三次函数的三大性质初探

合集下载

三次函数性质总结_T

三次函数性质总结_T

(2)m≠0
,
f
( x)

mx2

(m
1) x
1
(mx
1)( x
1)
=0,
x1

1,
x2


1 m

m<
0
,
x2
>
x1
,
(,
1)或(-
1 m
,
)
单调递减,
(1,

1 m
)
单调递增;

0
<
m
<1

x2
<
x1

(,

1 m
)或(-1,
)
单调递增,
(
1 m
,
1)
0< m<1,
(,

1 m
)或(-1,
)
单调递增,
(
1 m
,
1)
单调递减;
m=1,所以在 R 上为单调递增;
m
>1
,,
(,
1)或(-
1 m
,
)
,求曲线过点
错解:依上题,直接填上答案
处的切线方程.
错因剖析:如下图所示,在曲线上的点 A 处的切线与该曲线还有一个交点。这与圆的切线是有不同的。

在曲线
上,它可以是切点也可以不是。
正确解法:设过点
的切线对应的切点为

斜率为
,切线方程为
5

的坐标代入,得

∴切线的方程为

请你掌握:三次函数解析式的形式
变式
1
设函数

三次函数的图像与性质

三次函数的图像与性质

三次函数的图像与性质形如f(x)=ax3+bx2+cx+d(a≠0)的函数叫做三次函数。

由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题已经成为高考命题的一个新的热点和亮点,尤其是文科数学更是如此。

我们可以采用类比的方法,利用几何画板,较为深入地研究三次函数的图像与性质以及三次方程的解的个数的问题。

1三次函数的图像与性质设三次函数f(x)=ax3+bx2+cx+d(a≠0),其导函数f’(x)=3ax2+2bx+c,其判别式△=4b2-12ac=4(b2-3ac)。

当a>0时,若△>0,方程f’(x)=0有两个不相等的实数根,记作x1,x2,不妨令x1f(x2)。

结论1:f(x1)·f(x2)>0时,函数f(x)的图像与x轴有且仅有一个公共点;f(x1)·f(x2)=0时,函数f(x)的图像与x轴有且仅有两个公共点;f (x1)·f(x2)0,f(x2)0为例):当a>0时,f(x)的四种图象3推论设三次函数f(x)=ax3+bx2+cx+d(a>0),其导函数f’(x)=3ax2+2bx+c 的判别式△=4b2-12ac=4(b2-3ac)>0。

方程f’(x)=0有两个不相等的实数根,记作x1,x2,不妨令x1<x2,则函数f(x)在x=x1处取得极大值f(x1),函数f(x)在x=x2处取得极小值f(x2)。

类似可知a<0的情形(其余条件同前):函数在x=x1处取得极小值f(x1),函数f(x)在x=x2处取得极大值f(x2)。

4例题例1.(湖南卷)用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?解:设长方体的宽为x(m),则长为2x(m),高为h==4.5-3x(m)(0<x<),故长方体的体积为V(x)=2x2(4.5-3x)=9x2-6x3(m3)(0<x<),从而V’(x)=18x-18x2(4.5-3x)=18x(1-x)。

5-4三次函数的图象和性质

5-4三次函数的图象和性质

293-b ±b2- 3ac专题4 三次函数的图像和性质第一讲三次函数的基本性质设三次函数为f (x)=ax3 +bx2 +cx +d (a 、b 、c 、d ∈R 且a ≠ 0 ),其基本性质有:性质一:定义域为R.性质二:值域为R,函数在整个定义域上没有最大值、最小值.性质三:单调性和图象.a > 0 a < 0图像∆>0 ∆≤ 0 ∆> 0 ∆≤ 0当 a > 0 时,先看二次函数 f '(x) = 3ax+ 2bx +c , ∆= 4b- 12ac = 4(b- 3ac)①当∆= 4b2 - 12ac = 4(b2 - 3ac) > 0 ,即b2 - 3ac > 0 时,f '(x) 与x 轴有两个交点x ,x ,f (x) 形成三个单1 2点区间和两个极值点x1,x2,图像如图1,2.②当∆= 4b2 - 12ac = 4(b2 - 3ac) = 0 ,即b2 - 3ac = 0 时,f '(x) 与x 轴有两个等根x ,x ,f (x) 没有极值点1 2图像如图3,4.③当∆= 4b2 - 12ac = 4(b2 - 3ac) < 0 ,即b2 - 3ac < 0 时,f '(x) 与x 轴没有交点,f (x) 没有极值点,图像如图5,6.图1 图2 图3 图4 图5 图6当 a < 0 时,同理先看二次函数 f '(x) = 3ax2 + 2bx +c ,. ∆= 4b2 - 12ac = 4(b2 - 3ac)①当∆= 4b2-12ac = 4(b2- 3ac) > 0 ,即b2- 3ac > 0 时,f '(x) 与x 轴有两个交点x ,x ,f (x) 形成三个单1 2点区间和两个极值点x1,x2.②当∆= 4b2 - 12ac = 4(b2 - 3ac) = 0 ,即b2 - 3ac = 0 时,f '(x) 与x 轴有两个等根x ,x ,f (x) 没有极值点.1 2③当∆= 4b2 - 12ac = 4(b2 - 3ac) < 0 ,即b2 - 3ac < 0 时,f '(x) 与x 轴没有交点,f (x) 没有极值点.性质四:三次方程 f (x )= 0 的实根个数对于三次函数 f (x )=ax3 +bx2 +cx +d (a 、b 、c 、d ∈R 且a ≠ 0 ),其导数为 f '(x) = 3ax2+ 2bx +c当b2-3ac > 0 ,其导数f '(x) = 0有两个解x1 ,x2 ,原方程有两个极值x1、x2 =3a.294x 1x 2x 1 x 2x①当 f (x 1 ) ⋅ f (x 2 ) > 0 ,原方程有且只有一个实根,图像如图 13,14. ②当 f (x 1 ) ⋅ f (x 2 ) = 0 ,则方程有 2 个实根,图像如图 15,16. ③当 f (x 1 ) ⋅ f (x 2 ) < 0 ,则方程有三个实根,图像如图 17.图 13 图 15 图 16 图 17性质五:奇偶性对于三次函数 f (x ) = ax 3 + bx 2 + cx + d ( a 、b 、 c 、 d ∈ R 且 a ≠ 0 ). ① f (x ) 不可能为偶函数;②当且仅当b = d = 0 时是奇函数. 性质六:对称性(1)结论一:三次函数是中心对称曲线,且对称中心是(- b , f (- b)) ;3a 3a(2)结论二:其导函数为 f '(x ) = 3ax 2+ 2bx + c = 0 对称轴为 x = - b 3a,所以对称中心的横坐标也就是导函数的对称轴,可见, y = f (x ) 图象的对称中心在导函数 y = f '(x )的对称轴上,且又是两个极值点的中点, 同时也是二阶导为零的点;(3)结论三: y = f (x ) 是可导函数,若 y = f (x ) 的图象关于点(m , n ) 对称,则 y = f '(x ) 图象关于直线 x = m对称.(4)结论四:若 y = f (x ) 图象关于直线 x = m 对称,则 y = f '(x ) 图象关于点(m , 0) 对称.(5)结论五:奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.(6)结论六:已知三次函数 f (x ) = ax 3 + bx 2 + cx + d 的对称中心横坐标为 x 0 ,若 f (x )存在两个极值点 x 1,x ,则有 f (x 1 ) - f (x 2 ) = - a (x - x )2 = 2f '(x ).2 x - x 2 1 23 0 1 2性质七:切割线性质(1)设 P 是 f (x )上任意一点(非对称中心),过点 P 作函数 f (x )图象的一条割线 AB 与一条切线 PT ( P 点不为切点), A , B , T 均在 f (x )的图象上,则T 点的横坐标平分 A 、B 点的横坐标,如图 18.图 18图 19 图20295推论 1:设 P 是 f (x )上任意一点(非对称中心),过点 P 作函数 f (x )图象的两条切线 PM 、PN 切点分别为 M 、P ,则 M 点的横坐标平分 P 、N 的横坐标,如图 19.推论 2 : 设 f (x ) 的极大值为 M , 当成 f (x ) = M 的两根为 x 1 , x 2 (x 1 < x 2 ) , 则区间 [x 1 , x 2 ] 被中心(- b , f (- b)) 和极小值点三等分,类似的,对极小值点 N 也有此结论,如图 20. 3a 3a第二讲 三次函数切线问题一般地,如图,过三次函数 f (x )图象的对称中心作切线 L,则坐标平面被切线 L 和函数 f (x )的图象分割为四个区域,有以下结论:(1)过区域Ⅰ、IV 内的点作 f ( x )的切线,有且仅有 3 条;(2)过区域 II 、Ⅲ内的点以及对称中心作 f (x )的切线,有且仅有 1 条;(3)过切线 L 或函数 f (x )图象(除去对称中心)上的点作 f (x )的切线,有且仅有 2 条. 【例 1】过点(1,-1)与曲线 f (x ) = x 3 - 2x 相切的直线方程是.【例 2】若2 f (x ) + f (-x ) = x 3 + x + 3对 x ∈ R 恒成立,则曲线 y = f (x )在点(2, f (2))处的切线方程为.【例 3】过点 A (2 ,1)作曲线 f (x ) = x 3 - 3x 的切线最多有( )A . 3条B . 2 条C .1条D . 0 条秒杀秘籍:第三讲 四段论法则─“房间里装大象”f (x ) = ax 3 + bx 2 + cx + d (a > 0)且导函数∆ > 0 f (x ) = ax 3 + bx 2 + cx + d (a < 0)且导函数∆ > 0极大值极大值极小值等值点中心 极小值 极小值 中心 极小值等值点1.对称中心: ⎛ - b ,f ⎛ - b ⎫⎫ ;3a 3a ⎪⎪⎝⎝ ⎭⎭2.极大值到对称中心距离为∆x ,极小值到对称中心距离为∆x ,极小值等值点到极大值距离为 ∆x ,极大值等值点到极小值距离为 ∆x ;3.对称中心为极值与极值等值点的三等分点(三次函数性质七).2960 0 【例 4】函数 f (x ) = x 3 - 3x + 1在闭区间[-3 , 0]上的最大值、最小值分别是( )A .1, -1B . 3, -17C .1, -17D . 9 , -19【例 5】已知函数 f (x ) = x 3 + ax + b 的定义域为[-1 , 2] ,记 f (x ) 的最大值为 M ,则 M 的最小值为()A . 4B . 3C . 2D . 【例 6】已知 f (x ) = x 3 - 3x + m ,在区间[0 , 2] 上任取三个数 a , b , c ,均存在以 f (a ), f (b ), f (c )为边长的三角形,则 m 的取值范围是( )A . m > 2B . m > 4C . m > 6D . m > 8【例 7】已知 f (x ) = ax 3 - 2ax 2 + b 在区间[-2 , 1] 上的最大值是5 ,最小值为-11,求 f (x ) 解析式.图 1 (a > 0) 图 2 (a < 0)【例 8】若函数 f (x ) = 1 x 3 + x 2 - 2 在区间(a , a + 5) 内存在最小值,则实数 a 的取值范围是()3 3 A . [-5 , 0)B . (-5 , 0)C . [-3 , 0)D . (-3 , 0)【例 9】若函数 ax 3 - x 2 + 4x + 3 ≥ 0 对任意的 x ∈[-2 , 1]恒成立,求 a 的取值范围( )A . [-2 , 2]B . [-2 , 4]C . [-2 , 6]D . [-2 , 8]【例 10】设函数 f (x ) = x 3 + ax + bx + c , a ,b ,c ∈ R ,总存在 x ∈[0 ,4],使得不 f (x ) ≥ m 等式成立, 则实数 m 的取值范围是.达 标 训 练一.选择题1.函数 f (x ) = 3x 3 - 9x 2 + 5 在区间[-2 , 2] 上的最大值是( )A . 5B . 2C . -7D .142.已知 f (x ) = 2x 3 - 6x 2 + a ( a 是常数)在[-2 ,2] 上有最大值3,那么在[-2 ,2] 上的最小值是( )A . -5B . -11C . -29D . -373.函数 f (x ) = 3x - 4x 3 (x ∈[0 ,1]) 的最大值是()A .1B . 12C . 0D . -13297, ] 0 0 4.若函数 f (x ) = x 3 - 3x 2 + a 在[-1 , 1]上有最大值3,则该函数在[-1 , 1]上的最小值是()2A . - 1 2B . 0C . 1 2D .15.若函数 f (x ) = 3x - x 3 在区间(a 2 - 12 , a )上有最小值,则实数 a 的取值范围是( )A . (-1 , 11)B . (-1 , 4)C . (-1 , 2]D . (-1 , 2) 6.若函数 f (x ) = x 3 - 3x 在(a , 8 - a 2 ) 上有最小值,则实数 a 的取值范围是( ) A . (- , 1)B . [- 7 , 1)C . [-2 , 1)D . (-2 , 1)7.函数 f (x ) = x 3 - 3ax - a 在(0 , 1) 内有最小值,则 a 的取值范围是( )A . 0 ≤ a < 1B . 0 < a < 1C . -1 < a < 1D . 0 < a < 12 8.当 x ∈[-2 , 1] 时,不等式 mx3 ≥ x 2 - 4x - 3 恒成立,则实数 m 的取值范围是( )A . ⎡-6 , ⎣ - 8 ⎤9 ⎦ B . [-6 , - 2]C . [-5 , - 3]D . [-4 , - 3]9.若关于 x 的不等式 x 3 - 3x 2 - 9x + 2 ≥ m 对任意 x ∈[-2 , 2]恒成立,则 m 的取值范围是()A . (-∞ , 7]B . (-∞ , - 20]C . (-∞ , 0]D . [-12 , 7]10.函数 f (x ) = 1x 3 - x 2 + a ,函数 g (x ) = x 2 - 3x ,它们的定义域均为[1 , + ∞),并且函数 f (x )的图象始3终在函数 g (x )的上方,那么 a 的取值范围是( ) A . (0 , + ∞)B . (-∞ , 0)C . (- 4, + ∞)3D . (-∞ 4311.设函数 f (x ) = x 3 - 1x 2 - 2x + 5 ,若对于任意 x ∈[1 , 2],f (x ) < m 恒成立,则实数 m 的取值范围为()2A . (7 , + ∞)B . (8 , + ∞)C . [7 , + ∞)D . [8 , + ∞) 12.已知函数 f (x ) = ax 3 - 3x 2 + 1 ,若 f (x )存在唯一的零点 x ,且 x > 0 ,则 a 的取值范围是()A . (2 , + ∞)B . (-∞ , - 2)C . (1 , + ∞)D . (-∞ , - 1)13.已知 a ≥ - 3,b ≥ 0 ,函数 f (x ) = x 3 + ax + b (-1≤ x ≤ 1),设 4有 M ≥ k ,则实数 k 的最大值为( )f (x ) 的最大值为 M ,对任意的 a 、b ∈ R 恒A . 4B . 2C . 1D . 12 4 14.曲线 y = x3 - x 的所有切线中,经过点(1 , 0) 的切线的条数是( )A . 0B .1C . 2D . 3 15.已知函数 f (x ) = 1x 3 - x 2 + ax + 3(a ∈ R ) 有两个极值点 x , x (x < x ) ,则()31 2 1 2A . f (x ) 3 , f (x ) < 10B . f (x ) 3 , f (x ) > 101 2 3 1 23 C . f (x ) 3 , f (x ) < 10 D . f (x ) 3 , f (x ) > 101 2 3 1 2316.已知函数 f (x ) = -x 3 + 6x 2 - 9x + 8 ,则过点(0 , 0) 可以作几条直线与曲线 y = f (x ) 相切()7298, ] x A . 3条 B .1条 C . 0 条 D . 2 条17.已知函数 f (x ) = x 3 + ax 2 + bx + c , x ∈[-3 ,3] 的图象过原点,且在点(1 , f (1)) 和点(-1 , f (-1)) 处的切线斜率为 -2 ,则 f (x ) = ( ) A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .是非奇非偶函数18.已知函数 f (x ) = x 3 - ax 2- bx + c 有两个极值点 x ,x ,若 x < x = f (x ) ,则 f (x ) = x 的解的个数为()121221A . 0B .1C . 2D . 319.已知函数 f (x ) = x 3 - mx 2 + 2nx + 1, f '(x ) 是函数 f (x ) 的导数,且 f '(2 + x ) = f '(- 2- x ) ,若在[1,π] 上3f (x ) 1 恒成立,则实数 n 的取值范围为( )A . (-∞ 1 2B . (-∞ , - 1 ] 2C . [ 1 , + ∞) 2D . [π, + ∞)20.(2019•汕头月考)函数 f (x ) = 1x 3 - x 2 + ax 在[-1, 2] 上单调递增,则 a 的取值范围是( )3A . a > 0B . a 0C . a 1D . a > 121.(2019•浙江期中)已知函数 f (x ) = 1x 3 + ax 2 - 2x 在区间(1, +∞) 上有极小值无极大值,则实数 a 的取值3 范围( )A . a < 12B . a > 12C . a 12D . a 1222.(2019•长沙期中)已知函数 f (x ) = 4x 2 - 3x + 1,g (x ) = 3x 3 - x -1,则 f (x ) 与 g (x ) 的大小关系是()A . f (x ) = g (x )B . f (x ) > g (x )C . f (x ) < g (x )D .随 x 的变化而变化23.(2019•临川月考)正项等差数列{a }中的 a , a 是函数 f (x ) = 1x 3 - 4x 2 + 4x - 3 的极值点,则log 2 a 2019 = ( )n 114027 3 A . 2B . 3C . 4D . 5324.若函数 f (x ) = - a x 2 + x + 1 在区间(1 , 2) 上单调递减,则实数 a 的取值范围为( )5 [2 , ] 23 2 B . [ 5 , + ∞) 2 C . ( 5 2 , + ∞)D . (2 , + ∞) 25.(2019•醴陵期中)函数 f (x ) = x 3 - 3x 2 - 9x + 4 ,若函数 g (x ) = f (x ) - m 在 x ∈[-2 , 5] 上有 3 个零点, 则 m 的取值范围为()A . (-23 , 9)B . (-23 , 2]C . [2 , 9]D . [2 , 9)26.(2019•湛江一模)已知函数 f (x ) = x 3 - x 2+ ax - a 存在极值点 x ,且 f (x ) = f (x ) ,其中 x ≠ x ,x + 2x =1( )11A . 3B . 2C .1D . 027.(2019•邯郸一模)过点 M (-1, 0) 引曲线C : y = 2x 3 + ax + a 的两条切线,这两条切线与 y 轴分别交于 A ,B 两点,若| MA |=| MB | ,则 a = ()A . - 25 4B . - 274C . - 2512D . - 491228.(2019•黔东南州一模)已知函数 f (x ) = 2x 3 - (6a + 3)x 2 + 12ax + 16a 2 (a < 0) 只有一个零点 x 0 ,且 x 0 < 0 ,A .2990 0 6 则 a 的取值范围为()A . (-∞, - 1)2B . (- 1 , 0) 2C . (-∞, - 3)2 D . (-3 , 0) 229.(2019•莆田一模)若函数 f (x ) = ax 3 - x 2 + 2x 没有极小值点,则 a 的取值范围是( )31 [0 , ]2 B . [ 1 , +∞)2 C .{0} ⋃ [ 1 , 2 +∞) D . {0} ⋃ ( 1 , 2+ ∞) 30.(2018 秋•晋中期末)已知 f (x ) = 1 x 3 - 5 ax 2 + 6ax + b 的两个极值点分别为 x ,x (x ≠ x ) ,且 x = 3x ,3 2 则函数 f (x 1 ) - f (x 2 ) = ( )1 2 1 2 22 1 A . -1B . 16C .1D .与b 有关31.(2019•陕西一模)已知函数 f (x ) = x 3 + 3x ,则不等式 8 (1 + x )3 +1 + x > x 3+ 3x 的解集为( )A . (-∞ , - 2) ⋃ (-1 , 1) C . (-∞ , - 2] ⋃ (1 ,+∞)B . [-2 , - 1) ⋃ [1 , + ∞) D . (-2 , 1)32.(2018•宜春期末)等比数列{a }的各项均为正数, a , a 是函数 f (x ) = 1x 3 - 3x 2 + 8x + 1的极值点,n 5 63 则log 2 a 1 + log 2 a 2 + ⋯ + log 2 a 10 = ( ( )A . 3 + log 2 5B . 8C .10D .1533.(2018•湖北期末)已知函数 f (x ) = ax 3 + bx 2 + cx -17(a , b , c ∈ R ) 的导函数为 f '(x ) , f '(x ) 0的解集为{x | -2 x 3} ,若 f (x ) 的极小值等于 -98 ,则 a 的值是( )A . - 8122 B . 1 3C . 2D . 534.(2019•朝阳二模)已知 f (x ) = - 1x 3 + x 在区间(a ,10 - a 2 ) 上有最大值,则实数 a 的取值范围是()3A . a < -1B . -2 a < 3C . -2 a < 1D . -3 < a < 1 35.(2018•海淀期末)函数 f (x ) = x 3 + kx 2 - 7x 在区间[-1 , 1]上单调递减,则实数 k 的取值范围是( )A . (-∞ , - 2]B . [-2 , 2]C . [-2 , + ∞)D . [2 , + ∞)36.(2019•汉阳模拟)函数 f (x ) = ax 3 + 3x 2 -1存在唯一的零点 x ,且 x < 0 ,则实数 a 的范围为( )A . (-∞, -2)B . (-∞, 2)C . (2, +∞)D . (-2, +∞)37.(2019•瀍河月考)设函数 f (x ) = ax 3 - bx + 2 的极大值和极小值分别为 M , m ,则 M + m = ( ( )A . 0B .1C . 2D . 438.(2018•南阳期末)函数 f (x ) = x 3 - 3x 2 - 9x + 2 在[0 , 4]上的最大值和最小值分别是()A . 2 , -18B . -18 , -25C . 2 , -25D . 2 , -2039.(2018•合肥期末)已知函数 f (x ) = -x 5 - 3x 3 - 5x + 3,若 f (a ) + f (a - 2) > 6 ,则实数 a 的取值范围是()A . (-∞, 3) 二 填空题B . (3, +∞)C . (1, +∞)D . (-∞,1)1.(2019•东城一模)已知函数 f (x ) = 4x - x 3 ,若∀x ,x ∈[a ,b ] ,x ≠ x 都有 2 f (x + x ) > f (2x ) + f (2x )12121212A .3000 0 成立,则满足条件的一个区间是.2.(2019•陕西二模)设函数 f (x ) = 2x 3 + ax 2 + bx + 1的导函数为 f '(x ) ,若函数 y = f '(x ) 的图象的顶点横坐 标为 - 1 ,且 f '(1) = 0 .则 a + b 的值为.23.(2019•新疆二模)已知函数 f (x ) = x 3 - ax 2 在(-1 , 1) 上没有最小值,则 a 的取值范围是.4.(2019•十堰模拟)对于三次函数 f (x ) = ax 3 + bx 2 + cx + d (a ,b ,c ,d ∈ R ,a ≠ 0) ,有如下定义:设 f '(x )是函数 f (x ) 的导函数, f '(x ) 是函数 f '(x ) 的导函数,若方程 f '(x ) = 0 有实数解 m ,则称点(m , f (m )) 为函数 y = f (x ) 的“拐点”.若点(1, -3) 是函数 g (x ) = x 3 - ax 2 + bx - 5,(a , b ∈ R ) 的“拐点”也是函数 g (x ) 图象上的点,则当 x = 4 时,函数 h (x ) = log 4 (ax + b ) 的函数值为.5.(2018•揭阳期末)已知函数 f (x ) = x 3 + 2x ,若 f (a -1) + f (2a 2 ) 0 ,则实数 a 的取值范围是.6.(2018•长治期末)已知函数 f (x ) = 2x 3 - 3x ,若过点 P (1,t ) 存在 3 条直线与曲线 y = f (x ) 相切,则t 的取值范围是.7.(2019•自贡模拟)已知 f (x ) = ax 3 + 3x 2 -1存在唯一的零点 x ,且x < 0 ,则实数 a 的取值范围是 .8.(2019•天山月考)设 f (x ) = x 3 - 1x 2 - 2x + 5 ,当 x ∈[-1, 2]时, f (x ) < m 恒成立,则实数 m 的取值范2 围为. 9.已知函数 f (x ) = 1 x 3 - x 2 - 3x + 4,直线l : 9x + 2 y + c = 0 .若当 x ∈[-2 , 2]时,函数 y = f (x )的图象恒3 3 在直线l 的下方,则c 的取值范围是 .三 解答题1.已知函数 f (x ) = 1ax 3 + 2x 2 ,其中 a > 0 .若 f (x ) 在区间[-1,1] 上的最小值为 -2 ,求 a 的值.32.知函数 f (x ) = ax 3 - 6ax 2 + b (x ∈[-1 ,2]) 的最大值为3,最小值为-29 ,求 a 、b 的值.3.已知函数 f (x ) = x 3 - 1x 2 + bx + c ;2(1)若 f (x ) 在(-∞ , + ∞) 上是增函数,求 b 的取值范围;301( , 0)(2)若 f (x ) 在 x = 1时取得极值,且 x ∈[-1 , 2] 时, f (x ) < c 2恒成立,求c 的取值范围.4.(2019•海淀期中)已知函数 f (x ) = ax 3+ bx 2+ x + c ,其导函数 y = f '(x ) 的图象过点 1 3和(1, 0) . (1)函数 f (x ) 的单调递减区间为 ,极大值点为 ;(2)求实数 a , b 的值;(3)若 f (x ) 恰有两个零点,请直接写出c 的值.5.(2019•莱西月考)设函数 g (x ) = x 3 - 3x 2 + 2 .(1)若函数 g (x ) 在区间(0, m ) 上递减,求 m 的取值范围;(2)若函数 g (x ) 在区间(-∞ , n ]上的最大值为 2,求 n 的取值范围.6.(2019•海淀一模)已知函数 f (x ) = 1 x 3 - 5x 2 + a | x | -1.3 2 (1)当 a = 6 时,求函数 f (x ) 在(0, +∞) 上的单调区间; (2)求证:当 a < 0 时,函数 f (x ) 既有极大值又有极小值.7.(2019•怀柔一模)已知函数 f (x ) = 2x 3 + 3ax 2 + 1(a ∈ R ) . (1)当 a = 0 时,求 f (x ) 在点(1 , f (1) ) 处的切线方程;302P (1, ) (2)求 f (x ) 的单调区间;(3)求 f (x ) 在区间[0 , 2] 上的最小值8.(2019•天津一模)已知函数 f (x ) = 2x 3 - ax 2 + 1(a ∈ R ) . (1) a = 6 时,直线 y = -6x + m 与 f (x ) 相切,求 m 的值;(2)若函数 f (x ) 在(0, +∞) 内有且只有一个零点,求此时函数(x ) 的单调区间;(3)当 a > 0 时,若函数 f (x ) 在[-1 , 1]上的最大值和最小值的和为 1,求实数 a 的值.9.(2018•镇海期末)已知函数 f (x ) = 1 x 3 + 1.3 2(1)求曲线 y = f (x ) 在点 5 6处的切线与 x 轴和 y 轴围成的三角形面积;(2)若过点(2, a ) 可作三条不同直线与曲线 y = f (x ) 相切,求实数 a 的取值范围.10.(2018•太原期末)若 x = 2 是函数 f (x ) = ax 3 - 3x 2 的极值点.(1)求 a 的值;(2)若 x ∈[n ,m ] 时, -4 f (x ) 0 成立,求 m - n 的最大值.11.(2018•佛山期末)已知函数f (x) =x3 + 3ax2 + 3(a2 -l)x .(1)若 f (x) 在x = 1处取得极小值,求 a 的值;(2)设x ,x 是g(x) =f (x) - 6ax2 - 3a2 x + 5a(a > 0) 的两个极值点,若g(x ) +g(x ) 0 ,求a 的最小值.1 2 1 2303。

三次函数的性质和图像

三次函数的性质和图像
预测经济指标:通过建立三次函数模型,可以预测各种经济指标,如GDP、 失业率等。
投资决策分析:在金融领域,三次函数可以用于分析投资组合的风险和回 报,以及股票价格的预测。
资源分配问题:在资源分配问题中,三次函数可以用来解决如何将有限的 资源分配到各个领域,以最大化整体效益的问题。
在其他领域的应用
物理学:三次函数在描述物理现象和解决物理问题中有着广泛的应用,例如振动、波动、 热传导等。
经济学:三次函数在经济学中用于描述经济现象和预测经济趋势,例如预测股票价格、 消费需求等。
生物学:三次函数在生物学中用于描述生长曲线、繁殖率等,例如描述细菌生长、动物 繁殖等。
计算机科学:三次函数在计算机科学中用于图像处理、信号处理等,例如图像的缩放、 旋转和平移等。
05
三次函数与其他函数的 比较
感谢您的观看
汇报人:XX
单调性
单调递增:当导数大于0时,函数在对应区间内单调递增 单调递减:当导数小于0时,函数在对应区间内单调递减 单调性的判断:通过求导数并分析导数的符号来判断单调性 单调性的应用:利用单调性研究函数的极值、最值等问题
极值点
极值点的定义:三次函数图像上函数值发生变化的点 极值点的位置:函数图像上凹凸部分的分界点 极值点的求法:通过导数求出极值点的横坐标,再代入原函数求出纵坐标 极值点的性质:极值点处的函数值大于或小于其邻近点的函数值
与指数函数的比较
定义域:三次函数 定义域为全体实数, 而指数函数定义域 为正实数
函数值:三次函数 在定义域内连续且 可导,而指数函数 在定义域内连续但 不可导
单调性:三次函数 可以具有单调递增 、递减或先增后减 等变化趋势,而指 数函数在定义域内 单调递增
奇偶性:三次函数 既可能是奇函数也 可能是偶函数,而 指数函数是偶函数

三次函数性质探述

三次函数性质探述
三 、三 次 函 数 的 极 值
三次函数的 极 值 情 况 如 何 呢 ? 由 推 论 3 及 函 数 f ′( x)
的符号不难得到:
定理 4 当 b2- 3ac< 0 时, f ( x) 无极值; 当 b2- 3ac> 0
时, (f x) 在 x= x1 和 x= x2 处有两个极值. 推论 4 ( 1) 当 a> 0 且 b2- 3ac> 0 时 , (f x) 在 x= x1 处 有
至此可知, 当 b2- 3ac> 0 时, 三次函数 (f x) 图象上有两
个 极 值 点 P(1 x1, (f x1) ) 、P(2 x2, (f x2) ) , 那 么 , 这 两 个 点 P1, P2 与函数图像对称中心点有何关系呢?我们可以发现:
定理 5 当 b2- 3ac> 0 时 , 三 次 函 数 图 象 上 的 两 个 极
备课参考
三次函数性质探述
□ 管宏斌
( 通州高级中学, 江苏通州 226300)
中学 数 学 已 对 二 次 函 数 性 质 作 出 了 系 统 、严 格 而“近 乎完美”的研究, 但是 关 于 三 次 函 数 性 质 的 讨 论 则 几 乎 没 有涉及. 三次函数是中学数学研究导数的一个重要载体. 通过它可以考察学生的探究能力和创新能力.但是, 对于 它的图像性质, 比如它是否具有对称性等, 广大师生往往 不甚了解.翻阅各种资料、杂志, 我们发现不少的研究者仅 从怎样求导、求极值、求 单 调 区 间 等 角 度 进 行 一 些 浅 表 的

15
求的分配方法种数共有 A6 - A2 A5 =( 6- 2) ×5! = 480;
解法 4: 运用位置排除法.先不考虑限制条件, 每人分

担一种工作, 共有 A6 种方法, 而从除甲外的 5 人中每次任

三次函数性质总结_S

三次函数性质总结_S

已知函数
.
(Ⅰ)讨论函数 的单调区间;
(Ⅱ)设函数 在区间
内是减函数,求 的取值范围.
【题型 2】不等式与恒成立问题 例题 2 (08 安徽文)
设函数
(Ⅰ)已知函数 在 处取得极值,求 的值;
(Ⅱ)已知不等式
对任意
都成立,求实数 的取值范围。
7
【题型 3】三次方程根问题
例题 3 (05 全国)设 为实数,函数
,若 在
上的最大值为 20,求它在
变式 8 当
【2012 高 考北京 文第 19 题改编】已知函数

时,若函数
在区间 上的最大值为 ,求 的取值范围。
g(x) x3 bx 。
例题 11. 【2014 高考北京文第 20 题改编】已知函数 的取值范围
.若过点
存在 3 条直线与曲线
相切,求
变式 9 (1)已知函数 (2)已知函数 (3)问过点
.若过点
存在 2 条直线与
相切,求 的取值范围;
.若过点
存在 1 条直线与
相切,求 t 的取值范围


分别存在几条直线与曲线
相切?
变式 10 已知函数

处有极值.
(Ⅰ)求函数 (Ⅱ)若函数
的单调区间;
在区间
上有且仅有一个零点,求 的取值范围。
例题 12. 设 变式 11 已知函数
围.
例题 13. 已知函数 例题 14. 已知函数 例题 15. 已知函数
是可导函数,若
的图象关于点
对称,则
图象关于直线
对称.
(5)
是可导函数,若
的图象关于直线
对称,则
图象关于点

三次函数的特性总结

三次函数的特性总结

三次函数的特性总结三次函数,也被称为三次方程或者三次方程函数,是指具有三次幂的多项式函数。

它的一般形式可以表示为:f(x) = ax^3 + bx^2 + cx + d其中,a、b、c、d为函数的系数,且a不等于0。

在本文中,我们将总结三次函数的几个主要特性。

1. 零点和因式分解三次函数的零点即为函数与x轴交点的横坐标。

为了求解零点,我们可以利用因式分解的方法。

对于一个三次函数f(x),如果x=a是它的零点,那么(x-a)就是它的一个因式。

通过将函数进行因式分解,我们可以更方便地确定它的零点。

2. 对称性三次函数有两个常见的对称性质:关于y轴的对称和关于原点的对称。

对于一个三次函数f(x),如果f(-x) = f(x),则该函数具有关于y轴的对称性。

如果f(-x) = -f(x),则该函数具有关于原点的对称性。

3. 变化趋势三次函数的变化趋势可以通过函数的导数和导数的二次项来判断。

函数的导数表示了函数的变化速率,导数的符号则表示了函数的增减性。

如果函数的导数大于0,那么函数在该点上升;如果导数小于0,则函数在该点下降。

其次,导数的二次项可以用来判断函数的拐点位置。

如果导数的二次项大于0,则函数有一个拐点,该拐点位于导数为0的点处。

4. 最值点对于三次函数而言,它可能存在最大值或最小值点。

为了找到函数的最值点,我们可以计算函数的导数,令导数为0,并求解对应的x值。

通过找到导数等于0的点,我们可以确定函数的局部最值点。

5. 图像特征三次函数的图像通常呈现出“S”形状曲线。

当a>0时,函数的图像开口向上,底部为最小值点;当a<0时,函数的图像开口向下,顶部为最大值点。

同时,函数可能经过x轴的一次或两次。

通过观察函数的图像特征,我们可以初步判断函数的性质和行为。

总结起来,三次函数作为一种多项式函数,具有许多独特的特性。

通过研究它的零点、对称性、变化趋势、最值点以及图像特征,我们可以更好地理解和利用三次函数的性质。

三次函数图像与性质

三次函数图像与性质

2016年9月9日星期五1、三次函数的概念()()()32220.32,412.f x ax bx cx d a f x ax bx c b ac=+++≠′=++∆=−形如函数叫做把叫做三次函数三次函导函数定的义:定数义判别式:y y()()()()()()()()()()1212121112121,,0,0,0,0.x x x x f x a x x x x f x x x x a x x x x x x x x a ′<∴=−−−∞∴<−−>−<−<∴>Q 解:、分别为极大值和极小值点,且在,为增函数,当时,bD.( B( B()()()32.33121011163A.13 B.14 C.15 D 4.16f x x ax bx x y a b =−++−=−−=已知函数的图像与直线相切于点,,则小结 函数三次函数有以作业2.已知函数f(x)=ax3+bx2+cx+d在x=0处取得极值, 曲线y=f(x)过原点和点P(-1, 2). 若曲线f(x)在点P处的切线与直线y=2x的夹角为45°, 且倾角为钝角. (1)求f(x)的解析式; (2)若f(x)在区间[2m-1, m+1]递增, 求m 的取值范围.1.设函数f (x )=x 3-x 2+(a+1)x+1,其中a 为实数(Ⅰ)已知函数f (x )在x=1处取得极值,求a 的(Ⅱ)已知不等式f (x)>x 2-x-a+1对任意a ∈(0,+∞)都成立,求实数x 的取值范围。

2.a 为何值时,方程x 3-3x 2-a=0恰有一个实根、两个实根、三个实根,有没有可能无实根?2x。

三次函数的性质

三次函数的性质

三次函数的性质
三次函数是指满足某一条件的函数,它是一类定义在实数域上的函数。

三次函数的标准形式则是 y=ax+bx+cx+d,其中a、b、c和d 为常数,x为变量。

下面就具体介绍下三次函数的性质。

1、首先,三次函数的最大和最小值,由于三次函数的曲线的形状受参数a的变化影响较大,当a>0时,函数准心在x轴上有1个极值点,它位于 f(x)=ax+bx+cx+d, x=-b/(3a)这个立方根上,由此可以知道,a>0时函数有1个极小值点;当a<0时,函数准心在x轴上有1个极大值点,它位于 f(x)=ax+bx+cx+d, x=-b/(3a)这个立方根上,由此可以知道,a<0时函数有1个极大值点。

2、其次,三次函数的翻转,由于三次函数的曲线的形状受参数a的变化影响较大,当a>0时,曲线上的点沿着y轴正方向递减;当a<0时,曲线上的点沿着y轴正方向递减,这就是三次函数的翻转。

3、再次,三次函数的对称,由于三次函数的曲线的形状受参数a的变化影响较大,当a=0时,三次函数具有对称性,即函数围绕x 轴对称。

4、最后,三次函数的拐角,由于三次函数的曲线的形状受参数a的变化影响较大,当a>0时,函数的拐点处的斜率由正数变为负数,拐点处的斜率由负数变为正数;当a<0时,函数的拐点处的斜率由正数变为负数,拐点处的斜率由负数变为正数,这就是三次函数的拐角。

综上所述,三次函数的形状受参数a的变化影响较大,它具有极值、翻转、对称和拐角等性质,是求解函数最重要的一类函数。

了解
三次函数的性质,对求解函数会有很大帮助。

三次函数性质总结.

三次函数性质总结.

三次函数性质的探索我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在最大值与最小值,在某一区间取得最大值与最小值.那么,是什么决定函数的单调性呢?利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置.其中运用的较多的一次函数不等式性质是:()0>f在[m,n]上恒成立的充要条件x()0>fm()0>fn接着,我们同样学习了二次函数,图象大致如下:图1 图2利用已学知识归纳得出:当时(如图1),在对称轴的左侧单调递减、右侧单调递增,对称轴上取得最小值;当时(图2),在对称轴的左侧单调递增、右侧单调递减,对称轴上取得最大值.在某一区间取得最大值与最小值.其中a决定函数的开口方向,a、b同时决定对称轴,c决定函数与y轴相交的位置.总结:一次函数只有一个单调性,二次函数有两个单调性,那么三次函数是否就有三个单调性呢?三次函数专题一、定义:定义1、形如32(0)y ax bx cx d a =+++≠的函数,称为“三次函数”(从函数解析式的结构上命名)。

定义2、三次函数的导数232(0)y ax bx c a '=++≠,把2412b ac ∆=-叫做三次函数导函数的判别式。

由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经成为高考命题的一个新的热点和亮点。

特别是文科。

系列探究1:从最简单的三次函数3x y =开始反思1:三次函数31y x =+的相关性质呢? 反思2:三次函数31y x =-+的相关性质呢? 反思3:三次函数()311y x =-+的相关性质呢?(2012天津理)(4)函数22)(3-+=x x f x在区间(0,1)内的零点个数是 B (A )0 (B )1 (C )2 (D )3系列探究2:探究一般三次函数)0()(23>+++=a d cx bx ax x f 的性质:先求导2()32(0)f x ax bx c a '=++>1.单调性:(1)若22120b ac =-≤△(),此时函数()f x 在R 上是增函数;(2)若22120b ac =->△(),令2()320f x ax bx c '=++=两根为12,x x 且12x x <,则()f x 在12(,),()x x -∞+∞上单调递增,在12(,)x x 上单调递减。

三次函数的性质

三次函数的性质

三次函数的性质三次函数是一类重要的数学函数,它是利用一次函数、二次函数和多项式联立来构造的一类数学函数。

三次函数的性质多变,常用的有三次函数的单调性性质、最值性质、奇偶性质、对称性质、递增递减性质等。

一、三次函数的单调性性质三次函数满足单调性性质,即在函数定义域内函数值单调递增或单调递减,即“若y=f(x) 为某三次函数时,则若x在f(x)的定义域内,若x1<x2,则f(x1)≤f(x2)或f(x1)≥f(x2)”。

二、三次函数的最值性质三次函数满足最值性质,具体来说就是三次函数在定义域内只有一个极值点,这个极值点可以是函数的极大值点也可以是函数的极小值点,用数学符号表示为“若y=f(x) 为某三次函数,则若x为函数的极值点,有f(x)=0,其中f(x) 为函数的导数”。

三、三次函数的奇偶性质三次函数满足奇偶性质,即“当x为-x,函数值也变为它的相反数,即f(-x)=-f(x),其中f(x) 为某三次函数”。

四、三次函数的对称性质三次函数满足对称性质,具体来说就是“若f(x) 为某三次函数,且a 为某实数,若x=af(x)=0,则f(x) 与x对称,即f(x)=0 且x=-a 也成立,即f(-a)=0”。

五、三次函数的递增递减性质三次函数满足递增递减性质,即“若y=f(x) 为某三次函数时,若x 位于f(x)定义域内,若f(x)>0,则若x0<x1<x2,有f(x0)<f(x1)<f(x2);若f(x)<0,则若x0<x1<x2,有f(x0)>f(x1)>f(x2)”。

综上所述,三次函数的性质多变多样,它具有单调性性质、最值性质、奇偶性质、对称性质和递增递减性质,并且它们之间也有着相互联系。

所以要想理解三次函数这一重要的数学函数,就需要全面掌握它的这些性质。

三次函数在数学和科学上有着重要的应用,例如在数学归纳法中,通过分析三次函数的性质,可以更加有效地解决数学问题;在科学研究中,三次函数也可用来拟合一些曲线,从而进行有效的科学实验。

三次函数的性质及应用

三次函数的性质及应用

三次函数的性质及应用
三次函数:性质及应用
三次函数是在数学领域中常用的函数之一,表达式常写为y=ax³+bx²+cx+d.
它是含有一个三次项的多项式函数,可以通过三次函数的性质可以得出曲线的性质。

三次函数的性质
首先,是函数的解析法则,例如,y=ax³+bx²+cx+d,其中a不等于0。

可以使
用贝塞尔公式将它补充完整,这样可以求出图形函数的所有有限点。

从图像上看,三次函数是一条弯曲的曲线,有一个极点。

极点可以通过使用微分计算法则求出,即可以使用f'(x)=0来求解出极点。

三次函数的应用
三次函数在日常生活中被很多人所使用,从制造汽车和飞机,到设计微型机器人,无不是这一函数的付出。

比如说道路的建造,一般采用的是“S形”的三次函数,它提高了由起点向终点的安全性和舒适性,同时可以增加隧道的速度、减少改变方向时的磨擦,从而节省能源和改善和加快交通流量。

此外,三次函数还广泛应用于无损检测与机器视觉技术,利用这种技术可以实
现精确检测及定位,应用广泛。

三次函数是一种高级函数形式,它不仅可以用来解决各种数学问题,而且在实
践中也有着广阔的用途,它在帮助社会有所作为的过程中也发挥了重要的作用。

三次函数揭秘三次函数的定义和性质

三次函数揭秘三次函数的定义和性质

三次函数揭秘三次函数的定义和性质三次函数是由幂次为3的多项式所表示的函数。

它是一种非线性函数,具有许多特殊的性质和表现形式。

在本文中,我们将深入探讨三次函数的定义和性质,并分析其在数学和实际应用中的重要性。

一、定义三次函数的一般形式可表示为:f(x) = ax^3 + bx^2 + cx + d,其中a、b、c和d为实数,且a不等于零。

这个函数拥有四个系数,分别对应着三次、二次、一次和常数。

二、特殊形式1. 单位三次函数当a=1,b=0,c=0,d=0时,三次函数的特殊形式为f(x) = x^3。

这称为单位三次函数,它的图像关于原点对称,过原点,斜率逐渐增大,具有一个拐点。

2. 正三次函数当a大于零时,三次函数的图像呈现出从左下方向右上方的上凸弧形。

这种形式的三次函数被称为正三次函数。

3. 负三次函数当a小于零时,三次函数的图像呈现出从左上方向右下方的下凸弧形。

这种形式的三次函数被称为负三次函数。

三、性质1. 奇函数偶函数性质三次函数的奇偶性取决于其各项系数的奇偶性。

当a、c为奇数次幂系数,且b为偶数次幂系数时,三次函数为奇函数;当a、c为偶数次幂系数,且b为奇数次幂系数时,三次函数为偶函数。

2. 零点、极值和拐点三次函数可能具有1至3个零点。

其中,零点是函数与x轴交点的横坐标,可以通过化简方程组或者使用数学软件进行求解。

三次函数的极值点可能有2至3个。

它们分别对应函数的最大值、最小值和可能存在的一个拐点。

极值点可以通过求导数等方法进行计算。

3. 对称性三次函数的图像可能具有关于y轴对称、关于x轴对称或者关于原点对称的特点。

对称性可以通过函数的系数来确定。

四、应用三次函数在数学和实际应用中发挥着重要作用。

它们常常用于建模和问题求解,如物理学和经济学中的曲线拟合、数据分析和趋势预测等。

在物理学中,三次函数可以用于描述物体的运动和变化规律。

例如,弹簧的伸长长度与加载力之间的关系可以使用三次函数来表示。

三次函数 性质大全

三次函数  性质大全

三次函数)0(≠a d cx bx ax x f +++=23)(性质大全本文从三个专题(专题一 三次函数的图象及单调性,专题二 三次函数的对称性,专题三 三次函数切线问题)来介绍三次数的性质,对同学们学习三次函数大有帮助,可以解绝三次函数涉及到的高考题,是能够充分准备,应对高考。

专题一 三次函数的图象及单调性c bx ax x f ++='23)(2,当01242≤-=∆ac b 时,函数是单调增函数,或单调减函数,当时042>-=∆ac b ,设0)(='x f 的两根分别为,,21x x 则原函数0>a 时函数)(x f 图象 (先上升) 0<a 时函数)(x f 图象(先下降)1.0>a 时)(x f 在),(1x x -∞∈或),(2+∞∈x x 单调递增;)(x f 在),(21x x x ∈单调递减在1x x =处)(x f 取得极大值)(1x f ,在2x x =处)(x f 取得极小值)(2x f .2.0<a 时)(x f 在),(1x x -∞∈或),(2+∞∈x x 单调递减;)(x f 在),(21x x x ∈单调递增在1x x =处)(x f 取得极小值)(1x f ,在2x x =处)(x f 取得极大值)(2x f .注意:三次函数f(x)有极值导函数(x)f '的判别式0>∆3.一般地d cx bx ax x f +++=23)()0(>a 在导数023)(2=++='c bx ax x f 有两根,,21x x 且21x x <时,在1x 处有1()()f x f x M ==极大值;在2x 处有2()()f x f x m ==极小值,4 .三次方程根的个数问题,由三次函数图象极易得到以下结论:若()y f x =为三次函数,其导数为()y f x '=,则: ⑴若()0f x '≥或()0f x '≤恒成立,则()0f x =仅有一实数解。

三次函数性质总结

三次函数性质总结

三次函数性质总结三次函数是指函数的最高次项是3次的函数,一般的三次函数的函数表达式可以写成y=ax^3+bx^2+cx+d。

以下是关于三次函数的性质的总结:1.对称性:三次函数一般具有对称性,即关于y轴对称。

这是因为三次函数中只有偶次次项,所以具有对称性。

这可以通过函数图像来观察,如果一条曲线对称于y轴,则表示这个函数是一个三次函数。

2.零点:三次函数可能有一个或多个零点。

如果函数的零点为x=a,那么乘以(x-a)后,函数会变为二次函数,这是因为函数中的三次项会被消去,变成了二次项。

因此,三次函数的零点可以用来快速确定函数的根的个数。

3.单调性:三次函数的单调性与系数a有关。

当a>0时,三次函数是上凹的,即函数的曲线开口向上,为增函数;当a<0时,三次函数是下凹的,即函数的曲线开口向下,为减函数。

4.驻点:三次函数的导数是二次函数,因此导数为零的点称为驻点。

三次函数的驻点有最大值或最小值,可以通过求导数来求得驻点的位置。

5. 渐近线:三次函数可能有水平渐近线、垂直渐近线或斜渐近线。

水平渐近线是指当x趋于正无穷或负无穷时,函数值趋于一些常数;垂直渐近线是指当x等于一些常数时,函数值趋于正无穷或负无穷;斜渐近线是指当x趋于正无穷或负无穷时,函数值趋于ax^2+bx+c。

6.奇偶性:三次函数的奇偶性与系数b有关。

当b为奇数时,三次函数是奇函数,对称于原点,函数图像关于原点对称;当b为偶数时,三次函数是偶函数,对称于y轴,函数图像关于y轴对称。

7.映射性:三次函数的图像可以映射到整个坐标平面上,因为三次函数没有任何限制,所以可以取得任意的y值。

8.随着函数系数的变化,函数图象会发生相应的形变。

例如,当a的绝对值变大时,函数的曲线会变得更陡峭;当b的绝对值变大时,函数的曲线会向原点靠拢;当c的绝对值变大时,函数的曲线会上下平移;当d 的绝对值变大时,函数的曲线会上下平移。

总之,三次函数具有丰富的性质和特点,可以通过系数的变化来改变函数的图像和性质。

三次函数图像与性质

三次函数图像与性质

三次函数的图像与性质设三次函数为f (x )=ax 3+bx 2+cx +d (a ≠0).1.因式分解(1)若已知三次函数一个零点x 0,那么三次函数可以写成f (x )=a (x -x 0)3;(2)若已知三次函数只有两个零点x 1,x 2,那么三次函数可以写成f (x )=a (x -x 1)2(x -x 2)(x 1为重根)或f (x )=a (x -x 1)(x -x 2)2(x 2为重根);(3)若已知三次函数有三个零点x 1,x 2和x 3,那么三次函数可以写成f (x )=a (x -x 1)(x -x 2)(x -x 3);(4)若已知三次函数一个零点x 0,其他未知,那么三次函数可以写成f (x )=a (x -x 0)g (x ),其中g (x )为二次函数(g (x )可以通过待定系数法或多项式除法进行求解).2.单调性不妨以f (x )=ax 3+bx 2+cx +d (a >0)为例进行分析,a <0时,情况类似.(1)若Δ≤0,则f (x )在(-∞,+∞)上为增函数;(2)若Δ>0,则f (x )在(-∞,x 1)和(x 2,+∞)上为增函数,f (x )在(x 1,x 2)为减函数,其中x 1=-b -b 2-3ac 3a ,x 2=-b +b 2-3ac 3a(x 1,x 2为f (x )=0的两根)f (x )=ax 3+bx 2+cx +d (a >0)f (x )=ax 3+bx 2+cx +d (a <0)Δ≤0Δ>0Δ≤0Δ>0OxyO xyx 1x 2OxyOxyx 1x 23.极值与零点探索一元三次方程的根时,特殊情况下才可以因式分解降次,但如果无法转化为二次方程时,我们就只能通过极值来研究.对三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),求导得f (x )=3ax 2+2bx +c ,对于方程f (x )=3ax 2+2bx +c ,根的判别式记为Δ,当Δ>0时,记x 1,x 2为f (x )=0的根,即函数f (x )的极值点.(1)f (x )=0有一个根⇔Δ≤0或Δ>0,f (x 1)f (x )>0.(2)f (x )=0有两个根⇔Δ>0,f (x 1)f (x )=0.(3)f (x )=0有三个根⇔Δ>0,f (x 1)f (x )<0.由于Δ≤0的情况很特殊,零点只有一个,所以只需记住Δ>0的情形:f (x 1)f (x )<0时,有三个零点;f (x 1)f (x )>0时,有一个零点;f (x 1)f (x )=0时,有两个零点.故可配合口诀:“小三答应等两年”.小三:小于,3个;答应:大于,1个;等于:等于,2个.f (x )=ax 3+bx 2+cx +d (a ≠0)Δ≤0Δ>01个2个3个O x y Ox ya >0a <0O x yOx yx 1x 2a >0a <0x 1x 2OxyO xyx 1x 2x 1x 2a >0a <0注:当极值点不可求解时,需要采用“整体降次”的方式来简化计算量,结合韦达定理进行求解,万不可通过求根让问题复杂化.4.对称中心函数f (x )=ax 3+bx 2+cx +d (a ≠0)是中心对称图形,且其对称中心为(-b 3a ,f (-b 3a)),若f (x )有极值点x 1,x 2,则它的对称中心就是(x 1,f (x 1)),(x 2,f (x 2))两点构成线段的中点,即f (x 1)+f (x 2)2 =f (x 1+x 22 )=f (-b 3a).(可利用结论:若f (A -x )+f (B +x )=C 对任意的x 均成立,则f (x )关于(A +B 2 ,C 2)中心对称)5.区间的最值函数f (x )=ax 3+bx 2+cx +d ,x ∈[m ,n ],若x 0∈[m ,n ],且f (x 0)=0,则f (x )max ={f (m ),f (x 0),f (n )}max ,f (x )min ={f (m ),f (x 0),f (n )}min .6.四段论f (x )=ax 3+bx 2+cx +d (a >0,导函数Δ≥0)f (x )=ax 3+bx 2+cx +d (a <0,导函数Δ≥0)中心极大值极小值极小值等值点极大值等值点Δx Δx Δx Δxx 1x 21.极值点为x 1,x 2(x 1<x 2),对称中心为(-b 3a,f (-b 3a));2.极大值到对称中心距离为Δx ,极小值到对称中心距离为Δx ,极小值等值点到极大值距离为Δx ,极大值等值点到极小值距离为Δx ;3.对称中心为极值与极值等值点的三等分点.中心极大值极小值极小值等值点极大值等值点ΔxΔx Δx Δxx 1x 2。

三次函数的三大性质初探

三次函数的三大性质初探

三次函数的三大性质初探随着导数内容进入新教材,函数的研究范围也随之扩大,用导数的方法研究三次函数的性质,不仅方便实用,而且三次函数的性质变得十分明朗,本文给出三次函数的三大主要性质.1 单调性三次函数,(1) 若,则在上为增函数;(2) 若,则在和上为增函数,在上为减函数,其中.证明 , △=,(1) 当 即时,在 R上恒成立,即在为增函数.(2) 当即时,解方程,得或在和上为增函数.在上为减函数.由上易知以下结论: 三次函数,(1) 若,则在R上无极值;(2) 若,则在R上有两个极值;且在处取得极大值,在处取得极小值.2根的性质三次函数(1) 若,则恰有一个实根;(2) 若,且,则恰有一个实根;(3) 若,且,则有两个不相等的实根;(4) 若,且,则有三个不相等的实根.证明 (1)(2)含有一个实根的充要条件是曲线与X轴只相交一次,即在R上为单调函数或两极值同号,所以或,且.(3)有两个相异实根的充要条件是曲线与X轴有两个公共点且其中之一为切点,所以,且.(4)有三个不相等的实根的充要条件是曲线与X轴有三个公共点,即有一个极大值,一个极小值,且两极值异号.所以且. 由上易得以下结论:三次函数在上恒正的充要条件是(m≥x2),或且(m<x2) .3 对称性三次函数的图象关于点对称,并且在处取得最小值,其图象关于直线对称.证1易知是奇函数,图象关于原点对称,则关于点对称.,当时,取得最小值,显然图象关于对称.证2 设的图象关于点对称,任取图象上点,则A关于的对称点也在图象上,由上又可得以下结论:是可导函数,若的图象关于点对称,则图象关于直线对称.证明的图象关于对称,则图象关于直线对称.若图象关于直线对称,则图象关于点对称.证明图象关于直线对称,则,,,图象关于点对称.掌握上面的研究方法和三次函数的三大性质,对于解决有关三次函数的问题是十分有益的.。

三次函数的性质及应用

三次函数的性质及应用

三次函数的性质及应用
1. 三次函数的定义
三次函数是指函数的最高次幂为3的代数函数,它的一般形式
为f(x) = ax^3 + bx^2 + cx + d,其中a、b、c、d为常数。

2. 三次函数的性质
- 零点:三次函数的零点是使得f(x) = 0的x值。

由于三次函数
是三次方程,理论上有三个实根或复根。

零点可以通过求解方程
f(x) = 0得到。

- 极值点:三次函数的极值点是函数达到最大值或最小值的点。

三次函数的极值点可能在实数轴上存在,也可能不存在。

可以通过
求解f'(x) = 0找到极值点。

- 函数图像:三次函数的图像通常呈现出一条平滑的曲线,称
为三次曲线。

根据三次函数的系数的取值范围不同,可以得到不同
形状的曲线,如上升曲线、下降曲线、拐点等。

3. 三次函数的应用
三次函数的性质在数学和实际问题中都有广泛应用,以下是一
些常见的应用领域:
- 物理学:三次函数可以用来描述物体的运动轨迹,如抛体运动、自由落体、弹性碰撞等。

- 经济学:三次函数可以用来描述经济模型中的供需曲线、成
本曲线等。

- 工程学:三次函数可以用来描述工程中的曲线形状,如桥梁
设计、道路设计等。

- 生物学:三次函数可以用来描述生物学中的生长曲线、代谢
曲线等。

三次函数的性质和应用对于理解和解决实际问题具有重要意义。

深入研究三次函数的数学特性和实际应用可以帮助我们更好地理解
和应用这一数学工具。

三次函数性质的探索

三次函数性质的探索

三次函数性质的探索摘要本文利用数学软件Mathcad,以导数为工具,对三次函数的单调性、极值、切线、对称性等问题进行探索研究,经过实验验证,深刻挖掘三次函数的性质,为高考有关问题找到了有效的解决方法.关键词三次函数的性质极值导数Mathcad一、二次函数是重要的且具有广泛应用的基本初等函数已是不争的事实,在初等数学范畴内利用直观的初等方法,学生对此已有较为全面、系统、深刻的认识,并在某些方面具备了把握规律的能力。

然而,三次多项式函数虽然同样初等,但是诸多问题的研究与探讨学生为高考数学的一大亮点,特别是文科数学,对三次多项式函数能有一些初步的理性认识。

三次函数32()(0)f x ax bx cx d a=+++≠何影响?首先还得对它有感性的认识,通过Mathcad实验、猜测、归纳发现它的图象有六种,如图:10010200200f x()xf x()10010200200f x()xf x()100102000200f x ()x 100102000200f x ()x通过观察图象,学生很容易发现图中最明显的特点就是极值点的个数与单调性,自然想到函数的导数,于是引导学生对函数32()(0)f x ax bx cx d a =+++≠进行求导:2()32f x ax bx c '=++是二次函数,原函数的极值点与单调性与导函数的正负有关,所以容易发现导函数中的参数a 与∆的符号起决定性作用。

当a 为正时,原函数的图象应为上图中的(1)、(3)、(5)三种情况;而当a 为负时,原函数的图象则为(2)、(4)、(6)三种情况。

当0∆>时,二次方程()0f x '=有两相异实根12,x x ,且在12,x x 的两边()f x '的符号相反,故函数()f x 存在两个极值点,图象为上图中的(3)、(4)两种;当0∆=时,二次方程()0f x '=有两相等实根,且在根的两边()f x '的符号相同,这时函数()f x 只存在驻点(但不是极值点),函数的图象为上图中(1)、(2)两种,当0∆<时;方程()0f x '=无实根,()f x '的值恒为正(或负),函数的图象为上图中的(5)、(6)两种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三次函数的三大性质初探
随着导数内容进入新教材,函数的研究范围也随之扩大,用导数的方法研究三次函数的性质,不仅方便实用,而且三次函数的性质变得十分明朗,本文给出三次函数的三大主要性质.
1 单调性
三次函数)0()(2
3>+++=a d cx bx ax x f ,
(1) 若032≤-ac b ,则)(x f 在),(+∞-∞上为增函数;
(2) 若032>-ac b ,则)(x f 在),(1x -∞和),(2+∞x 上为增函数,)(x f 在),(21x x 上为减函数,其中a
ac b b x a ac b b x 33,332221-+-=---=. 证明 c bx ax x f ++=23)('2, △=)3(41242
2ac b ac b -=-,
(1) 当0≤∆ 即032≤-ac b 时,0)('≥x f 在 R 上恒成立, 即)(x f 在),(+∞-∞为增函数.
(2) 当0>∆ 即032
>-ac b 时,解方程0)('=x f ,得 a
ac b b x a ac b b x 33,332221-+-=---= 0)('>x f ⇒1x x <或2x x > ⇒)(x f 在),(1x -∞和),(2+∞x 上为增函数. ⇒<0)('x f 21x x x <<⇒)(x f 在),(21x x 上为减函数.
由上易知以下结论: 三次函数)0()(2
3>+++=a d cx bx ax x f ,
(1) 若032≤-ac b ,则)(x f 在R 上无极值;
(2) 若032>-ac b ,则)(x f 在R 上有两个极值;且)(x f 在1x x =处取得极大值,在2x x =处取得极小值.
2 根的性质
三次函数)0()(2
3≠+++=a d cx bx ax x f
(1) 若032≤-ac b ,则0)(=x f 恰有一个实根;
(2) 若032>-ac b ,且0)()(21>⋅x f x f ,则0)(=x f 恰有一个实根;
(3) 若032>-ac b ,且0)()(21=⋅x f x f ,则0)(=x f 有两个不相等的实根;
(4) 若032>-ac b ,且0)()(21<⋅x f x f ,则0)(=x f 有三个不相等的实根. 证明 (1)(2)0)(=x f 含有一个实根的充要条件是曲线)(x f y =与X 轴只相交一次,即)(x f 在R 上为单调函数或两极值同号,所以032≤-ac b 或032>-ac b ,且0)()(21>⋅x f x f .
(3)0)(=x f 有两个相异实根的充要条件是曲线)(x f y =与X 轴有两个公共点且其中之一为切点,所以032>-ac b ,且0)()(21=⋅x f x f .
(4)0)(=x f 有三个不相等的实根的充要条件是曲线)(x f y =与X 轴有三个公共点,即)(x f 有一个极大值,一个极小值,且两极值异号.所以032
>-ac b 且0)()(21<⋅x f x f . 由上易得以下结论:
三次函数)0()(23>+++=a d cx bx ax x f 在),[+∞m 上恒正的充要条件是0)(>m f (m ≥x 2),或0)(>m f 且0)(2>x f (m <x 2) .
3 对称性
三次函数)0()(23>+++=a d cx bx ax x f 的图象关于点))3(,3(a b f a b --
对称,并且)('x f 在a
b x 3-=处取得最小值,其图象关于直线a b x 3-=对称.
证1 )3()3)(3()3()(232
3a b f a b x a b c a b x a d cx bx ax x f -++-++=+++= 易知x a b c ax x g )3()(2
3
-+=是奇函数,图象关于原点对称,则)(x f 关于点))3(,3(a
b f a b --对称.
c bx ax x f ++=23)('2, 0>a ∴当a b x 3-
=时,)('x f 取得最小值,显然)('x f y =图象关于a
b x 3-=对称. 证 2 设)(x f y =的图象关于点),(n m 对称,任取 )(x f y =图象上点
),(y x A ,
则A 关于),(n m 的对称点)2,2('y n x m A --也在)(x f y =图象上d x m c x m b x m a y n +-+-+-=-)2()2()2(223,
)2248()412()6(23223m d mc b m a m x c mb a m x b ma ax y -+++-++++-=∴
⎪⎪⎩
⎪⎪⎨⎧-=-=⇒⎪⎩⎪⎨⎧-+++-=++=--=∴)3(3)2248(4126232a b f n a b m n d mb b m a m d c mb a m c b ma b
由上又可得以下结论:
)(x f y =是可导函数,若)(x f y =的图象关于点),(n m 对称,则)('x f y =图象关于直线m x =对称.
证明 )(x f y =的图象关于),(n m 对称,则,2)2()(n x m f x f =-+ x
x f x x f x f x ∆-∆+=→∆)()(lim
)('0 x
x f n x x f n x x m f x x m f x m f x x ∆+-∆--=∆--∆+-=-∴→∆→∆)(2)(2lim )2()2(lim )2('00)(')()(lim 0x f x x x f x f x =∆∆--=→∆
∴ )('x f y =图象关于直线m x =对称.
若)(x f y =图象关于直线m x =对称,则)('x f y =图象关于点)0,(m 对称. 证明 )(x f y =图象关于直线m x =对称,则)2()(x m f x f -=,
x x m f x x m f x m f x x f x x f x f x x ∆--∆+-=-∴∆-∆+=→∆→∆)2()2(lim )2(')
()(lim
)('00 )(')()(lim 0x f x
x f x x f x -=∆-∆-=→∆, 0)(')2('=+-∴x f x m f , ∴ )('x f y =图象关于点)0,(m 对称.
掌握上面的研究方法和三次函数的三大性质,对于解决有关三次函数的问题是十分有益的.。

相关文档
最新文档