2、运用公式法进行因式分解

合集下载

因式分解常用方法及练习

因式分解常用方法及练习

1、用提公因式法把多项式进行因式分解【知识精读】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。

提公因式法是因式分解的最基本也是最常用的方法。

它的理论依据就是乘法分配律。

多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。

(2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。

下面我们通过例题进一步学习用提公因式法因式分解【分类解析】1. 把下列各式因式分解(1)a xabxacxaxm m mm 2213(2)a ab a b a ab b a ()()()32222分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。

解:a xabxacxaxax axbx c x m m mm m 221323()(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,()()()()a b b a a b b a nn n n 222121;,是在因式分解过程中常用的因式变换。

解:a ab a b a ab ba ()()()32222)243)((]2)(2))[(()(2)(2)(222223b babab aa b b a a b a b a a b a ab b a a b a a 2. 利用提公因式法简化计算过程例:计算1368987521136898745613689872681368987123分析:算式中每一项都含有9871368,可以把它看成公因式提取出来,再算出结果。

解:原式)521456268123(1368987987136813689875、中考点拨:例1。

因式分解322x x x ()()解:322x xx ()()322231x x xxx ()()()()说明:因式分解时,应先观察有没有公因式,若没有,看是否能通过变形转换得到。

因式分解的7种方法

因式分解的7种方法

一、提公因式法.:)(c b a m mc mb ma ++=++二、运用公式法.由乘法公式,将其反向使用,即为因式分解中常用的公式,(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2).补充公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是:A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=)()(bn bm an am +++=)()(n m b n m a +++ =))((b a n m ++ 例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

初中竞赛2、运用公式法进行因式分解

初中竞赛2、运用公式法进行因式分解

初中竞赛2 、运用公式法进行因式分解【知识精读】把乘法公式反过来,就可以得到因式分解的公式。

主要有:平方差公式完全平方公式立方和、立方差公式补充:欧拉公式:特别地:(1)当时,有(2)当时,欧拉公式变为两数立方和公式。

运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。

但有时需要经过适当的组合、变形后,方可使用公式。

用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。

因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。

下面我们就来学习用公式法进行因式分解【分类解析】1. 把分解因式的结果是()A. B.C. D.分析:。

再利用平方差公式进行分解,最后得到,故选择B。

说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。

同时要注意分解一定要彻底。

2. 在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用例:已知多项式有一个因式是,求的值。

分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出的值。

解:根据已知条件,设则由此可得由(1)得把代入(2),得把代入(3),得3. 在几何题中的应用。

例:已知是的三条边,且满足,试判断的形状。

分析:因为题中有,考虑到要用完全平方公式,首先要把转成。

所以两边同乘以2,然后拆开搭配得完全平方公式之和为0,从而得解。

解:为等边三角形。

4. 在代数证明题中应用例:两个连续奇数的平方差一定是8的倍数。

分析:先根据已知条件把奇数表示出来,然后进行变形和讨论。

解:设这两个连续奇数分别为(为整数)则由此可见,一定是8的倍数。

5、中考点拨:例1:因式分解:________。

解:说明:因式分解时,先看有没有公因式。

此题应先提取公因式,再用平方差公式分解彻底。

例2:分解因式:_________。

解:说明:先提取公因式,再用完全平方公式分解彻底。

题型展示:例1. 已知:,求的值。

数学因式分解公式法

数学因式分解公式法

数学因式分解公式法因式分解是数学中的一种基本运算,也是解决代数表达式的一种重要方法。

它可以将一个多项式或者整式分解成一个或多个乘积的形式。

因式分解在代数中有着广泛的应用,是其他许多数学概念和理论的基础。

在进行因式分解之前,我们首先需要了解一些基本的因式分解公式和方法。

接下来,我将详细介绍一些常用的因式分解公式和方法。

1.提取公因式法:这是因式分解中最基本也是最常用的方法之一、具体步骤如下:a)找出所有项中的最大公因式;b)将每一项除以最大公因式,并把最大公因式提取到括号外。

例如,对于多项式6x^2 + 12xy,我们可以找到最大公因式为6,然后将每一项除以6,可以得到因式分解结果为6(x^2 + 2xy)。

2.公式法:公式法是利用一些特定的公式进行因式分解。

这里列举一些常见的公式:a)平方差公式:(a+b)(a-b)=a^2-b^2;b) 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2;c) 二次平方差公式:a^2 - 2ab + b^2 = (a - b)^2;d)差平方公式:a^2-b^2=(a+b)(a-b)。

通过运用这些公式,可以将一个多项式因式分解成更简单的形式。

3.短除法:短除法是用来分解整式的一种常用方法。

它的步骤如下:a)找到多项式的首项和首项的系数;b)将首项的系数与待分解整式每一项的系数做除法运算;c)将所得商作为因式分解结果并乘以首项的系数;d)将结果与原整式做减法,得到一个新的多项式,重复上述步骤直到不能再进行短除。

例如,对于整式12x^4-8x^3+6x^2-4x,可以先找到首项为12x^4,然后将12x^4的系数12分别除以其他项的系数,得到商为x和-2x^2、将商与首项的系数相乘得到12x^3和-24x^4,将结果与原整式做减法,得到新的多项式-16x^3+6x^2-4x,重复上述步骤直到不能再进行短除。

4.公因式提取法:公因式提取法是利用多项式中的公共因子进行因式分解的方法。

因式分解运用公式法

因式分解运用公式法

第六节 因式分解(二)运用式法【细心听讲】1.运用公式法:如果把科法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

2.乘法公式逆变形(1)平方差公式:))((22b a b a b a -+=-(2)完全平方公式:222222)(2,)(2b a b ab a b a b ab a -=+-+=++ 3.把一个多项式分解因式,一般可按下列步骤进行: (1)如果多项式的各项有公因式,那么先提公因式;(2)如果多项式没有公因式,那么可以尝试运用公式来分解; (3)如果上述方法不能分解,那么可以尝试用。

【大家一起学】例1.把下列各式分解因式: (1)224b a - (2)11622-y x (3)22481916b a +-(4)2916a - (5)36122+-m m (6)2241y xy x +-(7)222y xy x -+-(8)224649b ab a ++例2.把下列多项式分解因式:(1)222224)(b a b a -+(2)502022+-x x(3)424255b m a m - (4)222231212m n m n m +-例3.分解因式(1)9)(6)(222+-+-x x x x (2)22)3()2(--+y x(3)22)2(25)1(16+--x x (4))()(2x y b y x a -+-(5))(12)(9422n m m n m m ++++ (6))()(422m n b n m a -+-例4.已知2=+b a ,利用分解因式,求代数式222121b ab a ++。

例5.已知7,1-==+xy y x ,利用分解因式,求代数式222y xy x +-的值。

例6.已知0136422=+--+b a b a ,求b a +。

例7.利用分解因式计算: (1)433.1922.122⨯-⨯ (2)2298196202202+⨯+【大家一起练】1.分解因式=-x x 2. 2.分解因式=-2225y x 。

数学因式分解的方法

数学因式分解的方法

数学因式分解的方法数学因式分解的方法要想能在综合性较强的几何题目中能灵活应用,就必须要熟记啦。

因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法和十字相乘法。

店铺为大家整理了数学公式:因式分解的方法,希望能够对大家有所帮助!一、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。

注意:换元后勿忘还元.【例】在分解(x^2+x+1)(x^2+x+2)-12时,可以令y=x^2+x,则原式=(y+1)(y+2)-12=y^2+3y+2-12=y^2+3y-10=(y+5)(y-2)=(x^2+x+5)(x^2+x-2)=(x^2+x+5)(x+2)(x-1).二、运用公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。

① 平方差公式:a-b=(a+b)(a-b);② 完全平方公式:a±2ab+b=(a±b) ;注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

③ 立方和公式:a^3+b^3=(a+b)(a-ab+b);④ 立方差公式:a^3-b^3=(a-b)(a+ab+b);⑤ 完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.【例】a+4ab+4b =(a+2b)三、分组分解法把一个多项式适当分组后,再进行分解因式的方法叫做分组分解法。

用分组分解法时,一定要想想分组后能否继续完成因式分解,由此选择合理选择分组的方法,即分组后,可以直接提公因式或运用公式。

【例】m+5n-mn-5m=m-5m-mn+5n = (m-5m)+(-mn+5n) =m(m-5)-n(m-5)=(m-5)(m-n).四、拆项、补项法这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。

因式分解常用的六种方法详解

因式分解常用的六种方法详解

因式分解常用的六种方法详解因式分解常用的六种方法详解因式分解是代数式变形的基本形式之一,它被广泛地应用于初等数学中,并成为解决许多数学问题的有力工具。

因式分解方法灵活,技巧性强,研究这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。

本文将介绍因式分解的方法、技巧和应用。

1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:1) $a^2-b^2=(a+b)(a-b)$;2) $a^2±2ab+b^2=(a±b)^2$;3) $a^3+b^3=(a+b)(a^2-ab+b^2)$;4) $a^3-b^3=(a-b)(a^2+ab+b^2)$。

下面再补充几个常用的公式:5) $a^2+b^2+c^2+2ab+2bc+2ca=(a+b+c)^2$;6) $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$;7) $a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^2+…+ab^{n-2}+b^{n-1})$,其中$n$为正整数;8) $a^n-b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^2-…+ab^{n-2}-b^{n-1})$,其中$n$为偶数;9) $a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^2-…-ab^{n-2}+b^{n-1})$,其中$n$为奇数。

在运用公式法分解因式时,需要根据多项式的特点,正确恰当地选择公式,考虑字母、系数、指数、符号等因素。

例如,分解因式:1) $-2x^{5n-1}y^n+4x^{3n-1}y^n+2-2x^{n-1}y^n+4$原式=$-2x^{n-1}y^n(x^{4n-2}-2x^{2n}y^2+y^4)$2x^{n-1}y^n[(x^{2n})^2-2x^{2n}y^2+(y^2)^2]$2x^{n-1}y^n(x^{2n}-y^2)^2$2x^{n-1}y^n(x^n-y)^2(x^n+y)^2$。

因式分解——运用公式法

因式分解——运用公式法

因式分解——运用公式法因式分解是将一个多项式化简成一系列乘积的过程。

通常有两种方法用于进行因式分解:公式法和分组法。

公式法可以概括为以下几种常用的因式分解公式:1.a²-b²=(a+b)(a-b)这是平方差公式,用于因式分解差的平方。

例如,我们可以将x²-4分解为(x+2)(x-2)。

2. a³ + b³ = (a + b)(a² - ab + b²)这是立方和公式,用于因式分解和的立方。

例如,我们可以将x³+8分解为(x+2)(x²-2x+4)。

3. a³ - b³ = (a - b)(a² + ab + b²)这是立方差公式,用于因式分解差的立方。

例如,我们可以将x³-8分解为(x-2)(x²+2x+4)。

4. a⁴ + b⁴ = (a² + √2ab + b²)(a² - √2ab + b²)这是四次和公式,用于因式分解和的四次方。

例如,我们可以将x⁴+16分解为(x²+4√2x+4)(x²-4√2x+4)。

5. a⁴ - b⁴ = (a² - √2ab + b²)(a² + √2ab + b²)这是四次差公式,用于因式分解差的四次方。

例如,我们可以将x⁴-16分解为(x²-4√2x+4)(x²+4√2x+4)。

除了以上这些常用的因式分解公式外,还有一些其他形式的因式分解公式,以及一些特殊的因式分解技巧。

例如,对于一个二次方程式ax² + bx + c,我们可以使用求根公式x = (-b ± √(b² - 4ac)) / 2a 来因式分解。

根据求根公式,我们可以将二次方程ax² + bx + c 分解为两个因式的乘积 (x - x₁)(x - x₂),其中 x₁和 x₂是由求根公式得到的两个根。

因式分解技巧讲解002

因式分解技巧讲解002

七、综合运用及技巧
1、换元(即整体法)
因式分解时可以用一个字母代替一个整式,也可以将原式中的某个部分变形后的式子用
一个字母代替,(一般都是既约多项式),分解完后再将其带入。
2、主次分清
我们在处理一个项数多的多项式的时候,可以按照一个主要字母(任选)的降幂整理后,
然后分解。
十字相乘法解决。
[例]分解因式:6x2-7x+2
解:采用类似的办法:把6分解成2×3,写在第一列;把2分解成(-1)×(-2),写在第二
列;然后交叉相乘,把积相加,最后把得到的和写在横线下面。如下:
2 -1
3 -2
-7
这个和恰好是一次项的系数,于是有:
上面的算式称之为长十字相乘,式子中的三个十字,就是上面所说的三个十字相乘,我
们省略了横线及其底下的数。
如果二次式中的缺少一项或几项,长十字相乘仍然可用。
[例]分解因式:x2-y2+5x+3y+4[缺少含有字母的项]
解:由如下算式
(x) (y) (1)
1 1 1
=2a2b(x+y)(b+c)[(x+y)+3a3b3(b+c)]
=2a2b(x+y)(b+c)(x+y+3a3b4+3a3b3c)
其实这是一种整体的思想,在因式分解中应用广泛。
3、切勿漏1
4、注意符号
在提出的公因式为负的时候,注意各项符号的改变。
5、化“分”为整
数学论文——因式巧分解
史虓
◎综述
所谓多项式的因式分解,是把一个多项式写成几个整式的积的形式。因式分解并不复杂,

用公式法进行因式分解

用公式法进行因式分解

用公式法进行因式分解因式分解是数学中的重要概念之一,它可以将一个多项式分解成若干个乘积的形式,方便我们进行进一步的运算和简化。

下面我们将通过公式法来学习因式分解的方法,帮助大家更好地掌握这一知识点。

一、什么是因式分解因式分解是指将一个多项式化为由若干个因子相乘的形式。

这些因子可以是一次式、二次式、甚至高次式。

因式分解是解决方程、求导、求极值等问题的基础之一,是数学中必不可少的知识点。

二、如何用公式法进行因式分解通过观察多项式中各项的项数、次数以及系数的情况,我们可以尝试使用公式法进行因式分解。

以下是一些常见的公式:1、平方差公式:$a^2-b^2=(a+b)(a-b)$2、配方法公式:$(a+b)^2=a^2+2ab+b^2$,$(a-b)^2=a^2-2ab+b^2$,$(a+b)(a-b)=a^2-b^2$3、三次方差公式:$a^3+b^3=(a+b)(a^2-ab+b^2)$,$a^3-b^3=(a-b)(a^2+ab+b^2)$4、四次方差公式:$a^4-b^4=(a^2+b^2)(a^2-b^2)=(a^2+b^2)(a+b)(a-b)$5、完全平方公式:$a^2+2ab+b^2=(a+b)^2$,$a^2-2ab+b^2=(a-b)^2$使用这些公式可以大大简化因式分解的过程,但是不同的多项式使用的公式可能不同,需要根据具体情况进行分析。

三、实例演示下面我们通过一个实例来演示如何用公式法进行因式分解。

将多项式$x^3-4x^2+3x+18$分解因式。

首先我们观察多项式中各项的项数、次数以及系数的情况,可以发现它们之间并没有特别明显的关系。

因此我们可以尝试使用配方法公式进行因式分解。

将$x^3-4x^2+3x+18$按照$x^3$和$-4x^2$为一组,$3x$和$18$为一组,得到:$x^3-4x^2+3x+18=(x^3-4x^2)+(3x+18)=x^2(x-4)+3(x+6)$这里使用了$x^2$作为公因式,然后将剩余部分分别提取,得到最终的因式分解形式。

因式分解公式法

因式分解公式法

因 式 分 解类型二、公式法1、利用平方差公式因式分解:()()b a b a b a -+=-22 注意:①条件:两个二次幂的差的形式;②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么。

例如:分解因式:(1)291x -; (2)221694b a -; (3)22)(4)(n m n m --+2、利用完全平方公式因式分解:()2222b a b ab a ±=+± 注意:①是关于某个字母(或式子)的二次三项式;②其首尾两项是两个符号相同的平方形式;③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成 222)(2b a b ab a ±=+±公式原型,弄清a 、b 分别表示的量。

例如:分解因式:(1)2961x x +-; ⑵ 36)(12)(2+---n m n m 1682++x x典型例题:例1 用平方差公式分解因式:(1)22)(9y x x -+-; (2)22331n m - 说明 因式分解中,多项式的第一项的符号一般不能为负;分数系数一般化为整系数。

例2 分解因式:(1)ab b a -5;(2))()(44n m b n m a +-+. 说明 将公式法与提公因式法有机结合起来,先提公因式,再运用公式.例3 判断下列各式能否用完全平方公式分解因式,为什么?(1)962+-a a ; (2)982+-x x ; (3)91242--x x ; (4)223612y x xy ++-. 说明 可否用公式,就要看所给多项式是否具备公式的特点.例4 把下列各式分解因式:⑴ 442-+-x x ; ⑵ 22914942y x xy -- ⑶ mn n m 4422+-- 说明:在使用完全平方公式时,要保证平方项前的符号为正,当平方项前的符号是负号 时,先提出负号.例5 分解因式:⑴ 22363ay axy ax ++. ⑵ 22222)(624b a b a +-说明 ⑴分解因式时,首先考虑有无公因式可提,当有公因式时,先提再分解. ⑵分解因式必须进行彻底,直至每个因式都不能再分解为止.例6 分解因式:⑴ 22)(9))(2(6)2(n m n m m n n m +++---;⑵ 4224168b b a a +-;⑶ 1)2(2)2(222++++m m m m . ⑷ 63244914b b a a +-⑸ 1)2(6)2(92+---b a b a说明 在运用完全平方公式的过程中,再次体现换元思想的应用,可见换元思想是重 要而且常用思想方法,要真正理解,学会运用.例7 若25)4(22+++x a x 是完全平方式,求a 的值. 说明 根据完全平方公式特点求待定系数a ,熟练公式中的“a 、b ”便可自如求解.例8 已知2=+b a ,求222121b ab a ++的值. 说明 将所求的代数式变形,使之成为b a +的表达式,然后整体代入求值.例9 已知1=-y x ,2=xy ,求32232xy y x y x +-的值. 说明 这类问题一般不适合通过解出x 、y 的值来代入计算,巧妙的方法是先对所求的代数式进行因式分解,使之转化为关于xy 与y x -的式子,再整体代入求值.例10 证明:四个连续自然数的积加1,一定是一个完全平方数.说明 可用字母表示出四个连续自然数,通过因式分解说明结果是完全平方数.例11 已知x 和y 满足方程组⎩⎨⎧=-=+346423y x y x ,求代数式2249y x -的值。

《用公式法进行因式分解》教案

《用公式法进行因式分解》教案

12.5.2《用公式法分解因式》教案教学目标:• 1. 理解整式乘法和因式分解是互逆的,培养逆向思维能力。

• 2.进一步理解因式分解的意义,掌握用平方差公式和完全平方公式分解因式的方法。

• 3. 掌握提公因式法、公式法分解因式的综合运用。

• 4.体会换元法、类比法、整体思想、转化思想。

重点:用平方差公式和完全平方公式法进行因式分解.难点:把多项式进行必要变形,灵活运用平方差公式和完成平方公式分解因式 教学过程:一、创设情境 明确目标复习回顾1. 还记得学过的两个最基本的乘法公式吗?2. 什么叫因式分解?我们学过的因式分解的方法是什么?3. 因式分解与整式乘法有什么关系?你能很快做出下面两道题吗?引出新课,确定学习目标二、引导自学 初步达标自主完成下面填空并思考:(4分钟,独立完成)(一)根据乘法公式计算:= == = (二)根据等式的对称性填空 = = = = (三)思考:1、(二)中四个多项式的变形是因式分解吗?2、对比(一)和(二)你有什么发现?我的发现:乘法公式反过来就是因式分解把乘法公式反过来进行因式分解的方法称为公式法。

你能用图形的面积说明这两个公式吗?三、探究新知 达成目标探究一 用平方差公式分解因式222007200740162008 1+⨯-)(2220072008 2-)((2)(2)m m +-()()a b a b -+2()a b +2(2)m +24m -22a b -244m m ++222a ab b ++22222()()2()a b a b a b a ab b a b -=-+±+=±思考:1、因式分解时,平方差公式的左边和右边各有什么特征?2、你能用语言叙述这个公式吗?议一议:下列多项式可以用平方差公式分解吗?(1)x 2-y 2 ;(2)-x 2+y 2;(3)x 2+y 2 ;(4)-x 2-y 2;(5)16-b 2 ;(6)(2a)2-(3b)2;(7) 4a 2-9b 2 ;(8) (a+b)2-(a-b)2 ;(9) 9(a+b)2-16(a-b)2思考: 你是如何怎样判断一个多项式是否能用平方差公式分解?归纳:平方差公式公式: a 2-b 2=(a+b)(a-b)(一)结构特点:1、左边左边有二项,是两个数的平方差的形式2、右边是右边是左边平方项的底数的和与差的积(二)判断:看多项式是否能写成两个数的平方的差的形式(三)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

七年级数学运用公式法分解因式

七年级数学运用公式法分解因式

( 16 a2 b2 (ab 4)(ab 4)
例2、把下列各式分解因式
(1) (m n) 6(m n) 9
2
(m n) 3
m n 3
2
2
(m n)2 2(m n) 3 3 2
2
2
(2) 9(a b) (a b)
x 25
2
x 6 xy 9 y
( x 5)( x 5) (3x y)(3x y)
9x y
2 2
完全平方公式:
a 2 2ab b 2 (a b)2 a 2 2ab b 2 (a b) 2
平方差公式:
a2 b2 (a b)(a b)
(4)
a b (a b)(a b) 2 2 2 2 36a 25b (6a) (5b) (6a 5b)(6a 5b)
2 2
随堂练习: 1、填空(把下列各式写成完全平方的形式)
(1) 25a 2 ( 5a ) 2 (4) y 8 y 16 (
2
小结: 1、内容归纳: (1)因式分解的方法:公式法 (2)因式分解的3个公式 2、方法归纳 在运用公式分解因式时,要通过观察、分 析、判断所给多项式是否符合公式的特征,弄 清所给多项式中,相当于公式的a,b分别是什 么,正确地运用公式。
作业:
教科书习题8.5第4题。
; / 硅藻泥加盟
猪猪爬还要难看!爷居然要模仿那种字体,实在是有失颜面!可是为咯婉然,他全都忍下咯。现在他才晓得,她の字居然那么漂亮,居然能让他误以为是字帖!第壹卷 第533章 倩兮看着那清新秀丽又别失力道の字体,他真是越看越喜欢,字如其人,像她那样娇娇柔柔、小小巧巧の人,选择那种字体真是太适合她咯,怪别得能写得那么好。相反,无论是 颜体大楷还是米芾狂草,气势都太过大气滂沱,她那么娇弱の人实在是撑别起来,选择倪瓒の簪花小楷作为她の首选主攻方向真是选得太对咯。在心中暗暗夸赞完水清の字体,王 爷又禁别住欣赏起她の文采。虽然只是事无巨细地记忆咯每壹天府里发生の大大小小事情,但是就算仅仅只是壹各流水账,就算水清只是随意地写写而已,可是呈现在他面前の那 各汇报,遣词造句甚为得体,字斟句酌,言简意赅,又极富文采,读起来朗朗上口、壹气呵成,就好像那些事情就真切地发生在他の眼前似の。特别是再跟小福子の那各语句别通、 错字连篇,他要连蒙带猜才能读懂の汇报两相比较,那各如字帖般の汇报别晓得要好上好些倍,完全就是云泥之别。那就是他の侧福晋?娶回府里当咯他五年の侧福晋,居然才华 是那么出众?以前他只晓得她の“诡计多端”,她の桀骜别驯,她の倔强冷漠,今天他真是第壹次充分地领略到她の另壹面。更重要の是,从她汇报の内容上来看,与小福子の内 容壹模壹样,说明她没什么丝毫の隐瞒和做假,尽职尽责地履行着她の职责。原本留下小福子是为咯防范她有啥啊别轨企图,现在却变成咯有力地证明咯她是多么の忠于职守,多 么の诚实无欺。既有出众の文采,又有坦诚の心灵,简直就是壹块稀世珍宝,静静地陪伴咯他五年の时光,可是他怎么就壹点儿也没什么发现呢?是啥啊蒙蔽咯他の双眼,让他别 但没什么珍视她の美好,反而屡屡产生误会,甚至是令她蒙受咯别白之冤?可是他壹贯自诩看人の眼光既独到又老辣,几乎从来就没什么看错过人,可是那壹次,他有点儿心虚气 短起来,竟然败在咯排字琦の手下。假设别是排字琦壹意孤行,极力地推荐水清,那块稀世珍宝别晓得还要被蒙蔽多久才会放射出它璀璨而夺目の光芒?壹时理别出头绪の他禁别 住提起笔,另寻咯壹页纸,在上面无意识地写咯起来,壹边写壹边苦苦地思索着,企图寻找出答案。满脑子浮想联翩,使他竟别知刚刚落笔都写咯些啥啊,所以待他回过神儿来之 后,定睛壹看,才惊讶地发现他刚刚写在纸上の,居然是壹句诗:手如柔荑,肤如凝脂,领如蝤蛴,齿如瓠犀,螓首蛾眉,巧笑倩兮!美目盼兮!望着自己无意识地写下の,出自 《诗经•卫风•硕人》の诗句,完全就是心之所想,跃然纸上,他の眼前别禁浮现出水清那娇俏の模样:时而天真、时而倔强、时而温顺、时而愤怒、时而骄傲、时而冷漠、时而 ……各式各样表情の水清,轮番地出现在他の眼前,令他の眉头锁得更紧。第壹卷 第534章 心乱想着想着,他有些自我解嘲地笑咯笑,“巧笑倩兮,美目盼兮”,他有那么多の 公文别看,居然还有闲功夫胡思乱想啥啊呢?于是随手就将那页胡乱写咯些诗句の纸,连带着那四十三页纸の管家汇报,壹并随手塞进咯书桌の抽屉里。虽然他将那些纸页放进咯 抽屉里,虽然他开始专心致志地看起咯公文,可是破天荒地,竟又莫名其妙地心烦气燥起来。在他の诸人中,除咯淑清以外,全都大字别识壹各,即使是识字の淑清,也仅仅是只 识得别到百十来各字。可就是那区区别到百十来各字,也使她在壹众女眷中立即脱颖而出,卓而别群。而他又是壹各汉学造诣极深の人,即刻视淑清为知己。所以,虽然她持宠而 骄、小脾气别断,仍然能够独享二十年专房独宠。那也是排字琦空有高贵の出身、纯正の血统、尊贵の地位,空有嫡福晋の名分,最终也未能与他修成正果の最主要の原因。而他 现在才发现,那各被他别情别愿地娶进府里已经有五年の侧福晋,别仅仅是能读书会写字,更是写得壹手好文章,即使是每日の小小の管家汇报全都当作壹篇大作来对待,字字珠 玑、条理清晰、文字流畅、用语准确,读起来简直就是栩栩如生、畅快淋漓。那四十三页纸の管家汇报,搅得他心绪别宁、坐立别安,如此强烈地冲击着他の大脑。那是壹各啥啊 样の诸人?才华横溢,聪明伶俐,饱读诗书,足智多谋、模样秀美,淡定从容,谦虚谨慎,怎么她身上の那些美德全都是他喜欢の?壹想到那里,他の眼前别由自主地浮现出她の 模样,昨日里她怀抱着五小格对他和十三小格笑吟吟の模样。眼看着日头有些偏斜咯,他才发现,计划中要完成の事情壹件也没什么办完,满脑子里想の全是她!再那样下去,公 务全要被耽搁咯。可是,即使公文全要被耽误咯,也无法阻挡住他迫别急待地想要晓得他娶回府中の那各宝藏中,还埋藏着好些奇珍异宝の念头。根本无法踏实下心来の他于是索 性将公文壹推,吩咐秦顺儿,去怡然居。“回爷,奴才跟怡然居说您啥啊时候到?”“别用传口信儿咯,现在就去。”没什么得到提前通报,怡然居里无论是主子还是奴才们都各 自忙着自己手中の事情,以至于作为全府之中最高领导到来の时候,竟然没什么壹各奴才在大门口恭迎他の大驾光临。对于怡然居从主子到奴才壹贯如此懒散の局面,他已经见惯 别怪咯。平心而论,那样の结果也别能完全算是水清の责任,他几乎从别过来,那五、六年来,他才

因式分解的十二种方法及多项式因式分解的一般步骤

因式分解的十二种方法及多项式因式分解的一般步骤

因式分解的十二种方法及多项式因式分解的一般步骤把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、分解因式x -2x -x(2003XX市中考题)x -2x -x=x(x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a +4ab+4b (2003XX市中考题)解:a +4ab+4b =(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-19解:7x -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

初二数学因式分解(二):运用公式法,例题解析及课后训练.doc

初二数学因式分解(二):运用公式法,例题解析及课后训练.doc

初二数学因式分解(二):运用公式法,例
题解析及课后训练
因式分解的方法有很多种,老师在课堂上也会讲到,今天着重讲解运用公式法,运用公式法是因式分解方法的一种,这种方法可以帮助学生高效的解出正确的答案。

运用公式法分解因式,关键是观察多项式的项数、各项的次数和系数是否符合公式的特点,若多项式是二项式,可考虑运用平方差公式;若多项式是三项式,可考虑运用完全平方公式。

在运用公式法分解因式时,要注意:先观察是否有公因式可提,然后再考虑是否符合公式的形式;公式中的字母,可以表示一个数、一个单项式或者一个多项式。

例分解因式:x3y2-4x
分析:该多项式有公因式可提,提取公因式得到的多项式为x2y2-4,此多项式符合平方差公式的形式。

解原式= x(x2y2-4)= x[(xy)2-4]= x(xy+2)( xy-2)
点评:分解因式必须进行每一个因式不能再分解为止。

以下口诀同学们在分解过程中不妨试一试,以避免错误:因式分解并不难,分解方法要记全;各项若有公因式,首先提取莫迟缓;各项若无公因式,乘法公式看一看;以上方法若不行,分组分解做试验;因式分解若不完,继续分解到完全。

下面是初二数学因式分解(二):运用公式法,例题解析
及课后训练,希望这份资料能够帮助学生用运用公式法的方式去解题。

用公式法进行因式分解(二)

用公式法进行因式分解(二)

2.4用公式法进行因式分解(二)【课型】:公式定理课【学习目标】1、理解完全平方公式的结构特点。

2、能较熟悉地运用完全平方公式分解因式。

3、能灵活应用提公因式法、公式法分解因式。

4、通过综合运用提公因式法,完全平方公式分解因式,进一步培养学生的观察和联想能力.通过知识结构图培养学生归纳总结的能力.【重点】用完全平方公式分解因式.【难点】灵活应用完全平方公式分解因式.【教学方法】自主探究合作学习法【学生情况分析】本节课是在学生能够熟练应用平方差公式和完全平方公式进行整式乘法运算的基础上进行的逆向变形,由于学生对于这两个公式掌握的比较牢固,加上学生刚学习了应用平方差公式进行因式分解,因此相信学生能够较好的完成本课的任务学习准备】多媒体课件【导学流程】一、提出问题,创设情境问题1:根据学习用平方差公式分解因式的经验和方法,•分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?问题2:把下列各式分解因式.(1)a2+2ab+b2(2)a2-2ab+b2引入本节的课题,明确本节的学习目标。

二、学生自学,独立探究自学任务:1、自学课本43页、44页例2。

2、通过自学,掌握因式分解的完全平方公式的结构特点。

3、会应用完全平方公式把多项式因式分解。

自学检测:1、因式分解的完全平方公式的表述:两个数的平方和,加上(或减去)这两数的积的2倍,•等于这两个数的和(或差)的平方.2、完全平方公式的符号表示.即:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.3、下列各式是不是完全平方式?(1)a2-4a+4(2)x2+4x+4y2(3)4a2+2ab+14b2(4)a2-ab+b2(5)x2-6x-9(6)a2+a+0.25(放手让学生讨论,达到熟悉公式结构特征的目的)。

4、把3题中是完全平方式的进行因式分解。

结果:(1)a2-4a+4=a2-2×2·a+22=(a-2)2(3)4a2+2ab+14b2=(2a)2+2×2a·12b+(12b)2=(2a+12b)2(6)a2+a+0.25=a2+2·a·0.5+0.52=(a+0.5)2(2)、(4)、(5)都不是.三、精讲点拨,拓展提高。

因式分解知识点归纳

因式分解知识点归纳

因式分解知识点归纳可以是多项式或单项式 女口: (a b)2|_(a b)3二(a b)56、幂的乘方法则:(a m )n=a mn( m,n 都是正整数) 幂的乘方,底数不变,指数相乘。

如: 幂的乘方法则可以逆用:即amn=(a m )n =(a n )m如:46=(42)3=(43)27、积的乘方法则:(ab)n=a n b n(n 是正整数) 积的乘方,等于各因数乘方的积。

如:( -2x 3y 2z)5= ( -2)5*(x 3)5*(y 2)5・z 5二 一32x 15y 10z 58、同底数幂的除法法则:a m"a n=a mJ1( a=O,m,n 都是正整 数,且m - n)同底数幂相除,底数不变,指数相减。

女口:(ab)4 +(ab) =(ab)3 =a 3b 39、 零指数和负指数;a 0 =1,即任何不等于零的数的零次方等于 1。

a^=*( a^0,p 是正整数),即一个不等于零的数的-P 次 方等于这个数的P 次方的倒数。

如:2—(y=810、 单项式的乘法法则:单项式与单项式相乘,把他 们的系数,相同字母分别相乘,对于只在一个单项式 里含有的字母,贝U 连同它的指数作为积的一个因式。

注意:m、n mn(-35)2二 310(3a 2b)(a - 3b) (x 5)(x -6)3.( a—2b+ 3c—d) ( a+ 2b—3c—d) 考点一、因式分解的概念因式分解的概念:把一个多项式分解成几个整式的积的形式,叫做因式分解。

因式分解和整式乘法互为逆运算1、下列从左到右是因式分解的是( )A. x(a-b)=ax-bxB.2 2 2x-1+y =(x-1)(x+1)+y2C. x -1=(x+1)(x-1)D. ax+bx+c=x(a+b)+c2、若4a2 kab 9b2可以因式分解为(2a — 3b)2,贝k的值为3、已知a为正整数,试判断a2+a是奇数还是偶数?4、已知关于X的二次三项式x2 mx n有一个因式(x 5),且m+n=17,试求m,n的值(3) X n—x・严(4) (一3)2011 (一3)20104、先分解因式,在计算求值(1) (2x—1)2(3x 2)—(2x—1)(3x 2)2—x(1—2x)(3x 2) 其中X=1 ・5(2) (a—2)(a2 a 1)—(a2—1)(2—a) 其中a=185、已知多项式x4 2012x2 2011x 2012有一个因式为x2 ax 1 , 另一个因式为x2 bx 2012,求a+b的值6、若ab2 1 =0,用因式分解法求-ab(a2b5-ab3-b)的值7、已知a, b, c满足ab + a+ b=bc + b + c = ca+c+a = 3 , 求(a 1)(b 1)(c 1) 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、运用公式法进行因式分解【知识精读】把乘法公式反过来,就可以得到因式分解的公式。

主要有:平方差公式 a b a b a b 22-=+-()()完全平方公式a ab b a b 2222±+=±()立方和、立方差公式 a b a b a ab b 3322±=±⋅+()() 补充:欧拉公式:a b c abc a b c a b c ab bc ca 3332223++-=++++---()() =++-+-+-12222()[()()()]a b c a b b c c a 特别地:(1)当a b c ++=0时,有a b c abc 3333++=(2)当c =0时,欧拉公式变为两数立方和公式。

运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。

但有时需要经过适当的组合、变形后,方可使用公式。

用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。

因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。

下面我们就来学习用公式法进行因式分解 【分类解析】1. 把a a b b 2222+--分解因式的结果是( ) A. ()()()a b a b -++22 B. ()()a b a b -++2 C. ()()a b a b -++2D. ()()a b b a 2222--分析:a a b b a a b b a b 22222222212111+--=++---=+-+()()。

再利用平方差公式进行分解,最后得到()()a b a b -++2,故选择B 。

说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。

同时要注意分解一定要彻底。

2. 在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用 例:已知多项式232x x m -+有一个因式是21x +,求m 的值。

分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出m 的值。

解:根据已知条件,设221322x x m x x ax b -+=+++()()则222123232x x m x a x a b x b -+=+++++()()由此可得21112023a a b m b+=-+==⎧⎨⎪⎪⎩⎪⎪()()()由(1)得a =-1把a =-1代入(2),得b =12把b =12代入(3),得m =123. 在几何题中的应用。

例:已知a b c 、、是∆ABC 的三条边,且满足a b c ab bc ac 2220++---=,试判断∆ABC 的形状。

分析:因为题中有a b ab 22、、-,考虑到要用完全平方公式,首先要把-ab 转成-2ab 。

所以两边同乘以2,然后拆开搭配得完全平方公式之和为0,从而得解。

解: a b c ab bc ac 2220++---= ∴++---=2222220222a b c ab bc ac∴-++-++-+=()()()a ab b b bc c c ac a 2222222220 ∴-+-+-=()()()a b b c c a 2220 ()()()a b b c c a -≥-≥-≥222000,, ∴-=-=-=a b b c c a 000,, ∴==a b c∴∆ABC 为等边三角形。

4. 在代数证明题中应用例:两个连续奇数的平方差一定是8的倍数。

分析:先根据已知条件把奇数表示出来,然后进行变形和讨论。

解:设这两个连续奇数分别为2123n n ++,(n 为整数) 则()()232122n n +-+=++++--=+=+()()()()2321232124481n n n n n n由此可见,()()232122n n +-+一定是8的倍数。

5、中考点拨:例1:因式分解:x xy 324-=________。

解:x xy x x y x x y x y 32224422-=-=+-()()()说明:因式分解时,先看有没有公因式。

此题应先提取公因式,再用平方差公式分解彻底。

例2:分解因式:2883223x y x y xy ++=_________。

解:288244322322x y x y xy xy x xy y ++=++()=+222xy x y () 说明:先提取公因式,再用完全平方公式分解彻底。

题型展示: 例1. 已知:a m b m c m =+=+=+121122123,,, 求a ab b ac c bc 222222++-+-的值。

解:a ab b ac c bc 222222++-+- =+-++()()a b c a b c 222 =+-()a b c 2 a m b m c m =+=+=+121122123,, ∴原式=+-()a b c 2=+++-+⎡⎣⎢⎤⎦⎥=()()()1211221231422m m m m说明:本题属于条件求值问题,解题时没有把条件直接代入代数式求值,而是把代数式因式分解,变形后再把条件带入,从而简化计算过程。

例2. 已知a b c a b c ++=++=00333,, 求证:a b c 5550++=证明: a b c abc a b c a b c ab bc ca 3332223++-=++++---()() ∴把a b c a b c ++=++=00333,代入上式, 可得abc =0,即a =0或b =0或c =0 若a =0,则b c =-, ∴++=a b c 555若b =0或c =0,同理也有a b c 5550++=说明:利用补充公式确定a b c ,,的值,命题得证。

例3. 若x y x xy y 3322279+=-+=,,求x y 22+的值。

解: x y x y x xy y 332227+=+-+=()() 且x xy y 229-+=)1(92322=++=+∴y xy x y x , 又x xy y 2292-+=()两式相减得xy =0 所以x y 229+=说明:按常规需求出x y ,的值,此路行不通。

用因式分解变形已知条件,简化计算过程。

【实战模拟】 1. 分解因式:(1)()()a a +--23122(2)x x y x y x 5222()()-+-(3)a x y a x y x y 22342()()()-+-+- 2. 已知:x x +=-13,求x x441+的值。

3. 若a b c ,,是三角形的三条边,求证:a b c bc 22220---< 4. 已知:ωω210++=,求ω2001的值。

5. 已知a b c ,,是不全相等的实数,且abc a b c abc ≠++=03333,,试求 (1)a b c ++的值;(2)a b c b c a c a b()()()111111+++++的值。

【试题答案】1. (1)解:原式=++-+--[()()][()()]a a a a 231231 =+-+()()4123a a =-+-()()4123a a说明:把a a +-231,看成整体,利用平方差公式分解。

(2)解:原式=---x x y x x y 5222()() =--x x y x 2321()()=--++x x y x x x 22211()()()(3)解:原式=-+-+-()[()()]x y a a x y x y 2222 =-+-()()x y a x y 222. 解: ()x x x x +=++121222 ∴+=+-=--=x xx x 2222112327()()∴+=∴++=()x x x x 222441491249, ∴+=x x441473. 分析与解答:由于对三角形而言,需满足两边之差小于第三边,因此要证明结论就需要把问题转化为两边差小于第三边求得证明。

证明: a b c bc 2222---=-++=-+=++--a b bc c a b c a b c a b c 222222()()()()a b c ,,是三角形三边 ∴++>a b c 0且a b c <+ ∴++--<()()a b c a b c 0 即a b c bc 22220---< 4. 解 ωω210++=∴+++=()()ωωω1102,即ω310-=∴=∴==ωωω32001366711()5. 分析与解答:(1)由因式分解可知a b c abc a b c 3333++-=++()⋅++---()a b c ab bc ca 222故需考虑a b c ab bc ca 222++---值的情况,(2)所求代数式较复杂,考虑恒等变形。

解:(1) a b c abc 3333++= ∴++-=a b c abc 33330 又 a b c abc 3333++-=++++---()()a b c a b c ab bc ca 222 ∴++++---=()()a b c a b c ab bc ca 2220 而a b c ab bc ca a b b c c a 22222212++---=-+-+-[()()()] a b c ,,不全相等∴++--->a b c ab bc ca 2220 ∴++=a b c 0 (2) abc ≠0 ∴原式=+++++1222abca b c b c a c a b [()()()] 而a b c ++=0,即a b c =-+()∴原式=+--1333abc b c b c [()] =+13abcbc b c [()]=-=-133abc abc ()说明:因式分解与配方法是在代数式的化简与求值中常用的方法。

相关文档
最新文档