2020中考数学全真模拟试卷和答案

合集下载

2020年中考数学全真模拟试卷10套附答案(适用于云南省各地市)

2020年中考数学全真模拟试卷10套附答案(适用于云南省各地市)

点 A(6,0)的一次函数解析式为______. 三、计算题(本大题共 1 小题,共 6.0 分)
15. 先化简,再求值:(2- )
,其中 x=2+ .
四、解答题(本大题共 8 小题,共 64.0 分) 16. 如图,在△ABC 和△ADE 中,∠C=∠E,∠BAD=∠CAE,AB=AD
.求证:BC=DE.
∴图中阴影部分的面积=S 扇形 OBD-S△AOB=
-
=-,
故选:C. 连接 OB,由四边形 ABCO 是正方形,得到∠DOB=45°,根据勾股定理得到 OB= AB= ,于是得到结论. 本题考查扇形的面积公式、三角形的面积、勾股定理等知识,解题的关键是把不规则图 形转化为规则图形解决,学会利用角平分线添加辅助线,属于中考常考题型.
请你根据以上信息解答下列问题: (1)被抽查的学生有______人,动漫类所占的扇形圆心角是______度; (2)补全条形统计图; (3)若该校共有 3600 名学生,请你估计这个学校喜爱阅读动漫类课外书籍的学生 人数是多少?
第 3 页,共 15 页
19. 已知抛物线 y=-ax2+4x+c 与 x 轴交于点 A 和点 B(1,0),与 y 轴交于点 C(0,-5 ). (1)求抛物线的解析式; (2)点 D 为抛物线的顶点,点 E 为 y 轴上一点,若 DE=AE,求点 E 的坐标.
0.6
1.5
设种植辣椒 x 亩,种植面积均为整数亩,两种蔬菜总收益为 y 万元,根据以上信息 ,解答下列问题: (1)求 y 与 x 的函数解析式(也称关系式),请直接写出 x 的取值范围; (2)若要总收益不低于 23.4 万元,则有几种种植方案?哪种方案的收益最大?最 大收益是多少?

2020年中考数学全真模拟题:《二次函数》(上海市专版)(含答案)

2020年中考数学全真模拟题:《二次函数》(上海市专版)(含答案)

《二次函数》(上海市专版)一.选择题1.(2020•虹口区一模)抛物线y=3(x+1)2+1的顶点所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2020•虹口区一模)已知抛物线y=x2经过A(﹣2,y1)、B(1,y2)两点,在下列关系式中,正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>03.(2020•宝山区一模)二次函数y=1﹣2x2的图象的开口方向()A.向左B.向右C.向上D.向下4.(2020•杨浦区一模)广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(米)关于水珠和喷头的水平距离x(米)的函数解析式是y=x2+6x (0≤x≤4),那么水珠的高度达到最大时,水珠与喷头的水平距离是()A.1米B.2米C.5米D.6米5.(2020•普陀区一模)下列二次函数中,如果函数图象的对称轴是y轴,那么这个函数是()A.y=x2+2x B.y=x2+2x+1 C.y=x2+2 D.y=(x﹣1)2 6.(2020•金山区一模)下列函数中是二次函数的是()A.y=B.y=(x+3)2﹣x2C.y=D.y=x(x﹣1)7.(2020•金山区一模)将抛物线y=(x+1)2﹣3向右平移2个单位后得到的新抛物线的表达式为()A.y=(x﹣1)2﹣3 B.y=(x+3)2﹣3 C.y=(x+1)2﹣1 D.y=(x+1)2﹣5 8.(2020•静安区一模)如果将抛物线y=x2﹣2平移,使平移后的抛物线与抛物线y=x2﹣8x+9重合,那么它平移的过程可以是()A.向右平移4个单位,向上平移11个单位B.向左平移4个单位,向上平移11个单位C.向左平移4个单位,向上平移5个单位D.向右平移4个单位,向下平移5个单位9.(2020•奉贤区一模)已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y 的对应值如表:x⋅⋅⋅0 1 3 4 5 ⋅⋅⋅y⋅⋅⋅﹣5 ﹣﹣﹣5 ﹣⋅⋅⋅根据表,下列判断正确的是()A.该抛物线开口向上B.该抛物线的对称轴是直线x=1C.该抛物线一定经过点(﹣1,﹣)D.该抛物线在对称轴左侧部分是下降的10.(2020•普陀区一模)如果二次函数y=(x﹣m)2+n的图象如图所示,那么一次函数y =mx+n的图象经过()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限11.(2020•太和县模拟)已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如下表:x…﹣1 0 1 2 3 …y… 3 0 ﹣1 m 3 …①抛物线开口向下;②抛物线的对称轴为直线x=﹣1;③m的值为0;④图象不经过第三象限.上述结论中正确的是()A.①④B.②④C.③④D.②③12.(2020•闵行区一模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有以下结论:①a<0;②abc>0;③a﹣b+c<0;④b2﹣4ac<0;其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题13.(2020•虹口区一模)如果函数y=(m+1)x+2是二次函数,那么m=.14.(2020•宝山区一模)若抛物线y=(x﹣m)2+(m+1)的顶点在第二象限,则m的取值范围为.15.(2020•宝山区一模)二次函数y=x2+x+的图象与y轴的交点坐标是.16.(2020•金山区一模)已知抛物线y=(1+a)x2的开口向上,则a的取值范围是.17.(2020•浦东新区一模)用“描点法”画二次函数y=ax2+bx+c的图象时,列出了如下的表格:x…0 1 2 3 4 …y=ax2+bx+c…﹣3 0 1 0 ﹣3 …那么当x=5时,该二次函数y的值为.18.(2020•青浦区一模)某公司10月份的产值是100万元,如果该公司第四季度每个月产值的增长率相同,都为x(x>0),12月份的产值为y万元,那么y关于x的函数解析式是.19.(2020•普陀区一模)已知函数f(x)=3x2﹣2x﹣1,如果x=2,那么f(x)=.20.(2020•黄浦区一模)如图,在△ABC中,BC=12,BC上的高AH=8,矩形DEFG的边EF 在边BC上,顶点D、G分别在边AB、AC上.设DE=x,矩形DEFG的面积为y,那么y关于x的函数关系式是.(不需写出x的取值范围).三.解答题21.(2020•宝山区一模)在平面直角坐标系内,反比例函数和二次函数y=a(x2+x﹣1)的图象交于点A(1,a)和点B(﹣1,﹣a).(1)求直线AB与y轴的交点坐标;(2)要使上述反比例函数和二次函数在某一区域都是y随着x的增大而增大,求a应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当Q在以AB为直径的圆上时,求a的值.22.(2020•奉贤区一模)已知函数y=﹣(x﹣1)(x﹣3).(1)指出这个函数图象的开口方向、顶点坐标和它的变化情况;(2)选取适当的数据填入表格,并在如图所示的直角坐标系内描点,画出该函数的图象.x⋅⋅⋅⋅⋅⋅y⋅⋅⋅⋅⋅⋅23.(2020•杨浦区一模)已知在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+4(m≠0)与x轴交于点A,B(点A在点B的左侧),且AB=6.(1)求这条抛物线的对称轴及表达式;(2)在y轴上取点E(0,2),点F为第一象限内抛物线上一点,联结BF,EF,如果S 四边形OEFB=10,求点F的坐标;(3)在第(2)小题的条件下,点F在抛物线对称轴右侧,点P在x轴上且在点B左侧,如果直线PF与y轴的夹角等于∠EBF,求点P的坐标.24.(2020•嘉定区一模)在平面直角坐标系xOy中,将点P1(a,b﹣a)定义为点P(a,b)的“关联点”.已知:点A(x,y)在函数y=x2的图象上(如图所示),点A的“关联点”是点A1.(1)请在如图的基础上画出函数y=x2﹣2的图象,简要说明画图方法;(2)如果点A1在函数y=x2﹣2的图象上,求点A1的坐标;(3)将点P2(a,b﹣na)称为点P(a,b)的“待定关联点”(其中,n≠0).如果点A(x,y)的“待定关联点”A2在函数y=x2﹣n的图象上,试用含n的代数式表示点A2的坐标.25.(2020•奉贤区一模)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c经过点A(2,﹣3)和点B(5,0),顶点为C.(1)求这条抛物线的表达式和顶点C的坐标;(2)点A关于抛物线对称轴的对应点为点D,联结OD、BD,求∠ODB的正切值;(3)将抛物线y=x2+bx+c向上平移t(t>0)个单位,使顶点C落在点E处,点B落在点F处,如果BE=BF,求t的值.26.(2020•青浦区一模)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向向下平移,平移后的抛物线的顶点为点D,点P的对应点为点Q,当OD⊥DQ时,求抛物线平移的距离.27.(2020•松江区一模)如图,已知抛物线y=﹣x2+bx+c经过点A(3,0),点B(0,3).点M(m,0)在线段OA上(与点A,O不重合),过点M作x轴的垂线与线段AB交于点P,与抛物线交于点Q,联结BQ.(1)求抛物线表达式;(2)联结OP,当∠BOP=∠PBQ时,求PQ的长度;(3)当△PBQ为等腰三角形时,求m的值.参考答案一.选择题1.解:∵抛物线y=3(x+1)2+1,∴该抛物线的顶点是(﹣1,1),在第二象限,故选:B.2.解:∵抛物线y=x2,∴抛物线开口向上,对称轴为y轴,∴A(﹣2,y1)关于y轴对称点的坐标为(2,y1).又∵0<1<2,∴y1>y2>0,故选:C.3.解:∵二次函数y=1﹣2x2中﹣2<0,∴图象开口向下,故选:D.4.解:方法一:根据题意,得y=x2+6x(0≤x≤4),=﹣(x﹣2)2+6所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.方法二:因为对称轴x==2,所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.故选:B.5.解:二次函数的对称轴为y轴,则函数对称轴为x=0,即函数解析式y=ax2+bx+c中,b=0,故选:C.6.解:二次函数的解析式为y=ax2+bx+c(a≠0),y=x(x﹣1)=x2﹣x,故选:D.7.解:∵将抛物线y=(x+1)2﹣3向右平移2个单位,∴新抛物线的表达式为y=(x+1﹣2)2﹣3=(x﹣1)2﹣3,故选:A.8.解:∵抛物线y=x2﹣8x+9=(x﹣4)2﹣7的顶点坐标为(4,﹣7),抛物线y=x2﹣2的顶点坐标为(0,﹣2),∴顶点由(0,﹣2)到(4,﹣7)需要向右平移4个单位再向下平移5个单位.故选:D.9.解:由表格中点(0,﹣5),(4,﹣5),可知函数的对称轴为x=2,设函数的解析式为y=a(x﹣2)2+c,将点(0,﹣5),(1,﹣)代入,得到a=﹣,c=﹣3,∴函数解析式y=﹣(x﹣2)2﹣3;∴抛物线开口向下,抛物线在对称轴左侧部分是上升的;故选:C.10.解:根据题意得:抛物线的顶点坐标为(m,n),且在第四象限,∴m>0,n<0,则一次函数y=mx+n经过第一、三、四象限.故选:B.11.解:由表格可知,抛物线的对称轴是直线x==1,故②错误,抛物线的顶点坐标是(1,﹣1),有最小值,故抛物线y=ax2+bx+c的开口向上,故①错误,当y=0时,x=0或x=2,故m的值为0,故③正确,当y≤0时,x的取值范围是0≤x≤2,故④正确,故选:C.12.解:∵抛物线开口向下,∴a<0,所以①正确;∵抛物线的对称轴在y轴的右侧,∴a、b异号,即b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵x=﹣1时,y<0,即a﹣b+c<0,所以③正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以④错误.故选:B.二.填空题(共8小题)13.解:∵函数y=(m+1)x+2是二次函数,∴m2﹣m=2,(m﹣2)(m+1)=0,解得:m1=2,m2=﹣1,∵m+1≠0,∴m≠﹣1,故m=2.故答案为:2.14.解:∵y=(x﹣m)2+(m+1),∴顶点为(m,m+1),∵顶点在第二象限,∴m<0,m+1>0,∴﹣1<m<0,故答案为﹣1<m<0.15.解:由图象与y轴相交则x=0,代入得:y=,∴与y轴交点坐标是(0,);故答案为(0,).16.解:∵抛物线y=(1+a)x2的开口向上,∴1+a>0,∴a>﹣1.故答案为a>﹣1.17.解:从表格可知:抛物线的顶点坐标为(2,1),设y=ax2+bx+c=a(x﹣2)2+1,从表格可知过点(0,﹣3),代入得:﹣3=a(0﹣2)2+1,解得:a=﹣1,即y=﹣(x﹣2)2+1,当x=5时,y=﹣(5﹣2)2+1=﹣8,故答案为:﹣8.18.解:由题意可得,y=100(1+x)2,故答案为:y=100(1+x)2.19.解:f(2)=3×22﹣2×2﹣1=7,故答案为7.20.解:∵四边形DEFG是矩形,BC=12,BC上的高AH=8,DE=x,矩形DEFG的面积为y,∴DG∥EF,∴△ADG∽△ABC,∴,得DG=,∴y=x=+12x,故答案为:y=+12x.三.解答题(共7小题)21.解:(1)设直线AB的解析式为:y=kx+b,由题意可得∴b=0,k=a,∴直线AB的解析式为:y=ax,∴当x=0时,y=0,∴直线AB与y轴的交点坐标(0,0);(2)∵反比例函数过点A(1,a),∴反比例函数解析式为:y=,∵要使反比例函数和二次函数都是y随着x的增大而增大,∴a<0.∵二次函数y=a(x2+x﹣1)=a(x+)2﹣a,∴对称轴为:直线x=﹣.要使二次函数y=a(x2+x﹣1)满足上述条件,在k<0的情况下,x必须在对称轴的左边,即x≤﹣时,才能使得y随着x的增大而增大.综上所述,a<0且x≤﹣;(3)∵二次函数y=a(x2+x﹣1)=a(x+)2﹣a,∴顶点Q(﹣,﹣a),∵Q在以AB为直径的圆上,∴OA=OQ,∴(﹣)2+(﹣)2=12+a2,∴a=±22.解:(1)y=﹣(x﹣1)(x﹣3).=﹣x2+4x﹣3=﹣(x﹣2)2+1,∵a=﹣1<0,∴抛物线的开口向下,抛物线的顶点坐标为(2,1),当x≤2时,y随x的增大而增大;当x≥2时,y随x的增大而减小;(2)当x=0时,y=﹣3;当x=1时,y=0;当x=2时,y=1;当x=3时,y=0;当x=4时,y=﹣3,如图,故答案为0,﹣3;1,0;2,1;3,0;4,﹣3.23.解:(1)由y=mx2﹣2mx+4=m(x﹣1)2+4﹣m得到:抛物线对称轴为直线x=1.∵AB=6,∴A(﹣2,0),B(4,0).将点A的坐标代入函数解析式得到:4m+4m+4=0,解得m=﹣.故该抛物线解析式是:y=﹣x2+x+4;(2)如图1,联结OF,设F(t,﹣t2+t+4),则S四边形OEFB =S△OEF+S△OFB=×2t+×4(﹣t2+t+4)=10.∴t1=1,t2=2.∴点F的坐标是(1,)或(2,4);(2)由题意得,F(2,4),如图2,设PF与y轴的交点为G.,∵tan∠EBO===,tan∠HFB==,∴tan∠EBO=tan∠HFB.∴∠EBO=∠HFB.又∵∠PFH=∠EGF=∠FBE,∴∠PFB=∠PBF.∴PF=PB.设P(a,0).则PF=PB,∴(a﹣4)2=(a﹣2)2+42,解得a=﹣1.∴P(﹣1,0)24.解:(1)将图中的抛物线y=x2向下平移2个单位长,可得抛物线y=x2﹣2,如图:(2)由题意,得点A(x,y)的“关联点”为A(x,y﹣x),1由点A(x,y)在抛物线y=x2上,可得A(x,x2),∴,(x,y﹣x)在抛物线y=x2﹣2上,又∵A1∴x2﹣x=x2﹣2,解得x=2.(2,2);将x=2代入,得A1(3)点A(x,y)的“待定关联点”为,∵在抛物线y=x2﹣n的图象上,∴x2﹣nx=x2﹣n,∴n﹣nx=0,n(1﹣x)=0.又∵n≠0,∴x=1,当x=1时,x2﹣nx=1﹣n,(1,1﹣n).故可得A225.解:(1)∵抛物线y=x2+bx+c经过点A(2,﹣3)和点B(5,0),∴解得:∴抛物线解析式为y=x2﹣6x+5=(x﹣3)2﹣4,∴顶点C坐标为(3,﹣4);(2)∵点A关于抛物线对称轴x=3的对应点为点D,∴点D的坐标(4,﹣3),∴OD=5,如图1,过O作OG⊥BD于G,∵点B(5,0),∴OB=OD,∴DG=BG=BD==,∴OG===,∴tan∠ODB===3;(3)如图2,∵抛物线y=x2+bx+c向上平移t(t>0)个单位,∴E(3,﹣4+t),F(5,t),∵BE=BF,B(5,0),∴(3﹣5)2+(﹣4+t)2=(5﹣5)2+t2,t=.26.解:(1)∵对称轴为直线x=2,点A的坐标为(1,0),∴点B的坐标是(3,0).将A(1,0),B(3,0)分别代入y=x2+bx+c,得.解得.则该抛物线解析式是:y=x2﹣4x+3.由y=x2﹣4x+3=(x﹣2)2﹣1知,该抛物线顶点坐标是(2,﹣1);(2)如图1,过点P作PN⊥x轴于N,过点C作CM⊥PN,交NP的延长线于点M,∵∠CON=90°,∴四边形CONM是矩形.∴∠CMN=90°,CO=MN、∴y=x2﹣4x+3,∴C (0,3).∵B (3,0),∴OB =OC =3.∵∠COB =90°,∴∠OCB =∠BCM =45°.又∵∠ACB =∠PCB ,∴∠OCB ﹣∠ACB =∠BCM ﹣∠PCB ,即∠OCA =∠PCM .∴tan ∠OCA =tan ∠PCM . ∴=.故设PM =a ,MC =3a ,PN =3﹣a .∴P (3a ,3﹣a ),将其代入抛物线解析式y =x 2﹣4x +3,得(3a )2﹣4(3﹣a )+3=3﹣a .解得a 1=,a 2=0(舍去). ∴P (,).(3)设抛物线平移的距离为m ,得y =(x ﹣2)2﹣1﹣m .∴D (2,﹣1﹣m ).如图2,过点D 作直线EF ∥x 轴,交y 轴于点E ,交PQ 延长线于点F ,∵∠OED =∠QFD =∠ODQ =90°,∴∠EOD +∠ODE =90°,∠ODE +∠QDP =90°.∴∠EOD =∠QDF .∴tan ∠EOD =tan ∠QDF ,∴=.∴=.解得m=.故抛物线平移的距离为.27.解:(1)将A(3,0),B(0,3)分别代入抛物线解析式,得.解得.故该抛物线解析式是:y=﹣x2+2x+3;(2)设直线AB的解析式是:y=kx+t(k≠0),把A(3,0),B(0,3)分别代入,得.解得k=﹣1,t=3.则该直线方程为:y=﹣x+3.故设P(m,﹣m+3),Q(m,﹣m2+2m+3).则BP=m,PQ=﹣m2+3m.∵OB=OA=3,∴∠BAO=45°.∵QM⊥OA,∴∠PMA=90°.∴∠AMP=45°.∴∠BPQ=∠AMP=∠BAO=45°.又∵∠BOP=∠QBP,∴△POB∽△QBP.于是=,即=.解得m 1=,m 2=0(舍去).∴PQ =﹣m 2+3m =;(3)由两点间的距离公式知,BP 2=2m 2,PQ 2=(﹣m 2+3m )2,BQ 2=m 2+(﹣m 2+2m )2. ①若BP =BQ ,2m 2=m 2+(﹣m 2+2m )2,解得m 1=1,m 2=3(舍去).即m =1符合题意.②若BP =PQ ,2m 2=(﹣m 2+3m )2,解得m 1=3﹣,m 2=3+(舍去). 即m =3﹣符合题意. ③若PQ =BQ ,(﹣m 2+3m )2=m 2+(﹣m 2+2m )2,解得m =2.综上所述,m 的值为1或3﹣或2.。

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案2020年九年级数学中考模拟试题第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中,无理数是()。

A。

$\sqrt{2}$。

B。

$-2$。

C。

$\dfrac{1}{2}$。

D。

$0.5$2.(3分)下列图形中,既是轴对称又是中心对称图形的是()。

A。

菱形。

B。

等边三角形。

C。

平行四边形。

D。

等腰梯形3.(3分)图中立体图形的主视图是()。

A。

B。

C。

D。

4.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()。

A。

$10\%x=330$。

B。

$(1-10\%)x=330$。

C。

$(1-10\%)2x=330$。

D。

$(1+10\%)x=330$5.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()。

A。

平均数。

B。

中位数。

C。

众数。

D。

方差6.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间。

A。

B与C。

B。

C与D。

C。

E与F。

D。

7.(3分)若代数式 $A=\dfrac{x+1}{x-1}$,$B=\dfrac{2x-1}{x-2}$ 有意义,则实数x的取值范围是()。

A。

$x\geq1$。

B。

$x\geq2$。

C。

$x>1$。

D。

$x>2$8.(3分)下列曲线中不能表示y是x的函数的是()。

A。

B。

C。

D。

9.(3分)某校美术社团为练素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()。

A。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480-20}$。

B。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480}$C。

2020年中考数学全真模拟试卷8套附答案(适用于湖南省长沙市)

2020年中考数学全真模拟试卷8套附答案(适用于湖南省长沙市)

C.
D.
12. 如图,在等腰直角△ABC 中,∠C=90°,D 为 BC 的中 点,将△ABC 折叠,使点 A 与点 D 重合,EF 为折痕 ,则 sin∠BED 的值是( )
A.
B.
C.
D.
二、填空题(本大题共 6 小题,共 18.0 分) 13. 分解因式:x3-4x=______.
14. 计算:
3.【答案】A
【解析】【分析】 此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|< 10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值. 科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要 看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原 数绝对值>10 时,n 是正数;当原数的绝对值<1 时,n 是负数. 【解答】 解:20 万=200000=2×105. 故选:A.
6.【答案】C
【解析】解:∵点 A(1,3)向左平移 2 个单位,再向下平移 4 个单位得到点 B, ∴点 B 的横坐标为 1-2=-1,纵坐标为 3-4=-1, ∴B 的坐标为(-1,-1). 故选:C. 根据向左平移横坐标减,向下平移纵坐标减求解即可. 本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减; 纵坐标上移加,下移减.
24. 如图,在⊙O 中,直径 CD 垂直于不过圆心 O 的弦 AB,垂足为点 N,连接 AC,BC ,点 E 在 AB 上,且 AE=CE. (1)求证:∠ABC=∠ACE; (2)过点 B 作⊙O 的切线交 EC 的延长线于点 P,证明 PB=PE; (3)在第(2)问的基础上,设⊙O 半径为 2 ,若点 N 为 OC 中点,点 Q 在⊙O 上,求线段 PQ 的最大值.

2020年中考模拟试卷数学试卷及答案共5套精品版

2020年中考模拟试卷数学试卷及答案共5套精品版

中考模拟试卷 数学卷考生须知:1、本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2、答题前,必须在答题卷的密封区内填写校名、姓名和准考证号.3 、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4 、考试结束后,上交试题卷和答题卷.试 题 卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。

注意可以用多种不同的方法来选取正确答案。

1.北京时间3月11日,日本发生了9.0级大地震,地震发生后, 中国红十字会一直与日本红十字会保持沟通,密切关注灾情发展。

截至目前,中国红十字会已经累计向日本红十字会提供600万元人民币的人道援助。

这里的数据“600万元”用科学计数法表示为( ▲ )(第1题) A . 4610⨯元 B . 5610⨯元 C .6610⨯元 D .7610⨯元 2. 若15a =,55b =,则a b 、两数的关系是( ▲ )A 、a b =B 、5ab =C 、a b 、互为相反数D 、a b 、互为倒数 3. 公务员行政能力测试中有一类图形规律题,可以运用我们初中数学中的图形变换再结合变化规律来解决,下面一题问号格内的图形应该是( ▲ )(第3题)4. 某市2008年4月的一周中每天最低气温如下:13,11,7,12,13,13,12, 则在这一周中,最低气温的众数和中位数分别是( ▲ ) A. 13和11 B. 12和13 C. 11和12 D. 13和125.若有甲、乙两支水平相当的NBA 球队需进行总决赛,一共需要打7场,前4场2比2,最后三场比赛,规定三局两胜者为胜方,如果在第一次比赛中甲获胜,这时乙最终取胜的可能性有多大?(不考虑主场优势)( ▲ ) A .21 B .31C .41D . 156. 如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( ▲ )A .1B .22C .2D .2(第6题)(第7题)7. 如图,小亮同学在晚上由路灯A 走向路灯B ,当他走到点P 时,发现他的身影顶部正好接触路灯B 的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为 ( ▲ )A .6.4米B . 8米C .9.6米D . 11.2米8. 如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( ▲ )A .15°B .30°C .45°D .60°(第9题)9.如图,直线l 和双曲线ky x=(0k >)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD 的面积为2S 、△POE 的面积为3S ,则 ( ▲ ) A .123S S S << B .123S S S >> C . 123S S S => D . 123S S S =<10.如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( ▲ )Oxy 4 4A . Ox y4 4 B .Ox y4 4 C .Ox y4 4 D .(第10题)C DE FAB (第8题)二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.分解因式:x x 43-= ▲12.已知函数y 1=2x-5,y 2= -2x +15,如果y 1<y 2 ,则x 的取值范围是 ▲13.如图,相离的两个圆⊙O 1和⊙O 2在直线l 的同侧。

2020年浙江省温州市中学中考数学全真模拟试卷1解析版

2020年浙江省温州市中学中考数学全真模拟试卷1解析版

2020年浙江省温州市中学中考数学全真模拟试卷1解析版一.选择题(共10小题,满分40分,每小题4分)1.﹣10+3的结果是()A.﹣7B.7C.﹣13D.132.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48.则这10名女生仰卧起坐个数不少于50个的频率为()A.0.3B.0.4C.0.5D.0.63.如图,几何体的左视图是()A.B.C.D.4.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则∠A的正弦值是()A.B.C.D.5.化简÷的结果是()A.B.C.D.6.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0B.﹣1C.﹣2D.﹣37.将不等式组的解集在数轴上表示出来,应是()A.B.C.D.8.已知三角形的三边长分别为2、x、10,若x为正整数,则这样的三角形个数为()A.1B.2C.3D.49.如图,在平面直角坐标系中,点A在一次函数y=x(x>0)的图象上,点B在x轴的正半轴上,以AB为边作矩形ABCD,AB=6,AD=2.则线段OD的最大长度()A.4+2B.5+C.4+2D.2+10.关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A.对角线互相平分B.对角线互相垂C.对角线相等D.对角线平分一组对角二.填空题(共6小题,满分30分,每小题5分)11.分解因式:2x2﹣2=.12.已知关于x,y的二元一次方程组的解满足x﹣y=3,则m的值为13.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为m.14.一个正多边形的内角和与外角和的比是4:1,则它的边数是.15.把一个长方形纸片按如图所示折叠,若量得∠AOD′=36°,则∠D′OE的度数为.16.如图,正方形ABOD的边长为4,OB在x轴上,OD在y轴上,点A在第二象限内,且AD∥OB,AB∥OD,点C为AB的中点,直线CD交x轴于点F,过点C作CE⊥DF于点C,交x轴于点E,则点E坐标为,点P是直线CE上的一个动点,当点P的坐标为时,PB+PF 有最小值.三.解答题(共8小题,满分80分)17.(8分)(1)计算:;(2)化简:(a+2)2﹣a(a﹣1).18.(8分)如图:AB是半圆的直径,∠ABC的平分线交半圆于D,AD和BC的延长线交于圆外一点E,连结CD.(1)求证:△EDC是等腰三角形.(2)若AB=5,BC=3,求四边形ABCD的面积.19.(8分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,5×5正方形方格纸中,点A、B都在格点处.(1)请在图中作等腰△ABC,使其底边AC=,且点C为格点;(2)在(1)的条件下,作出平行四边形ABDC,且D为格点,并直接写出平行四边形ABDC的面积.20.(8分)一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲同学从布袋中随机摸出1个球,若是红球,则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出1个球,若为黄球,则乙同学获胜.(1)当x=3时,谁获胜的可能性大?(2)当x为何值时,游戏对双方是公平的?21.(10分)如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X 轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=,n=.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案).22.(12分)某市居民用电电费目前实行梯度价格表)(1)若月用电150千瓦时,应交电费元,若月用电250千瓦时,应交电费元;(2)若居民王大爷家12月应交电费150元,请计算他们家12月的用电量;(3)若居民李大爷家11、12月份共用电480千瓦时(其中11月份用电量少于12月份),共交电费262.6元.请直接写出李大爷家这两个月的用电量.23.(12分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.24.(14分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据有理数的加法法则,即可解答.【解答】解:﹣10+3=﹣(10﹣3)=﹣7,故选:A.【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数的加法法则.2.【分析】用仰卧起坐个数不少于50个的频数除以女生总人数10计算即可得解.【解答】解:仰卧起坐个数不少于50个的有52、50、50、61、72共5个,所以,频率==0.5.故选:C.【点评】本题考查了频数与频率,频率=.3.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.【分析】根据勾股定理求出OA,根据正弦的定义解答即可.【解答】解:由题意得,OC=2,AC=4,由勾股定理得,AO==2,∴sin A==,故选:A.【点评】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=故选:D.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.6.【分析】由方程根的情况,根据根的判别式可得到关于a的不等式,可求得a的取值范围,则可求得答案.【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选:B.【点评】本题主要考查根的判别式,掌握方程根的情况与根的判别式的关系是解题的关键.7.【分析】根据一元一次不等式组的解法解出不等式组,根据小于等于或大于等于用实心圆点在数轴上表示解答.【解答】解:不等式组的解集为:1≤x≤3,故选:A.【点评】本题考查的是解一元一此不等式组及在数轴上表示一元一次不等式组的解集,在解答此类题目时要注意实心圆点与空心圆点的区别.8.【分析】先根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出x的取值范围,然后根据若x为正整数,即可选择答案.【解答】解:∵10﹣2=8,10+2=12,∴8<x<12,∵若x为正整数,∴x的可能取值是9,10,11,故这样的三角形共有3个.故选:C.【点评】本题考查了三角形的三边关系,熟练掌握“三角形任意两边之和大于第三边,任意两边之差小于第三边”求出x的取值范围是解题的关键.9.【分析】由直线的斜率得出tan∠AOB=,作△AOB的外接圆⊙P,连接OP、PA、PB、PD,作PG⊥CD,交AB于H,垂足为G,易得∠APH=∠AOB,解直角三角形求得PH=2,然后根据广告代理渠道PD、PA,根据三角形三边关系得出OD取最大值时,OD=OP+PD,据此即可求得.【解答】解:∵点A在一次函数y=x(x>0)的图象上,∴tan∠AOB=,作△AOB的外接圆⊙P,连接OP、PA、PB、PD,作PG⊥CD,交AB于H,垂足为G,∵四边形ABCD是矩形,∴AB∥CD,四边形AHGD是矩形,∴PG⊥AB,GH=AD=2,∵∠APB=2∠AOB,∠APG=∠APB,AH=AB=3=DG,∴∠APH=∠AOB,∴tan∠APH=tan∠AOB=,∴=,∴PH=2,∴PG=2+2=4,∴PD===5,OP=PA===,在△OPD中,OP+PD≥OD,∴OD的最大值为5+,故选:B.【点评】本题考查了一次函数图象上点的坐标特征,圆心角和圆周角的关系,垂径定理以及勾股定理的应用,三角形三边关系等,作出辅助线是解题的关键.10.【分析】根据矩形、平行四边形的性质即可判断;【解答】解:矩形的对角线互相平分且相等,平行四边形的对角线互相平分,∴矩形具备而平行四边形不一定具备的是矩形的对角线相等,故选:C.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等是常考内容.二.填空题(共6小题,满分30分,每小题5分)11.【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:2(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.12.【分析】②﹣①得到x﹣y=4﹣m,代入x﹣y=3中计算即可求出m的值.【解答】解:,②﹣①得:x﹣y=4﹣m,∵x﹣y=3,∴4﹣m=3,解得:m=1,故答案为:1【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.【分析】利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:易得扇形的圆心角所对的弦是直径,∴扇形的半径为:m,∴扇形的弧长为:=πm,∴圆锥的底面半径为:π÷2π=m.【点评】本题用到的知识点为:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长.14.【分析】多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.故答案为:10.【点评】本题考查了多边形内角和定理和外角和定理:多边形内角和为(n﹣2)•180°,外角和为360°.15.【分析】由翻折变换的性质可知∠D′OE=∠DOE,故∠AOD′+2∠D′OE=180°,求出∠D′OE的度数即可.【解答】解:∵四边形ODCE折叠后形成四边形OD′C′E,∴∠D′OE=∠DOE,∴∠AOD′+2∠D′OE=180°,∵∠AOD′=36°,∴∠D′OE=72°.故答案为:72°.【点评】本题考查的是图形的翻折变换,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.【分析】由条件可求得B点坐标,可求得BF=BC的长,利用△BCF∽△BEC可求得BE的长,则可求得OE的长,可求得E点坐标;易知可知点D与F关于直线CE对称,连接BD交直线CE 于点P,则可知P点即为满足条件的动点,求出直线EC、直线BD的解析式构建方程组确定点P 坐标即可;【解答】解:∵C是AB的中点,∴AC=BC,∵四边形ABOD是正方形,∴∠A=∠CBF=90°,在△ACD和△BCF中,∴△ACD≌△BCF(ASA),∴CF=CD,BF=AD=4∵CE⊥DF,∴CE垂直平分DF,∴D、F关于直线CE对称,∵∠CBF=∠CBE=∠FCE=90°,∴∠CFB+∠FCB=∠FCB+∠ECB=90°,∴∠CFB=∠BCE,∴△BCF∽△BEC,∴=,即=,解得BE=1,∴OE=OB﹣BE=4﹣1=3,∴E点坐标为(﹣3,0);如图,连接BD交直线CE于点P,∵点D与点F关于直线CE对称,∴PD=PF,∴PB+PF=PB+PD≥BD,此时PF+PE的值最小,∵直线CE的解析式为y=﹣2x﹣6,直线BD的解析式为y=x+4,由,解得,∴P(﹣,).故答案为(﹣3,0),(﹣,).【点评】本题为一次函数的综合应用,正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轴对称的性质等知识.三.解答题(共8小题,满分80分)17.【分析】(1)直接利用绝对值的性质以及二次根式的性质、零指数幂的性质分别化简得出答案; (2)直接利用完全平方公式以及单项式乘以多项式分别化简得出答案.【解答】解:(1)原式=2﹣1﹣(﹣1)=;(2)原式=a 2+4a +4﹣a 2+a=5a +4.【点评】此题主要考查了完全平方公式以及单项式乘以多项式、实数运算,正确掌握相关运算法则是解题关键.18.【分析】(1)根据圆周角定理由AB 是半圆的直径得∠ADB =∠ACB =90°,加上∠ABC 的平分线交半圆于D ,根据等腰三角形的判定得BA =BE ,再根据等腰三角形的性质得AD =ED ,即可得到CD 为直角三角形ACE 斜边上的中线,所以CD =DE =AD ,因此可判断△EDC 是等腰三角形;(2)先利用BA =BE =5得到CE =EB ﹣CB =2,利用勾股定理,在Rt △ACE 中计算出AE =2,在Rt △ABC 中计算出AC =4,利用三角形面积公式得到S △ABE =AC •BE =10,再证明△ECD ∽△EAB ,利用相似的性质求出S △ECD =2,然后利用四边形ABCD 的面积=S △ABE ﹣S △ECD 进行计算..【解答】(1)证明:∵AB 是半圆的直径,∴∠ADB =∠ACB =90°,∵∠ABC 的平分线交半圆于D ,∴BA=BE,∴AD=ED,∴CD为直角三角形ACE斜边上的中线,∴CD=DE=AD,∴△EDC是等腰三角形;(2)解:∵BA=BE=5,∴CE=EB﹣CB=2,在Rt△ACE中,AE==2,在Rt△ABC中,AC==4,∴S△ABE=AC•BE=×4×5=10,∵∠EDC=∠EBA,而∠DEC=∠BEA,∴△ECD∽△EAB,∴=()2,即S△ECD=10×()2=2,∴四边形ABCD的面积=S△ABE ﹣S△ECD=10﹣2=8.【点评】本题考查了圆周角定理:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的判定与性质和相似三角形的判定与性质.19.【分析】(1)利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题,根据平行四边形的面积公式计算即可.【解答】解:(1)如图,△ABC即为所求.(2)如图,平行四边形ABDC即为所求.S平行四边形ABCD=2×2=8.【点评】本题考查作图﹣应用与设计,等腰三角形的判定和性质,平行四边形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.【分析】(1)比较A、B两位同学的概率解答即可;(2)根据游戏的公平性,列出方程=解答即可.【解答】解:(1)A同学获胜可能性为,B同学获胜可能性为=,因为≠,当x=3时,B同学获胜可能性大;(2)游戏对双方公平必须有:=,解得:x=4,答:当x=4时,游戏对双方是公平的.【点评】此题考查游戏的公平性问题,关键是根据A、B两位同学的概率解答.21.【分析】(1)将A点坐标,B点坐标代入解析式可求m,n的值(2)用待定系数法可求一次函数解析式,根据S△AOB =S△AOC﹣S△BOC可求△AOB的面积.(3)由图象直接可得【解答】解:(1)∵反比例函数y=过点A(﹣1,3),B(﹣3,n)∴m=3×(﹣1)=﹣3,m=﹣3n∴n=1故答案为﹣3,1(2)设一次函数解析式y=kx+b,且过(﹣1,3),B(﹣3,1)∴解得:∴解析式y =x +4∵一次函数图象与x 轴交点为C∴0=x +4∴x =﹣4∴C (﹣4,0)∵S △AOB =S △AOC ﹣S △BOC∴S △AOB =×4×3﹣×4×1=4(3)∵kx +b ≥∴一次函数图象在反比例函数图象上方∴﹣3≤x ≤﹣1故答案为﹣3≤x ≤﹣1【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法,利用函数图象上的点满足函数关系式解决问题是本题关键.22.【分析】(1)根据表格中电费收取方法计算即可得到结果;(2)根据题意确定出他们家12月的用电量范围,设为x 度,由表格中的电费收取方式列出方程,求出方程的解即可得到结果;(3)设12月用电y 度,则11月用电(480﹣y )度,根据11月份用电量少于12月份,得出y >240,分类讨论y 的范围确定出x 的值即可.【解答】解:(1)根据题意得:0.5×150=75,180×0.5+0.6×(250﹣180)=132; 故答案为:75;132;(2)设12月用电量为x 度,由题意,当用电量为400度时,电费222元;当用电量为180度时,电费90元;∴181≤x ≤400,180×0.5+(x ﹣180)×0.6=150,解得:x =280,即用电280度;(3)设12月用电y 度,则11月用电(480﹣y )度,由题意,y >240,①当y>400时,11月用电在180度内,(480﹣y)×0.5+180×0.5+(400﹣180)×0.6+(x﹣400)×0.8=262.6,解得:x=402,则11月用电78度,12月用电402度;②当300<y≤400时,11月用电在180度内,12月用电在181﹣400度,(480﹣y)×0.5+180×0.5+(y﹣180)×0.6,解得:y=406>400,舍去;③当240<y≤300时,两个月用电量都在181﹣400度,180×0.5+(y﹣180)×0.6+180×0.5+(480﹣y﹣180)×0.6=262.6,方程无解,综上,11月用电78度,12月用电402度.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.23.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得:,∴抛物线解析式为y=x2﹣3x﹣4;(2)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图1,∵B (4,0),C (0,﹣4)∴直线BC 解析式为y =x ﹣4,∴F (t ,t ﹣4),∴PF =(t ﹣4)﹣(t 2﹣3t ﹣4)=﹣t 2+4t ,∴S △PBC =S △PFC +S △PFB ===, ∴当t =2时,S △PBC 最大值为8,此时t 2﹣3t ﹣4=﹣6,∴当P 点坐标为(2,﹣6)时,△PBC 的最大面积为8.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中用P 点坐标表示出△PBC 的面积是解题的关键.24.【分析】(1)连接OA ,证明△DAB ≌△DAE ,得到AB =AE ,得到OA 是△BDE 的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF ∽△AOF ,根据相似三角形的性质得到CD =CE ,根据等腰三角形的性质证明.【解答】(1)证明:连接OA ,由圆周角定理得,∠ACB =∠ADB ,∵∠ADE =∠ACB ,∴∠ADE =∠ADB ,∵BD 是直径,∴∠DAB =∠DAE =90°,在△DAB 和△DAE 中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.。

2020中考数学模拟试卷1+参考答案+评分标准

2020中考数学模拟试卷1+参考答案+评分标准

2020中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. 在-4,2,-1,3这四个数中,比-2小的数是( )A. -4B. 2C. -1D. 32. 计算 8×2的结果是( )A. 10B. 4C. 6D. 23. 移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A. 1.62×104B. 162×106C. 1.62×108D. 0.162×109 4. 下列几何体中,俯视图是矩形的是( )5. 与1+5最接近的整数是( )A. 4B. 3C. 2D. 16. 我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x ,则下列方程正确的是( )A. 1.4(1+x )=4.5B. 1.4(1+2x )=4.5C. 1.4(1+x )2=4.5D. 1.4(1+x )+1.4(1+x )2=4.57. 某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数2566876根据上表中的信息判断,下列结论中错误..的是( ) A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分8. 在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A. ∠ADE =20° B. ∠ADE =30° C. ∠ADE =12∠ADC D. ∠ADE =13∠ADC9. 如图,矩形ABCD 中,AB =8,BC =4,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )第9题图A. 25B. 35C. 5D. 610. 如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能为( )二、填空题(本大题共4小题,每小题5分,满分20分)11. -64的立方根是________.12. 如图,点A 、B 、C 在⊙O 上,⊙O 的半径为9,AB ︵的长为2π,则∠ACB 的大小是________.第12题图13. 按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是________.(把所有正确结论的序号都选上) 三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:(a 2a -1+11-a )·1a ,其中a =-12.16. 解不等式:x3>1-x -36.四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.第17题图18. 如图,平台AB 高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.(3≈1.7)第18题图五、(本大题共2小题,每小题10分,满分20分)19. A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图①,当PQ∥AB时,求PQ长;(2)如图②,当点P在BC上移动时,求PQ长的最大值.第20题图六、(本题满分12分)21. 如图,已知反比例函数y=k1x与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=k1x图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.第21题图七、(本题满分12分)22. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度是x 米,矩形区域ABCD 的面积为y 平方米.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 取何值时,y 有最大值?最大值是多少?第22题图八、(本题满分14分)23. 如图①,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接GA 、GB 、GC 、GD 、EF ,若∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图②,若AD 、BC 所在直线互相垂直,求ADEF的值.图① 图②第23题图参考答案与试题解析1. A 【解析】把-4,2,1,3和-2在数轴上分别表示出来如解图,由数轴上左边的数总比右边的数小,即-4<-2,故选A.第1题解图2. B 【解析】根据二次根式的运算法则可得8×2=8×2=16=4. 【一题多解】对于二次根式的运算,也可以先将二次根式化为最简二次根式,然后进行计算.8×2=22×2=22×2=24=4.3. C 【解析】大数的科学记数法的表示形式为a ×10n ,其中1≤a <10,n 的值等于原数的整数位数减1.含计数单位的数用科学记数法表示时,要把计数单位转化为数字.因为1亿=108,所以1.62亿=1.62×108.4. B 【解析】选项 逐项分析正误 A 圆锥的俯视图是带圆心的圆 B 水平放置的圆柱的俯视图是矩形 √ C 三棱柱的俯视图是三角形D球的俯视图是圆5. B 【解析】∵5≈2.236,∴1+5≈3.236,即1+5介于整数3和4之间,且距离3较近,故选B.【一题多解】∵22<5<32,∴2<5<3,∵(5)2=5,(52)2=6.25,∴5<52,1+5<72,∴1+5距离3较近.6. C 【解析】根据题意可知,2014年与2015年这两年的平均增长率均为x ,所以2014年的快递业务量为1.4(1+x ) 亿件,2015年的快递业务量1.4(1+x )(1+x )亿件,即1.4(1+x )2=4.5 亿件,故选C .选项 逐项分析正误 A 把表格中的人数相加,得:2+5+6+6+8+7+6=40,所以该班一共有40名同学 √ B由表格可知,这7列数据中成绩45出现的次数最多,出现了8次,所以众数是45分 √C中位数是把这7列数据中的分数按照从小到大的顺序排列,位于最中间的两个数(第20,21个数)的平均数,所以中位数为45+452=45分√ D平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425分≠45分× =120°-x ,而在四边形ABCD 中,∠ADC =360°-∠A -∠B -∠C =360°-3x ,∵120°-x =13(360°-3x ),∴∠ADE =13∠ADC .第8题解图9. C 【解析】如解图①,连接EF ,交AC 于点O ,由四边形EGFH 是菱形,可得FH =GE ,FH ∥GE ,∴∠FHG =∠EGH ,所以∠AGE =∠CHF , 在矩形ABCD 中,AB =8,BC =4,则由勾股定理得AC =82+42=4 5.由矩形性质,可得∠GAE =∠HCF ,则△GAE ≌△HCF (AAS),∴AG =CH ,由菱形的对角线 EF 垂直平分GH ,可得OG =OH ,EO ⊥AC .∴AG +OG =CH +OH ,即OA =OC .∴AO =12AC =25,∵∠B =∠AOE =90°,∠BAC =∠OAE ,∴Rt △AOE ∽Rt △ABC .则AO AB =AE AC ,即258=AE45,解得AE =5.第9题解图① 第9题解图②【一题多解——最优解】如解图②,设G 点和A 点重合,H 点和C 点重合,设AE =x ,则CE =x ,EB =8-x ,在Rt △BCE 中,有x 2=42+(8-x )2,解得x =5,∴AE =5.10. A 【解析】本题考查二次函数与一元二次方程的关系.根据一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象在第一象限相交于P 、Q 两点,观察图象可知一元二次方程ax 2+bx +c = x 的根为两个正根,即关于x 的一元二次方程ax 2+bx +c -x =0有两个正实数根,故函数y =ax 2+(b -1)x +c 的图象与x 轴交点的横坐标均为正数,故选A.第10题解图11. -4 【解析】∵(-4)3=-64 ,∴-64的立方根是-4.12. 20° 【解析】如解图,连接OA 、OB ,由已知可得:l AB ︵=n πr 180=n π×9180=2π,解得n =40,即∠AOB=40°,∴∠ACB =12∠AOB =20°.第12题解图13. xy =z 【解析】观察这一列数可得:23=21·22,25=22·23,28=23·25,213=25·28,…,即从第三个数起每个数都等于前两个数之积 ,由x 、y 、z 表示这列数中的连续三个数,则有xy =z .序号 逐个分析正误 ①若c ≠0,则a ≠0,b ≠0,对于a +b =ab 两边同除以ab ,可得1b +1a=1√ ② 若a =3,则3+b =3b ,则b =32,c =ab =92, b +c =32+92=6× ③若a =b =c ,则2c =c 2=c ,所以c =0,则a =b =0, 则abc =0 √④ 若a 、b 、c 中只有两个数相等,假设a =b ≠c ,则c =b 2=2b ,有b =2,则a =2,c =4, 则a +b +c =8;若b =c ≠a ,a +c =ac =c ,由ac =c 可得a =1,由a +c =c ≠b ,可得a =0,矛盾;同理若a =c ≠b ,可得b =0,b =1,矛盾.故只能是a =b√15. 解:原式=(a 2a -1 - 1a -1)·1a=a 2-1a -1·1a.............(3分) =(a +1)(a -1)a -1·1a =a +1a. ......................(6分) 当a =-12时,原式=a +1a =-12+1-12=-1. ............(8分)16. 解:去分母得:2x >6-(x -3), .........(3分) 去括号得:2x >6-x +3,移项、合并同类项得:3x >9, 系数化为1得:x >3,所以,不等式的解集为x >3. .............(8分)17. (1)解:△A 1B 1C 1如解图①所示. ...................(4分)第17题解图①(2)解:线段A 2C 2和△A 2B 2C 2如解图②所示(符合条件的△A 2B 2C 2不唯一)......(8分)第17题解图②18. 解:如解图,作BE ⊥CD 于点E ,则CE =AB =12.在Rt △BCE 中,BE =CE tan ∠CBE =12tan30°=12 3. ...........(3分)第18题解图在Rt △BDE 中,∵∠DBE =45°,∠DEB =90°, ∴∠BDE =45°,∴DE =BE =123, ..............(5分) ∴CD =CE +DE =12+123≈32.4,∴楼房CD 的高度约为32.4米. ............(8分)19. (1)解:根据题意画树状图如解图①所示: .............(3分)第19题解图①由树状图知,两次传球共有4种等可能的情况,球恰在B 手中的情况只有一种, 所以两次传球后,球恰在B 手中的概率为:P =14 . .................(5分)(2)解:根据题意画树状图如解图②所示: .................(7分)第19题解图②由树状图知,三次传球共有8种等可能的情况,球恰在A 手中的情况有2种, 所以三次传球后,球恰在A 手中的概率为:P =28=14. .........(10分)20. (1)解:∵OP ⊥PQ ,PQ ∥AB ,∴OP ⊥AB .在Rt △OPB 中,OP =OB ·tan ∠ABC =3·tan30°= 3. ............(3分) 如解图①,连接OQ ,在Rt △OPQ 中,PQ =OQ 2-OP 2=32-(3)2= 6. ..........(5分) (2)解:如解图②,连接OQ ,∵OP ⊥PQ , ∴△OPQ 为直角三角形, ∴PQ 2=OQ 2-OP 2=9-OP 2,∴当OP 最小时,PQ 最大,此时OP ⊥BC . ..........(7分)OP =OB·sin ∠ABC =3·sin30°=32.∴PQ 长的最大值为9-(32)2=332. ...........(10分)图① 图②第20题解图21. (1)解:把A (1,8),代入y =k 1x ,得k 1=8,∴y =8x ,将B (-4,m )代放y =8x,得m =-2.∵A (1,8),B (-4,-2)在y =k 2x +b 图象上,∴⎩⎪⎨⎪⎧k 2+b =8-4k 2+b =-2, 解得k 2=2,b =6. ................(4分)(2)解:设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3, ∴OC =3.∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15. ....................(8分)(3)解:点M 在第三象限,点N 在第一象限. ............(9分) 理由:由图象知双曲线y =8x在第一、三象限内,因此应分情况讨论:①若x 1<x 2<0,点M 、N 在第三象限分支上,则y 1>y 2,不合题意; ②若0<x 1<x 2,点M 、N 在第一象限分支上,则y 1>y 2,不合题意;③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意. .....(11分) ∴点M 在第三象限,点N 在第一象限. ..........(12分) 22. (1)解:设AE =a ,由题意,得AE ·AD =2BE ·BC ,AD =BC , ∴BE =12a ,AB =32a . ..........(3分)由题意,得2x +3a +2·12a =80,∴a =20-12x . ..............(4分)∵BC =x >0,AE =a =20-12x >0,∴0<x <40,∴y =AB ·BC =32a ·x =32(20-12x )x ,即y =-34x 2+30x (0<x <40). ........................(8分)(2)解:∵y =-34x 2+30x =-34(x -20)2+300, ...........(10分)∴当x =20时,y 有最大值,最大值是300平方米. .......(12分)23. (1)证明:∵点E 、F 分别是AB 、CD 的中点,且GE ⊥AB ,GF ⊥CD , .......(2分) ∴GE 、GF 分别是线段AB 、CD 的垂直平分线, ∴GA =GB ,GC =GD ,在△AGD 和△BGC 中,⎩⎪⎨⎪⎧GA =GB ∠AGD =∠BGC GD =GC ,∴△AGD ≌△BGC (SAS),∴AD =BC . ...........(5分)(2)证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC . 在△AGB 和△DGC 中,GA GD =GBGC ,∠AGB =∠DGC ,∴△ABG ∽△DCG , ........(8分) ∴AG DG =EGFG,∠GAE =∠GDF , 又∵∠GEA =∠GFD =90°,∴∠AGE =∠GEA -∠GAE ,∠DGF =∠GFD -∠GDF , 即∠AGE =∠DGF , ∴∠AGD =∠EGF ,∴△AGD ∽△EGF . .................(10分)(3)解:如解图①,延长AD 交GB 于点M ,交BC 的延长线于点H ,则AH ⊥BH . 由△AGD ≌△BGC ,知∠GAD =∠GBC .在△GAM 和△HBM 中,∠GAD =∠GBC ,∠GMA =∠HMB , ∴△GMA ∽△HMB , ∴∠AGB =∠AHB =90°, ...............(12分) ∴∠AGE =12∠AGB =45°,∴AG EG= 2.又∵△AGD ∽△EGF ,∴AD EF =AGEG= 2. ..............(14分)第23题解图【一题多解】解法一:如解图②,过点F 作FM ∥BC 交BD 于点M ,连接EM . ∵GF 是DC 的垂直平分线, ∴DF =CF ,∵FM ∥BC ,FM =12BC .∴DM =BM .∵GE 是AB 的垂直平分线, ∴AE =BE ,∴EM ∥AD ,EM =12AD .∵AD ⊥BC , ∴EM ⊥FM . ∵AD =BC , ∴EN =FM , ∴EF =2EM , ∴AD EF =2EM EF= 2. 解法二:如解图③,过点D 作DH ⊥AD ,交BF 的延长线于点H . ∵AD ⊥BC ,DH ⊥AD , ∴DH ∥BC ,∴∠DHF =∠CBF ,∠HDF =∠BCF , 又DF =CF ,∴△DHF ≌△CBF ,∴DH =BC ,HF =BF ,∴DH =AD . 在Rt △ADH 中,∠ADH =90°,AD =DH , ∴AH =2AD .∵AE =BE ,HF =BF , ∴EF ∥AH ,EF =12AH ,∴EF =22AD , ∴ADEF= 2.。

人教版中考全真模拟测试《数学试卷》含答案解析

人教版中考全真模拟测试《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1.计算1|2|2--+的结果是() A. 112-B. 0C. 112D. 1222.自新型冠状病毒肺炎肆虑全球以来,万众一心战疫情已成为世界各国的共同语言,截止到2020年4月26日,全球感染新型冠状病毒肺炎的治愈人数已经突破858000人,将858000用科学记数法表示为() A 58.5810⨯B. 60.85810⨯C. 58.5810-⨯D. 385810⨯3.下列几何体中,俯视图...为三角形的是( ) A. B. C. D.4.在下列图形中,既是轴对称图形,又是中心对称图形的是() A. 等边三角形B. 直角三角形C. 正五边形D. 矩形5. 下列事件是必然事件的是( ).A. 随意掷两个均匀的骰子,朝上面的点数之和为6B. 抛一枚硬币,正面朝上C. 3个人分成两组,一定有2个人分一组D. 打开电视,正在播放动画片 6.下列运算中正确的是() A. 623a a a ÷=B. 23a a a ⋅=C. 2222a a -=D. ()22436a a -=7.已知一个多边形的内角和等于900º,则这个多边形是( ) A. 五边形B. 六边形C. 七边形D. 八边形8.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A 0a b +>B. 0a c +>C. 0b c +>D. 0ac <9.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程( ) A.7512x x+=+ B.2175x x++= C.7512x x-=+ D.275x x+= 10.若(),a b a b <是关于方程()()()10x m x n m n --+=<的两个实数根,则实数,,,a b m n 的大小关系是()A. a b m n <<<B. m n a b <<<C. a m n b <<<D. m a b n <<<二、填空题11.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .12.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表: 投中次数 3 5 6 7 8 人数 13222则这些队员投中次数众数为___________.13.如图,已知平行四边形ABCD 的对角线AC 与BD 相交于点,AB AC ⊥,若8AC =,120BOC ∠=︒,则BD 的长是__________.14.如图在圆内接四边形ABCD 中,::3:5:6A ABC BCD ∠∠∠=,分别延长AB ,DC 交于点,则P ∠的大小为__________.15.如图,已知等边三角形ABC 的顶点,A B 分别在反比例函数1y x=图像的两个分支上,点在反比例函数()0ky k x=≠的图像上,当ABC ∆的面积最小时,的值__________.三.解答题16.解不等式组127111x x -≤⎧⎪⎨+<⎪⎩,并将解集在数轴上表示出来.17.如图,在菱形ABCD 中,点、分别在AB 、CD 上,且AE CF =.求证:DAF DCE ∠=∠.18.先化简,再求值:11221x x x x ⎛⎫÷-+ ⎪++⎝⎭,其中2x =.19.如图,ABC ∆中,是AB 边上一点.(1)在边AC 上求作一点,使得AE ADAC AB=.(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)条件下,若ABC ∆的面积是ADE ∆面积的9倍,且6BC =,求DE 的长.20.如图,矩形ABCD 中,2BC =,AB m =,将矩形ABCD 绕点顺时针旋转90︒,点,,A B C 分别落在点,,处.(1)直接填空:当1m =时,点所经过的路径的长为___________; (2)若点,,在同一直线上,求tan ABA '∠的值.21.某印刷厂的打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每盒150元,每台新机最多可配买24盒;若非同时配买,则每盒需220元. 公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如表: 消耗墨盒数 22 23 24 25 打印机台数 1441(1)以这十台打印机消耗墨盒数为样本,估计”一年该款打印机正常工作5年消耗的墨盒数不大于24”的概率;(2)试以这10台打印机5年消耗的墨盒数的平均数作为决策依据,说明购买10台该款打印机时,每台应统一配买23盒墨还是24盒墨更合算?22.某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.设该笔记本的销售单价为元,每天获得的销售利润为元.(1)当12x ≥时,求与之间的函数关系式;(2)当1215x ≤≤时,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值. 23.如图,已知ABC ∆,以AC 为直径的O 交边AB 于点,BC 与O 相切.(1)若45ABC ∠=︒,求证:AE BE =;(2)点是O 上一点,点,D E 两点在AC 的异侧.若2EAC ACD ∠=∠,6AE =,CD =求O 半径的长.24.抛物线2(0)y ax bx c a =++≠与轴交于,A B 两点,与轴交于点.已知点()1,0A -,点()0,P p -. (1)当2a p =时,求点的坐标;(2)直线y x m =-+与抛物线交于,P N 两点,抛物线的对称轴为直线1x = ①求,所满足的数量关系式; ②当OP=OA 时,求线段PN 的长度.答案与解析一.选择题1.计算1|2|2--+的结果是() A. 112- B. 0C. 112D. 122【答案】D 【解析】 【分析】先化简绝对值和负整数指数幂,然后再计算. 【详解】解:111|2|2=2+=222--+ 故选:D .【点睛】本题考查负整数指数幂的的计算,掌握计算法则正确计算是解题关键.2.自新型冠状病毒肺炎肆虑全球以来,万众一心战疫情已成为世界各国的共同语言,截止到2020年4月26日,全球感染新型冠状病毒肺炎的治愈人数已经突破858000人,将858000用科学记数法表示为() A. 58.5810⨯ B. 60.85810⨯C. 58.5810-⨯D. 385810⨯【答案】A 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于858000有6位,所以可以确定n=6-1=5. 【详解】解:858000=8.58×105. 故选:A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键. 3.下列几何体中,俯视图...为三角形的是( ) A. B. C. D.【答案】C 【解析】【分析】依次观察四个选项,A中圆锥从正上看,是其在地面投影;B中,长方体从上面看,看到的是上表面;C中,三棱柱从正上看,看到的是上表面;D中四棱锥从正上看,是其在地面投影;据此得出俯视图并进行判断.【解答】A、圆锥俯视图是带圆心的圆,故本选项错误;B、长方体的俯视图均为矩形,故本选项错误;C、三棱柱的俯视图是三角形,故本选项正确;D、四棱锥的俯视图是四边形,故本选项错误;故选C.【点评】本题应用了几何体三视图的知识,从上面向下看,想象出平面投影是解答重点;4.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. 等边三角形B. 直角三角形C. 正五边形D. 矩形【答案】D【解析】【分析】根据轴对称图形和中心对称图形的概念逐一判断可得.【详解】解:A.等边三角形轴对称图形,不是中心对称图形,不符合题意;B.直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意;C.正五边形是轴对称图形,不是中心对称图形,不符合题意;D.矩形既是轴对称图形,又是中心对称图形,符合题意;故选:D.【点睛】本题主要考查中心对称图形和轴对称图形,解题的关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.5. 下列事件是必然事件的是( ).A. 随意掷两个均匀的骰子,朝上面的点数之和为6B. 抛一枚硬币,正面朝上C. 3个人分成两组,一定有2个人分在一组D. 打开电视,正在播放动画片【答案】C【解析】A.点数之和不一定是6;B.还可能是背面朝上;C.是必然事件;D.不一定,也可能会是其它节目. 故选C.6.下列运算中正确的是() A. 623a a a ÷= B. 23a a a ⋅=C. 2222a a -=D. ()22436a a -=【答案】B 【解析】 【分析】根据同底数幂的除法,同底数幂的乘法,合并同类项,幂的乘方法则进行计算,逐个判断即可. 【详解】解:A. 624a a a ÷=,故此选项不符合题意; B. 23a a a ⋅=,正确;C. 2222a a a -=,故此选项不符合题意;D. ()22439a a -=,故此选项不符合题意;故选:B .【点睛】本题考查同底数幂的除法,同底数幂的乘法,合并同类项,幂的乘方,掌握运算法则正确计算是解题关键.7.已知一个多边形的内角和等于900º,则这个多边形是( ) A. 五边形 B. 六边形C. 七边形D. 八边形【答案】C 【解析】试题分析:多边形的内角和公式为(n -2)×180°,根据题意可得:(n -2)×180°=900°,解得:n=7. 考点:多边形的内角和定理.8.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A. 0a b +>B. 0a c +>C. 0b c +>D. 0ac <【解析】 【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答. 【详解】解:a b =,原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=, 故选项A 错误, 故选A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.9.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程( ) A.7512x x+=+ B.2175x x++= C.7512x x-=+ D.275x x+= 【答案】B 【解析】 【分析】根据题意设甲乙经过x 日相逢,则甲、乙分别所走路程占总路程的27x +和5x,进而得出等式. 【详解】设甲乙经过x 日相逢,可列方程:2175x x++=. 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出两人所走路程所占百分比解题关键. 10.若(),a b a b <是关于方程()()()10x m x n m n --+=<的两个实数根,则实数,,,a b m n 的大小关系是()A. a b m n <<<B. m n a b <<<C. a m n b <<<D. m a b n <<<【答案】D 【解析】利用a是关于x的一元二次方程(x-m)(x-n)+1=0的根得到(a-m)(a-n)=-1<0,进而判断出m<a<n,同理判断出m<b<n,即可得出结论.【详解】解:∵a是关于x的一元二次方程(x-m)(x-n)+1=0的根,∴(a-m)(a-n)+1=0,∴(a-m)(a-n)=-1<0,∵m<n,∴m<a<n,同理:m<b<n,∵a<b,∴m<a<b<n.故选:D.【点睛】此题主要考查了一元二次方程的解的定义,不等式的性质,判断出(a-m)(a-n)<0是解本题的关键.二、填空题11.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .【答案】110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°12.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数 3 5 6 7 8人数 1 3 2 2 2则这些队员投中次数的众数为___________.【答案】5【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中5是出现次数最多的,故众数是5;故答案为:5.【点睛】本题考查了众数的定义,能够熟记众数的定义是解答本题的关键,难度不大.13.如图,已知平行四边形ABCD 的对角线AC 与BD 相交于点,AB AC ⊥,若8AC =,120BOC ∠=︒,则BD 的长是__________.【答案】16【解析】【分析】由平行四边形的性质得出BO=DO ,AO=CO=12AC=4,由含30°角直角三角形的性质得出OB ,即可得出结果.【详解】解:∵▱ABCD 的对角线AC 与BD 相交于点O ,∴BO=DO ,AO=CO=12AC=4, ∵∠BOC=120°,∴∠AOB=180°-∠BOC=180°-120°=60°,∵AB ⊥AC ,∴∠BAO=90°,∠ABO=30°,∴OB=2AO=2×4=8, ∴BD=2OB=2×8=16, 故答案为:16.【点睛】本题考查了平行四边形的性质、平角、含30°角的直角三角形的性质等知识;熟练掌握平行四边形的性质是解题的关键.14.如图在圆内接四边形ABCD 中,::3:5:6A ABC BCD ∠∠∠=,分别延长AB ,DC 交于点,则P ∠的大小为__________.【答案】40°【解析】【分析】设∠A=3k ,∠ABC=5k ,∠BCD=6k ,根据圆内接四边形的性质得到k=20°,求得∠A=60°,∠ABC=5k=100°,∠D=80°,根据三角形的内角和即可得到结论.【详解】解:∵∠A :∠ABC :∠BCD=3:5:6,设∠A=3k ,∠ABC=5k ,∠BCD=6k ,∵∠A+∠BCD=180°,∴3k+6k=180°,∴k=20°,∴∠A=60°,∠ABC=5k=100°,∴∠D=80°,∴∠P=180°-∠A-∠D=40°,故答案为:40°.【点睛】本题考查了圆内接四边形的性质,三角形的内角和,熟练掌握圆内接四边形的性质是解题的关键. 15.如图,已知等边三角形ABC 的顶点,A B 分别在反比例函数1y x=图像的两个分支上,点在反比例函数()0k y k x=≠的图像上,当ABC ∆的面积最小时,的值__________.【答案】-3【解析】【分析】当等边三角形ABC 的边长最小时,△ABC 的面积最小,点A ,B 分别在反比例函数y=1x图象的两个分支上,则当A 、B 在直线y=x 上时最短,即此时△ABC 的面积最小,根据反比例函数图象的对称性可得OA=OB ,设OA=x ,则AC=2x ,x ,根据等边三角形三线合一可证明△AOE ∽△OCF ,根据相似三角形面积比等于相似比的平方可得结论.【详解】解:根据题意当A 、B 在直线y=x 上时,△ABC 的面积最小,函数y=1x图象关于原点对称, ∴OA=OB ,连接OC ,过A 作AE ⊥y 轴于E ,过C 作CF ⊥y 轴于F ,∵△ABC 等边三角形,∴AO ⊥OC ,∴∠AOC=90°,∠ACO=30°,∴∠AOE+∠COF=90°,设OA=x ,则AC=2x ,,∵AE ⊥y 轴,CF ⊥y 轴,∴∠AEO=∠OFC=∠AOE+∠OAE=90°,∴∠COF=∠OAE ,∴△AOE ∽△OCF ,∴221()3AOE OCF S OA S OC ===, ∵顶点A 在函数y=1x 图象的分支上, ∴S △AOE =12, ∴S △OCF =32, ∵点C 在反比例函数y=k x (k≠0)图象上, ∴k=-3,故答案为-3.【点睛】本题考查了综合运用反比例函数图象上点的坐标特征,反比例函数图象关于原点对称,相似三角形的判定与性质及等边三角形等知识点,难度不大,属于中档题.三.解答题16.解不等式组127111x x -≤⎧⎪⎨+<⎪⎩,并将解集在数轴上表示出来. 【答案】31x -≤<,数轴见解析.【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:127112x x -≤⎧⎪⎨+<⎪⎩①② 解不等式①,得3x ≥-解不等式②,得1x <不等式组的解集在数轴上表示为:∴不等式组的解集为:31x -≤<.【点睛】本题考查的是解一元一次不等式组,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.17.如图,在菱形ABCD 中,点、分别在AB 、CD 上,且AE CF =.求证:DAF DCE ∠=∠.【答案】证明见解析【解析】【分析】根据菱形的性质得出AD=CD,进而利用全等三角形的判定和性质解答即可.【详解】解:∵四边ABCD是菱形,∴AD=CD,∵AE=CF,∴AD-AE=CD-CF,即DE=DF,∵∠D=∠D,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE.【点睛】此题考查菱形的性质,关键是根据全等三角形的判定和性质解答.18.先化简,再求值:11221xxx x⎛⎫÷-+⎪++⎝⎭,其中2x=.【答案】12x;2.【解析】【分析】分式的混合运算,先做括号里面的,然后再做除法进行化简,然后将x的值代入计算即可.【详解】解:11221 xxx x⎛⎫÷-+⎪++⎝⎭=(1)(1)1 2211 x x xx x x+-⎡⎤÷+⎢⎥+++⎣⎦=211() 2211 x xx x x-÷++++=212(1)x x x x ++ =12x当2x =时,原式=12=422. 【点睛】本题考查分式的混合运算及二次根式的化简,掌握运算法则正确计算是解题关键.19.如图,ABC ∆中,是AB 边上一点.(1)在边AC 上求作一点,使得AE AD AC AB=.(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的条件下,若ABC ∆的面积是ADE ∆面积的9倍,且6BC =,求DE 的长.【答案】(1)作图见解析;(2)2【解析】【分析】(1)在AB 的右侧作∠ADE=∠B ,则DE ∥BC ,故AE AD AC AB=; (2)依据∠A=∠A ,∠ADE=∠B ,即可得到△ADE ∽△ABC ,再根据相似三角形的性质,即可得出DE 的长.【详解】解:(1)如图,点E 就是所求作的点.(2)∵∠A=∠A ,∠ADE=∠B ,∴△ADE ∽△ABC ,∴2()ADEABC S DE S BC = ,即21()69DE =. 解得:DE=2.【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.如图,矩形ABCD 中,2BC =,AB m =,将矩形ABCD 绕点顺时针旋转90︒,点,,A B C 分别落在点,,处.(1)直接填空:当1m =时,点所经过的路径的长为___________;(2)若点,,在同一直线上,求tan ABA '∠的值.【答案】(15π;(251-. 【解析】【分析】(1)由题意可知点B 经过的路径是以点D 为圆心,以BD 的长为半径,圆心角为90°的弧长,然后用勾股定理求得BD 的长,再利用弧长公式求解即可;(2)由AB=m ,根据平行线的性质列出比例式求出m 的值,根据正切的定义求出tan ∠BA′C ,根据∠ABA′=∠BA′C 解答即可.【详解】解:(1)由题意可知,点B 经过的路径是以点D 为圆心,以BD 的长为半径,圆心角为90°的弧长, ∴连接'BD B D ,,当m=1时,AB=1,在矩形ABCD 中,AD=BC=2∴在Rt △ABD 中,225BD AB AD =+= ∴此时点所经过的路径的长为9055=1802ππ 5π. (2)由题意AB=m ,则CD=m ,A′C=m+2,∵AD∥BC,∴'''C D A DBC A C=,即222mm=+,解得,151m=,251m=-(舍去),∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C=51'2512BCA C==-+,∴tan∠51 -,【点睛】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.21.某印刷厂打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每盒150元,每台新机最多可配买24盒;若非同时配买,则每盒需220元.公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如表:消耗墨盒数22 23 24 25打印机台数 1 4 4 1(1)以这十台打印机消耗墨盒数为样本,估计”一年该款打印机正常工作5年消耗的墨盒数不大于24”的概率;(2)试以这10台打印机5年消耗的墨盒数的平均数作为决策依据,说明购买10台该款打印机时,每台应统一配买23盒墨还是24盒墨更合算?【答案】(1)910;(2)每台应统一配23盒墨更合算【解析】【分析】(1)直接利用概率公式求解即可;(2)分别求出购买23盒墨,24盒墨的费用即可判断.【详解】解:(1)因为10台打印机正常工作五年消耗的墨盒数不大24的台数为1+4+4=9,所以10台打印机正常工作五年消耗的墨盒数不大24的频率为910, 故可估计10台打印机正常工作五年消耗的墨盒数不大24的概率为910;(2)每台应统一配23盒墨更合算,理由如下:10台打印机五年消耗的墨盒数的平均数为:110414212323.510x ⨯+⨯+⨯+⨯=+= (盒), 若每台统一配买盒墨,则这台打印机所需费用为:23×150×10+(23.5-23)×220×10=35600(元); 若每台统一配买盒墨,则这台打印机所需费用为:24×150×10=36000(元). 因35600<36000,所以每台应统一配23盒墨更合算.【点睛】本题考查利用频率估计概率,加权平均数,列表法等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.22.某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.设该笔记本的销售单价为元,每天获得的销售利润为元.(1)当12x ≥时,求与之间的函数关系式;(2)当1215x ≤≤时,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值.【答案】(1)y=-10x 2+320x-2200;(2)销售单价为15元时,该文具每天的销售利润最大,最大值是350元.【解析】【分析】(1)根据总利润=单件利润×销售量列出函数解析式即可;(2)把y=-10x 2+320x-2200化为y=-10(x-16)2+360,根据二次函数的性质即可得到结论.【详解】解:(1)y=(x-10)[100-10(x-12)=(x-10)(100-10x+120)=-10x 2+320x-2200;(2)y=-10x 2+320x-2200=-10(x-16)2+360,∴12≤x≤15时,∵a=-10<0,对称轴为直线x=16,∴抛物线开口向下,在对称轴左侧,y 随x 的增大而增大,∴当x=15时,y 取最大值为350元,答:销售单价为15元时,该文具每天的销售利润最大,最大值是350元.【点睛】本题考查的是二次函数的应用、掌握二次函数的性质是解题的关键.23.如图,已知ABC ∆,以AC 为直径的O 交边AB 于点,BC 与O 相切.(1)若45ABC ∠=︒,求证:AE BE =;(2)点是O 上一点,点,D E 两点在AC 的异侧.若2EAC ACD ∠=∠,6AE =,45CD =求O 半径的长.【答案】(1)证明见解析;(2)5【解析】【分析】(1)连接CE ,依据题意和圆周角定理求得△ABC 是等腰直角三角形,然后根据圆周角定理和等腰三角形三线合一的性质求解即可;(2)连接DO 并延长,交CE 于点M ,交O 于点G ,利用三角形外角的性质求得2=EAC ACD AOD ∠=∠∠,从而判定DG ∥AE ,得到90DMC AEC ∠=∠=,从而根据垂径定理可得EM=CM ,根据三角形中位线定理可求132OM AE ==,然后设圆的半径为x ,根据勾股定理列方程求解即可. 【详解】解:连接CE∵BC 与O 相切∴∠ACB=90°∵45ABC ∠=︒∴45ABC CAB ∠=∠=︒∴CA=CB又∵以AC 为直径的O 交边AB 于点,∴∠CEA=90° ∴根据等腰三角形三线合一的性质可知,CE 是底边AB 的中线∴AE=BE(2)连接DO 并延长,交CE 于点M ,交O 于点G 由(1)可知,∠CEA=90°∵2=EAC ACD AOD ∠=∠∠∴DG ∥AE∴90DMC AEC ∠=∠=∴EM=CM∴在△AEC 中,132OM AE == 设圆的半径为x ,在Rt △OMC 中,2223CM x =-在Rt △DMC 中,222(45)(3)CM x =-+∴22223(45)(3)x x -=-+,解得5x =或8x =-(负值舍去)∴O 半径的长为5.【点睛】本题考查切线的性质,圆周角定理,垂径定理的应用,题目难度不大,但有一定的综合性,正确添加辅助线利用勾股定理列方程求解圆的半径是解题关键.24.抛物线2(0)y ax bx c a =++≠与轴交于,A B 两点,与轴交于点.已知点()1,0A -,点()0,P p -.(1)当2a p =时,求点的坐标;(2)直线y x m =-+与抛物线交于,P N 两点,抛物线的对称轴为直线1x =①求,所满足的数量关系式;②当OP=OA 时,求线段PN 的长度.【答案】(1)(12,0);(2)①3p a =;②. 【解析】【分析】(1)利用待定系数法,将()1,0A -,点()0,P p -,2a p =代入函数解析式,求得b p =,从而求得函数解析式及对称轴,然后根据数轴上的对称性求得点B 的坐标;(2)①由抛物线的对称轴求得12b a-=,求得2b a =-,然后将点()1,0A -,点()0,P p -代入函数解析式求得p 与a 的数量关系;②由OP=OA 时,分情况讨论当P (0,1)或(0,-1),求得p 的值,从而确定二次函数和一次函数解析式,然后求其交点坐标,利用勾股定理求PN 的长度. 【详解】解:(1)将点()1,0A -,点()0,P p -代入函数解析式,得0a b c c p -+=⎧⎨=-⎩当2a p =时,可得20p b p --=,解得:b p =∴此时抛物线解析式为:22y px px p =+-,抛物线对称轴为1224p x p =-=-⨯ 设B 点坐标为(x ,0) ,则此时1124x -+=-,解得:12x = ∴B 点坐标为(12,0) (2)①将点()1,0A -,点()0,P p -代入函数解析式,得0a b c c p -+=⎧⎨=-⎩有题意可知:12b a-=,则2b a =- ∴(2)0a a p ---=,解得3p a =②当OP=OA 时,P (0,1)或(0,-1)当P (0,1)时,-p=1,即p=-1,则3=-1a ,解得13a =- ∴此时抛物线解析式为:212133y x x =-++ 又∵直线y x m =-+与抛物线交于P N ,两点∴一次函数解析式为:1y x =-+ 由此2121331y x x y x ⎧=-++⎪⎨⎪=-+⎩,解得01x y =⎧⎨=⎩或5-4x y =⎧⎨=⎩ ∴此时P (0,1)),N (5,-4)∴=当P (0,-1)时,-p=-1,即p=1,则3=1a ,解得13a = ∴此时抛物线解析式为:212133y x x =-- 又∵直线y x m =-+与抛物线交于P N ,两点 ∴一次函数解析式为:1y x =-- 由此2121331y x x y x ⎧=--⎪⎨⎪=--⎩,解得01x y =⎧⎨=-⎩或10x y ⎧⎨⎩=-= ∴此时P (0,-1)),N (-1,0)∴=∴综上所述,PN的长度为.【点睛】本题考查二次函数与一次函数的综合,掌握函数的图像性质,利用数形结合思想解题是关键.。

2020年中考数学全真模拟试卷11套附答案(适用于黑龙江省哈尔滨市)

2020年中考数学全真模拟试卷11套附答案(适用于黑龙江省哈尔滨市)

题号中考数学零模试卷一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.-2019的相反数是()A.2019B.-2019C.2.下列运算正确的是()D.-A.a2+a3=a5 C.(-a3)2=-a6B.(a2b3)2=a4b5 D.a6÷a2=a43.下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.4.如图是由5个大小相同的正方体组成的几何体,它的俯视图是()A. B. C. D.5.要得到抛物线y=2(x+4)2-1,可以将抛物线y=2x2()A.向左平移4个单位,再向上平移1个单位B.向左平移4个单位,再向下平移1个单位C.向右平移4个单位,再向上平移1个单位D.向右平移4个单位,再向下平移1个单位6.如图,一艘轮船位于灯塔P的南偏东37°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的正东方向上的B处,这时B处与灯塔P的距离可以表示为()A.50海里B.50sin37°海里C.50cos37°海里D.50tan37°海里7.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠ABD=24°,则∠C的度数是()A.48°B.42°C.34°D.24°∠8.关于反比例函数 y =- ,下列说法中正确的是( )A. 它的图象位于一、三象限C. 当 x >0 时,y 随 x 的增大而增大 B. 它的图象过点(-1,-3)D. 当 x <0 时,y 随 x 的增大而减小9.如图,AB ⊥BD ,CD ⊥BD ,垂足分别为 B 、D ,AC 和 BD 相交于点 E ,EF ⊥BD 垂足为 F .则下列结论错误 的是( )A.B.C.D.10. 二次函数 y =3(x -1)2+2,下列说法正确的是( )A. 图象的开口向下B. 图象的顶点坐标是(1,2)C. 当 x >1 时,y 随 x 的增大而减小D. 图象与 y 轴的交点坐标为(0,2) 二、填空题(本大题共 10 小题,共 30.0 分)11. 将数 201900000 用科学记数法表示为______.12. 函数 y =的自变量 x 的取值范围是______.13. 把多项式 a 2b -2ab +b 分解因式的结果是______.14. 计算-6 的结果是______.15. 不等式组的解集是______.16. 已知 x =3 是方程 -=2 的解,那么 k 的值为______17. 一个扇形的圆心角为 120°,弧长为 2π 米,则此扇形的半径是______米.18. 随机掷一枚质地均匀的正方形骰子,骰子的六个面上分别刻有1 到 6 的点数,则这个骰子向上的一面点数是质数的概率是______. 19. △在 ABC 中,AB =AC ,点 D 在边 BC 所在的直线上,过点 D 作 DF ∥AC 交直线 AB于点 F ,DE ∥AB 交直线 AC 于点 E .若 AC =7,DE =5,则 DF =______. 20. 如图,在四边形 ABCD 中,∠ABC =45°, ADC =90°,AD =CD ,AB =5 ,BC =7,则 BD 的长为______.三、计算题(本大题共 1 小题,共 7.0 分)21. 先化简,再求代数式÷(x -)的值,其中 x =2sin60°+tan45°.四、解答题(本大题共5小题,共43.0分)22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边,面积为20的矩形ABCD,且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为4的等腰三角形ABE,点E在小正方形的顶点上,连接DE,请直接写出线段DE的长.23.某中学随机抽取了九年级部分学生期末数学调研成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)本次调研一共抽取了多少名学生?(2)求样本中成绩类别为“中”的学生人数,并将条形统计图补充完整;(3)该校九年级共有1500名学生参加了这次考试,估计该校九年级共有多少名学生的数学成绩达到优秀.24.已知,在△Rt ABC中,D,E,F分别是AB,AC,BC的中点,连接DE,DF(1)如图1,若AC=BC,求证:四边形DECF为正方形;(2)如图2,过点C作CG∥AB交DE的延长线于点G,连接EF,AG,在不添加任何辅助线的情况下,写出图中所有与△ADG面积相等的平行四边形.25.某书店在图书批发中心选购A、B两种科普书,A种科普书每本进价比B种科普书每本进价多25元,若用2000元购进A种科普书的数量是用750元购进B种科普书数量的2倍.(1)求A、B两种科普书每本进价各是多少元;(2)该书店计划A种科普书每本售价为130元,B种科普书每本售价为95元,购进A种科普书的数量比购进B种科普书的数量的还少4本,若A、B两种科普书全部售出,使总获利超过1240元,则至少购进B种科普书多少本?26.已知,P为⊙O的直径AB的延长线上一点,直线PC切⊙O于点C,弦BD与PC平行,连接AC、AD.(1)如图1,求证:∠DAC=∠BAC;(2)如图2,连接BC,把射线CP沿直线BC折叠,设射线CP的对应射线交AB于点F,交⊙O于点E,求证:BD=CE;(3)如图3,在(2)的条件下,连接DE分别交OB、OC于M、N,过点E作EH⊥CB ,交CB的延长线于点H,连接PH,若EH=4,MN=1,求线段PH的长.2 答案和解析1.【答案】A【解析】解:因为 a 的相反数是-a , 所以-2019 的相反数是 2019. 故选:A .根据相反数的意义,直接可得结论.本题考查了相反数的意义.理解 a 的相反数是-a ,是解决本题的关键. 2.【答案】D【解析】解:A 、a 2+a 3,无法计算,故此选项错误; B 、(a 2b 3)2=a 4b 6,故此选项错误; C 、(-a 3)2=a 6,故此选项错误; D 、a 6÷a 2=a 4,正确. 故选:D .直接利用积的乘方运算法则以及合并同类项法则分别化简得出答案.此题主要考查了积的乘方运算以及合并同类项,正确掌握相关运算法则是解题关键. 3.【答案】D【解析】解:A 、是轴对称图形,不是中心对称图形,故此选项错误; B 、是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,不是中心对称图形,故此选项错误; D 、是轴对称图形,也是中心对称图形,故此选项正确.故选:D .根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形 两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转 180 度后两部分重合. 4.【答案】C【解析】解:此几何体的俯视图有 3 列,从左往右小正方形的个数分别是 1,1,2, 故选:C .找到从上面看所得到的图形即可.此题主要考查了简单几何体的三视图,关键是掌握所看的位置. 5.【答案】B【解析】解:∵y =2(x -4)2-1 的顶点坐标为(-4,-1),y =2x 2 的顶点坐标为(0,0), ∴将抛物线 y =2x 2 向左平移 4 个单位,再向下平移1 个单位,可得到抛物线y =2(x +4) -1 .故选:B .找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点 坐标.6.【答案】B【解析】解:∵一艘海轮位于灯塔 P 的南偏东 37°方向, ∴∠BAP =37°,∵AP=50海里,∴BP=AP•sin37°=50sin37°海里;故选:B.根据已知条件得出∠BAP=37°,再根据AP=40海里和正弦定理即可求出BP的长.本题考查解直角三角形,用到的知识点是方位角、直角三角形、锐角三角函数的有关知识,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.7.【答案】B【解析】解:∵∠ABD=24°,∴∠AOC=48°,∵AC是⊙O的切线,∴∠OAC=90°,∴∠AOC+∠C=90°,∴∠C=90°-48°=42°,故选:B.根据切线的性质求出∠OAC,结合∠C=42°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.本题考查了切线的性质,圆周角定理,三角形内角和定理,解此题的关键是求出∠AOC 的度数,题目比较好,难度适中.8.【答案】C【解析】解:∵反比例函数y=-,∴图象位于二、四象限,当x=-1时,y=3,在同一个象限,y随x的增大而增大,∴选项A、B、D错误,故选:C.反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;根据这个性质选择则可.本题考查了反比例函数图象的性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.注意反比例函数的图象应分在同一象限和不在同一象限两种情况分析.9.【答案】A【解析】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF,∴,故选项B正确,∵EF∥AB,∴=,=,∴=,故选项C,D正确,故选:A.利用平行线分线段成比例定理等知识一一判断即可.本题考查平行线的性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】B【解析】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).11.【答案】2.019×108【解析】解:201900000=2.019×108.故答案为:2.019×108.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.12.【答案】x≠-5【解析】解:根据题意得x+5≠0,解得x≠-5.故答案为:x≠-5.根据分母不等于0列式计算即可得解.本题考查的知识点为:分式有意义,分母不为0.13.【答案】b(a-1)2【解析】解:a2b-2ab+b=b(a2-2a+1)=b(a-1)2.故答案为:b(a-1)2.直接提取公因式b,再利用完全平方公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.【答案】0【解析】解:原式=2-6×=2-2=0故答案为0.本题涉及二次根式的化简.化简=×=2,=,再进一步计算即可得出结果.本题主要考查二次根式的化简,利用二次根式的性质进行化简是解决本题的关键.l15.【答案】-5<x≤-1【解析】解:由①得 x ≤-1, 由②得 x >-5∴不等式组的解集为-5<x ≤-1, 故答案为-5<x ≤-1.分别解出两不等式的解集,再求其公共解.本题考查了解一元一次方程组,求不等式组的解集应遵循以下原则:同大取较大,同小 取较小,小大大小中间找,大大小小解不了. 16.【答案】2【解析】解:当 x =3 时,有 - =2去分母得:9k -4k +2=12 5k =10解得:k =2 故答案为 2.x =3 是方程 -=2 的解,可将 x =3 代入方程,即可求出 k 的值.本题考查的是分式方程的解,方程的解必定要符合方程,所以本题的代入运算是解题的 重点.17.【答案】3【解析】解:∵l =,∴r == =3.故答案为:3.根据弧长公式 l =,可得 r = ,再将数据代入计算即可.本题考查了弧长的计算,解答本题的关键是掌握弧长公式: =(弧长为 l ,圆心角度数为 n ,圆的半径为 r ).18.【答案】【解析】解:数字 1 到 6 中是质数有 2、3 和 5 三个数字,则这个骰子向上的一面点数是质数的概率 = ,故答案为 .首先从 1 到 6 中找出质数的个数,再直接利用概率公式求出的答案即可.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 19.【答案】2 或 12【解析】解:如图1中,当点D在线段BC上时,∵DE∥AB,DF∥AC,∴四边形AEDF是平行四边形,∴DE=AF=5,∵AB=AC=7,∴BF=7-5=2,∠B=∠C,∵∠FDB=∠C,∴∠B=∠FDB,∴DF=BF=2.如图2中,当点D在BC的延长线上时,同法可证:DE=AF=5,FB=FD,∵AB=AC=7,∴DF=FB=5+7=12,综上所述,DF的值为2或12.故答案为2或12.分两种情形画出图形即可解决问题.本题考查平行四边形的判定和性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.【答案】【解析】解:过A作AN⊥BC,过D作DM⊥AB交AB延长线于点M,连结AC,∵∠ABC=45°,∴BN=AN,∵AB=5,∴BN=AN=5,∠BAN=45°,∵BC=7,∴NC=2,在△Rt ACN中,AC=,∵,∠ADC=90°,AD=CD,∴∠DAC=45°,∴∠NAC+∠DAM=90°,∠NAC+∠ACN=90°,∴∠MAD=∠ACN,∴△Rt ADM∽△Rt CAN,∴,∵△Rt ADM中,AC=,∴AD=,∴,∴DM=,AM=,∴BM=6,在△Rt BDM中,BD=.过A作AN⊥BC,过D作DM⊥AB交AB延长线于点M,连结AC,可得△ABN△,ACD是等腰直角三角形,求出AN,AC;再由△Rt ADM∽△Rt CAN,求得AM,MD,最后在直角三角形ABD中求边BD;本题考查直角三角形,等腰直角三角形,相似三角形的判定和性质,勾股定理;能够构造直角三角形,将边转换到直角三角形中求解是解题的关键.21.【答案】解:原式=÷=•=,当x=2×+1=+1时,原式=.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.此题考查了分式的化简求值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求,DE=2.【解析】(1)利用数形结合的思想,以及运用勾股定理解决问题即可;(2)利用数形结合的思想,以及运用勾股定理解决问题即可.本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.【答案】解:(1)22÷44%=50(名),答:在这次调查中,抽取了50名学生;(2)成绩类别为“中”的人数等于50×20%=10(人),如图:(3)1500×(1-20%-44%-16%)=300(名),答:估计该校九年级共有300名学生的数学成绩可以达到优秀.【解析】(1)根据良的人数除以占的百分比即可得到总人数;(2)求出“中”的人数是50-10-22-8=10,再画出即可;(3)先列出算式,再求出即可.∴△SADE =△SDEF=△SEFC=△SDBF=S▱ADFE=S▱DEFB=S▱DFCF∴△SADG =S▱ADFE=S▱DEFB=S▱DFCF=S▱EFCG ,====数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.24.【答案】证明:(1)∵D,E,F分别是AB,AC,BC的中点,∴DE∥BC,DF∥AC,DE=BC,DF=AC,AC=BC∴四边形DECF是平行四边形,DE=DF∴四边形DECF是菱形,且∠ACB=90°∴四边形DECF为正方形;(2)∵D,E,F分别是AB,AC,BC的中点,∴DE∥BC,DF∥AC,EF∥AB,DE=BC,DF=AC,EF=AB,AC=BC,AD=BD,AE=CE,BF=CF,∴四边形DEFB,DECF,ADFE是平行四边形,,∵DE∥BC,CG∥AB∥EF∴四边形EGCF是平行四边形∴EG=FC=DE,∴△SA DG=2△SADE,【解析】(1)由正方形的判定可证四边形DECF为正方形;(2)由平行四边形的判定可得四边形DEFB,DECF,ADFE,EGCF是平行四边形,由△S ADE△S DEF△S EFC△S DBF S▱ADFE=S▱DEFB=S▱DFCF=S▱EGCF,即可求解.本题考查了正方形的判定和性质,平行四边形的判定和性质,三角形中位线定理,熟练运用平行四边形的判定是本题的关键.25.【答案】解:(1)设B种科普书每本的进价为x元,则A种科普书每本的进价为(x+25)元,根据题意得:=2×,解得:x=75,经检验,x=75是所列分式方程的解,∴x+25=100.答:A种科普书每本的进价为100元,B种科普书每本的进价为75元.(2)设购进B种科普书m本,则购进A种科普书(m-4)本,根据题意得:(130-100)(m-4)+(95-75)m>1240,解得:m>45,∵m为正整数,且m-4为正整数,∴m为3的倍数,∴m的最小值为48.答:至少购进B种科普书48本.【解析】(1)设B种科普书每本的进价为x元,则A种科普书每本的进价为(x+25)元,根据数量=总价÷单价结合用2000元购进A种科普书的数量是用750元购进B种科普书数量的2倍,即可得出关于x的分式方程,解之经检验即可得出结论;(2)设购进B种科普书m本,则购进A种科普书(m-4)本,根据总利润=每本利润×购进数量结合总获利超过1240元,即可得出关于m的一元一次不等式,解之结合m,m-4均为正整数,即可得出m的最小值,此题得解.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.26.【答案】(1)证明:如图1中,连接OC.∵直线PC是切⊙O于点C,∴OC⊥PC,∵BD∥PC,∴OC⊥BD,∴=,∴∠DAC=∠BAC.(2)证明:如图2中,连接OC.∵直线PC是切⊙O于点C,∴OC⊥PC,∴∠OCP=90°,∴∠OCB+∠PCB=90°,∵OC=OB,∴∠OCB=∠OBC,∵∠PCB=∠ECP,∴∠ECB+∠OBC=90°,∴∠CFB=90°,∵=,∴=,∴BD=EC.(3)解:如图3中,连接CD,BN,BE,作BG⊥ED于G,PQ⊥HC于Q.∵==,∴∠ECH=∠DEC,CD=BC=BE,∴CH∥DE,∵OC⊥DB,设OC交BD于K,∴DK=KB,∴ND=NB,∴∠DNC=∠CNB=∠BCN,∴BC=BN,∴DN=BC=BN=CD,∴四边形DCNB是菱形,设DN=CD=BN=BC=x,则EB=EM=x,EN=x+1,∵BN=BE,GB⊥NE,∴NG=,∵∠BGE=∠GEH=∠EHB=90°,∴四边形EHBG是矩形,∴BG=EH=4,GE=BH=NG,在△Rt BNG中,x2=()2+42,解得x=5或-(舍弃),∴EG=BH=3,BC=5,易证∠PCQ=∠BPQ=∠MBG,∵tan∠MBG==,∴==,设BQ=a,则PQ=2a,∴=,∴BQ=,PQ=,QH=3-=,∴PH===.【解析】(1)证明OC⊥BD,利用垂径定理即可解决问题.(2)欲证明BD=EC,只要证明=即可.(3)如图3中,连接CD,BN,BE,作BG⊥ED于G,PQ⊥HC于Q.首先证明四边形DCNB是菱形,设菱形的边长为x,想办法构建方程求出x即可解决问题.本题属于圆综合题,考查了垂径定理,圆周角定理,勾股定理,菱形的判定和性质,矩形的判定和性质,锐角三角函数等知识,解题的关键是学会利用参数构建方程解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.∠ 题号 中考数学一模试卷一 二 三 总分得分一、选择题(本大题共 10 小题,共 30.0 分) 1.下列实数中,无理数是( )A. -B. πC.2. 下列计算正确的是( )D. |-2|A. 2a+3a=6aB. a 2+a 3=a 5C. a 8÷a 2=a 6D. (a 3)4=a 73.下列图形中,是中心对称图形但不是轴对称图形的是()A.B. C. D.4.若反比例函数 y = 的图象经过点(-2,-5),则该函数图象位于( )A. 第一、二象限B. 第二、四象限C. 第一、三象限D. 第三、四象限5.下面的几何体中,主视图为三角形的是()A.B.C.D.6.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接 OC 交 ⊙O 于点 D ,连接 BD , C =40°.则∠ABD 的度数是() A. 30° B. 25° C. 20° D. 15°7.如图,在△ABC 中,点 D 、E 分 AB 、AC 边上,DE ∥BC ,若 AD :AB =3:4,AE =6,则 AC 等于( )A. 3B. 4C. 6D. 88.如图,△OAB 绕点 O 逆时针旋转 80°到△OCD 的位置 ,已知∠AOB =45°,则∠AOD 等于( )∠ , ,A. 55°B. 45°C. 40°D. 35°9.某农场 2016 年蔬菜产量为 50 吨,2018 年蔬菜产量为 60.5 吨,该农场蔬菜产量的 年平均增长率相同.设该农场蔬菜产量的年平均增长率为 x ,则根据题意可列方程 为( )A. 60.5(1-x )2=50 C. 50(1+x )2=60.5B. 50(1-x )2=60.5 D. 60.5(1+x )2=5010. 如图,已知点 D 、E 分别在△ABC 的边 AB 、AC 上,DE ∥BC ,点 F 在 CD 延长线上,AF ∥BC ,则下列结论错误的是( )A.=B.=C. =D. =二、填空题(本大题共 10 小题,共 30.0 分) 11. 将 2 500 000 用科学记数法表示为______.12. 函数13. 计算:14. 不等式组中,自变量 x 的取值范围是______.=______.的解集为______.15. 因式分解:x 2-4y 2=______.16. 已知扇形半径是 9cm ,弧长为 4πcm ,则扇形的圆心角为______度.17. 布袋中装有 2 个白球,3 个黑球,它们除颜色外完全相同,从袋中任意摸出两个球,摸出的球都是白球的概率是______.18. 如图,正方形 ABCD 的四个顶点分别在⊙O 上,点 P 在 上不同于点 C 的任意一点,则∠DPC 的度数是______度.19. 矩形 ABCD 中,AC 的中垂线交直线 BC 于点 E ,交直线AB 于点 F ,若 AB =4,BE =3,则 BF 的长为______.20. 如图,四边形ABCD 中,CD =AD ,CDA =∠ABD =90° AB =2 BC =2 ,则 BD =______.三、解答题(本大题共 7 小题,共 60.0 分)21.先化简,再求代数式(1-)÷的值,其中x=4sin45°-2cos60°.22.如图,在8×5的正方形网格中,每个小正方形的边长均为1△,ABC的三个顶点均在小正方形的顶点上.(1)在图1△中画ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC 的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2△中画ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC 的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.23.哈69中学为了组织一次球类对抗赛,在本校随机抽取了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,将调查结果整理后绘制成如图所示的不完整的统计图.请你根据以上信息回答下列问题:(1)求本次被调查的学生人数;(2)通过计算补全条形统计图;(3)若全校有4500名学生,请你估计该校最喜欢篮球运动的学生人数.24.如图1,已知△ABC中,∠ACB=90°,AC=CB,点D在BC边上,过点C作AD的垂线与过B点垂直BC的直线交于点E.(1)求证:CD=BE;(2)如图2,若点D为线段BC的中点,连接DE交AB于F,请直接写出图中所有的等腰直角三角形.25.哈市69中学图书馆近日购进甲、乙两种图书,每本甲图书的进价比每本乙图书的进价高20元,花780元购进甲图书的数量与花540元购进乙图书的数量相同.(1)求甲、乙两种图书每本的进价分别是多少元;(2)该中学购进甲、乙两种图书共70本,总购书费用不超过3950元,则最多购进甲种图书多少本?26.如图,已知四边形ABCD为⊙O的内接四边形,对角线AC、BD交于E,∠ACB=∠ACD.(1)求证:AB=AD;(2)作∠ABD的角分线BF交⊙O于点F,连接DF,若DE=DF,连接FE、OF,OF与AC交于Q,求证:∠ADF=2∠OFE;(3)在(2)的条件下,连接BC,延长FE交BC于点P,若BC⊥FP,BP=2,求AD的长.27.如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,OB=2OC=4.(1)求抛物线的解析式;(2)点P为第一象限抛物线上一点,连接PA、PC,设点P的横坐标为t△,PAC 的面积为S,求S与t的函数关系式;(3)在(2)的条件下,点Q为第四象限抛物线上一点,连接QC,过点P作x轴的垂线交CQ于点D,射线BD交第三象限抛物线于点E,连接QE,若S=,∠QEB=2∠ABE,求点Q的坐标.答案和解析1.【答案】B【解析】解:A、-是有理数,故本选项错误;B、是无理数,故本选项正确;C、=3,是有理数,故本选项错误;D、|-2|=2,是有理数,故本选项错误;故选:B.根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可得出答案.此题考查了无理数的定义,熟练掌握无理数的三种形式是解答本题的关键.2.【答案】C【解析】解:A、合并同类项系数相加字母部分不变,故A错误;B、不是同底数幂的乘法指数不能相加,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、幂的乘方底数不变指数相乘,故D错误;故选:C.根据合并同类项,可判断A,根据同底数幂的乘法,可判断B,根据同底数幂的除法,可判断C,根据幂的乘方,可判断D.本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.【答案】B【解析】解:A、是轴对称图形,也是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,符合题意;C、是轴对称图形,也是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选:B.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.【答案】C【解析】解:∵反比例函数y=的图象经过点(-2,-5),∴k=xy=(-2)×(-5)=10>0,∴该函数图象经过第一、三象限,故选:C.利用待定系数法求得k的值;最后根据k的符号判断该函数所在的象限.本题主要考查反比例函数图象上点的坐标特征.解答该题需要熟记反比例函数图象的性质.5.【答案】C【解析】解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.6.【答案】B【解析】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选:B.根据切线的性质求出∠OAC,结合∠C=40°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.7.【答案】D【解析】解:∵DE∥BC,∴△ADE∽△ABC,∴AD:AB=AE:AC,而AD:AB=3:4,AE=6,∴3:4=6:AC,∴AC=8.故选:D.首先由DE∥BC可以得到AD:AB=AE:AC,而AD:AB=3:4,AE=6,由此即可求出AC .本题主要考查平行线分线段成比例定理,对应线段一定要找准确,有的同学因为没有找准对应关系,从而导致错选其他答案.8.【答案】D【解析】解:根据旋转的性质可知,D和B为对应点,∠DOB为旋转角,即∠DOB=80°,所以∠AOD=∠DOB-∠AOB=80°-45°=35°.故选:D.本题旋转中心为点O,旋转方向为逆时针,观察对应点与旋转中心的连线的夹角∠BOD即为旋转角,利用角的和差关系求解.本题考查旋转两相等的性质:即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.9.【答案】C【解析】解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为50吨,则2017年蔬菜产量为50(1+x)吨,2018年蔬菜产量为50(1+x)(1+x)吨,预计2018年蔬菜产量达到60.5吨,即:50(1+x)2=60.5.故选:C.利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从50吨增加到60.5吨”,即可得出方程.此题考查了由实际问题抽象出一元二次方程(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.10.【答案】A【解析】解:∵AF∥BC,DE∥BC,∴AF∥DE,∴=,,∴,故A错误,∵AF∥DE,∴,故B正确,∵DE∥BC,∴,故C正确,∵AF∥DE,∴,∵AF∥BC,∴∴,,故D正确,故选:A.由AF∥BC,DE∥BC,得到AF∥DE,根据平行线分线段成比例定理即可得到结论.本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.11.【答案】2.5×106【解析】解:2500000=2.5×106.故答案为:2.5×106.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10-n,其中1≤|a|<10,确定a与n的值是解题的关键.12.【答案】x>-2【解析】解:根据题意得:被开方数x+2≥0,解得x≥-2,。

2020年最新中考数学模拟试题及答案

2020年最新中考数学模拟试题及答案

(▲)
4. a , b , c 三个数在数轴上的位置如图所示,
则这三个数中绝对值最大的是 ( ▲ )
A.a
B.b
C.c
4 题图
k 5. 点 A -2,5 在反比例函数 y k 0 的图象上,则 k 的值是 ( ▲ )
x
D .无法确定
A .-10
B.5
C. -5
D . 10
6. 某特警部队为了选拔“神枪手” ,举行了 1000 米射击比赛,最后由甲、乙两名战士进入决
中考模拟考试数学试卷
第 3 页(共 4 页 )
求选出的 2 名学生恰好是 1男 1 女的概率 .
图①
五、解答题 ( 三 ) ( 本大题 3 小题,每小题 9 分,共 27 分 ) 23 .如图,抛物线 y 1= ax 2+2 ax +1 与 x 轴有且仅有一个公共点 A ,
经过点 A 的直线 y 2=kx +b 交该抛物线于点 B ,交 y 轴于点 C, 且点 C 是线段 AB 的中点. ( 1 ) 求 a 的值; ( 2 ) 求直线 AB 对应的函数解析式; ( 3 ) 直接写出当 y 1 ≥y2 时, x 的取值范围.
20 . (1) :作图略, (注:作图正确得 2分,结论得 1 分,第 (1) 小题共 3 分 )
中考模拟考试数学试卷
第 6 页(共 4 页 )
B 20 题图 C
(2) 解:在 △ ABC 中,∠ ABC = 180 °- 40 °- 60 °= 80 ° ……4分
∵ BD 平分 ∠ABC
∴ ABD 1 ABC 1 80 40
24题图
25 .如图,正方形 OABC 的顶点 O在坐标原点,顶点 A 的坐标为 (4 , 3) .

2020年中考数学模拟试卷(黑龙江大庆)(三)(解析版)

2020年中考数学模拟试卷(黑龙江大庆)(三)(解析版)

2020年中考数学全真模拟试卷(大庆专用)(三)一、选择题(本大题共10小题,每小题3分,共30分)下列选项中有且只有一个选项是正确的,选择正确选项的代号并填涂在答题纸的相应位置上〕1.2018年我国国内生产总值(GDP)是900309亿元,首次突破90万亿大关,90万亿用科学记数法表示为().A.9.0×1013B.9.0×1012C.9.0×1011D.9.0×1010【答案】A【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.90万亿用科学记数法表示成:9.0×1013。

2.实数a,b在数轴上的对应点的位置如图所示.下列结论正确的是()A.a>b B.a>﹣b C.﹣a>b D.﹣a<b【答案】C.【解析】根据数轴可以发现a<b,且﹣3<a<﹣2,1<b<2,由此即可判断以上选项正确与否.∵﹣3<a<﹣2,1<b<2,∴答案A错误;∵a<0<b,且|a|>|b|,∴a+b<0,∴a<﹣b,∴答案B错误;∴﹣a>b,故选项C正确,选项D错误.3.下列命题:①若x2+kx+是完全平方式,则k=1;②若A(2,6),B(0,4),P(1,m)三点在同一直线上,则m=5;③等腰三角形一边上的中线所在的直线是它的对称轴;④一个多边形的内角和是它的外角和的2倍,则这个多边形是六边形.其中真命题个数是()A.1 B.2 C.3 D.4【答案】B【解析】利用完全平方公式对①进行判断;利用待定系数法求出直线AB的解析式,然后求出m,则可对②进行判断;根据等腰三角形的性质对③进行判断;根据多边形的内角和和外角和对④进行判断.若x2+kx+是完全平方式,则k=±1,所以①错误;若A(2,6),B(0,4),P(1,m)三点在同一直线上,而直线AB的解析式为y=x+4,则x=1时,m=5,所以②正确;等腰三角形底边上的中线所在的直线是它的对称轴,所以③错误;一个多边形的内角和是它的外角和的2倍,则这个多边形是六边形,所以④正确.4.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为()A.24 B.24πC.96 D.96π【答案】B.【解析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr2h=22×6•π=24π5.下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【答案】D.【解析】据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确。

2020年广东省中考数学全真模拟试卷(新题型)(解析版)

2020年广东省中考数学全真模拟试卷(新题型)(解析版)

2020年广东省中考数学全真模拟试卷(新题型)(解析版)考试时间:90分钟;满分:120学校:___________班级:___________姓名:___________学号:___________一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣2020的相反数是()A.B.C.2020D.﹣20202.(3分)港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约55000m,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为()A.5.5×105B.55×104C.5.5×104D.5.5×1063.(3分)如图,下列结论正确的是()A.c>a>b B.C.|a|<|b|D.abc>04.(3分)如表是我国近六年“两会”会期(单位:天)的统计结果:时间201420152016201720182019会期(天)111314131813则我国近六年“两会”会期(天)的众数和中位数分别是()A.13,11B.13,13C.13,14D.14,13.55.(3分)在Rt△ABC,∠C=90°,sin B=,则sin A的值是()A.B.C.D.6.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34°B.46°C.56°D.66°7.(3分)下列运算中,计算正确的是()A.2a+3a=5a2B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b28.(3分)甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为()A.=B.=C.=D.=9.(3分)如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是()A.(a﹣b,a)B.(b,a)C.(a﹣b,0)D.(b,0)10.(3分)已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④二.填空题(共7小题,满分28分,每小题4分)11.(4分)因式分解:x2﹣9=.12.(4分)在平面直角坐标系中点P(﹣2,3)关于x轴的对称点在第象限.13.(4分)一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为.14.(4分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k 的取值范围是.15.(4分)在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.16.(4分)如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是.17.(4分)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为.三.解答题(共8小题,满分62分)18.(6分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣119.(6分)先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.21.(8分)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.22.(8分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.23.(8分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?24.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:H为CE的中点;(3)若BC=10,cos C=,求AE的长.25.(10分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣2020的相反数是()A.B.C.2020D.﹣2020【分析】直接利用相反数的定义得出答案.【解答】解:﹣2020的相反数是:2020.故选:C.2.(3分)港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约55000m,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为()A.5.5×105B.55×104C.5.5×104D.5.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:55000=5.5×104,故选:C.3.(3分)如图,下列结论正确的是()A.c>a>b B.C.|a|<|b|D.abc>0【分析】A、根据数轴上的数右边的总比左边的大,可得结论;B、根据0<b<1<c,可得结论;C、根据数轴上数a表示的点离原点比较远,可得|a|>|b|;D、根据a<0,b>0,c>0,可得结论.【解答】解:A、由数轴得:a<b<c,故选项A不正确;B、∵0<b<1<c,∴>,故选项B正确;C、由数轴得:|a|>|b|,故选项C不正确;D、∵a<0,b>0,c>0,∴abc<0,故选项D不正确;故选:B.4.(3分)如表是我国近六年“两会”会期(单位:天)的统计结果:时间201420152016201720182019会期(天)111314131813则我国近六年“两会”会期(天)的众数和中位数分别是()A.13,11B.13,13C.13,14D.14,13.5【分析】根据中位数和众数的定义解答.第3和第4个数的平均数就是中位数,13出现的次数最多.【解答】解:由表知这组数据的众数13,中位数为=13,故选:B.5.(3分)在Rt△ABC,∠C=90°,sin B=,则sin A的值是()A.B.C.D.【分析】根据互余两角三角函数的关系:sin2A+sin2B=1解答.【解答】解:∵在Rt△ABC,∠C=90°,∴∠A+∠B=90°,∴sin2A+sin2B=1,sin A>0,∵sin B=,∴sin A==.故选:B.6.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34°B.46°C.56°D.66°【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB=90°,又由∠ACD=34°,可求得∠ABD的度数,再根据直角三角形的性质求出答案.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ACD=34°,∴∠ABD=34°∴∠BAD=90°﹣∠ABD=56°,故选:C.7.(3分)下列运算中,计算正确的是()A.2a+3a=5a2B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b2【分析】直接利用合并同类项法则以及积的乘方运算法则、完全平方公式分别化简得出答案.【解答】解:A、2a+3a=5a,故此选项错误;B、(3a2)3=27a6,正确;C、x6÷x2=x4,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.8.(3分)甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为()A.=B.=C.=D.=【分析】根据甲乙的工作时间,可列方程.【解答】解:设甲每小时做x个,乙每小时做(x+6)个,根据甲做30个所用时间与乙做45个所用时间相等,得,故选:A.9.(3分)如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是()A.(a﹣b,a)B.(b,a)C.(a﹣b,0)D.(b,0)【分析】如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,根据正方形的性质得到∠ABC=90°,∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,由点P坐标为(a,b),得到BP=b,根据全等三角形的性质即可得到结论.【解答】解:如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,∵点P坐标为(a,b),∴BP=b,∵∠PEP′=90°,∴∠AEP′=∠PEB,在△AEP′与△BEP中,,∴△AEP′≌△BEP(ASA),∴AP′=BP=b,∴点P′的坐标是(b,0),故选:D.10.(3分)已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④【分析】①观察条件,知是当x=1时,有a+b+c=0,因而方程有根.②把x=﹣1和2代入方程,建立两个等式,即可得到2a+c=0.③方程ax2+c=0有两个不相等的实根,则△=﹣4ac>0,左边加上b2就是方程ax2+bx+c=0的△,由于加上了一个非负数,所以△>0.④把b=2a+c代入△,就能判断根的情况.【解答】解:①当x=1时,有若a+b+c=0,即方程有实数根了,∴△≥0,故错误;②把x=﹣1代入方程得到:a﹣b+c=0 (1)把x=2代入方程得到:4a+2b+c=0 (2)把(2)式减去(1)式×2得到:6a+3c=0,即:2a+c=0,故正确;③方程ax2+c=0有两个不相等的实数根,则它的△=﹣4ac>0,∴b2﹣4ac>0而方程ax2+bx+c=0的△=b2﹣4ac>0,∴必有两个不相等的实数根.故正确;④若b=2a+c则△=b2﹣4ac=(2a+c)2﹣4ac=4a2+c2,∵a≠0,∴4a2+c2>0故正确.②③④都正确,故选C.二.填空题(共7小题,满分28分,每小题4分)11.(4分)因式分解:x2﹣9=(x+3)(x﹣3).【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).12.(4分)在平面直角坐标系中点P(﹣2,3)关于x轴的对称点在第三象限.【分析】应先判断出所求的点的横纵坐标,进而判断所在的象限.【解答】解:点P(﹣2,3)满足点在第二象限的条件.关于x轴的对称点的横坐标与P 点的横坐标相同,是﹣2;纵坐标互为相反数,是﹣3,则P关于x轴的对称点是(﹣2,﹣3),在第三象限.故答案是:三13.(4分)一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为4.【分析】直接利用平方根的定义得出2m﹣1+(﹣3m+)=0,进而求出m的值,即可得出答案.【解答】解:根据题意,得:2m﹣1+(﹣3m+)=0,解得:m=,∴正数a=(2×﹣1)2=4,故答案为:4.14.(4分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k 的取值范围是k<1.【分析】由于反比例函数y=的图象有一支在第二象限,可得k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1.故答案为:k<1.15.(4分)在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=8.【分析】根据白球的概率公式=列出方程求解即可.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)==,解得:n=8,故答案为:8.16.(4分)如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是35°.【分析】首先连接BC,由AB是半圆的直径,根据直径所对的圆周角是直角,可得∠C =90°,继而求得∠B的度数,然后由D是的中点,根据弧与圆周角的关系,即可求得答案.【解答】解:连接BC,∵AB是半圆的直径,∴∠C=90°,∵∠BAC=20°,∴∠B=90°﹣∠BAC=70°,∵D是的中点,∴∠DAC=∠B=35°.故答案为:35°.17.(4分)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为2.【分析】先根据抛物线解析式求出点A坐标和其对称轴,再根据对称性求出点M坐标,利用点M为线段AB中点,得出点B坐标;用含a的式子表示出点P坐标,写出直线OP 的解析式,再将点B坐标代入即可求解出a的值.【解答】解:∵抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,∴A(0,),抛物线的对称轴为x=1∴顶点P坐标为(1,﹣a),点M坐标为(2,)∵点M为线段AB的中点,∴点B坐标为(4,)设直线OP解析式为y=kx(k为常数,且k≠0)将点P(1,)代入得=k∴y=()x将点B(4,)代入得=()×4解得a=2故答案为:2.三.解答题(共8小题,满分62分)18.(6分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣1+﹣1+2=1+.19.(6分)先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=•=,由a+b﹣=0,得到a+b=,则原式=2.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O 即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,21.(8分)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.(1)由E是AC的中点知AE=CE,由AB∥CD知∠AFE=∠CDE,据此根据“AAS”【分析】即可证△AEF≌△CED,从而得AF=CD,结合AB∥CD即可得证;(2)证△GBF∽△GCD得=,据此求得CD=,由AF=CD及AB=AF+BF可得答案.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.22.(8分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.【分析】(1)由一等奖人数及其所占百分比可得总人数,总人数减去一等奖、三等奖人数求出二等奖人数即可补全图形;(2)用360°乘以二等奖人数所占百分比可得答案;(3)画出树状图,由概率公式即可解决问题.【解答】解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人),补全条形图如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×=108°;(3)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是=.23.(8分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.24.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:H为CE的中点;(3)若BC=10,cos C=,求AE的长.【分析】(1)连结OD、AD,如图,先利用圆周角定理得到∠ADB=90°,则根据等腰三角形的性质得BD=CD,再证明OD为△ABC的中位线得到OD∥AC,加上DH⊥AC,所以OD⊥DH,然后根据切线的判定定理可判断DH为⊙O的切线;(2)连结DE,如图,有圆内接四边形的性质得∠DEC=∠B,再证明∠DEC=∠C,然后根据等腰三角形的性质得到CH=EH;(3)利用余弦的定义,在Rt△ADC中可计算出AC=5,在Rt△CDH中可计算出CH =,则CE=2CH=2,然后计算AC﹣CE即可得到AE的长.【解答】(1)解:DH与⊙O相切.理由如下:连结OD、AD,如图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,而AO=BO,∴OD为△ABC的中位线,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∴DH为⊙O的切线;(2)证明:连结DE,如图,∵四边形ABDE为⊙O的内接四边形,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∵DH⊥CE,∴CH=EH,即H为CE的中点;(3)解:在Rt△ADC中,CD=BC=5,∵cos C==,∴AC=5,在Rt△CDH中,∵cos C==,∴CH=,∴CE=2CH=2,∴AE=AC﹣CE=5﹣2=3.25.(10分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.【分析】(1)代入A(1,0)和C(0,3),解方程组即可;(2)求出点B的坐标,再根据勾股定理得到BC,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,运用二次函数的顶点坐标解决问题;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【解答】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.。

广东省2020年中考数学全真模拟试卷(附加答题卡和解析)

广东省2020年中考数学全真模拟试卷(附加答题卡和解析)

2020年中考数学全真模拟试卷(广东)(四)(考试时间:90分钟;总分:120分)班级:___________姓名:___________座号:___________分数:___________ 一、单选题(每小题3分,共30分)1.12-的值是()A.12-B.12C.2-D.22.某区公益项目“在线伴读”平台开通以来,累计为学生在线答疑15000次.用科学记数法表示15000是()A.0.15×106B.1.5×105C.1.5×104D.15×1053.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,几何体的左视图是( )A.B.C.D.5.某班体育课上老师记录了7位女生1分钟仰卧起坐的成绩(单位:个)分别为:28,38,38,35,35,38,48,这组数据的中位数和众数分别是()A .35,38B .38,38C .38,35D .35,356 ( )A .5B C .±5D .7.正八边形的每一个外角的度数是() A .30°B .45︒C .60︒D .135︒8.关于x 的一元二次方程210ax x +-=有实数根,则a 的取值范围是() A .14a >-B .14a ≥-C .14a ≥-且0a ≠ D .14a >-且0a ≠ 9.一元一次不等式组的解集在数轴上表示为()A .B .C .D .10.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E,PF ⊥AC 于F,则EF 的最小值为( )A .2B .2.2C .2.4D .2.5二、填空题(每小题4分,共28分)11.分解因式:24xy x -=_________________.12x 应满足的条件是______. 13.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为______个. 14.已知点(1 )A a ,,(2 )B b ,在反比例函数2y x=-的图象上,则a ,b 的大小关系是__________. 15.如图,把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG =50°,则∠2=_________.16.如图,已知△ABC 中,AB =AC =12厘米,BC =8厘米,点D 为AB 的中点,如果点M 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点N 在线段CA 上由C 点向A 点运动,若使△BDM 与△CMN 全等,则点N 的运动速度应为_____厘米/秒.17.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线143y x =-+上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S n =_____.三、解答题一(每小题6分,共18分)18.计算:201()2sin30(20172-︒-.19.先化简,再求值:,其中满足20.如图,在△ABC 中,∠ABC =80°,∠BAC =40°,AB 的垂直平分线分别与AC 、AB 交于点D 、E . (1)在图中作出AB 的垂直平分线DE ,并连接BD . (2)证明:△ABC ∽△BDC .四、解答题二(每小题8分,共24分)21.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?22.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.23.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2)如图1,当点G和点M、C不重合时,求证:DG=DN.五、解答题三(每小题10分,共20分)24.平行四边形ABCD的对角线相交于点M,△ABM的外接圆交AD于点E且圆心O恰好落在AD边上,连接ME,若∠BCD=45°(1)求证:BC为⊙O切线;(2)求∠ADB的度数;(3)若ME=1,求AC的长.25.如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为254时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.2020年中考数学全真模拟试卷(广东)(四)答题卡姓名:______________班级:______________选择题(请用2B 铅笔填涂)非选择题(请在各试题的答题区内作答)20题、23题、24题、2020年中考数学全真模拟试卷(广东)(四)(考试时间:90分钟;总分:120分)班级:___________姓名:___________座号:___________分数:___________ 一、单选题(每小题3分,共30分)1.12-的值是()A.12-B.12C.2-D.2【答案】B【解析】根据绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0即可求解【详解】根据负数的绝对值是它的相反数,得11 22 -=.故选B.【点睛】本题考查了绝对值的性质,熟练掌握绝对值的定义和性质是解题的关键.2.某区公益项目“在线伴读”平台开通以来,累计为学生在线答疑15000次.用科学记数法表示15000是()A.0.15×106B.1.5×105C.1.5×104D.15×105【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:用科学记数法表示15000是:1.5×104.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【解析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、不是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.【点睛】此题主要考查对轴对称图形和中心对称图形的识别,熟练掌握,即可解题.4.如图,几何体的左视图是( )A.B.C.D.【答案】A【解析】根据从左边看得到的图形是左视图,可得答案.【详解】解:如图所示,其左视图为:.故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.5.某班体育课上老师记录了7位女生1分钟仰卧起坐的成绩(单位:个)分别为:28,38,38,35,35,38,48,这组数据的中位数和众数分别是()A.35,38B.38,38C.38,35D.35,35【答案】B【解析】出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.【详解】把这些数从小到大排列为:28,35,35,38,38,38,48,最中间的数是38,则中位数是38;∵38出现了3次,出现的次数最多,∴这组数据的众数是38;故选B.【点睛】此题考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数;众数是一组数据中出现次数最多的数.6( )A.5 B C.±5 D.【答案】A【解析】根据算术平方根的定义即可求解.【详解】故答案选A..【点睛】本题考查的知识点是算术平方根,解题的关键是熟练的掌握算术平方根.7.正八边形的每一个外角的度数是()A.30°B.45︒C.60︒D.135︒【答案】B【解析】根据多边形的外角和为360度,再用360度除以边数即可得到每一个外角的度数.【详解】∵多边形的外角和为360度,∴每个外角度数为:360°÷8=45°,故选:B.【点睛】考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数直接让360度除以外角.8.关于x的一元二次方程210ax x+-=有实数根,则a的取值范围是()A.14a>-B.14a≥-C.14a≥-且0a≠D.14a>-且0a≠【答案】C【解析】从两方面考虑①方程要是一元二次方程,则二次项系数不能为0;②利用根的判别式△≥0列出不等式求解.【详解】解:要使方程210ax x+-=为一元二次方程则a≠0此时∵关于x的方程210ax x+-=有实数根,∴214(1)140a a=-⨯⨯-=+V…解得:14 a-…,故答案为14a≥-且0a≠,选C.【点睛】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,△≥0.在本题中切记二次项系数不能为0.9.一元一次不等式组的解集在数轴上表示为()A.B.C.D.【答案】A【解析】试题分析:解不等式①得:x>﹣1,解不等式②得:x≤2,∴不等式组的解集是﹣1<x≤2,表示在数轴上,如图所示:.故选A.考点:解一元一次不等式组;在数轴上表示不等式的解集.10.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )A.2 B.2.2 C.2.4 D.2.5【答案】C【解析】根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【详解】连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°,又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故选:C.【点睛】本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.二、填空题(每小题4分,共28分)11.分解因式:24xy x -=_________________.【答案】x (y+2)(y-2)【解析】首先提公因式x ,然后利用平方差公式分解即可;【详解】解:224)4(2)((2)x y x y y y x x --+-==故答案为:x (y+2)(y-2)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 12有意义时,x 应满足的条件是______. 【答案】8x >.【解析】直接利用二次根式的定义和分数有意义求出x 的取值范围.【详解】有意义,可得:80x ->,所以8x >, 故答案为:8x >.【点睛】本题考查了二次根式有意义的条件,熟练掌握是解题的关键.13.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为______个.【答案】24【解析】分析:首先设黄球的个数为x 个,根据题意得:1212x +=13,解此分式方程即可求得答案. 详解:设黄球的个数为x 个, 根据题意得:1212x +=13, 解得:x =24,经检验:x =24是原分式方程的解;∴黄球的个数为24.故答案为24点睛:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.已知点(1 )A a ,,(2 )B b ,在反比例函数2y x=-的图象上,则a ,b 的大小关系是__________. 【答案】a b <【解析】由反比例函数y =-2x可知函数的图象在第二、第四象限内,可以知道在每个象限内,y 随x 的增大而增大,根据这个判定则可.【详解】∵反比例函数中y =-2x中20k =-<, ∴此函数的图象在二、四象限内,在每个象限内,y 随x 的增大而增大,∵0<1<2,∴A 、B 两点均在第四象限,∴a <b.故答案为:a<b.【点睛】本题考查了反比例函数图象上点的坐标特征,熟练掌握该特征是本题解题的关键.15.如图,把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=50°,则∠2=_________.【答案】100°【解析】试题解析:如图,∵长方形纸片ABCD的边AD∥BC,∴∠3=∠EFG=50°,根据翻折的性质,∠1=180°-2∠3=180°-2×50°=80°,又∵AD∥BC,∴∠2=180°-∠1=180°-80°=100°.16.如图,已知△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点,如果点M在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点N在线段CA上由C点向A点运动,若使△BDM与△CMN全等,则点N的运动速度应为_____厘米/秒.【答案】2或3【解析】分两种情形讨论①当BD=CM=6,BM=CN时,△DBM≌△MCN,②当BD=CN,BM=CM时,△DBM≌△NCM,再根据路程、时间、速度之间的关系求出点N的速度.【详解】解:∵AB=AC,∴∠B=∠C,①当BD=CM=6厘米,BM=CN时,△DBM≌△MCN,∴BM=CN=2厘米,t=2=1,2∴点N运动的速度为2厘米/秒.②当BD=CN,BM=CM时,△DBM≌△NCM,∴BM=CM=4厘米,t=4=2,CN=BD=6厘米,2∴点N的速度为:6=3厘米/秒.2故点N的速度为2或3厘米/秒.故答案为2或3.【点睛】本题考查等腰三角形的性质、全等三角形的判定和性质,用分类讨论是正确解题的关键.17.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线143y x =-+上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S n =_____.【答案】194n -(或2292n -) 【解析】分别过点P 1、P 2、P 3作x 轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【详解】如图,分别过点P 1、P 2、P 3作x 轴的垂线段,垂足分别为点C 、D 、E ,∵P 1(3,3),且△P 1OA 1是等腰直角三角形,∴OC=CA 1=P 1C=3,设A 1D=a ,则P 2D=a ,∴OD=6+a ,∴点P 2坐标为(6+a ,a ),将点P 2坐标代入y=-13x+4,得:-13(6+a )+4=a , 解得:a=32, ∴A 1A 2=2a=3,P 2D=32, 同理求得P 3E=34、A 2A 3=32, ∵12311391339639,3,222422416S S S =⨯⨯==⨯⨯==⨯⨯=、…… ∴S n =194n -(或2292n -). 故答案为194n -(或2292n -). 【点睛】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题.三、解答题一(每小题6分,共18分)18.计算:201()2sin30(20172-︒--. 【答案】2【解析】分析:根据负整指数幂的的性质,二次根式的性质,特殊角的三角函数值,零次幂的性质求解即可. 详解:原式=142212-+⨯-=2. 点睛:此题主要考查了实数的混合运算,关键是熟记并灵活运用负整指数幂的的性质,二次根式的性质,特殊角的三角函数值,零次幂的性质计算即可.19.先化简,再求值:,其中满足【答案】原式=x 2−1−x2+2xx(x+1)×(x+1)2x(2x−1)=x+1x2∵∴x2=x+1原式=x+1x+1=1【解析】试题分析:先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后整体代入求值. 原式=·原式=1.考点:分式的化简求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.20.如图,在△ABC中,∠ABC=80°,∠BAC=40°,AB的垂直平分线分别与AC、AB交于点D、E.(1)在图中作出AB的垂直平分线DE,并连接BD.(2)证明:△ABC∽△BDC.【答案】(1)见解析(2)证明见解析【解析】(1)分别以A、B为圆心,大于12AB的长为半径画弧,两弧交于两点,过两点作直线,即为AB的垂直平分线;(2)由线段垂直平分线的性质,得DA=DB,则∠ABD=∠BAC=40°,从而求得∠CBD=40°,即可证出△ABC∽△BDC.【详解】(1)如图,DE即为所求;(2)∵DE是AB的垂直平分线,∴BD=AD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=80°﹣40°=40°,∴∠DBC=∠BAC,∵∠C=∠C,∴△ABC∽△BDC.【点睛】本题考查了作图——基本作图,相似三角形的判定,线段垂直平分线的性质,熟练掌握相关的性质与判定定理是解题的关键.四、解答题二(每小题8分,共24分)21.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?【答案】(1)2013;2016;(2)54°;(3)460人;(4)20400人【解析】(1)由图中的数据进行判断即可;(2)先求得“短跑”在扇形图中所占的百分比为15%,进而得到α=360°×15%=54°;(3)依据2017年抽取的学生总数,即可得到喜欢羽毛球和短跑的学生数量;(4)依据喜欢乒乓球和羽毛球两项运动的百分比,即可估计我市2017年喜欢乒乓球和羽毛球两项运动的人数.【详解】解:(1)由图可得,2013年抽取的调查人数最少;2016年抽取的调查人数中男生、女生人数相等;故答案为:2013,2016;(2)1﹣35%﹣10%﹣15%﹣25%=15%,∴α=360°×15%=54°;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有(600+550)×(25%+15%)=460(人);(4)我市2017年喜欢乒乓球和羽毛球两项运动的大约有34000×(25%+35%)=20400(人).【点睛】本题考查的是折线统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.折线统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【答案】(1)每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个(2)3【解析】(1)根据“每辆大客车的乘客座位数-小客车乘客座位数=15;6辆大客车乘客+5辆小客车乘客=310”列出二元一次方程组解之即可.(2)根据题意,设租用a辆小客车才能将所有参加活动的师生装载完成,利用“大客车乘客+小客车乘客≥310+20”解之即可.【详解】(1)设每辆小客车的乘客座位数是x个,大客车的乘客座位数是y个,根据题意,得15 56310 y xx y-=⎧⎨+=⎩解得2035 xy=⎧⎨=⎩答:每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个. (2)设租用a辆小客车才能将所有参加活动的师生装载完成,则20a+35(11-a)≥310+20,解得a≤32 3 ,符合条件的a的最大整数为3.答:租用小客车数量的最大值为3.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解决本题的关键是找到题目中蕴含的数量关系. 23.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2)如图1,当点G和点M、C不重合时,求证:DG=DN.【答案】(1)见解析;(2)见解析【解析】本题主要考查菱形及全等三角形的应用(1)先由MD为BE的中位线,可证MD∥EN且MD=12BE,又∠GDN+∠DNE=180°,可证四边形MDNE为平行四边形,从而可证平行四边形DMEN为菱形(2)取BE中点F,连接DM,DF,利用(1)的结论可证△DMG≌△DFN,即可得出答案【详解】证明:(1)如图2中,∵AM =ME .AD =DB ,∴DM ∥BE ,∴∠GDN+∠DNE =180°,∵∠GDN =∠AEB ,∴∠AEB+∠DNE =180°,∴AE ∥DN ,∴四边形DMEN 是平行四边形, ∵11,,22DM BE EM AE AE BE ===,∴DM =EM ,∴四边形DMEN 是菱形.(2)如图1中,取BE 的中点F ,连接DM 、DF .由(1)可知四边形EMDF 是菱形,∴∠AEB =∠MDF ,DM =DF ,∴∠GDN =∠AEB ,∴∠MDF=∠GDN,∴∠MDG=∠FDN,∵∠DFN=∠AEB=∠MCE+∠CME,∠GMD=∠EMD+∠CME,、在Rt△ACE中,∵AM=ME,∴CM=ME,∴∠MCE=∠CEM=∠EMD,∴∠DMG=∠DFN,∴△DMG≌△DFN,∴DG=DN.【点睛】本题的关键是掌握菱形的性质及判断以及全等三角形的判定五、解答题三(每小题10分,共20分)24.平行四边形ABCD的对角线相交于点M,△ABM的外接圆交AD于点E且圆心O恰好落在AD边上,连接ME,若∠BCD=45°(1)求证:BC为⊙O切线;(2)求∠ADB的度数;(3)若ME=1,求AC的长.【答案】(1)详见解析;(2)∠ADB=30°;(3)AC=2AM=【解析】(1)连接OB,根据平行四边形的性质得到∠BAD=∠BCD=45°,根据圆周角定理得到∠BOD=2∠BAD =90°,根据平行线的性质得到OB⊥BC,即可得到结论;(2)连接OM,根据平行四边形的性质得到BM=DM,根据直角三角形的性质得到OM=BM,求得∠OBM =60°,于是得到∠ADB=30°;(3)连接EM,过M作MF⊥AE于F,根据等腰三角形的性质得到∠MOF=∠MDF=30°,设OM=OE=r,解直角三角形即可得到结论.【详解】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=45°,∴∠BOD=2∠BAD=90°,∵AD∥BC,∴∠DOB+∠OBC=180°,∴∠OBC=90°,∴OB⊥BC,∴BC为⊙O切线;(2)解:连接OM,∵四边形ABCD是平行四边形,∴BM=DM,∵∠BOD=90°,∴OM =BM ,∵OB =OM ,∴OB =OM =BM ,∴∠OBM =60°,∴∠ADB =30°;(3)解:连接EM ,过M 作MF ⊥AE 于F ,∵OM =DM ,∴∠MOF =∠MDF =30°,设OM =OE =r ,1,2FM r OF ∴==EF r ∴= 222EF FM EM +=Q221122r r r ⎛⎫⎛⎫∴-+= ⎪ ⎪ ⎪⎝⎭⎝⎭解得:r∴AE =2r =∵AE 是⊙O 的直径,∴∠AME =90°,∴AM=,∴AC =2AM =【点睛】本题考查了切线的判定,圆周角定理,平行四边形的性质,等腰直径三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.25.如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为254时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.【答案】(1)A(﹣1,0),y=ax+a;(2)y=25x2﹣45x﹣65;(3)以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1)或(1,4).【解析】(1)由抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于两点A、B,求得A点的坐标,作DF⊥x轴于F,根据平行线分线段成比例定理求得D 的坐标,然后利用待定系数法即可求得直线l 的函数表达式.(2)设点E (m ,ax 2﹣2ax ﹣3a ),知HE =(ax +a )﹣(ax 2﹣2ax ﹣3a )=﹣ax 2+3ax +4a ,根据直线和抛物线解析式求得点D 的横坐标,由S △ADE =S △AEH +S △DEH 列出函数解析式,根据最值确定a 的值即可; (3)分以AD 为矩形的对角线和以AD 为矩形的边两种情况利用矩形的性质确定点P 的坐标即可.【详解】解:(1)令y =0,则ax 2﹣2ax ﹣3a =0,解得x 1=﹣1,x 2=3∵点A 在点B 的左侧,∴A (﹣1,0),如图1,作DF ⊥x 轴于F ,∴DF ∥OC , ∴OF CD OA AC=, ∵CD =4AC , ∴4,OF CD OA AC== ∵OA =1,∴OF =4,∴D 点的横坐标为4,代入y =ax 2﹣2ax ﹣3a 得,y =5a ,∴D (4,5a ),把A 、D 坐标代入y =kx +b 得045,k b k b a -+=⎧⎨+=⎩解得,k a b a =⎧⎨=⎩∴直线l 的函数表达式为y =ax +a .(2)如图2,过点E 作EH ∥y 轴,交直线l 于点H ,设E (x ,ax 2﹣2ax ﹣3a ),则H (x ,ax +a ).∴HE =(ax +a )﹣(ax 2﹣2ax ﹣3a )=﹣ax 2+3ax +4a ,由223y ax a y ax ax a =+⎧⎨=--⎩得x =﹣1或x =4, 即点D 的横坐标为4,∴S △ADE =S △AEH +S △DEH =52(﹣ax 2+3ax +4a )253125228a x a ⎛⎫=--+ ⎪⎝⎭.∴△ADE的面积的最大值为1258a,∴12525,84a=解得:25 a=,∴抛物线的函数表达式为y=25x2﹣45x﹣65(3)已知A(﹣1,0),D(4,5a).∵y=ax2﹣2ax﹣3a,∴抛物线的对称轴为x=1,设P(1,m),①若AD为矩形的边,且点Q在对称轴左侧时,则AD∥PQ,且AD=PQ,则Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,即a2=17,∵a>0,∴a∴P1(1),②若AD为矩形的边,且点Q在对称轴右侧时,则AD∥PQ,且AD=PQ,则Q(4,5a),此时点Q与点D重合,不符合题意,舍去;③若AD是矩形的一条对角线,则AD与PQ互相平分且相等.∴x D+x A=x P+x Q,y D+y A=y P+y Q,∴x Q=2,∴Q(2,﹣3a).∴y P=8a∴P(1,8a).∵四边形APDQ为矩形,∴∠APD=90°∴AP2+PD2=AD2∴(﹣1﹣1)2+(8a)2+(1﹣4)2+(8a﹣5a)2=52+(5a)2即a2=14,∵a>0,∴a=12∴P2(1,4)综上所述,以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1)或(1,4).【点睛】本题是二次函数的综合题,考查了待定系数法求一次函数的解析式,二次函数图象上点的坐标特征,以及矩形的判定,根据平行线分线段成比例定理求得D的坐标是本题的关键.。

2020年中考数学全真模拟试卷及答案(共五套)

2020年中考数学全真模拟试卷及答案(共五套)

2020年中考数学全真模拟试卷及答案(共五套)中考数学全真模拟试卷及答案(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题纸上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其它位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1.下列实数中,无理数是 A .2B .- 12C .3.14D .32.下列运算正确的是A .a 2+a 3=a 5B .a 2 a 3=a 6C .a 4÷a 2=a 2D .(a 2)4=a 63.不透明的布袋中有2个红球和3个白球,所有球除颜色外无其它差别.某同学从布袋里任意摸出一个球,则他摸出红球的概率是A . 3 5B . 2 5C . 2 3D . 1 24.某篮球兴趣小组7名学生参加投篮比赛,每人投10个,投中的个数分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为 A .5,7B .6,7C .8,5D .8,75.如图,AB 是⊙O 的弦,半径OC ⊥AB ,AC ∥OB ,则∠BOC 的度数为 A .30° B .45° C .60°D .75°6.如图,△ABC 三个顶点分别在反比例函数y = 1 x ,y = kx 的图像上,若∠C =90°,AC ∥y 轴,BC ∥x 轴,S △ABC =8,则k 的值为(第5题)ABCOyxOABC (第6题)A .3B .4C .5D .6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7. 若式子x -22在实数范围内有意义,则x 的取值范围是 ▲ . 8. 2017南京国际马拉松于4月16日在本市正式开跑.本次参赛选手共12629人,将12629用科学记数法表示为 ▲ . 9. 因式分解:a 3-2a 2+a = ▲ . 10.计算: 4 2- 8 = ▲ .11.已知 x 1,x 2是方程 x 2-4x +3=0 的两个实数根,则x 1 + x 2=▲ .12.将点A (2,-1)向左平移3个单位,再向上平移4个单位得到点A ′,则点A ′的坐标是 ▲ .13.如图,点A 、B 、C 、D 都在方格纸的格点上,若△AOB 绕点O按逆时针方向旋转到△COD 的位置,则旋转角为 ▲ °.ABCDE(第14题) ABCDO(第13题)14.如图,在平行四边形ABCD 中,点E 为AB 边上一点,将△AED沿直线DE 翻折,点A 落在点P 处,且DP ⊥BC ,则∠EDP = ▲ °.15.如图,正五边形ABCDE 的边长为2,分别以点C 、D 为圆心,CD 长为半径画弧,两弧交于点F ,则⌒BF 的长为 ▲ .16.如图,在等腰△ABC 中,AB =AC =5,BC =6,半径为1的⊙O分别与AB 、AC 相切于E 、F 两点,BG 是⊙O 的切线,切点为G ,则BG 的长为 ▲ .PABCOEFG(第16题)BCDEF(第15题)A三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求代数式的值:(1-1m +2)÷ m 2+2m +1m 2-4 ,其中m =1.18.(7分)解不等式组⎩⎨⎧ x +32≥x +1,3+4(x -1)>-9,并把解集在数轴上表示出来.19.(7分)某学校以随机抽样的方式开展了“中学生喜欢数学的程度”的问卷调查,调查的结果分为A (不喜欢)、B (一般)、C (比较喜欢)、D (非常喜欢)四个等级,图1、图2是根据采集的数据绘制的两幅不完整的统计图. 请根据统计图提供的信息,回答下列问题: (1)C 等级所占的圆心角为 ▲ °; (2)请直接在图2中补全条形统计图;0 1 -4 -3 -2 -1 2 3 4(3)若该校有学生1000人,请根据调查结果,估计“比较喜欢”的学生人数为多少人.某校“中学生喜欢数学的程度”的扇形统计图 某校“中学生喜欢数学的程度”的条形统计图20.(8分)如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,DE ∥AC 交BC 的延长线于点E . (1)求证:△ABC ≌△DCE ; (2)若CD =CE ,求证:AC ⊥BD .(第20题)AB CDEO(第19题)等级图2C10%A BD 23% 32% 图 1 80 60 40 2020 4664ABC D人数(人)21.(7分)运动会上,甲、乙、丙三位同学进行跳绳比赛,通过“手心手背”游戏决定谁先跳,规则如下:三个人同时各用一只手随机出示手心或手背,若其中有一个人的手势与另外两个不同,则此人先进行比赛;若三个人手势相同,则重新决定.那么通过一次“手心手背”游戏,甲同学先跳绳的概率是多少?22.(6分)如图,已知点P为∠ABC内一点,利用直尺和圆规确定一条过点P的直线,分别交AB、BC于点E、F,使得BE=BF.(不写作法,保留作图痕迹)APB C(第22题)23.(7分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C 两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B 时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)ABM N CO (第23题)24.(7分)某水果店销售樱桃,其进价为40元/千克,按60元/千克出售,平均每天可售出100千克.经调查发现,这种樱桃每降价1元/千克,每天可多售出10千克,若该水果店销售这种樱桃要想每天获利2240元,每千克樱桃应降价多少元?25.(9分)已知一元二次方程x2-4mx+4m2+2m-4=0,其中m为常数.(1)若该一元二次方程有实数根,求m的取值范围.(2)设抛物线y=x2-4mx+4m2+2m-4的顶点为M,点O为坐标原点,当m变化时,求线段MO长度的最小值.26.(12分)今年暑假,小勇、小红打算从城市A到城市B旅游,他们分别选择下列两种交通方案:方案一:小勇准备从城市A坐飞机先到城市C,再从城市C坐汽车到城市B,整个行程中,乘飞机所花的时间比汽车少用3h.如图1所示,城市A 、B 、C 在一条直线上,且A 、C 两地的距离为2400km ,飞机的平均速度是汽车的8倍.方案二:小红准备坐高铁直达城市B ,其离城市A 的距离y 2(km )与出发时间x (h )之间的函数关系如图2所示. (1)AB 两地的距离为 ▲ km ; (2)求飞机飞行的平均速度;(3)若两家同时出发,请在图2中画出小勇离城市A 的距离y 1与x之间的函数图像,并求出y 1与x 的函数关系式.ABC图1x (h )y (km )O1 2 3 4 5 6 7 8 9 10 11 600 1200 1800 2400 3000 图2(第26题)27.(12分)定义:当点P 在射线OA 上时,把OPOA 的值叫做点P 在射线OA 上的射影值;当点P 不在射线OA 上时,把射线OA 上与点P 最近点的射影值,叫做点P 在射线OA 上的射影值.例如:如图1,△OAB 三个顶点均在格点上,BP 是OA 边上的高,则点P 和点B 在射线OA 上的射影值均为OP OA = 13.(1)在△OAB 中,①点B 在射线OA 上的射影值小于1时,则△OAB 是锐角三角形;②点B 在射线OA 上的射影值等于1时,则△OAB 是直角三角形;CA BO图2 BCDOA图 3ABOP图1(第27题)③点B 在射线OA 上的射影值大于1时,则△OAB 是钝角三角形.其中真命题有A .①②B .②③C .①③D .①②③(2)已知:点C 是射线OA 上一点,CA =OA =1,以O 为圆心,OA 为半径画圆,点B 是⊙O 上任意点.①如图2,若点B 在射线OA 上的射影值为 12.求证:直线BC 是⊙O 的切线.②如图3,已知D 为线段BC 的中点,设点D 在射线OA 上的射影值为x ,点D 在射线OB 上的射影值为y ,直接写出y 与x 之间的函数关系式.数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分. 一、选择题(每小题2分,共计12分)题号 1 2 3 4 5 6 答案DCBDCC二、填空题(每小题2分,共计20分)7.x ≥2 8.1.2629×104 9.a (a -1)2 10.0 11.412.(-1,3) 13.90° 14.45° 15.815π 16.113三、解答题(本大题共10小题,共计88分) 17.(本题6分)解:原式=m +1m +2 (m +2)(m -2)(m +2)2··········································· 2分=m -2m +1 ······························································· 4分 当m =1时,原式=1-21+1=-12. ·························· 6分18.(本题7分)解:解不等式①,得x ≤1. ··············································· 2分解不等式②,得x >-2. ············································· 4分所以,不等式组的解集是-2<x≤1. ··························· 5分画图正确(略). ······················································ 7分19.(本题7分)(1)126; ···································································· 2分(2)图略;··································································· 4分(3)在抽取的样本中,“比较喜欢”数学的人数所占的百分比为1-32%-10%-23%=35%,········································ 5分由此可估计,该校1000名学生中,“比较喜欢”数学的人数所占的百分比35%,1000×35%=350(人). ············································ 6分答:估计这些学生中,“比较喜欢”数学的人数约有350人. 7分20.(本小题满分8分)证明:(1)∵四边形ABCD是平行四边形,∴AB//CD,AB=DC.∴∠ABC=∠DCE.∵AC//DE,∴∠ACB=∠DEC.·································· 3分在△ABC和△DCE中,∠ABC=∠DCE,∠ACB=∠DEC,AB =DC.∴△ABC≌△DCE(AAS). ··································· 4分(2)由(1)知△ABC≌△DCE,则有BC=CE.∵CD=CE,∴BC=CD.∴四边形ABCD为菱形.············································· 7分21.(本题7分)列表或树状图表示正确; ············································· 3分 ∵共有8种等可能的结果,通过一次“手心手背”游戏, 小明先跳绳的有2种情况 ······ 5分 ∴通过一次“手心手背”游戏,小明先跳绳的概率是: 2 8 = 1 4. 答:通过一次“手心手背”游戏,小明先跳绳的概率是 14. ···· 7分 22.(本题6分)方法1: 方法2:··················································································· 6分 23.(本题7分)解:过点A 作AD ⊥OB 于点D .由题意得AN ⊥MN ,OB ⊥MN ,AD ⊥OB ,∴四边形ANMD 是矩形,ABMN CO D设OB=OA=x cm,在Rt∆OAD中,∠ODA=90°,cos∠AOD=ODOA=x+5-14x≈0.6. ······························· 5分解得x=15cm.经检验,x=15为原方程的解.答:细线OB的长度是15cm. ······································· 7分24.(本小题满分7分)解:设每千克樱桃应降价x元,根据题意,得························ 1分(60-x-40)(100+10x)=2240. ·························· 4分解得:x1=4,x2=6.·················································· 6分答:每千克樱桃应降价4元或6元. ······························ 7分25.(本小题满分9分)(1)解法一:∵关于x的一元二次方程x2-4mx+4m2+2m-4=0有实数根,∴△=(-4m)2-4(4m2+2m-4)=-8m+16≥0, ······ 3分∴m≤2. ································································· 4分解法二:∵x2-4mx+4m2+2m-4=0,∴(x-2m)2=4-2m.3分∴m≤2. ································································· 4分(2)解法一:y=x2-4mx+4m2+2m-4的顶点为M为(2m,2m-4), ································································ 6分∴MO 2=(2m )2+(2m -4)2=8(m -1)2+8. ············ 7分 ∴MO 长度的最小值为22. ········································ 9分 解法二:y =x 2-4mx +4m 2+2m -4的顶点为M 为(2m ,2m -4), ·············································································· 6分 ∴点M 在直线l :y=x -4上, ······································· 7分 ∴点O 到l 的距离即为MO 长度的最小值22. ··············· 9分 26.(本小题满分12分)解:(1)3000; ····························································· 2分 (2)设汽车的速度为x km/h ,则飞机的速度为8x km/h ,根据题意得:3000-2400x -24008x =3, ··············································· 4分 解之得:x =100.经检验,x =100为原方程的解.则飞机的速度为8×100=800 km/h .答:飞机的速度为800 km/h . ······································· 6分 (3)图略. ······························································ 8分 当0≤x ≤3,y 1=800x .当3<x ≤9,,设函数关系式为y 1=kx +b ,代入点(3,2400),(9,3000)得:⎩⎨⎧3k +b =2400,9k +b =3000解得⎩⎨⎧k =100,b =2100.∴函数关系式为:y 1=100x +2100 ································ 12分27.(本题10分)解:(1)B . ································································· 2分 (2)解法一:过点B 作BH 垂直OC ,垂足为H .∵B 在射线OA 上的射影值为12,∴OH OA =12,∵OB =OA ,∴OHOB =12,∵CA =OA ,∴OB OC =12,∴OH OB =OBOC .又∵∠O =∠O ,∴△OHB ∽△OBC . ··················································· 6分 ∴∠OBC =∠OHB =90°.∴OB ⊥BC ,∵点B 是圆O 上的一点, ∴BC 是圆O 的切线. ················································· 8分 解法二:连接AB ,过点B 作BH 垂直OC ,垂足为H . ∵B 在射线OA 上的射影值为12,∴OH OA =12,∵OB =OA ,∴OH OB =12=cos ∠O ,∴∠O =60°.∵OB =OA ,∴△OBA 是等边三角形,∴∠OAB =60°. ····································································· 4分 ∵AC =OA ,∴AB =AC ,∴∠ABC =∠C ,∴∠C =30°. ······ 6分 ∴∠OBC =90°.∴OB ⊥BC ,∵点B 是圆O 上的一点, ∴BC 是圆O 的切线. ················································· 8分 (3)y =0 (12≤x <34); ················································ 10分 y =2x -32(34≤x ≤32) ············································· 12分CA BO H中考数学全真模拟试卷及答案(二)一、选择题 (共10小题,每小题3分,共30分)1.364=()A.4 B.±8 C.8 D.±4x没有意义,那么x的取值范围是()2.如果分式1xA.x≠0 B.x=0 C.x≠-1 D.x =-13.下列式子计算结果为2x2的是()A.x+x B.x·2x C.(2x)2 D.2x6÷x34.下列事件是随机事件的是()A.从装有2个红球、2个黄球的袋中摸出3个球,至少有一个红球B.通常温度降到0℃以下,纯净的水结冰C.任意画一个三角形,其内角和是360°D.随意翻到一本书的某页,这页的页码是奇数5.运用乘法公式计算(4+x)(x-4)的结果是()A.x2-16 B.16-x2 C.x2+16 D.x2-8x+16 6.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC 位似,且位似比为2∶1,点C1的坐标是()A.(1,0)B.(1,1)C.(-3,2)D.(0,0)7.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是()A. B. C.D.8.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12 13 14 15人数(个) 2 4 6 8根据表中信息可以判断该排球队员的平均年龄为()A .13B .14C .13.5D .59.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为( ) A .50 B .51 C .48 D .5210.已知二次函数y =x 2-(m +1)x -5m (m 为常数),在-1≤x ≤3的范围内至少有一个x 的值使y ≥2,则m 的取值范围是( ) A .m ≤0 B .0≤m ≤21 C .m ≤21 D .m >21二、填空题(共6小题,每小题3分,共18分) 11.计算:计算7-(-4)=___________ 12.计算:2121----x x x =___________ 13.在-2、-1、0、1、2这五个数中任取两数m 、n ,求二次函数y =(x -m )2+n 的顶点在坐标轴上的概率是___________ 14.P 为正方形ABCD 内部一点,PA =1,PD =2,PC =3,求阴影部分的面积S ABCP =______15.如图,将一段抛物线y =x (x -3)(0≤x ≤3)记为C 1,它与x 轴交于点O 和点A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 2,交x 轴于点A 3.若直线y =x +m 于C 1、C 2、C 3共有3个不同的交点,则m 的取值范围是___________16.如图,在平面直角坐标系第一象限有一半径为5的四分之一⊙O,且⊙O内有一定点A(2,1)、B、D为圆弧上的两个点,且∠BAD=90°,以AB、AD为边作矩形ABCD,则AC的最小值为___________三、解答题(共8小题,共72分,应写出文字说明、证明过程或演算步骤)17.(本题8分)解方程:3(2x+3)=2(x-1)-618.(本题8分)如图,AB∥DE,AC∥DF,点B、E、C、F在一条直线上,求证:△ABC∽△DEF19.(本题8分)某厂签订48000辆自行车的组装合同,这些自行车分为L1、L2、L3三种型号,它们的数量比例及每天能组装各种型号自行车的数量如图所示:若每天组装同一型号自行车的数量相同,根据以上信息,完成下列问题:(1) 从上述统计图可知,此厂需组装L1、L2、L3型自行车的辆数分别是,________辆,________辆,________辆(2) 若组装每辆不同型号的自行车获得的利润分别是L1:40元/辆,L2:80元/辆,L3:60元/辆,且a=40,则这个厂每天可获利___________元(3) 若组装L 1型自行车160辆与组装L3型自行车120辆花的时间相同,求a20.(本题8分)为了抓住文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元(1) 求购进A、B两种纪念品每件各需多少元?(2) 若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A种纪念品多少件?21.(本题8分)如图,⊙O 是弦AB 、AC 、CD 相交点P ,弦AC 、BD 的延长线交于E ,∠APD =2m °,∠PAC =m °+15° (1) 求∠E 的度数 (2) 连AD 、BC ,若3=ADBC,求m 的值22.(本题10分)如图,反比例函数xk y =与y =mx 交于A 、B 两点.设点A 、B 的坐标分别为A (x 1,y 1)、B (x 2,y 2),S =|x 1y 1|,且ss 413=-(1) 求k 的值(2) 当m 变化时,代数式12)1()1122212+++-m y x m y x m (是否为一个固定的值?若是,求出其值;若不是,请说理由(3) 点C 在y 轴上,点D 的坐标是(-1,23).若将菱形ACOD 沿x 轴负方向平移m 个单位,在平移过程中,若双曲线与菱形的边AD 始终有交点,请直接写出m 的取值范围23.(本题10分)如图,△ABC 中,CA =CB (1) 当点D 为AB 上一点,∠A =21∠MDN =α① 如图1,若点M 、N 分别在AC 、BC 上,AD =BD ,问:DM 与DN 有何数量关系?证明你的结论② 如图2,若41 BDAD ,作∠MDN =2α,使点M 在AC 上,点N 在BC 的延长线上,完成图2,判断DM 与DN 的数量关系,并证明(2) 如图3,当点D 为AC 上的一点,∠A =∠BDN =α,CN ∥AB ,CD =2,AD =1,直接写出AB ·CN 的积24.(本题12分)如图1,直线y =mx +4与x 轴交于点A ,与y 轴交于点C ,CE ∥x 轴交∠CAO 的平分线于点E ,抛物线y =ax 2-5ax +4经过点A 、C 、E ,与x 轴交于另一点B (1) 求抛物线的解析式(2) 点P 是线段AB 上的一个动点,连CP ,作∠CPF =∠CAO ,交直线BE 于F .设线段PB 的长为x ,线段BF 的长为56y ,当P 点运动时,求y 与x 的函数关系式,并写出自变量x 的取值范围(3) 如图2,点G 的坐标为(316,0),过A 点的直线y =kx +3k (k <0)交y 轴于点N ,与过G 点的直线kx ky 3161+-=交于点P ,C 、D 两点关于原点对称,DP 的延长线交抛物线于点M .当k 的取值发生变化时,问:tan ∠APM 的值是否发生变化?若不变,求其值,若变化,请说明理由参考答案一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上.)11. 11;12.1 ; 13. 52 ;14.232 ; 15.-4≤m ≤4; 16.52 .三、解答题(共8小题,共72分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分8分)解: x =417-18.略 19.⑴ 28800,12000,7200题号 1 2345678910答案 AD B D A A A B A C⑵ 10000 ⑶a=4020.解:⑴ A,100元;B:50元 ⑵ 至少购进A50件。

2020年中考数学全真模拟卷4(南京专版)(解析版)

2020年中考数学全真模拟卷4(南京专版)(解析版)

全真模拟卷四(南京专版)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1.32020-的相反数是()A .20203-B .20203C .32020D .32020-【解答】32020-的相反数是:32020.故选:C .2.下列计算正确的是()A .325()a a =B .326(2)4m m -=C .623a a a ÷=D .222()a b a b +=+【解答】A .326()a a =,故本选项不合题意;B .326(2)4m m -=,正确;C .624a a a ÷=,故本选项不合题意;D .222()2a b a ab b +=++,故本选项不合题意.故选:B .3.2764-的立方根是()A .34-B .38C .49-D .916【解答】34- 的立方等于2764-,2764∴-的立方根等于34-.故选:A .4.已知a b >,则下列变形正确的是()A .22a b +<+B .22a b -<-C .22a b <D .a b-<-【解答】A .由a b >,得22a b +>+,不等号的方向不改变.故A 选项错误;B .由a b >,得22a b ->-,不等号的方向不改变,故B 选项错误;C .由a b >,得22a b >,不等号的方向不改变;故C 选项错误;D .由a b >,得a b -<-,不等式两边同时乘以1-,不等号方向改变,故D 选项正确.故选:D .52-的整数部分是a ,小数部分是b b -的值是()A .5B .5-C .3D .3-【解答】34<< ,∴3,∴2-的整数部分是1a =2-的小数部分是3b =-,∴3)3b -==.故选:C .6.如图,现有三角形纸片ABC ∆,8BC =,28ABC S ∆=,点D ,E 分别是AB ,AC 的中点,点M 是DE 上一定点,点N 是BC 上一动点,将纸片依次沿DE ,MN 剪开,得到Ⅰ,Ⅱ和Ⅲ三部分,将Ⅱ绕点D 顺时针旋转,使DB 与DA 重合,将Ⅲ绕点E 逆时针旋转,使EC 与EA 重合,拼成了一个新的图形,则这个新图形周长的最小值是()A .15B .20C .23【解答】如图,作AJ BC ⊥交DE 于O ,由题意旋转后的新图形是平行四边形GHPQ ,周长22DE BC MN =++,AD DB = ,AE EC =,//DE BC ∴,142DE BC ==,1282ABC S BC AJ ∆== ,7AJ ∴=,AD DB = ,//DE BC ,72AO OJ ∴==,∴四边形GHPQ 的周长162MN =+,∴当MN 最小时,周长的值最小,根据垂线段最短可知MN 的最小值为72,∴四边形GHPQ 的周长的最小值为16723+=,故选:C .二.填空题(本大题共10小题,每小题2分,共20分。

2020中考数学模拟试题附答案(2020年7月整理).pdf

2020中考数学模拟试题附答案(2020年7月整理).pdf

D 的坐标;
2
学海无涯
(3)P 是直线 x=1 右侧的抛物线上一动点,过 P 作 PM⊥ x 轴,垂足为 M,是否存在 P 点,使得 以 A,P,M 为顶点的三角形与⊿OAC 相似?若存在,请求出符合条件的点 P 的坐标;若不存在,请 说明理由.
y
一、选择题
九年级数学中考模O拟试B卷答1 案
A 4
x
1.A 2.D 3. D 4.B 5.B 6.A 7. B 8.C
二、填空题 9. 5 10. 3 (答案不唯一)
11. 6.97104
−2 C
12. x −1
13. a(a + b)(a −b)
第 28 题
15.2016
16. 5 17.6﹣2 3 18.6
三、解答题
19.(1) 2 − 2 (2) x1 = −1, x2 = 3
26.(8 分)某商店购进一种商品,每件商品进价 30 元.试销中发现这种商品每天的销售量 y (件)
与每件销售价 x (元)的关系数据如下:
x
30
32
34
36
y
40
36
32
28
(1)已知 y 与 x 满足一次函数关系,根据上表,求出 y 与 x 之间的关系式(不写出自变量 x 的取
值范围);
(2)如果商店销售这种商品,每天要获得 150 元利润,那么每件商品的销售价应定为多少元?

15.若 若a2 + 2a − 3 = 0,则2016 - 2a2 − 4a =

16.如图,将矩形纸片 ABCD 折叠,使点 A 与点 C 重合,折痕为 EF,若 AB=4,BC=2,那么线段 EF
的长为

2020最新中考数学全真模拟试卷和答案

2020最新中考数学全真模拟试卷和答案

一、选择题(本大题每小题4分,满分24分)1.两个连续的正整数的积一定是()(A)素数;(B)合数;(C)偶数;(D)奇数.2.已知实数a、b在数轴上的位置如图所示,则下列等式成立的是()(A)a+b=a+b;(B)a+b=a-b;(C)b+1=b+1;(D)a+1=a+1.b O a13.下列关于x的方程一定有实数解的是()(A)x2+ax+1=0;(B)1+x=1;x-1x-1(C)x-3+2-x=m;(D)x2+ax-1=0.4.下列图形中,是中心对称图形的是()5.根据下表中关于二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判断二次函数的图像与x轴()x…-1012…4-24…则以D为圆心DC为半径的⊙D和以E为圆心EB为半径的⊙E的位置关系是y…-1-7-7(A)只有一个交点;(B)有两个交点,且它们分别在y轴两侧;(C)有两个交点,且它们均在y轴同侧;(D)无交点.6.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,DE∥BC,且AD=2CD,BE()C D A (A)外离;(B)外切;(第6题图)(C)相交;(D)不能确定.二、填空题(本大题每小题4分,满分48分)7.用代数式表示“a的相反数与b的倒数的和的平方”:.8.将a=-2-1,b=813,c=(-2π)0从小到大排列,并用不等号连接:. 9.若最简二次根式-22x与x2+1是同类二次根式,则x=.10.如果一个关于x的一元一次不等式组的解集在数轴上的表示如图所示,那么该不等式组的解集是.°-201°11.如果点P(m,1-2m)在第四象限,那么m的取值范围是.12.若反比例函数y=k(k≠0)的图像在第二、四象限,则一次函数y=kx+k的图x像经过象限.13.A(x,y)、B(x,y)是一次函数y=kx+2(k>0)图象上不同的两点,若1122t=(x-x)(y-y),则t0(填“<”或“>”或“≤”或“≥”).121214.正十二边形的中心角等于度.15.如图,在ABCD中,已知AB=9㎝,AD=6㎝,BE平分∠ABC交DC边AC于点 E ,则 DE 等于㎝.16.如图,在 ∆ABC 中,记 AB = a, AC = b ,则 BC = (用向量 a 、 b 来表示).17.如图,在矩形 ABCD 中,AD =4,DC =3,将△ADC 绕点 A 按逆时针方向旋转到△ AEF (点 A 、B 、E 在同一直线上) ,则 C 点运动的路线的长度为 .18.如图,EF 是△ABC 的中位线,将△AEF 沿中线 AD 的方向平移到 △A 1E 1F 1,使线段 E 1F 1 落在 BC 边上,若△AEF 的面积为 7cm 2,则图中阴影部分的面积是cm 2.E A 1FABaAbF EBC B E 1D F 1 C(第 18 题图)DECBA(第 16 题图) (第 17 题图)D(第 15 题图)三、解答题(第 19~22 题每题 10 分,第 23~24 题每题 12 分,第 25 题14 分,满分 78 分)19.先化简,再求值: x 2 - x - x 2 - x - 2 ,其中 x = 3x 3 - x 2x 2 + x⎨ 接测得。

2020年中考数学全真模拟试卷含答案(精选4套)

2020年中考数学全真模拟试卷含答案(精选4套)

2020年初中毕业生学业考试数学模拟试卷(一)【说明】1、答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好.2、全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页。

考试时间90分钟,满分100分.3、本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效。

答题卡必须保持清洁,不能折叠.4、本卷选择题1—12,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13—23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区规定范围内.5、考试结束,请将本试卷和答题卡一并交回.第一部分 选择题一、(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确..的) 1. -2的相反数是( ) A.21 212.“送人玫瑰,手留余香”,年轻的深圳有一批无私奉献的义工,截至2012年7月深圳注册义工达35000人,用科学计数法表示为( )A.3105.3⨯B. 4105.3⨯C. 31035⨯D. 51035.0⨯ 3.下图中既是中心对称图形,又是轴对称图形的是( )A B C D 4. 要摆出如图1所示的几何体,则最少需要( )个正方体. A .6个 个 个 个 5.下列运算正确的是( )俯视图 左视图 图1A.()222y x y x +=+ B.()422xy y x = C.()322xy xy y x =+ D.224x x x =÷6.已知点A ()1,2-+a a 在平面直角坐标系的第四象限内,则α的取值范围为 ( ) A.12<<-a B.12≤≤-a C.21<<-a D.21≤≤-a7.如图2,直线a ∥b ,∠1的度数是( ) ° ° ° °8.从一个袋中摸出一个球(袋中每一个球被摸到的可能性相等),恰为红球的概率为41,若袋中原有红球4个,则袋中球的总数大约是( )9.某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个.设甲种陀螺单价为x 元,根据题意列方程为( )A.40560006000+-=x x B.40560006000--=x x C.40560006000++=x xD.40560006000-+=x x 10.下列命题中错误的是( )A.两组对边分别相等的四边形是平行四边形B.正方形对角线相等C.对角线相等的四边形是矩形D.菱形的对角线互相垂直11.如图3,在矩形ABCD 中,动点P 从B 点以秒/1cm 速度出发,沿BC 、CD 、DA 运动到A 点停止,设点P 运动时间为x 秒,ABP ∆面积为y 2cm ,y 关于x 的函数图象如图4所示,则矩形ABCD 面积是( )2cmABC D P图3O2 7 9x5y图4ba1150°图2图512. 如图5,已知双曲线)0k (xky >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k 值是( ) D.23 第二部分 非选择题二、填空题(本题共4小题,每小题3分,共12分.) 13. 分解因式:=+-a a a 36323 .14.如图6,平行四边形ABCD 的周长是18cm ,对角线AC 、BD 相交于点O , 若△AOD 与△AOB 的周长差是5cm ,则边AB 的长是 cm.15. 二次函数6+2-=2x x y 的顶点坐标是 .16.如图7所示,在⊙○中,点A 在圆内,B 、C 在圆上,其中OA=7,BC=18, ∠A=∠B=60°,则tan OBC ∠=______.三、解答题(本题共7小题,其中第17小题6分,第18小题6分,第19小题7分,第20小题7分,第21小题8分,第22小题9分,第23小题9分,共52分.) 17.(本题6分)计算:()()︒--+-+-30sin 201312020131π18.(本题6分)先化简,再求值:121412-+÷⎪⎪⎭⎫ ⎝⎛-+-x x x x x ,其中2=x .图6OCBA图719.(本题7分)“地球一小时(Earth Hour )”是世界自然基金会(WWF )应对全球气候变化所提出的一项倡议,希望个人、社区、企业和政府在每年3月最后一个星期六20:30-21:30熄灯一小时,来唤醒人们对节约资源保护环境的意识.2013年,因为西方复活节的缘故,活动提前到2013年3月23日,在今年的活动中,关于南京电量不降反升的现象,有人以“地球一小时——你怎么看”为主题对公众进行了调查,主要有4种态度A :了解、赞成并支持 B :了解,忘了关灯 C :不了解,无所谓 D :纯粹是作秀,不支持,请根据图8中的信息回答下列问题: (1)这次抽样的公众有__________人; (2)请将条形统计图补充完整;(3)在扇形统计图中,“不了解,无所谓”部分所对应的圆心角是_________度;(4)若城区人口有300万人,估计赞成并支持“地球一小时”的有__________人.并根据统计信息,谈谈自己的感想.AB 30%DCA 人数/人DB C 50 态度图820.(本题7分)图9为学校运动会终点计时台侧面示意图,已知: 1=AB 米,5=DE 米,DC BC ⊥,︒60=∠︒30=∠BEC ADC ,.(1)求AD 的长度.(2)如图10,为了避免计时台AB 和AD 的位置受到与水平面成︒45角的光线照射,计时台上方应放直径是多少米的遮阳伞(即求DG 长度)21.(本题8分)如图11,E 是正方形ABCD 的边DC 上的一点,过A 作AF ⊥AE ,交CB 延长线于点F 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EDCBA2-1一、选择题(共12小题,每小题3分,共36分) 1.有理数2-的绝对值是A .2B .-2C .21D .21-2.函数2-x =y 中自变量x 的取值范围是A .x ≥2B .x ≥-2C .x<2D .x<-2 3.解集在数轴上表示为如图所示的不等式组是( ) A .12x x -⎧⎨⎩>>B .12x x -⎧⎨⎩≥>C .12x x -⎧⎨⎩≥<D .12x x -⎧⎨⎩>≥4.下列事件是必然事件的是 A .打开电视机,正在转播足球比赛 B .抛掷一枚均匀的硬币,正面一定朝上 C .三条任意长的线段都可以组成一个三角形D .从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性较大5.若21,x x 是一元二次方程032-2=-x x 的两个根,则21x x +的值是A .2B .-2C .3D .-36.预计2020年我国全年国内生产总值为367000亿元,数367000用科学记数法表示应为A .410.736⨯B .51076.3⨯C . 610736.0⨯D .61076.3⨯ 7.如图,在正方形ABCD 中,以AB 为边在正方形ABCD 内作等边△ABE, 连结DE,CD ,则∠CED 的大小是A .160°B .155°C .150°D .145° 8.左图是由四个棱长为1小正方体组成的几何体,它的左视图是4=1+3 9=3+616=6+10ODCBAA. B. C. D. 9.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图1中可以发现,任何一个大于1的“正方形数”都可以 看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 A .13 = 3+10 B .25 = 9+16 C .36 = 15+21D .49 = 18+3110如图,⊙O 内接△ABC ,∠ACB =45°,∠AOC=150°,AB 的延长线与过点C 的切线相交于点D,若⊙O 的半径为1,则BD 的长是A .251-+B .251+ C .262-+ D .262+11..某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A 、B 、C 、D 四等,并绘制成如图所示的条形统计图和扇形统计图(未完成).A B C D等级20 15 10 5 0人数10% D AC30%BPFED CBA y xOCBA根据图中所给信息,下列判断:①九年级(1)班参加体育测试的学生有50人;②等级B 部分所占的百分比最大;③等级C 的学生有10人;④若该校九年级学生共有850人参加体育测试,估计达到A 级和B 级的学生共有595人,.其中判断正确的是A.①③④B.②③④C. ①②D.①②③④12.在正方形ABCD 中,P 为AB 的中点,BE ⊥PD 的延长线于点E,连结AE 、BE 、FA ⊥AE 交DP 于点F ,连结BF,FC.下列结论: ①△ABE ≌△ADF ; ②FB=AB ;③CF ⊥DP ;④FC=EF 其中正确的是 A .①②④ B .①③④ C .①②③ D .①②③④ 二、填空题(共4小题,每小题3分,共12分) 13.计算:cos45°=14.某班在2011年第一小组六名学生体育中考的成绩如下:25,30,30,29,27,28,,这组数据的中位数是_________,众数是_________,极差是__________. 15.反比例函数x ky =(x>0)的图象如图,点A 是图象上的点,连结OA并延长到B,使得BA=OA ,BC ⊥x 轴交x ky =(x>0)的图象于点C,连结OC,6=∆BCO S ,已知线段OA 的长是x ky =(x>0)的图象上的点与点O 之间的距离的最小值,则=k ________.16. 一名考生步行前往考场,10分钟走了总路程的41,估计步行不能准时lFECBADC B A到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定 总路程为1),则他到达考场所花的时间比一直步行提前了____分钟 三、解答题(共9小题,共72分) 17.(本题6分)解方程:0132=--x x.18.(本题6分)先化简,再求值:422242-÷⎪⎭⎫⎝⎛---x x x x ,其中3-=x .19.(本题6分)如图,在△ABC 中,∠A =90°,AB=AC, 直线l 经过点A,BE ⊥l 于E ,CF ⊥l 于F, 求证:BE+CF=EF .20.(本题7分)在毕业晚会上,同学们表演哪一类型的节目由自己摸球来决定.在一个不透明的口袋中,装有除标号外其它完全相同的A 、B 、C 三个小球,表演节目前,先从袋中摸球一次(摸球后又放回袋中),如果摸到的是A 球,则表演唱歌;如果摸到的是B 球,则表演跳舞;如果摸到的是C 球,则表演朗诵. (1) 请用列表或画树形图表示两次摸球的所有可能的结果;(2)若小明要表演两个节目,则他表演的节目不是同一类型的概率是多少? 21.(本题7分)在小正方形组成的15×15的网络中,四边形ABCD 和四边形1111D C B A 的位置如图所示.⑴现把四边形ABCD 绕D 点按顺时针方向旋转900,画出相应的图形2222D C B A , ⑵若四边形ABCD 平移后,与四边形1111D C B A 成轴对称,写出满足要求的一种平移方法,并画出平移后的图形3333D C B AG22.(本题8分)如图,点A 优弧BC 的中点,E,D 分别为弧AB 和弧AC 的中点,连结AC,EC,AD,连结BD 交AC 于点F. 交EC 于G. (1)求证:EC ∥AD(2)若AF=CD=1,求FG 的长.23.(本题10分)小明和几个要好的朋友决定成立汽车销售公司,加盟某品牌汽车销售,前期共投入400万元,另外又购进了一批每辆进价为20万元的这种品牌的汽车,市场调研表明:当销售价为29万元时,平均每季度只能售出30辆,而当销售价每降低0.5万元时,图1GFEDCB A图2G FEDCBA平均每季度能多售出5辆,但是生产汽车的厂家为了厂家的利益规定:每辆汽车售价不得低于26万元,不得高于29万元,如果设每辆汽车售价为x 万元,平均每季度的销售量y 辆.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)第一季度公司是亏损还是盈利?求出盈利最大或亏损最小时的汽车售价; (3)在(2)的前提下(即在第一季度盈利最大或亏损最小时)第二季度公司重新确定汽车的售价,能否使两个季度共盈利达310万元,若能,求出第二季度的汽车售价;若不能,请说明理由。

24.(本题10分)已知:在△ACB 中∠ACB=90︒,CD ⊥AB 于D ,点E 在AC 上,BE 交CD 于点G ,EF ⊥BE 交AB 于点F ,(1)如图1,AC=BC,点E 为AC 的中点,求证:EF=EG;(2) 如图2,BE 平分∠CBE ,AC=2BC,试探究线段EF 与EG 的数量关系,并证明你的结论。

25.(本题12分)如图,已知抛物线C1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1. (1)求P 点坐标及a 的值;(3分)(2)如图1,抛物线C2与抛物线C1关于x 轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C3的解析式;(4分)(3)如图2,点Q 是x 轴正半轴上一点,将抛物线C1绕点Q 旋转180°后得到抛物线C4.抛物线C4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.(5分)参考答案 一、选择题1.A 2.A 3. C 4. D 5. A 6. B 7.C 8.B. 9.C 10.C 11. D 12.D . 二、填空题13.2214. 28.5 ,30, 5 15. 4 16. 24三、解答题yxAO BP M图1C1C2 C3图1yxAO B P N图2 C1C4QEF 图D 3C 3B 3A 3D 2C 2B 2A 2D 1C 1B 1A 1D CBA17.2133±=x 18.原式=2122-=+x 19.可证:△ABE ≌△CAF,∴AE=CF,BE=AF,∴EF=AF+AE=CF+BE 20.(1)法一:列表如下:A B C A AA AB AC B BA BB BC CCACBCC法二:画树状图如下:(2) 因此他表演的节目不是同一类型的概率是69=2321.(1)旋转后得到的图形2222D C B A 如图所示 (2)将四边形ABCD 先向右平移4个单位, 再向下平移6个单位得到四边形3333D C B A 如图所示 (本题答案不唯一)A 开 始 ABCA BC A B CB C22.(1)∵点A 优弧BC 的中点,∴弧AB=弧AC,又∵E,D 分别为弧AB 和弧AC 的中点,∴弧AE=弧CD ∴∠ACE=∠CAD,∴CE ∥AD(2)可证AF=CD=DG=AD=1,CF=DF,△CDF ∽△CDA,∴AC CF CD •=2,设x CF =,∴)1(1+=x x∴251+-=x ,∴DG=DG-DF=CD-FC=1-251+-=253-23.(1)32010+-=x y , 2926≤≤x ;(2)设第一季度公司利润为w 万元,则4040)26(10)20(2-≤---=-=x x y w ,∴第一季度公司亏损了,当汽车售价定为26万元/辆时,亏损最小,最小亏损为40万元;(3∵两个季度共盈利达310万元,∴31040-20)-320)(x (-10x ==+,∴25,2721==x x ,又∵2926≤≤x ,∴x =27,,24.(1)过E 作EM ⊥AB 于M,EN ⊥CD 于N,则△EFM ≌△EGN,则EF=EG(2)过E 作EM ⊥AB 于M,EN ⊥CD 于N,则△EFM ∽△EGN,则EM ENEF EG =,又∵BE 平分∠ABC ,∴CE=EM∴CE ENEF EG =,可证552==CEEN AB AC ,∴25=EG EF25.(1)由抛物线C1:()522-+=x a y 得顶点P 的为(-2,-5)yxAO BPM图1 C1C2C3图(1)∵点B (1,0)在抛物线C1上∴()52102-+=a∴a =59(2)连接PM ,作PH ⊥x 轴于H ,作MG ⊥x 轴于G ∵点P 、M 关于点B 成中心对称 ∴PM 过点B ,且PB =MB ∴△PBH ≌△MBG∴MG =PH =5,BG =BH =3∴顶点M 的坐标为(4,5)抛物线C2由C1关于x 轴对称得到,抛物线C3由C2平移得到 ∴抛物线C3的表达式为()54952+--=x y(3)∵抛物线C4由C1绕点x 轴上的点Q 旋转180°得到 ∴顶点N 、P 关于点Q 成中心对称 由(2)得点N 的纵坐标为5 设点N 坐标为(m ,5) 作PH ⊥x 轴于H ,作NG ⊥x 轴于G 作PK ⊥NG 于K ∵旋转中心Q 在x 轴上 ∴EF =AB =2BH =6∴FG =3,点F 坐标为(m+3,0) H 坐标为(2,0),K 坐标为(m ,-5), 根据勾股定理得yxAO B PN图(2)C1C4Q E F H GKPN2=NK2+PK2=m2+4m+104PF2=PH2+HF2=m2+10m+50NF2=52+32=34①当∠PNF =90º时,PN2+ NF2=PF2,解得m =443,∴Q 点坐标为(193,0)②当∠PFN =90º时,PF2+ NF2=PN2,解得m =103,∴Q 点坐标为(23,0) ③∵PN >NK =10>NF ,∴∠NPF ≠90º综上所得,当Q 点坐标为(193,0)或(23,0)时,以点P 、N 、F 为顶点 的三角形是直角三角形.。

相关文档
最新文档