时域离散信号的产生与基本运算

合集下载

离散时间信号的时域分析实验报告

离散时间信号的时域分析实验报告

离散时间信号的时域分析实验报告实验报告:离散时间信号的时域分析一、实验目的本实验旨在通过MATLAB软件,对离散时间信号进行时域分析,包括信号的显示、基本运算(如加法、减法、乘法、反转等)、以及频域变换(如傅里叶变换)等,以加深对离散时间信号处理的基本概念和原理的理解。

二、实验原理离散时间信号是在时间轴上离散分布的信号,其数学表示为离散时间函数。

与连续时间信号不同,离散时间信号只能在特定的时间点取值。

离散时间信号的时域分析是研究信号的基本属性,包括幅度、时间、频率等。

通过时域分析,我们可以对信号进行各种基本运算和变换,以提取有用的信息。

三、实验步骤1.信号生成:首先,我们使用MATLAB生成两组简单的离散时间信号,一组为正弦波,另一组为方波。

我们将这些信号存储在数组中,以便后续分析和显示。

2.信号显示:利用MATLAB的绘图功能,将生成的信号在时域中显示出来。

这样,我们可以直观地观察信号的基本属性,包括幅度和时间关系。

3.基本运算:对生成的信号进行基本运算,包括加法、减法、乘法、反转等。

将这些运算的结果存储在新的数组中,并绘制出运算后的信号波形。

4.傅里叶变换:使用MATLAB的FFT(快速傅里叶变换)函数,将信号从时域变换到频域。

我们可以得到信号的频谱,进而分析信号的频率属性。

5.结果分析:对上述步骤得到的结果进行分析,包括比较基本运算前后的信号波形变化,以及傅里叶变换前后的频谱差异等。

四、实验结果1.信号显示:通过绘制图形,我们观察到正弦波和方波在时域中的波形特点。

正弦波呈现周期性的波形,方波则呈现明显的阶跃特性。

2.基本运算:通过对比基本运算前后的信号波形图,我们可以观察到信号经过加法、减法、乘法、反转等运算后,其波形发生相应的变化。

例如,两个信号相加后,其幅度和时间与原信号不同。

反转信号则使得波形在时间轴上反向。

3.傅里叶变换:通过FFT变换,我们将时域中的正弦波和方波转换到频域。

正弦波的频谱显示其频率为单一的直流分量,方波的频谱则显示其主要频率分量是直流分量和若干奇数倍的谐波分量。

离散时间信号的基本运算

离散时间信号的基本运算

信号绝对值的积分
总结词
信号绝对值的积分是指将离散时间信号中每个值的绝对值与其对应的权系数相乘,并求和得到的结果 。
详细描述
信号绝对值的积分在处理一些具有正负性质的问题时非常有用,例如计算信号的能量或幅度。对于离散时 间信号 $x(n)$,其绝对值的积分可以表示为 $sum_{n=0}^{N-1} |x(n)| cdot Delta t$。
符号相加主要用于处理具有正负符号 的信号,使得正负符号能够相互抵消, 从而得到一个新的符号较少的信号。
02
离散时间信号的乘法
离散时间信号的乘法 信号相乘
信号相乘
离散时间信号的乘法是指将两个信号对应时刻的数值相乘。当两个信号相乘时,其输出信号的幅度将等于两个输入信 号幅度相乘的结果。
信号的绝对值相乘
04
离散时间信号的微分
信号的微分
信号的微分是指将信号中的每个值都 减去前一个值,得到的结果就是微分 后的信号。在离散时间信号中,微分 运算可以用于分析信号的变化趋势。
例如,如果一个离散时间信号为 [1, 3, 5, 7, 9],其微分为 [0, 2, 2, 2, 2],表 示信号在每个时刻的变化量。
信号符号的积分
总结词
信号符号的积分是指将离散时间信号中 每个值的符号与其对应的权系数相乘, 并求和得到的结果。
VS
详细描述
信号符号的积分可以用于处理一些具有正 负性质的问题,例如计算信号的极性或方 向。对于离散时间信号 $x(n)$,其符号的 积分可以表示为 $sum_{n=0}^{N-1} text{sgn}(x(n)) cdot Delta t$,其中 $text{sgn}(x(n))$ 表示 $x(n)$ 的符号函数。
03

信号与系统-离散信号与系统

信号与系统-离散信号与系统

(1)
y (k + 3) − 2 2 y (k + 2) + y (k + 1) + 0 y (k ) = f (k ) 1 y (k + 2) − y (k + 1) + y (k ) = f (k ) 4
(2)
解:用转移算子法求。
1 (1) H ( E ) = 3 2 E − 2 2E + E 1 = E ( E − 2 − 1)( E − 2 + 1) 1 1 1 2( 2 + 1) 2( 2 − 1) = + − E E − 2 −1 E − 2 + 1
f ( n )= ∑ i=-∞ f(i) ∗ δ (k-i)=f(n) ∗ δ (n)

四 离散信号的卷积和
l 定义
f1 (n) ∗ f2 (n)=∑i=-∞ f1 (i) ∗ f2 (k-i)=∑i=-∞ f2 (i) ∗ f1 (k-i)
∞ ∞
l 上下限范围
– 当f1(n), f2(n)均为因果序列
yh (n) =
l
l

K
N i =1
A iα
n i
i −1 n yh (n) = ∑i =+1 An α1 + ∑i=k +1 Aiαin i N
l l l
将所求得的强迫解和自由解相加,即可得到全响应 将给定的全响应的初始值代入到方程中,已确定待定系数 将所求得的待定系数带入到全响应方程中
例:求下列差分方程所 描述的系统的单位响应 h(k)
1 故h(k) =δ (k −1) +[ ( 2 +1)k−1 − 2( 2 +1) 1 k−1 ( 2 −1) ]U(k −1) 2( 2 −1) 1 k−2 1 k−2 =δ (k −1) +[ ( 2 +1) − ( 2 −1) ]U(k −2) −δ (k −1) 2 2 1 k−2 k−2 = [( 2 +1) −( 2 −1) ]U(k −2) 2

离散时间系统的时域分析

离散时间系统的时域分析

称为混叠。 常称作折叠频率。 2
信号频率
fa nfs fm
fa fs / 2
假频
Fδ(jω)
抽样频率
ω Ω-ωm ωm Ω
例如:当抽样率为5kHz对3kHz的余弦信号 抽样,然后用截止频率为2.5kHz的低通滤波 器进行滤波,输出的频谱只包含2kHz的频率, 这是原信号中所没有的。
对一个低通滤波器的冲激响应进行抽样,抽 样后低频通带将在整个频率轴上周期的重复出现, 这种现象称为“伪门”。在设计数字滤波器时要 适当选择抽样率,使得伪门在干扰频率之外。
H(jω)
ω 0 数字滤波器的伪门
例1:对于频率为150Hz的正弦时间序列,分别以4ms 和8ms采样结果会如何?
100HZ 25HZ
在实际工作中应用抽样定理时,还应考虑下 面两个实际问题:
1、在理论上讲,按照奈奎斯特抽样率抽样, 通过理想低通滤波器以后,就可以恢复原信 号。但理想低通滤波器在物理上是不可实现 的,实际滤波器都存在一个过渡带,为了保 证在滤波器过渡带的频率范围内信号的频谱 为零,必须选择高于2fm的抽样率。
u (n) 0, n 0
...
n -1 0 1 2 3
(n) u(n) u(n) u(n 1)
u(n) (n m) (n) (n 1) (n 2) m0
3.矩形序列 R N (n )
1, R N (n) 0,
0 n N 1 其他n
RN (n) u(n) u(n N )
第五章 离散时间系统 的时域分析
§5.1 离散信号与抽样定理
一、离散信号及其表示
1、离散时间信号是指只在一系列离散的时刻 tk (k = 0,1,2,…)时,信号才有确定值,在其它时 刻,未定义; 2、离散时间信号是离散时间变量 tk 的函数; 3、抽样间隔可以是均匀的,也可以非均匀。

时域离散信号的产生与基本运算

时域离散信号的产生与基本运算

实验一 时域离散信号的产生与基本运算一、实验目的1、了解常用的时域离散信号及其特点。

2、掌握MATLAB 产生常用时域离散信号的方法。

3、掌握时域离散信号简单的基本运算方法。

二、实验内容1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。

2、自己设定参数,分别表示并绘制信号移位、信号相加、信号相乘、信号翻转、 信号和、信号积、信号能量。

3、已知信号(1) 描绘)(n x 序列的波形。

(2) 用延迟的单位脉冲序列及其加权和表示)(n x 序列。

(3) 描绘以下序列的波形:)2()(),2(2)(),2(2)(321n x n x n x n x n x n x -=+=-=三、实现步骤1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。

(1)单位抽样序列程序:x=zeros(1,10);x(2)=1;stem(x,'filled')axis([0,10,-0.2,1]);title('µ¥Î»³éÑùÐòÁÐ');-0.200.20.40.60.8图1 (2)单位阶跃序列程序:N=10;u=ones(1,N);stem(u,'filled')axis([-10,10,0,1]);title('µ¥Î»½×Ô¾ÐòÁÐ');00.10.20.30.40.50.60.70.80.91单位阶跃序列图2 (3)正弦序列程序:x=-20:1:20;y=sin(0.2*pi.*x+0.5*pi);stem(x,y,'filled');axis([-20,20,-2,2]);title('ÕýÏÒÐòÁÐ');正弦序列-20-15-10-505101520图3 (4)实指数序列a=1/2程序:n=0:10;a1=1/2;y1=a1.^n;stem(n,y1,'filled');axis([0,10,0,1]);title('ʵָÊýÐòÁУ¬a=1/2');实指数序列,a=1/2图4 5实指数序列a=2程序:n=0:10;a2=2;y2=a2.^n;stem(n,y2,'filled');title('ʵָÊýÐòÁÐ,a=2');实指数序列,a=2图5 6 随机序列程序:y=rand(1,20);stem(y,'filled');title('Ëæ»úÐòÁÐ');0246810121416182000.10.20.30.40.50.60.70.80.91随机序列图62、自己设定参数,分别表示并绘制信号移位、信号相加、信号相乘、信号翻转、 信号和、信号积、信号能量。

时域离散信号实验报告(3篇)

时域离散信号实验报告(3篇)

第1篇一、实验目的1. 理解时域离散信号的基本概念和特性。

2. 掌握时域离散信号的表示方法。

3. 熟悉常用时域离散信号的产生方法。

4. 掌握时域离散信号的基本运算方法。

5. 通过MATLAB软件进行时域离散信号的仿真分析。

二、实验原理时域离散信号是指在时间轴上取离散值的一类信号。

这类信号在时间上不连续,但在数值上可以取到任意值。

时域离散信号在数字信号处理领域有着广泛的应用,如通信、图像处理、语音处理等。

时域离散信号的基本表示方法有:1. 序列表示法:用数学符号表示离散信号,如 \( x[n] \) 表示离散时间信号。

2. 图形表示法:用图形表示离散信号,如用折线图表示序列。

3. 时域波形图表示法:用波形图表示离散信号,如用MATLAB软件生成的波形图。

常用时域离散信号的产生方法包括:1. 单位阶跃信号:表示信号在某个时刻发生突变。

2. 单位冲激信号:表示信号在某个时刻发生瞬时脉冲。

3. 正弦信号:表示信号在时间上呈现正弦波形。

4. 矩形脉冲信号:表示信号在时间上呈现矩形波形。

时域离散信号的基本运算方法包括:1. 加法:将两个离散信号相加。

2. 乘法:将两个离散信号相乘。

3. 卷积:将一个离散信号与另一个离散信号的移位序列进行乘法运算。

4. 反褶:将离散信号沿时间轴翻转。

三、实验内容1. 实验一:时域离散信号的表示方法(1)使用序列表示法表示以下信号:- 单位阶跃信号:\( u[n] \)- 单位冲激信号:\( \delta[n] \)- 正弦信号:\( \sin(2\pi f_0 n) \)- 矩形脉冲信号:\( \text{rect}(n) \)(2)使用图形表示法绘制以上信号。

2. 实验二:时域离散信号的产生方法(1)使用MATLAB软件生成以下信号:- 单位阶跃信号- 单位冲激信号- 正弦信号(频率为1Hz)- 矩形脉冲信号(宽度为2)(2)观察并分析信号的波形。

3. 实验三:时域离散信号的基本运算(1)使用MATLAB软件对以下信号进行加法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(2)使用MATLAB软件对以下信号进行乘法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(3)使用MATLAB软件对以下信号进行卷积运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(4)使用MATLAB软件对以下信号进行反褶运算:- \( u[n] \)4. 实验四:时域离散信号的仿真分析(1)使用MATLAB软件对以下系统进行时域分析:- 系统函数:\( H(z) = \frac{1}{1 - 0.5z^{-1}} \)(2)观察并分析系统的单位冲激响应。

离散时间信号的时域描述及基本运算

离散时间信号的时域描述及基本运算

[例] 画出信号f (t) 的奇、偶分量 画出信号f
解:
f(t) 2 1
-1
0
f(t) 2 1
1
t
-1
0
1
t
3.信号分解为实部分量与虚部分量 信号分解为实部分量 实部分量与
连续时间信号
f (t ) = f r (t ) + j f i (t )
实部分量 虚部分量
f * (t ) = f r (t ) j f i (t )
在序列2点之间插入 个点 在序列 点之间插入M1个点 点之间插入
4. 序列相加
指将若干离散序列序号相同的数值相加
y[k ] = f1[k ] + f 2 [k ] + … + f n [k ]
f1 [ k ]
1 k 0 1
f1[k ] + f 2 [k ]
2
f 2 [k ]
k
1 k
0
0
5. 序列相乘
1 f o (t ) = [ f (t ) f (t )] 2 f o (t ) = f o (t )
离散时间信号
f [k ] = f e [k ] + f o [k ] 1 f o [k ] = { f [k ] f [ k ]} 2
1 f e [k ] = { f [k ] + f [k ]} 2
1. 翻转
f [k] → f [k]
以纵轴为中心作180度翻转 将 f [k] 以纵轴为中心作 度翻转
f [k] 2 1 1 0 1 2 3 k
2 1 0 1
3 2
f [k] 2
3 2 1 2 k
2. 位移 f [k] → f [k±n]

数字信号处理第1章时域离散信号和

数字信号处理第1章时域离散信号和

x(n) sin( (n 8)
4
课件
18
第1章 时域离散信号和时域离散系统
上式表明 sin( n) 是周期为8的周期序列,也称正
4
弦序列,如图1.2.5所示。下面讨论一般正弦序列的周 期性。
那么
x(n)=Asin(ω0n+φ)
x(n+N) =Asin(ω0(n+N)+φ)=Asin(ω0n+ω0N+φ)
δ (n)
1
n -1 0 1 2 3
(a)
δ (t)
t 0 (b)
图1.2.1 (a)单位采样序列;
(b)单位冲激信号
课件
8
第1章 时域离散信号和时域离散系统
2. 单位阶跃序列u(n)
1,n≥0 0,n<0 单位阶跃序列如图1.2.2所示。 模拟信号中单位阶跃函数u(t) 1,t >0 0,t <0 ½,t=0 δ(n)与u(n)之间的关系如下式所示:
y(n)=T[x1(n)+x2(n)]=ax1(n)+ax2(n)+b
y(n)≠y1(n)+y2(n)
因此,该系统不是线性系统。用同样方法可以证
明 y(n)

x(n) sin(0n


4
) 所代表的系统是线性系统。
课件
34
第1章 时域离散信号和时域离散系统
1.3.2 如果系统对输入信号的运算关系T[·]在整个运
y1(n)=T[x1(n)],y2(n)=T[x2(n)]
那么线性系统一定满足下面两个公式:
T[ x1(n)+x2(n)]= y1(n)+y2(n) T[a x1(n)]=ay y1(n)

信号与系统公式总结

信号与系统公式总结

信号与系统公式总结在信号与系统的学习过程中,公式总结是非常重要的,它可以帮助我们更好地理解和掌握知识。

下面将对信号与系统中常见的公式进行总结,希望能够对大家的学习有所帮助。

一、基本概念公式总结。

1. 信号的分类:连续时间信号,x(t)。

离散时间信号,x[n]2. 基本信号:单位冲激函数,δ(t)或δ[n]阶跃函数,u(t)或u[n]3. 基本性质:奇偶性,x(t) = x(-t),x[n] = x[-n]周期性,x(t) = x(t+T),x[n] = x[n+N]二、时域分析公式总结。

1. 基本运算:时移性质,x(t-t0)或x[n-n0]反褶性质,x(-t)或x[-n]放大缩小,Ax(t)或Ax[n]2. 基本运算公式:加法,x1(t) + x2(t)或x1[n] + x2[n]乘法,x1(t)x2(t)或x1[n]x2[n]三、频域分析公式总结。

1. 傅里叶变换:连续时间信号,X(ω) = ∫x(t)e^(-jωt)dt。

离散时间信号,X(e^jω) = Σx[n]e^(-jωn)。

2. 傅里叶变换性质:线性性质,aX1(ω) + bX2(ω)。

时移性质,x(t-t0)对应X(ω)e^(-jωt0)。

频移性质,x(t)e^(jω0t)对应X(ω-ω0)。

四、系统分析公式总结。

1. 系统性质:线性性,y(t) = ax1(t) + bx2(t)。

时不变性,y(t) = x(t-t0)对应h(t-t0)。

2. 系统时域分析:离散卷积,y[n] = Σx[k]h[n-k]连续卷积,y(t) = ∫x(τ)h(t-τ)dτ。

3. 系统频域分析:系统函数,H(ω) = Y(ω)/X(ω)。

五、采样定理公式总结。

1. 采样定理:连续信号采样,x(t)对应x[n],x[n] = x(nT)。

重建滤波器,h(t) = Tsinc(πt/T)。

六、傅里叶级数公式总结。

1. 傅里叶级数:周期信号的傅里叶级数展开。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

离散信号的产生及运算

离散信号的产生及运算

离散信号的产生及运算实验一离散信号的产生及运算一.实验目的:1.复习和巩固数字信号处理中离散信号的产生和运算2.学习和掌握用MATLAB 产生离散信号的方法3.学习和掌握用MATLAB 对离散信号进行运算二.实验原理1.用MATLAB 函数产生离散信号信号是数字信号处理的最基本内容。

没有信号,数字信号处理就没了工作对象。

MATLAB7.0 内部提供了大量的函数,用来产生常用的信号波形。

例如,三角函数(sin,cos), 指数函数(exp),锯齿波函数(sawtooth), 随机数函数(rand)等。

⑴产生被噪声污染的正弦信号用随机数函数产生污染的正弦信号。

⑵产生单位脉冲序列和单位阶跃序列按定义,单位脉冲序列为0 0 0 1, ( ) 0,n n n n n n单位阶跃序列为。

0 0 0 1, ( ) 0,n n u n n n n⑶矩形脉冲信号:在MATLAB 中用rectpuls 函数来表示,其调用形式为:y=rectpuls(t,width),用以产生一个幅值为1,宽度为width,相对于t=0 点左右对称的矩形波信号,该函数的横坐标范围由向量t 决定,是以t=0 为中心向左右各展开width/2 的范围,width 的默认值为1。

例:以t=2T(即t-2×T=0)为对称中心的矩形脉冲信号的MATLAB 源程序如下:(取T=1)t=0:0.001:4;T=1;ft=rectpuls(t-2*T,2*T);plot(t,ft);grid on; axis([0 4 –0.5 1.5]);⑷周期性矩形波(方波)信号在MATLAB 中用square 函数来表示,其调用形式为:y=square(t,DUTY),用以产生一个周期为2π、幅值为±1 的周期性方波信号,其中的DUTY 参数表示占空比,即在信号的一个周期中正值所占的百分比。

例如频率为30Hz 的周期性方波信号的MATLAB 参考程序如下:t=-0.0625:0.0001:0.0625;y=square(2*pi*30*t,75);plot(t,y);axis([-0.0625 0.0625 –1.5 1.5]);grid on ;2.MATLAB 中信号的运算乘法和加法:离散信号之间的乘法和加法,是指它的同序号的序列值逐项对应相乘和相加。

信号系统-离散时间信号的基本运算

信号系统-离散时间信号的基本运算

翻转(x[k] →x[-k])位移(x[k] →x[k±n])内插与抽取序列相加序列相乘差分与求和x [k -n ]表示将x [k ]右移n 个单位。

x [k +n ]表示将x [k ]左移n 个单位。

[]}[{][2=∇∇=∇k x k x k x []}[{][2k x k x k x ==∆∆∆]}[{][1k x k x n n-∇∇=∇]}[{][1k x k x n n-=∆∆∆]1[][][--=∇k x k x k x ][]1[][k x k x k x -+=∆单位脉冲序列可用单位阶跃序列]1[][][--=k u k u k δ1.信号分解为直流分量与交流分量2.信号分解为奇分量与偶分量之和3.信号分解为实部分量与虚部分量4.连续信号分解为冲激函数的线性组合5.离散序列分解为脉冲序列的线性组合)()()(AC DC t x t x t x +=⎰-=bat t x a b t x d )(1)(DC ][][][AC DC k x k x k x +=∑=+-=21][11][12DC N N k k x N N k x 连续时间信号离散时间信号直流交流)()()(AC DC t x t x t x +=)()()(o e t x t x t x +=)]()([21)(e t x t x t x -+=)]()([21)(o t x t x t x --=)()(e e t x t x -=)()(o o t x t x --=][][][o e k x k x k x +=]}[][{21][e k x k x k x -+=[][{21][o k x k x k x --= 离散时间信号偶分量奇分量解:-)∆u +ττδτd )()()(-=⎰∞∞-t x tx物理意义:不同的连续信号都可以分解为冲激信号,不同的信号只是它们的系数不同。

实际应用:当求解信号通过系统产生的响应时,只需求解冲激信号通过该系统产生的响应,然后利用线性时不变系统的特性,进行迭加和延时即可求得信号x (t )产生的响应。

信号与系统PPT 第六章 离散时域分析

信号与系统PPT  第六章 离散时域分析

例:求z(n)=x(n)·y(n)
解:
z(0)=x(0)·y(0) z(1)=x(1)·y(1) z(2)=x(2)·y(2)

例:当 m =3时
例:
5、序列的差分运算:一个序列与一个移位序列之差。
一阶前向差分: x[n] x[n 1] x[n] 一阶后向差分: x[n] x[n] x[n 1]
[n]
1
0
t
t
u(t) ( )d ------ 积分关系
u[n]
1
...
-2 -1 0 1 2 3 n
-2 -1 0 1 2 3 n
[n] u[n]u[n 1] ------ 差分关系
u[n] [n][n 1][n 2] [n m] ------ 求和关系 m0
(3)矩形序列
x(m)和h(m)如图所示
x(m) 3/2
1 1/2
0123
m
h(m) 1
01 2
m
h(0-m) 1 n=0反褶
-2 -1 0
m
h(-1-m) 1 n=-1左移
-3 -2 -1 0
m
反褶 .以m=0为对称轴, 折叠h(m) 得到h(0-m)
可见, 当n<1时,x(m)与 h(n-m)无交叠,相乘处 处为 零,即y(n)=0,n<1
若有两个序列 x1n和x2 n,定义和式
x1k x2n k
k
为x1n和x2 n的卷积和,记作1n x2 n
(2)计算方法: 离散线性卷积的计算:图解法、解析法,对位相乘法
•图解法
卷积和的图解过程:换元 反褶 平移 相乘 取和
h[-m]、 h[n-m]、x[m] h[n-m]、 x[m]h[n m] m

实验一离散时间信号的表示与运算

实验一离散时间信号的表示与运算

实验一离散时间信号的表示与运算实验一:离散时间信号的表示与运算一、实验目的本实验旨在让学生了解和掌握离散时间信号的基本表示方法,包括时域和频域表示方法,以及基本信号的运算方法,从而为学生进一步学习数字信号处理和通信系统等课程打下坚实的基础。

二、实验原理离散时间信号是在时间轴上离散出现的信号,与连续时间信号不同,它只能在离散的时间点上采样观察。

离散时间信号的表示方法包括时域和频域表示方法,其中时域表示方法是最基本和直观的表示方法。

离散时间信号的运算包括加法、减法、乘法和除法等基本运算,通过这些基本运算可以实现对离散时间信号的基本处理。

此外,离散时间信号的变换也成为频域分析,将信号从时域转化为频域,可以对信号的频率特性进行分析。

三、实验步骤1.准备阶段:在进行实验之前,需要准备好实验所需的器材和软件,包括计算机、信号发生器和数字示波器等。

同时,学生应该对离散时间信号的基本概念和表示方法进行预习,以便更好地进行实验。

2.时域表示:首先,通过计算机生成一组离散时间信号,例如矩形波信号、正弦波信号和余弦波信号等。

然后,将所生成的离散时间信号在数字示波器中进行观察和记录,并对这些信号进行简单的处理,例如加减乘除等基本运算。

3.频域表示:通过使用离散傅里叶变换(DFT)将所生成的离散时间信号从时域转化到频域,并对信号的频谱进行分析。

通过观察信号的频谱,可以了解信号的频率成分和幅度分布等情况。

4.实验总结:在完成实验观察和记录后,学生应该对实验结果进行分析和总结,并对实验过程中遇到的问题进行思考和解决。

同时,学生应该了解并掌握离散时间信号的表示与运算的基本原理和方法。

四、实验结果及分析通过本次实验,学生应该得到以下实验结果:1.了解并掌握离散时间信号的基本概念和表示方法;2.学会使用简单的离散时间信号处理算法对信号进行处理;3.掌握将离散时间信号从时域转化为频域的方法,并对信号的频谱进行分析;4.学会使用MATLAB等软件对离散时间信号进行处理和分析。

《数字信号处理》序列的基本运算和时域变换与离散信号的卷积和实验一

《数字信号处理》序列的基本运算和时域变换与离散信号的卷积和实验一

《数字信号处理》序列的基本运算和时域变换与离散信号的卷积和实验一、实验目的1、熟悉用MATLAB描绘二维图像的方法。

2、掌握用MATLAB对序列进行基本的运算和时域变换的方法。

3、掌握两个离散信号卷积和的计算方法和编程技术。

二、实验器材1.电脑2.MATLAB软件三、实验原理1、序列的基本运算(1)加法:x1(n)+x2(n)序列的加法运算为对应位置处量值的相加,在MATLAB中可用运算符“+”实现,但要求参与运算的序列的长度必须相等。

如果长度不等或者长度相等但采样位置不同,则不能直接应用该运算符,此时需要先给定参数使序列具有相同的位置向量和长度。

下面给出sigadd函数实现任意两序列的加法运算。

X1(n)=sin n/15X2(n)=1.05n例:function [y,n] = sigadd(x1,n1,x2,n2)n = min(min(n1),min(n2)):max(max(n1),max(n2)); % duration of y(n)y1 = zeros(1,length(n));y2 = y1;y = y1+y2;其中x1和x2为参与加法运算的两序列,n1和n2分别为x1和x2的位置向量。

(2)乘法:x1(n)·x2(n)序列的乘法运算为对应位置处量值的相乘,在MATLAB中由数组运算符“.*”实现,也受到“+”运算符同样的限制。

(3)反折:x(n)→x(-n)序列的反折指序列的每个量值都对n=0做一个对称操作,从而得到一个新序列。

在MATLAB 中可由fliplr(x)函数实现,此时序列位置的反折则由-fliplr(n)实现。

(4)平移:x(n)→x(n -m)平移操作是将序列的每个量值都移动m 个位置,在得到的新序列中,量值和原序列相同,只是位置向量n 发生变化,当m>0时,表示序列向右平移,此时新序列的位置向量为n+m ;当m<0时,表示序列向左平移,此时新序列的位置向量为n -m 。

离散信号与系统的时域分析

离散信号与系统的时域分析
5.1.1 离散时间信号
连续时间信号,在数学上可以表示为连续时间变量t的函 数。这类信号 的特点是:在时间定义域内,除有限个不连续 点外, 对任一给定时刻都对应有确定的信号值。 离散时间信号,简称离散信号,它是离散时间变量 tk(k=0,±1, ±2, …)的函数。信号仅在规定的离散时间点上 有意义,而在其它时间则没有定义。
1
(k-k 0 )
1
o
k 0 -1 k 0 k 0 +1 (a )
k
-k 0 - 1 -k 0 -k 0 + 1 (b )
o
k
2. 正弦序列 正弦序列的一般形式为 由于
f (k ) A cos(0k )
f ( k ) A cos(0k ) A cos(0k 2m ) 2 m A cos0 k 0
5.2.2 卷积和的性质
性质1 离散信号的卷积和运算服从交换律、结合律和 分配律,即
f1 (k ) f 2 (k ) f 2 (k ) f1 (k )
f1 (k ) [ f 2 (k ) f 3 (k )] [ f1 (k ) f 2 (k )] f 3 (k )
f1 (k ) [ f 2 (k ) f 3 (k )] f1 (k ) f 2 (k ) f1 (k ) f 3 (k )
第五章 离散信号与系统 的时域分析
引 言
连续时间系统:这类系统用于传输和处理连续时间信号
离散系统:用于传输和处理离散时间信号的系统称为离散时间系
统,数字计算机是典型的离散系统例子,数据控制系统和数字通
信系统的核心组成部分也都是离散系统。
混合系统:连续系统与离散系统组合起来使用。
5.1 离散时间基本信号

信号与系统第五章 离散信号与系统的时域分析

信号与系统第五章 离散信号与系统的时域分析

f1(k) f (n)
6
n
3 2
1
1 1 2 3 k
3
1
1 1 2 3 4 k
《信号与系统》SIGNALS AND SYSTEMS
返回
ZB
5.1.3 常用的离散信号
(k)
1. 单位函数 (k)
(k)
1 0
k0 k0
1
1 1 2 3 k
(k n)
(k
n)
1 0
k n kn
1
1 0 1 2 n k
整理,得 y(k 2) 3y(k 1)+2y(k)=0
《信号与系统》SIGNALS AND SYSTEMS ZB
例:每月存入银行 A 元,设月息为 ,试确定第 k 次存
款后应有的存款额 y(k) 的方程。
解:第 k+1 次存入后应有的存款额为
A y(k) y(k)
即 y(k 1) y(k) y(k) A
(1) 筛选特性 f (k) (k n) f (n)
k
(2) 加权特性 f (k) (k n) f (n) (k n)
应用此性质,可以把任意离散信号 f (k) 表示为一系 列延时单位函数的加权和,即
f (k) f (2) (k 2) f (1) (k 1)
返回《信号f与(0)系 (统k) 》fS(1IG) N(kAL1)SANDSnYSTfE(Mn)S
一阶后向差分
f (k) f (k) f (k 1)
二阶后向差分
f (k) 2 f (k) f (k) f (k 1)
《信号与系统》SIGf (Nk)AL2SfA(kND1)SYfS(TkEM2)S
返回
ZB
6. 序列的求和(累加) (对应于连续信号的积分)

离散信号的时域运算

离散信号的时域运算

离散信号的时域运算离散信号的时域运算是数字信号处理中一项非常重要的操作,通过对信号在时域上的运算,可以实现信号的加减、乘除、卷积等操作,进而实现对信号的滤波、特征提取等处理。

本文将从离散信号的时域运算的定义、加法、乘法、卷积等方面进行详细介绍。

一、离散信号的时域运算定义离散信号的时域运算是指对离散时间序列信号进行加、减、乘、除、卷积等操作,在时域上对信号进行处理。

时域运算可以表示为以下公式:y(n) = f(x1(n), x2(n), ..., xn(n))其中,y(n)为输出的离散信号,x1(n)、x2(n)、...、xn(n)为输入的离散信号,f为时域运算函数。

二、离散信号的加法离散信号的加法是指对两个离散信号在时域上进行加法运算。

假设有两个离散信号x1(n)和x2(n),它们的和为:y(n) = x1(n) + x2(n)加法运算可以实现信号的叠加,例如在音频处理中,可以将两个音频信号进行叠加,实现混音的效果。

三、离散信号的乘法离散信号的乘法是指对两个离散信号在时域上进行乘法运算。

假设有两个离散信号x1(n)和x2(n),它们的积为:y(n) = x1(n) * x2(n)乘法运算可以实现信号的放大或缩小,例如在音频处理中,可以将音频信号乘以一个系数,实现音量的调节效果。

四、离散信号的卷积离散信号的卷积是指对两个离散信号在时域上进行卷积运算。

假设有两个离散信号x1(n)和x2(n),它们的卷积为:y(n) = x1(n) * x2(n) = ∑(k=-∞)^(∞) x1(k) * x2(n-k)卷积运算可以实现信号的滤波、特征提取等操作,例如在图像处理中,可以通过卷积运算实现边缘检测、模糊等效果。

五、离散信号的除法离散信号的除法是指对两个离散信号在时域上进行除法运算。

假设有两个离散信号x1(n)和x2(n),它们的商为:y(n) = x1(n) / x2(n)除法运算在信号处理中较为少用,但在某些特殊场合下仍然有一定的应用。

离散时间信号的表示及运算

离散时间信号的表示及运算

第2章 离散时间信号的表示及运算2.1 实验目的● 学会运用MATLAB 表示的常用离散时间信号;● 学会运用MATLAB 实现离散时间信号的基本运算。

2.2 实验原理及实例分析2.2.1 离散时间信号在MATLAB 中的表示离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。

离散序列通常用)(n x 来表示,自变量必须是整数。

离散时间信号的波形绘制在MATLAB 中一般用stem 函数。

stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。

如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。

由于MATLAB 中矩阵元素的个数有限,所以MATLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。

类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。

1. 单位取样序列单位取样序列)(n δ,也称为单位冲激序列,定义为)0()0(01)(≠=⎩⎨⎧=n n n δ (12-1)要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。

在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即function y=impDT(n)y=(n==0); %当参数为0时冲激为1,否则为0调用该函数时n 必须为整数或整数向量。

【实例2-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。

解:MATLAB 源程序为>>n=-3:3;>>x=impDT(n);>>stem(n,x,'fill'),xlabel('n'),grid on>>title('单位冲激序列')>>axis([-3 3 -0.1 1.1])程序运行结果如图12-1所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时域离散信号的产生与基本运算Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】实验一 时域离散信号的产生与基本运算 一、实验目的1、了解常用的时域离散信号及其特点。

2、掌握MATLAB 产生常用时域离散信号的方法。

3、掌握时域离散信号简单的基本运算方法。

二、实验内容1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。

2、自己设定参数,分别表示并绘制信号移位、信号相加、信号相乘、信号翻转、信号和、信号积、信号能量。

3、已知信号(1) 描绘)(n x 序列的波形。

(2) 用延迟的单位脉冲序列及其加权和表示)(n x 序列。

(3) 描绘以下序列的波形:)2()(),2(2)(),2(2)(321n x n x n x n x n x n x -=+=-= 三、实现步骤1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。

(1)单位抽样序列程序:x=zeros(1,10);x(2)=1;stem(x,'filled')axis([0,10,,1]);title('μ¥3éùDòáD');图1(2)单位阶跃序列程序:N=10;u=ones(1,N);stem(u,'filled')axis([-10,10,0,1]);title('μ¥×DòáD');图2(3)正弦序列程序:x=-20:1:20;y=sin*pi.*x+*pi);stem(x,y,'filled');axis([-20,20,-2,2]);title('yòDòáD');正弦序列图3(4)实指数序列a=1/2程序:n=0:10;a1=1/2;y1=a1.^n;stem(n,y1,'filled');axis([0,10,0,1]);title('êμêyDòáD£a=1/2');图4 5实指数序列a=2程序:n=0:10;a2=2;y2=a2.^n;stem(n,y2,'filled');title('êμêyDòáD,a=2');实指数序列,a=2图5 6 随机序列程序:y=rand(1,20);stem(y,'filled');title('úDòáD');0246810121416182000.10.20.30.40.50.60.70.80.91随机序列图62、自己设定参数,分别表示并绘制信号移位、信号相加、信号相乘、信号翻转、信号和、信号积、信号能量。

信号的移位:(1)信号移位程序:n=-3:10;k0=3;k1=-3;%êμDoμòx=cos(2*pi*n/10);x1=cos(2*pi*(n-k0)/10);x2=cos(2*pi*(n-k1)/10);subplot(3,1,1),stem(n,x,'filled');ylabel('x(n)');subplot(3,1,2),stem(n,x1,'filled');ylabel('x(n-2)');subplot(3,1,3),stem(n,x2,'filled'); ylabel('x(n+2)');2信号相加、信号相乘程序:n=-3:20;x1=cos(2*pi*n/10);subplot(2,2,1);stem(n,x1,'filled');title('x(1)'); axis([-4,20,-2,2]);x2=cos(2*pi*n/10);subplot(2,2,2);stem(n,x2,'filled');title('x(2)'); axis([-4,20,-2,2]);y=x1+x2;subplot(2,2,3);stem(n,y,'filled');title('Doàó'); axis([-4,20,-2,2]);y=x1.*x2;subplot(2,2,4);stem(n,y,'filled');title('Doà3'); axis([-4,20,-2,2]);n=-5:5;x=exp*n);x1=fliplr(x);n1=-fliplr(n);subplot(2,1,1),stem(n,x,'filled');title('x(n)'); subplot(2,1,2),stem(n1,x1,'filled');title('x(-n)');信号和、信号积、信号能量:程序:x=[1,2,3,4,5,6,7,8,9];y1=sum(x)y2=prod(x)E1=sum(x.*conj(x))得到:y1 =45y2 =362880E1 =2853、已知信号(1)描绘)x序列的波形;(n(2)用延迟的单位脉冲序列及其加权和表示)x序列;(n(3)描绘一下序列的波形function f=u(t)f=(t>=0);subplot(2,1,1)y1=(2*n+5).*(u(n+4)-u(n))+6.*(u(n)-u(n-5));stem(n,y1,'filled')axis([-10,10,-3,6]);title('序列波形');t=-10:10;subplot(2,1,2)y=(-3)*(u(t+4)-u(t+3))+(-1)*(u(t+3)-u(t+2))+(u(t+2)-u(t+1))+3*(u(t+1)-u(t))+6*(u(t)-u(t-1))+ 6*(u(t-1)-u(t-2))+6*(u(t-2)-u(t-3))+6*(u(t-3)-u(t-4))+6*(u(t-4)-u(t-5));stem(t,y,'filled')axis([-10,10,-3,6]);title('用单位脉冲序列及其加权和表示序列波形');subplot(2,2,1)t=-10:10;y=(-3)*(u(t+4)-u(t+3))+(-1)*(u(t+3)-u(t+2))+(u(t+2)-u(t+1))+3*(u(t+1)-u(t))+6*(u(t)-u(t-1))+ 6*(u(t-1)-u(t-2))+6*(u(t-2)-u(t-3))+6*(u(t-3)-u(t-4))+6*(u(t-4)-u(t-5));stem(t,y,'filled')axis([-10,10,-6,12]);title('x(n)');subplot(2,2,2)y=(-3)*(u(t+4)-u(t+3))+(-1)*(u(t+3)-u(t+2))+(u(t+2)-u(t+1))+3*(u(t+1)-u(t))+6*(u(t)-u(t-1))+ 6*(u(t-1)-u(t-2))+6*(u(t-2)-u(t-3))+6*(u(t-3)-u(t-4))+6*(u(t-4)-u(t-5));stem(t+2,2*y,'filled')axis([-10,10,-6,12]);title('2x(n-2)');subplot(2,2,3)t=-10:10;y=(-3)*(u(t+4)-u(t+3))+(-1)*(u(t+3)-u(t+2))+(u(t+2)-u(t+1))+3*(u(t+1)-u(t))+6*(u(t)-u(t-1))+ 6*(u(t-1)-u(t-2))+6*(u(t-2)-u(t-3))+6*(u(t-3)-u(t-4))+6*(u(t-4)-u(t-5));stem(t-2,2*y,'filled')axis([-10,10,-6,12]);title('2x(n+2)');subplot(2,2,4)t=-10:10;y=(-3)*(u(t+4)-u(t+3))+(-1)*(u(t+3)-u(t+2))+(u(t+2)-u(t+1))+3*(u(t+1)-u(t))+6*(u(t)-u(t-1))+ 6*(u(t-1)-u(t-2))+6*(u(t-2)-u(t-3))+6*(u(t-3)-u(t-4))+6*(u(t-4)-u(t-5));stem(2-t,y,'filled')axis([-10,10,-6,12]);title('x(2-n)');4、思考题当进行离散序列的相乘运算时,例1-6程序中有yp=xa1.*xa2,请问此处进行的相乘运算是矩阵乘还是数组乘,为何这样使用答:此处进行的是数组乘,因为只有用数乘组,才能将序列中对应的数乘起来,实现序列相乘。

相关文档
最新文档