、b 被直线c 所截,给出下列条件:①∠1=∠2,②∠3=∠6,③∠4+∠7=1800,④∠5+∠8=1800,其中能判断a∥b 的是()
A.①③
B.②④
C.①③④
D.①②③④4.两直线平行,内错角的平分线,同旁内角的平分线
5.如图,两个平面镜α、β的夹角为θ,入射光线AO 平行于β光线射到α上,经过两次反射后平行于α,则∠θ=
6.如图,当∠BED 与∠B、∠D 满足
时,可以判断AB∥CD.⑴在“”上填写一个条件:⑵试说明填写的条件的正确性。

7.如图,已知:∠1+∠2=1800,求证:AB∥CD.
8.如图,已知:∠A=∠1,∠C=∠2,求证:AB∥CD.
9.如图,已知:∠1=∠C+∠E,求证:AC∥BD.
10.已知:如图,AB⊥BC,∠1+∠2=900,∠2=∠3,求证:BE∥DF.
11.如图,∠2=3∠1,且∠1+∠3=900,试说明:AB∥CD.。

人教版七年级下学期数学-5.2平行线及其判定(练习题)

人教版七年级下学期数学-5.2平行线及其判定(练习题)

人教版七年级下学期数学-5.2平行线及其判定一、单选题1.如图,下列条件能判定的是()A.∠1=∠2B.∠2=∠4C.∠1=∠4D.∠1+∠3=180°2.如图,,要使//,则的大小是()A.B.C.D.3.如图,平分,平分,下列选项能判断∥的是()A.B.C.D.4.如图,O是直线AB上一点,OE平分∠BOD,OF⊥OE,∠D=110°,添加一个条件,仍不能判定AB∥CD,添加的条件可能是()A.∠BOE=55°B.∠DOF=35°C.∠BOE+∠AOF=90°D.∠AOF=35°5.如图1,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°6.下列说法错误的个数是()①经过一点有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线互相平行;③直线外一点到这条直线的垂线段,叫做这个点到直线的距离;④同一平面内不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个7.下列尺规作图不能得到平行线的是()A.B.C.D.8.一副直角三角尺叠放如图1所示,现将含角的三角尺ADE固定不动,将含角的三角尺ABC绕顶点顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当时,,则)其他所有可能符合条件的度数为()A.和B.和C.和D.以上都有可能二、填空题9.如图,木工师傅经常用一把直角尺画出两条平行的直线与.这样做运用的数学知识是.10.如图,要使AD//BF,则需要添加的条件是(写一个即可).11.如图,直线a与直线b、c分别相交于点A、B,当∠1=时,c∥b.12.如图,写出能判定AB∥CD的一对角的数量关系:.13.如图,添加一个你认为合适的条件使.三、综合题14.如图,射线平外,且.求证:.15.如图,B,F,E,C在同一条直线上,∠A=∠D.(1)若∠A=78°,∠C=47°,求∠BFD的度数.(2)若∠AEB+∠BFD=180°,求证:AB∥CD.16.如图1,直线与交于点,锐角,.(1)求证:;(2)若为直线上一点(不与点重合),的平分线与的平分线所在的直线交于点.①如图2,,为射线上一点,请补全图形并求的度数;②的度数为▲(用含的式子表示).17.已知BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图(1),求证:OB∥AC.(2)如图(2),若点E,F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF,试求∠EOC 的度数.(3)在图(2)的条件下,若平行移动AC,如图(3),那么∠OCB∶∠OFB的值是否会发生变化?若变化,试说明理由;若不变,求出这个比值.18.三角板是学习数学的重要工具,将一副三角板的直角顶点C按如图所示的方式叠放在一起,当时,且点E在直线AC的上方时,解决下列问题∶(友情提示∶∠A=60°,∠D=30°,∠B=∠E=45°)(1)①若∠DCE=45°,求∠ACB;②若∠ACB=140°,求∠DCE;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)这两块三角板是否存在一组边互相平行?若存在,请直接写出∠ACE的所有可能的值(不必说明理由);若不存在,请说明理由.答案解析部分1.【答案】A【解析】【解答】解:由∠1=∠2可得a∥b,故A符合题意;由∠2=∠4可得c∥d,故B不符合题意;∠1与∠4不是三线八角,故C不符合题意;由∠1+∠3=180°可得c∥d,故D不符合题意;故答案为:A.【分析】根据平行线的判定定理逐一判断即可.2.【答案】C【解析】【解答】当,则,故答案为:C.【分析】根据平行线的判定定理:同位角相等两直线平行,即可得出答案.3.【答案】D【解析】【解答】解:平分,.平分,,,当时,,同旁内角互补,两直线平行.故答案为:D.【分析】先根据角平分线的定义得出,,再根据平行线的判定定理得出当时,,从而得出结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学平行线的判
定练习题
Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT
七年级数学平行线的判定练习题
一、填空
1.如图1若∠A=∠3,则 ∥ ;若∠2=∠E ,则 ∥ ;若∠ A +∠ = 180°,则
2.同一平面内若a⊥c ,b⊥c ,则a b .
3.如图2,写出一个能判定直线a ∥b 的条件: .
4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则
∥ 。

6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 内错角有 ;
7.如图5,填空并在括号中填理由:
(1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( );
(3)由∠CBA +∠BAD = 180°得 ∥ ( )
8.如图6,尽可能多地写出直线l 1∥l 2的条件: . 9.如图7,尽可能地写出能判定AB∥CD 的条件来: .
10.如图8,推理填空:
A C
B 4 1 2 3
5 图4
a b c d
1 2
3 图3
图1 图2
4 3 2 1
5 a b 1 2 3 A F C
D B E
图8 图5
图6
l 1 l 2
图7
5 4 3
2 1 A
D
C B
(1)∵∠A =∠(已知),∴AC∥ED
();
(2)∵∠2 =∠(已知),∴AC∥ED
();
(3)∵∠A +∠= 180°(已知),∴AB∥FD();(4)∵∠2 +∠= 180°(已知),∴AC∥ED()
11.如图③∵∠1=∠2,∴______∥_____()。

∵∠2=∠3∴_______∥________()。

13.如图⑤∠B=∠D=∠E,那么图形中的平行线有
________________________________。

14.如图⑥∵AB⊥BD,CD⊥BD(已知)
∴∠B = 180°∠D= 180°
∴∠B=∠D
∴AB∥CD ( )
又∵∠1+∠2 =︒
180(已知)
∴AB∥EF ( )
∴CD∥EF ( )
二、解答下列各题
1.如图:∠1=︒
53,试说明直线AB与CD,BC与DE
53,∠2=︒
127,∠3=︒
的位置关系。

2.如图10,∠1∶∠2∶∠3 = 2∶3∶4 ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由.
3.如图9,∠D =∠A ,∠B =∠FCB ,求证:ED∥CF .
4.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME 。

求证:AB∥CD ,MP∥NQ .
5.如图,AB 、CD 被EF 所截,MG 平分∠BMN ,NH 平分∠DNM ,已知∠GMN+ ∠HNM=90°,试问:AB ∥CD 吗请说明理由。

6、如图,直线EF 交直线AB 、CD 于点M 、N ,∠EMB= ∠END ,MG 平分∠EMB ,
NH 平分∠END ,试问:图中哪两些直线互相平行为什么
E
B
A
F
D C
图9 1 3 2 A E C D B
F 图10
F 2 A B C D
Q E 1 P
M
N 图11
C
D
F
A
B
N
M
G
H。

相关文档
最新文档