2021 第13章 第1节 机械振动

2021 第13章 第1节 机械振动
2021 第13章 第1节 机械振动

第1节机械振动

一、简谐运动的特征

1.简谐运动

(1)定义:如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。

(2)平衡位置:物体在振动过程中回复力为零的位置。

(3)回复力

①定义:使物体返回到平衡位置的力。

②方向:总是指向平衡位置。

③来源:属于效果力,可以是某一个力,也可以是几个力的合力或某个力

的分力。

2.简谐运动的两种模型

模型弹簧振子单摆

示意图

弹簧振子(水平)

简谐运动

条件

①弹簧质量要忽略

②无摩擦等阻力

③在弹簧弹性限度内

①摆线为不可伸缩的轻细线

②无空气阻力等

③最大摆角小于等于5°

回复力弹簧的弹力提供

摆球重力沿与摆线垂直方向(即

切向)的分力

平衡位置弹簧处于原长处最低点

周期与振幅无关T=2π

L

g

能量转化

弹性势能与动能的相互转化,机

械能守恒

重力势能与动能的相互转化,机

械能守恒

1.简谐运动的表达式

(1)动力学表达式:F=-kx,其中“-”表示回复力与位移的方向相反。

(2)运动学表达式:x=A sin(ωt+φ),其中A代表振幅,ω=2πf,表示简谐运动的快慢,ωt+φ代表运动的相位,φ代表初相位。

2.简谐运动的图象

(1)从平衡位置开始计时,函数表达式为x=A sin ωt,图象如图甲所示。

甲乙

(2)从最大位置开始计时,函数表达式为x=A cos ωt,图象如图乙所示。

三、受迫振动和共振

1.受迫振动

(1)概念:振动系统在周期性驱动力作用下的振动。

(2)特点:受迫振动的频率等于驱动力的频率,跟系统的固有频率无关。

2.共振

(1)现象:当驱动力的频率等于系统的固有频率时,受迫振动的振幅最大。

(2)条件:驱动力的频率等于固有频率。

(3)特征:共振时振幅最大。

(4)共振曲线(如图所示)。

1.思考辨析(正确的画“√”,错误的画“×”)

(1)简谐运动的平衡位置就是质点所受合力为零的位置。(×)

(2)做简谐运动的质点先后通过同一点,回复力、速度、加速度、位移都是相同的。(×)

(3)公式x=A sin ωt说明是从平衡位置开始计时。(√)

(4)简谐运动的图象描述的是振动质点的轨迹。(×)

(5)物体做受迫振动时,其振动频率与固有频率无关。(√)

(6)物体受迫振动的频率与驱动力的频率无关。(×)

2.(多选)做简谐运动的物体,当它每次经过同一位置时,相同的物理量是()

A.位移B.速度C.加速度

D.回复力E.动量

ACD[简谐运动的位移是指由平衡位置指向物体所在位置的有向线段,物体经过同一位置时,运动位移一定相同,选项A正确;回复力产生加速度,回复力与位移满足F=-kx的关系,只要位移相同,回复力一定相同,回复力产

生的加速度也一定相同,选项C、D正确;经过同一位置,可能远离平衡位置,也可能靠近平衡位置,因此,速度的方向可能相反,选项B、E错误。] 3.(多选)(2019·陕西西安市联考)下列关于简谐运动的说法正确的是() A.速度和加速度第一次同时恢复为原来的大小和方向所经历的过程为一次全振动

B.位移的方向总跟加速度的方向相反,跟速度的方向相同

C.一个全振动指的是动能或势能第一次恢复为原来的大小所经历的过程D.位移减小时,加速度减小,速度增大

E.物体运动方向指向平衡位置时,速度的方向与位移的方向相反;背离平衡位置时,速度方向与位移方向相同

ADE[速度和加速度第一次同时恢复为原来的大小和方向所经历的过程为一次全振动,故A正确;回复力与位移方向相反,故加速度和位移方向相反,但速度方向可以与位移方向相同,也可以相反,物体运动方向指向平衡位置时,速度的方向与位移的方向相反,背离平衡位置时,速度方向与位移方向相同,故B错误,E正确;一次全振动过程中,动能和势能均会有两次恢复为原来的大小,故C错误;当位移减小时,回复力减小,则加速度在减小,物体正在返回平衡位置,速度在增大,故D正确。]

4.(多选)如图所示为受迫振动的演示装置,在一根张紧的绳子上悬挂几个摆球,可以用一个单摆(称为“驱动摆”)驱动另外几个单摆。下列说法正确的是()

A.某个单摆摆动过程中多次通过同一位置时,速度可能不同而加速度一定相同

B.如果驱动摆的摆长为L,则其他单摆的振动周期都等于2πL g

C.如果驱动摆的摆长为L,振幅为A,若某个单摆的摆长大于L,振幅也

大于A

D .如果某个单摆的摆长等于驱动摆的摆长,则这个单摆的振幅最大

E .驱动摆只把振动形式传播给其他单摆,不传播能量

ABD [某个单摆摆动过程中多次通过同一位置时,速度大小相等但方向可

能不同,根据F =-kx 可得,加速度a =F m =-k m x ,故加速度一定相同,A 正确;

如果驱动摆的摆长为L ,根据单摆的周期公式有T =2πL

g ,而其他单摆都是受

迫振动,故其振动周期都等于驱动摆的周期,B 正确;当受迫振动的单摆的固有周期等于驱动摆的周期时,受迫振动的振幅最大,故某个单摆的摆长大,振幅不一定也大,C 错误;同一地区,单摆的固有频率只取决于单摆的摆长,则只有摆长等于驱动摆的摆长时,单摆的振幅能够达到最大,这种现象称为共振,受迫振动不仅传播运动形式,还传播能量和信息,D 正确,E 错误。]

5.(多选)(2019·江苏高考)一单摆做简谐运动,在偏角增大的过程中,摆球的( )

A .位移增大

B .速度增大

C .回复力增大

D .机械能增大

AC [由简谐运动的特点可知,当偏角增大,摆球偏离平衡位置的位移增大,故A 正确;当偏角增大,动能转化为重力势能,所以速度减小,故B 错误;由回复力F =-kx 可知,位移增大,回复力增大,故C 正确;单摆做简谐运动过程中只有重力做功,所以机械能守恒,故D 错误。]

简谐运动的特征 [依题组训练]

1.(多选)(2019·南昌模拟)关于水平放置的弹簧振子所做的简谐运动,下列说法正确的是( )

A .位移的方向是由振子所在处指向平衡位置

B.加速度的方向总是由振子所在处指向平衡位置

C.经过半个周期振子经过的路程一定是振幅的2倍

D.若两时刻相差半个周期,弹簧在这两个时刻的形变量一定相等

E.经过半个周期,弹簧振子完成一次全振动

BCD[位移的方向始终是由平衡位置指向振子所在处,选项A错误;加速度的方向始终是由振子所在处指向平衡位置,选项B正确;经过半个周期,振子经过的路程是振幅的2倍,若两时刻相差半个周期,两时刻弹簧的形变量一定相等,选项C、D正确;经过一个周期,弹簧振子完成一次全振动,选项E错误。]

2.(多选)(2019·福建百校联考)如图所示,两根完全相同的轻质弹簧和一根绷紧的轻质细线将甲、乙两物块束缚在光滑水平面上。已知物块甲的质量是物

块乙质量的4倍,弹簧振子做简谐运动的周期T=2πm

k,式中m为振子的质

量,k为弹簧的劲度系数。当细线突然断开后,两物块都开始做简谐运动,在运动过程中,下列说法正确的是()

A.物块甲的振幅是物块乙振幅的4倍

B.物块甲的振幅等于物块乙的振幅

C.物块甲的最大速度是物块乙最大速度的1 2

D.物块甲的振动周期是物块乙振动周期的2倍

E.物块甲的振动频率是物块乙振动频率的2倍

BCD[线未断开前,两根弹簧伸长的长度相同,故线断开后两物块离开平衡位置的最大距离相同,即振幅相同,故A错误,B正确;当线断开的瞬间,弹簧的弹性势能相同,到达平衡位置时,甲、乙的最大动能相同,由于甲的质量大于乙的质量,由E k=1

2m v

2知道,甲的最大速度是乙的最大速度的12,故C正

确;根据T =2πm k 可知,甲的振动周期是乙的振动周期的2倍,根据f =1T 可

知,甲的振动频率是乙的振动频率的12

,故D 正确,E 错误。] 3.(多选)(2019·鞍山模拟)弹簧振子做简谐运动,O 为平衡位置,当它经过点O 时开始计时,经过0.3 s ,第一次到达点M ,再经过0.2 s 第二次到达点M ,则弹簧振子的周期不可能为( )

A .0.53 s

B .1.4 s

C .1.6 s

D .2 s

E .3 s

BDE [如图甲所示,设O 为平衡位置,OB (OC )代表振幅,振子从O →C 所

需时间为T 4

。因为简谐运动具有对称性,所以振子从M →C 所用时间和从C →M 所用时间相等,故T 4=0.3 s +0.22

s =0.4 s ,解得T =1.6 s ;如图乙所示,若振子一开始从平衡位置向点B 运动,设点M ′与点M 关于点O 对称,则振子从点M ′经过点B 到点M ′所用的时间与振子从点M 经过点C 到点M 所需时间相等,即0.2 s 。振子从点O 到点M ′、从点M ′到点O 及从点O 到点M 所需时间相

等,为0.3 s -0.2 s 3=130 s ,故周期为T =0.5 s +130

s ≈0.53 s ,所以周期不可能为选项B 、D 、E 。]

甲 乙

简谐运动的“五个特征”

1.动力学特征:F =-kx ,“-”表示回复力的方向与位移方向相反,k 是比例系数,不一定是弹簧的劲度系数。

2.运动学特征:简谐运动的加速度的大小与物体偏离平衡位置的位移的大

小成正比,而方向相反,为变加速运动,远离平衡位置时,x、F、a、E p均增大,v、E k均减小,靠近平衡位置时则相反。

3.运动的周期性特征:相隔T或nT的两个时刻,振子处于同一位置且振动状态相同。

4.对称性特征

(1)相隔T

2

(2n+1)

2T(n为正整数)的两个时刻,振子位置关于平衡位置对称,

位移、速度、加速度大小相等,方向相反。

(2)如图所示,振子经过关于平衡位置O对称的两点P、P′(OP=OP′)时,速度的大小、动能、势能相等,相对于平衡位置的位移大小相等。

(3)振子由P到O所用时间等于由O到P′所用时间,即t PO=t OP′。

(4)振子往复过程中通过同一段路程(如OP段)所用时间相等,即t OP=t PO。

5.能量特征:振动的能量包括动能E k和势能E p,简谐运动过程中,系统动能与势能相互转化,系统的机械能守恒。

简谐运动的公式和图象[讲典例示法] 1.简谐运动的数学表达式

x=A sin(ωt+φ)

2.根据简谐运动图象可获取的信息

(1)确定振动的振幅A和周期T。(如图所示)

(2)可以确定振动物体在任一时刻的位移。

(3)确定各时刻质点的振动方向。判断方法:振动方向可以根据下一时刻位移的变化来判定。下一时刻位移若增加,质点的振动方向是远离平衡位置;下一时刻位移如果减小,质点的振动方向指向平衡位置。

(4)比较各时刻质点的加速度(回复力)的大小和方向。

(5)比较不同时刻质点的势能和动能的大小。质点的位移越大,它所具有的势能越大,动能越小。

[典例示法](多选)如图甲所示,一单摆做小角度摆动,从某次摆球由左向右通过平衡位置开始计时,相对平衡位置的位移x随时间t变化的图象如图乙所示。不计空气阻力,取重力加速度g=10 m/s2。对于这个单摆的振动过程,下列说法正确的是()

甲乙

A.单摆的摆长约为1.0 m

B.单摆的位移x随时间t变化的关系式为x=8sin(πt) cm

C.从t=0.5 s到t=1.0 s的过程中,摆球的重力势能逐渐增大

D.从t=1.0 s到t=1.5 s的过程中,摆球所受回复力逐渐减小

E.从t=1.0 s到t=1.5 s的过程中,摆球所受回复力逐渐增大

ABE[由题图乙可知单摆的周期T=2 s,振幅A=8 cm,由单摆的周期公

式T=2πl

g ,代入数据可得l=1 m,选项A正确;由ω=2π

T

可得ω=π rad/s,

则单摆的位移x随时间t变化的关系式为x=A sin ωt=8sin(πt) cm,选项B正确;从t=0.5 s到t=1.0 s的过程中,摆球从最高点运动到最低点,重力势能减小,选项C错误;从t=1.0 s到t=1.5 s的过程中,摆球的位移增大,回复力增大,选项D错误,E正确。]

对简谐运动图象的两点说明

(1)简谐运动的图象是一条正弦或余弦曲线,如图所示。

甲乙

(2)图象反映的是位移随时间的变化规律,随时间的增加而延伸,图象不代表质点运动的轨迹。

[跟进训练]

1.(多选)如图甲所示,水平的光滑杆上有一弹簧振子,振子以O点为平衡位置,在a、b两点之间做简谐运动,其振动图象如图乙所示。由振动图象可以得知()

甲乙

A.振子的振动周期等于2t1

B.在t=0时刻,振子的位置在a点

C.在t=t1时刻,振子的速度为零

D.在t=t1时刻,振子的速度最大

E.从t1到t2,振子正从O点向b点运动

ADE[弹簧振子先后经历最短时间到达同一位置时,若速度相同,则这段时间间隔就等于弹簧振子的振动周期,从振动图象可以看出振子的振动周期为2t1,选项A正确;在t=0时刻,振子的位移为零,所以振子应该在平衡位置O,选项B错误;在t=t1时刻,振子在平衡位置O,该时刻振子速度最大,选项C

错误,D正确;从t1到t2,振子的位移方向沿正方向且在增加,所以振子正从O 点向b点运动,选项E正确。]

2.(多选)一个质点做简谐运动的图象如图所示,下列叙述正确的是()

A.质点的振动频率为4 Hz

B.在10 s内质点经过的路程是20 cm

C.在5 s末,速度为零,加速度最大

D.在t=1.5 s和t=4.5 s两时刻质点的位移大小相等

E.在t=1.5 s和t=4.5 s两时刻质点的速度相同

BCD[由图读出周期为T=4 s,则频率为f=1

T

=0.25 Hz,故A错误;

质点在一个周期内通过的路程是4个振幅,t=10 s=2.5T,则在10 s内质点经过的路程是s=2.5×4A=10×2 cm=20 cm,故B正确;在5 s末,质点位于最大位移处,速度为零,加速度最大,故C正确;由图看出,在t=1.5 s和t=4.5 s 两时刻质点位移大小相等,速度大小相等、方向相反,故D正确,E错误。]

单摆及其周期公式[依题组训练] 1.对周期公式的理解

(1)单摆的周期公式在单摆偏角很小时成立。

(2)公式中l是摆长,即悬点到摆球球心的距离,即l=l线+r球。

(3)公式中g是单摆所在地的重力加速度,由单摆所在的空间位置决定。

(4)周期T只与l和g有关,与摆球质量m和振幅无关,所以单摆的周期也叫固有周期。

2.周期公式应用

(1)只要测出单摆摆长l和周期T,就可以根据g=4π2l

T2求当地重力加速度g。

(2)可以制作计时仪器。

3.单摆振动中的等效问题

(1)等效摆长:摆球重心到摆动圆弧圆心的距离。

(2)等效重力加速度:①分析摆球的受力,确定摆球相对静止的位置(即平衡

位置);②计算摆球的视重(即平衡位置的拉力); ③利用g′=F

m求出等效重力加

速度。

[题组训练]

1.甲、乙两个单摆的振动图象如图所示,根据振动图象可以断定()

A.甲、乙两单摆振动的周期之比是3∶2

B.甲、乙两单摆振动的频率之比是2∶3

C.若甲、乙两单摆在同一地点摆动,则甲、乙两单摆摆长之比是9∶4

D.若甲、乙两单摆摆长相同,在不同地点摆动,则甲、乙两单摆所在地的重力加速度之比为9∶4

D[根据图象可知,甲和乙的周期之比为T甲∶T乙=2∶3,故A项不符合

题意;因为f=1

T

,所以甲、乙的频率之比为f甲∶f乙=3∶2,故B项不符合题

意;根据单摆的周期公式可知T=2πl

g

,同一地点,重力加速度相同,则甲、乙的摆长之比和周期的平方成正比,即为4∶9,故C项不符合题意;摆长相同,重力加速度和周期的平方成反比,即甲、乙两单摆所在地的重力加速度之比为9∶4,故D项符合题意。]

2.如图所示是甲、乙两个单摆在同一地点做简谐运动的图象,则下列说法中正确的是()

A.甲、乙两摆的振幅之比为1∶1

B.甲、乙两摆的摆长之比为4∶1

C.甲、乙两摆摆球在最低点时向心加速度大小一定相等

D.t=2 s时,甲摆的重力势能最小,乙摆的动能为零

D[由图知,甲、乙两摆的振幅分别为2 cm、1 cm,则振幅之比为2∶1,故A错误;甲、乙两摆的周期分别为4 s、8 s,周期之比为1∶2。根据由单摆的

周期公式T=2πl

g

得,甲、乙两摆的摆长之比为1∶4,故B错误;设摆角为θ,

则摆球从最高点摆到最低点的过程中,由机械能守恒定律得:mgL(1-cos θ)=1

2

m v2;摆球在最低点时向心加速度a=v2

L

=2g(1-cos θ),根据振幅和摆长关系,

可知甲摆摆球的最大偏角比乙摆摆球的最大偏角大,所以甲、乙两摆摆球在最低点时向心加速度大小一定不等,故C错误;t=2 s时,甲摆通过平衡位置,重力势能最小。乙摆经过最大位移处,动能为零,故D正确。]

3.将一测力传感器连接到计算机上就可以测量快速变化的力,如图所示,甲图中O点为单摆的悬点,现将小球(可视为质点)拉到A点,此时细线处于张紧状态,释放摆球,则摆球在竖直平面内的ABC之间来回摆动,其中B点为运动中最低位置,∠AOB=∠COB=α,α小于5°且是未知量。图乙表示由计算机得到细线对摆球的拉力大小F随时间变化的曲线,且图中t=0时刻为摆球从A 点开始运动的时刻,根据力学规律和题中信息(g取10 m/s2)求:

甲乙

(1)单摆的周期和摆长;

(2)摆球的质量。

[解析](1)摆球受力分析如图所示:

小球在一个周期内两次经过最低点,根据该规律,知:T=0.4π s。

由单摆的周期公式:T=2πL

g

代入数据解得:L=0.4 m。

(2)在最高点A,有:

F min=mg cos α=0.495 N

在最低点B,有:F max-mg=m v2

L

其中F max=0.510 N

从A到B,小球机械能守恒,有:mgL(1-cos α)=1

2m v

2

联立并代入数据得:m=0.05 kg。

[答案](1)0.4π s0.4 m(2)0.05 kg

受迫振动、共振[依题组训练]

自由振动、受迫振动和共振的关系比较

振动类型自由振动受迫振动共振

受力情况仅受回复力作用受驱动力作用受驱动力作用

振动周期或频率由系统本身性质决

定,即固有周期T0

由驱动力的周期或

频率决定,即T=T

T驱=T0或

f驱=f0

1.(多选)(2019·孝感统测)下列说法正确的是()

A.摆钟走时快了必须调短摆长,才可能使其走时准确

B.挑水时为了防止水从桶中荡出,可以加快或减慢走路的步频C.在连续均匀的海浪冲击下,停在海面的小船上下振动,是共振现象D.部队要便步通过桥梁,是为了防止桥梁发生共振而坍塌

E.较弱声音可振碎玻璃杯,是因为玻璃杯发生了共振

BDE[摆钟走时快了,说明摆钟的周期变小了,根据T=2πL

g

可知增大

摆长L可以增大摆钟的周期,A错误;挑水时为了防止水从桶中荡出,可以改变走路的步频,B正确;在连续均匀的海浪冲击下,停在海面的小船上下振动,是受迫振动,C错误;部队便步通过桥梁,不能产生较强的驱动力,就避免桥梁发生共振现象,故D正确;当声音频率等于玻璃杯频率时,杯子发生共振而破碎,E正确。]

2.(多选)(2019·大连模拟)某振动系统的固有频率为f0,在周期性驱动力的作用下做受迫振动,驱动力的频率为f。若驱动力的振幅保持不变,则下列说法正确的是()

A.当f<f0时,该振动系统的振幅随f增大而减小

B.当f>f0时,该振动系统的振幅随f减小而增大

C.该振动系统的振动稳定后,振动的频率等于f0

D.该振动系统的振动稳定后,振动的频率等于f

E.当f=f0时,该振动系统一定发生共振

BDE[受迫振动的振幅A随驱动力的频率变化的规律如图所示,显然选项

A错误,B正确;稳定时系统的频率等于驱动力的频率,即选项C错误,D正确;根据共振产生的条件可知,当f=f0时,该振动系统一定发生共振,选项E正确。]

2018年高考物理复习第1节 机械振动

第十三章 ? ?? 波与相对论[选修3-4] [全国卷考情分析] 简谐运动的公式和图像(Ⅱ) 单摆、周期公式(Ⅰ) 受迫振动和共振(Ⅰ) 机械波、横波和纵波(Ⅰ) 波的干涉和衍射现象(Ⅰ) 多普勒效应(Ⅰ) 光的折射定律(Ⅱ) 光的干涉、衍射和偏振现象(Ⅰ) 电磁波谱(Ⅰ) 狭义相对论的基本假设(Ⅰ) 质能关系(Ⅰ)

第1节机械振动 (1)简谐运动是匀变速运动。(×) (2)周期、频率是表征物体做简谐运动快慢程度的物理量。(√ ) (3)振幅等于振子运动轨迹的长度。(×) (4)简谐运动的回复力可以是恒力。(×) (5)弹簧振子每次经过平衡位置时,位移为零、动能最大。(√) (6)单摆在任何情况下的运动都是简谐运动。(×) (7)物体做受迫振动时,其振动频率与固有频率无关。(√) (8)简谐运动的图像描述的是振动质点的轨迹。(×) 突破点(一) 简谐运动 1.动力学特征

F =-kx ,“-”表示回复力的方向与位移方向相反,k 是比例系数,不一定是弹簧的劲度系数。 2.运动学特征 简谐运动的加速度与物体偏离平衡位置的位移成正比而方向相反,为变加速运动,远离平衡位置时,x 、F 、a 、E p 均增大,v 、E k 均减小,靠近平衡位置时则相反。 3.运动的周期性特征 相隔T 或nT 的两个时刻,振子处于同一位置且振动状态相同。 4.对称性特征 (1)相隔T 2或(2n +1)T 2(n 为正整数)的两个时刻,振子位置关于平衡位置对称,位移、速 度、加速度大小相等,方向相反。 (2)如图所示,振子经过关于平衡位置O 对称的两点P 、P ′(OP =OP ′)时,速度的大小、动能、势能相等,相对于平衡位置的位移大小相等。 (3)振子由P 到O 所用时间等于由O 到P ′所用时间,即t PO =t OP ′。 (4)振子往复过程中通过同一段路程(如OP 段)所用时间相等,即t OP =t PO 。 5.能量特征 振动的能量包括动能E k 和势能E p ,简谐运动过程中,系统动能与势能相互转化,系统的机械能守恒。 [典例1] (2014·浙江高考)一位游客在千岛湖边欲乘坐游船,当日风浪较大,游船上下浮动。可把游船浮动简化成竖直方向的简谐运动,振幅为20 cm ,周期为3.0 s 。当船上升到最高点时,甲板刚好与码头地面平齐。地面与甲板的高度差不超过10 cm 时,游客能舒服地登船。在一个周期内,游客能舒服登船的时间是( ) A .0.5 s B .0.75 s C .1.0 s D .1.5 s [解析] 由于振幅 A 为 20 cm ,振动方程为 y =A sin ωt ????从游船位于平衡位置时开始计时,ω=2π T ,由于高度差不超过10 cm 时,游客能舒服登船,代入数据可知,在一个振动周期内,临界时刻为t 1=T 12,t 2=5T 12,所以在一个周期内能 舒服登船的时间为Δt =t 2-t 1=T 3 =1.0 s ,选项C 正确。 [答案] C [典例2] (多选)(2015·山东高考)如图,轻弹簧上端固定,下端连接一小物

哈工大机械振动基础大作业

《机械振动基础》大作业 (2015年春季学期) 题目基于MATLAB求系统特性 姓名 学号 班级 专业机械设计制造及其自动化 报告提交日期 哈尔滨工业大学

报告要求 1.请根据课堂布置的2道大作业题,任选其一,拒绝雷同和抄袭; 2.报告最好包含自己的心得、体会或意见、建议等; 3.报告统一用该模板撰写,字数不少于3000字,上限不限; 4.正文格式:小四号字体,行距为倍行距; 5.用A4纸单面打印;左侧装订,1枚钉; 6.课程报告需同时提交打印稿和电子文档予以存档,电子文档由班 长收齐,统一发送至:。 7.此页不得删除。 评语: 成绩(15分):教师签名: 年月日

解多自由度矩阵的认识体会。二、MATLAB程序图: >> m=[]; k1=[]; k=[]; c=[]; c1=[]; for i=1:9 a=input('输入质量矩阵m:'); m(i,i)=a; end ; for j=1:9 b=input('输入刚度系数k:'); k1(1,j)=b; end for l=1:8 k(l,l)=k1(l)+k1(l+1); k(9,9)=k1(9); k(l+1,l)=-k1(l+1); k(l,l+1)=-k1(l+1); k(9,8)=-k1(9);

k(8,9)=-k1(9); end ; syms w; B=k-w^2*m %系统的特征矩阵B Y=det(B); %展开行列式 W=solve(Y); %求解wh lW=length(W); [V,D]=eig(k,m); for I=1:9 for J=1:9 V(J,I)=V(J,I)/V(5,I); end end V W 三 MATLAB结果输入输出: 程序输入内容: 输入质量矩阵m:1 输入质量矩阵m:2 输入质量矩阵m:3 输入质量矩阵m:4 输入质量矩阵m:5 输入质量矩阵m:6 输入质量矩阵m:7 输入质量矩阵m:8 输入质量矩阵m:9 输入刚度系数k:10 输入刚度系数k:11 输入刚度系数k:12 输入刚度系数k:13 输入刚度系数k:14 输入刚度系数k:15 输入刚度系数k:16 输入刚度系数k:17 输入刚度系数k:18

高中物理机械振动和机械波知识点

高中物理机械振动和机械波知识点 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大. (3)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅. ②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱. ③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f. (4)简谐运动的图像 ①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹. ②特点:简谐运动的图像是正弦(或余弦)曲线. ③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况. 2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T. 3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型. (1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°. (2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力. (3)作简谐运动的单摆的周期公式为:T=2π ①在振幅很小的条件下,单摆的振动周期跟振幅无关. ②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关. ③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值). 4.受迫振动 (1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动. (2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关. (3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振. 共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波. (1)机械波产生的条件:①波源;②介质 (2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷). ②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部. [注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.

机械振动第1节简谐运动讲义-人教版高中物理选修3-4讲义练习

第1节简谐运动 1.平衡位置是振子原来静止的位置,振子在其附近 所做的往复运动,是一种机械振动,简称振动。 2.如果质点的位移与时间的关系遵从正弦函数的规 律,即它的振动图像(x-t图像)是一条正弦曲线, 这样的振动叫做简谐运动,它是一种最简单、最基 本的振动,是一种周期性运动。 3.简谐运动的位移一时间图像表示质点离开平衡位 置的位移随时间变化的关系,而非质点的运动轨 迹。由该图像可以确定质点在任意时刻偏离平衡位 置的位移和运动情况。 一、弹簧振子 1.弹簧振子 如图所示,如果球与杆或斜面之间的摩擦可以忽略,且弹簧的质量与小球相比也可以忽略,则该装置为弹簧振子。 2.平衡位置 振子原来静止时的位置。 3.机械振动 振子在平衡位置附近所做的往复运动,简称振动。 二、弹簧振子的位移—时间图像 1.振动位移 从平衡位置指向振子某时刻所在位置的有向线段。 2.建立坐标系的方法 以小球的平衡位置为坐标原点,沿振动方向建立坐标轴。一般规定小球在平衡位置右边(或上边)时,位移为正,在平衡位置左边(或下边)时,位移为负。 3.图像绘制 用频闪照相的方法来显示振子在不同时刻的位置。

三、简谐运动及其图像 1.定义:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。 2.特点:简谐运动是最简单、最基本的振动,其振动过程关于平衡位置对称,是一种往复运动。弹簧振子的运动就是简谐运动。 3.简谐运动的图像 (1)形状:正弦曲线,凡是能写成x=A sin(ωt+φ)的曲线均为正弦曲线。 (2)物理意义:表示振动的质点在不同时刻偏离平衡位置的位移,是位移随时间的变化规律。 1.自主思考——判一判 (1)平衡位置即速度为零时的位置。(×) (2)平衡位置为振子能保持静止的位置。(√) (3)振子的位移-5 cm小于1 cm。(×) (4)简谐运动的轨迹是一条正弦(或余弦)曲线。(×) (5)简谐运动是一种匀变速直线运动。(×) 2.合作探究——议一议 (1)简谐运动与我们熟悉的匀速运动比较,速度有何不同的特点?如何判断一个物体的运动是不是简谐运动? 提示:简谐运动与匀速运动的区别在于其速度大小、方向都不断变化,只要质点的位移随时间按正弦规律变化,则这个质点的运动就是简谐运动。 (2)如图所示为振子的位移—时间图像,振子的位移—时间图像就是振子的运动轨迹吗? 提示:图像描述的是振动物体的位移随时间的变化规律,并不是物体的运动轨迹。

(完整版)机械振动习题答案

机械振动测验 一、 填空题 1、 所谓振动,广义地讲,指一个物理量在它的①平均值附近不停地经过②极大 值和③极小值而往复变化。 2、 一般来说,任何具有④弹性和⑤惯性的力学系统均可能产生机械振动。 3、 XXXX 在机械振动中,把外界对振动系统的激励或作用,①激励或输入;而 系统对外界影响的反应,称为振动系统的⑦响应或输出。 4、 常见的振动问题可以分成下面几种基本课题:1、振动设计2、系统识别3、 环境预测 5、 按激励情况分类,振动分为:①自由振动和②强迫振动;按响应情况分类, 振动分为:③简谐振动、④周期振动和⑤瞬态振动。 6、 ①惯性元件、②弹性元件和③阻尼元件是离散振动系统三个最基本的元件。 7、 在系统振动过程中惯性元件储存和释放①动能,弹性元件储存和释放②势 能,阻尼元件③耗散振动能量。 8、 如果振动时系统的物理量随时间的变化为简谐函数,称此振动为①简谐振动。 9、 常用的度量振动幅值的参数有:1、峰值2、平均值3、均方值4、均方根值。 10、 系统的固有频率只与系统的①质量和②刚度有关,与系统受到的激励无 关。 二、 试证明:对数衰减率也可以用下式表示,式中n x 是经过n 个循环后的振幅。 1 ln n x x n δ=

三、 求图示振动系统的固有频率和振型。已知12m m m ==,123k k k k ===。

北京理工大学1996年研究生入学考试理论力学(含振动理论基础)试题 自己去查双(二)自由度振动 J,在平面上在弹簧k的限制下作纯滚动,如图所示,四、圆筒质量m。质量惯性矩 o 求其固有频率。

五、物块M质量为m1。滑轮A与滚子B的半径相等,可看作质量均为m2、半径均 为r的匀质圆盘。斜面和弹簧的轴线均与水平面夹角为β,弹簧的刚度系数为k。 又m1 g>m2 g sinβ , 滚子B作纯滚动。试用能量法求:(1)系统的微分方程;(2)系统的振动周期。

大学物理 机械振动与机械波

大学物理单元测试 (机械振动与机械波) 姓名: 班级: 学号: 一、选择题 (25分) 1 一质点作周期为T 的简谐运动,质点由平衡位置正方向运动到最大位移一半处所需的最短时间为( D ) (A )T/2 (B )T/4 (C)T/8 (D )T/12 2 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的( E ) (A )7/16 (B )9/16 (C )11/16 (D )13/16 (E )15/16 3 一质点作简谐运动,其振动方程为 )3 2cos( 24.0π π + =t x m, 试用旋转矢量法求出质点由初始状态运动到 x =-0.12 m,v <0的状态所经过的最短时间。 (C ) (A )0.24s (B ) 3 1 (C )3 2 (D )2 1 4 一平面简谐波的波动方程为:)(2cos λνπx t A y - =,在ν 1 = t 时刻,4 31λ= x 与 4 2λ = x 两处质点速度之比:( B ) (A )1 (B )-1 (C )3 (D )1/3 5 一平面简谐机械波在弹性介质中传播,下述各结论哪个正确?( D ) (A)介质质元的振动动能增大时,其弹性势能减小,总机械能守恒. (B)介质质元的振动动能和弹性势能都作周期性变化,但两者相位不相同 (C)介质质元的振动动能和弹性势能的相位在任一时刻都相同,但两者数值不同. (D)介质质元在其平衡位置处弹性势能最大. 二、填空题(25分) 1 一弹簧振子,弹簧的劲度系数为0.3 2 N/m ,重物的质量为0.02 kg ,则这个系统的固有频率为____0.64 Hz ____,相应的振动周期为___0.5π s______. 2 两个简谐振动曲线如图所示,两个简谐振动的频率之比 ν1:ν2 = _2:1__ __,加速度最大值之比a 1m :a 2m = __4:1____,初始速率之比 v 10 :v 20 = _2:1__ ___.

机械振动大作业——简支梁的各情况分析

机械振动大作业 姓名:徐强 学号:SX1302106 专业:航空宇航推进理论与工程 能源与动力学院 2013年12月

简支梁的振动特性分析 题目:针对简支梁、分别用单、双、三、十个自由度以及连续体模型,计算其固有频率、固有振型。单、双、三自由度模型要求理论解;十自由度模型要求使用李兹法、霍尔茨法、矩阵迭代法、雅可比法、子空间迭代法求解基频;连续体要求推导理论解,并通过有限元软件进行数值计算。 解答: 一、 单自由度简支梁的振动特性 如图1,正方形截面(取5mm ×5mm )的简支梁,跨长为l =1m ,质量m 沿杆长均匀分布,将其简化为单自由度模型,忽略阻尼,则运动微分方程为0=+? ?kx x m ,固有频率ωn = eq eq m k ,其中k 为等效刚度, eq m 为等效质量。因此,求出上述两项即可知单自由度简支梁的固有 频率。 根据材料力学的结果,由于横向载荷F 作用在简支梁中间位置而 引起的变形为)(2 24348EI F -)(x l x x y -=(2 0l x ≤≤), 48EI F -3max l y =为最大挠 度,则: eq k =δF = 348EI l 梁本身的最大动能为: )(224348EI F - )(x l x x y -==)(223 max 43x l l x y - T max =2×dx x y l m l 2 20)(21? ?? ?????=2max 351721?y m ) (

如果用eq m 表示简支梁的质量等效到中间位置时的大小,它的最大动能可表示为: T max =2max 21 ?y m eq 所以质量为m 的简支梁,等效到中间位置的全部质量为: m m eq 35 17= 故单自由度简支梁横向振动的固有频率为: ωn = eq eq m k = 3 171680ml EI m k 图1 简支梁的单自由度模型 二、 双自由度简支梁的振动特性 如图2,将简支梁简化为双自由度模型,仍假设在简支梁中间位置作用载荷,根据对称性,等效质量相等,因此只要求出在3/l 处的等效质量即可。在6/l 至2/l 之间积分,利用最大动能进行质量等效,略去小量得: m m eq 258≈ 所以,质量矩阵为: ??????=→ 1001258m m 双自由度简支梁的柔度矩阵:

机械振动基础试卷3答案

(共计15分) 故系统的周期为 2.重物m 1悬挂在刚度为k 的弹簧上,并处于静平衡位置,另一重物m 2 从高度为h 处自由落到m i 上无弹跳,如图2所示,求其后的运动。(共 计15分) 解:根据题意,取M=M 1+m 2所处的平衡位置为原点,向下为正,得系 统运动的微分方程为: =詈cos (pZ t ) jl^sin (pZ t ) k m 1 m 2 . k . m, m 2 3.如图3所示系统两个圆盘的半径为r ,设 I 1 I 2 I,k 1 k 2 k,k 3 3k,求系统的固有频率和振型。(共计15分) 解:取1, 2为系 统的广义坐标, 系统的动能为 E T I 1 12 212 22 11 ( 12 22) 振动分析与实验基础课程考试 3答案 1.求如图1所示系统的周期,三个弹簧都成铅垂, 且k 2 2k 〔 , k g k 〔 o 解: 等效刚度二一1— 1 1 (-—) k 1 k 2 k 3 永1 5k 1 k m 3m 解得 x x 0cos n t —°sin n t n T 乙2 n

2). 1 2 1 2 1 2 U 尹i (r J 2 步(「! r 2)2 尹(「2)2 系统的特征方程为: 在频率比/ n = , 2时,恒有X A 2).在/ n V 、2 , X/A 随E 增大而减小,而在 / n > 2 , X/A 随 E 增大而增大 (共计15分) 证明:1).因—<1 (2 / n )2|H() A^ 1 故当 / n = 2 时, |H(W )| .—. V 1 (2 J 2)2 所以,X 1 (2 2 )2 1,故无论阻尼比E 取何值恒有 X/A A ;1 (2 厨 (2 / n )2 ( / n )2 2( / n )2 1 (2 / n )2 (1 ( / n )2)2 (2 / n )2'2 系统的势能为 从而可得 k 1r 2 k 2r 2 k 2r 2 k 2r 2 k 2r 2 k 3r 2 2kr 2 kr 2 kr 2 4kr 2 得 W 12 (3 .2)牛 (3 其振型分别为:U 1 u 2 4. H( )| 1 (2 / n )2, |H( )| 1/ . 1-( / n ) 2 2 (2 / n )2 证明: 1).无论阻尼比E 取何值,

高中物理机械振动和机械波知识点.doc

高中物理机械振动和机械波知识点 "机械振动和机械波是高中物理教学中的难点,有哪些知识点需要学生学习呢?下面我给大家带来高中物理课本中机械振动和机械波知识点,希望对你有帮助。 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大. (3)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅. ②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱. ③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即 T=1/f. (4)简谐运动的图像 ①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.

②特点:简谐运动的图像是正弦(或余弦)曲线. ③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况. 2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T. 3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型. (1)单摆的振动可看作简谐运动的条件是:最大摆角<5. (2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力. (3)作简谐运动的单摆的周期公式为: ①在振幅很小的条件下,单摆的振动周期跟振幅无关. ②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关. ③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g等于摆球静止在平衡位置时摆线的张力与摆球质量的比值). 4.受迫振动 (1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.

2021版高考物理大一轮复习通用版教师用书:第14章 第1节 机械振动

[高考导航] 考点内容要 求 高考(全国卷)三年命题情况对照分析 201720182019命题分析 机械振动与机械波 简谐运动Ⅰ 卷 Ⅰ·T34(1): 波的干涉 加强点和 减弱点的 判断 T34(2):折 射定律 卷 Ⅱ·T34(1): 双缝干涉 图样 T34(2):折 射定律 卷 Ⅲ·T34(1): 波动图象 T34(2):光 的全反 射、折射 定律 卷 Ⅰ·T34(1): 光的折射 定律、折 射率 T34(2):简 谐运动的 图象、波 的图象、v = λ T的应 用 卷 Ⅱ·T34(1): 声波的传 播、v=λf 的应用 T34(2):折 射定律及 全反射 卷 Ⅲ·T34(1): 波的图象 卷 Ⅰ·T34(1): 简谐运动 的图象 T34(2):光 的折射全 反射 卷 Ⅱ·T34(1): 振动图 象,单摆 周期 T34(2):光 的双缝干 涉实验 卷 Ⅲ·T34(1): 水波的干 涉 T34(2):光 的折射、 全反射 分析近三年高考 题,命题形式趋 于多样化 (1)简谐运动的 特点及图象、波 的图象以及波 长、波速、频率 的关系,题型有 选择、填空、计 算等,波动与振 动的综合,以计 算题的形式考查 的居多。 (2)光的折射定 律、折射率的计 算、全反射的应 用等,题型有选 择、填空、计算 等,光的折射与 全反射的综合, 以计算题的形式 考查的居多。 (3)实验题中涉 简谐运动的公式和图象Ⅱ 单摆、单摆的周期公式Ⅰ 受迫振动和共振Ⅰ 机械波、横波和纵波Ⅰ 横波的图象Ⅱ 波速、波长和频率(周期)的关 系 Ⅰ 波的干涉和衍射现象Ⅰ 多普勒效应Ⅰ 电磁振荡与电磁波 电磁波的产生Ⅰ电磁波的发射、传播和接收Ⅰ 电磁波谱Ⅰ 光 光的折射定律Ⅱ 折射率Ⅰ全反射、光导纤维Ⅰ光的干涉、衍射和偏振现象Ⅰ 相对论 狭义相对论的基本假设Ⅰ 质能关系Ⅰ实验:探究单摆的运动、用单摆测定重 力加速度 实验:测定玻璃的折射率

机械振动基础试卷

机械振动基础试卷 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

振动分析与实验基础课程考试试卷 1 1. 设有两个刚度分别为21,k k 的线性弹簧如图1所示, 试证明:1)它们并联时的总刚度eq k 为: 2)它们串联时的总刚度eq k 为: (共计15分) 2. 弹簧下悬挂一物体,弹簧静伸长为δ,设将物体向下拉,使弹簧有静 伸长3δ,然后无初速度地释放,求此后的运动方程。 (共计15分) 3. 求如图2所示系统微幅扭振的周期。图中两个摩擦轮可分别绕水平轴1O ,2O 转动,它们相互啮合,不能相对滑动,在图示位置(半径1O A 与2O B 在同一水平线上),弹簧不受力。摩擦轮可以看做等厚均质圆盘, 质量分别为1m ,2m 。(共计15分) 4. 试证明:对数衰减率也可用下式表示 n n x x l n 01=δ (式中n x 是经过n 个循环后的振幅)。 并给出在阻尼比ξ为0.01,0.1,0.3时振幅减小到50%以下所需要的循环数。(共计15分) 5. 如图3所示的扭振系统,设, 221I I =12t t K K = 1).写出系统的刚度矩阵和质量矩阵。 2).写出系统的频率方程并求出固有频率和振型,画出振型图。 (共计15分) 6. 证明:对系统的任一位移{}x ,Rayleigh 商 满足221)(n x R ωω≤≤

这里[]K和[]M分别是系统的刚度矩阵和质量矩阵,1ω和nω分别是系统的最低和最高固有频率。(共计15分) 7. 求整流正弦波 T tπ A x(t) 2 sin =的均值,均方值和方差。(共计10分)

《机械振动》单元测试题(含答案)

《机械振动》单元测试题(含答案) 一、机械振动选择题 1.甲、乙两弹簧振子,振动图象如图所示,则可知() A.甲的速度为零时,乙的速度最大 B.甲的加速度最小时,乙的速度最小 C.任一时刻两个振子受到的回复力都不相同 D.两个振子的振动频率之比f甲:f乙=1:2 E.两个振子的振幅之比为A甲:A乙=2:1 2.如图所示,甲、乙两物块在两根相同的弹簧和一根张紧的细线作用下静止在光滑水平面上,已知甲的质量小于乙的质量.当细线突然断开斤两物块都开始做简谐运动,在运动过程中() A.甲的最大速度大于乙的最大速度 B.甲的最大速度小于乙的最大速度 C.甲的振幅大于乙的振幅 D.甲的振幅小于乙的振幅 3.甲、乙两单摆的振动图像如图所示,由图像可知 A.甲、乙两单摆的周期之比是3:2 B.甲、乙两单摆的摆长之比是2:3 C.t b时刻甲、乙两摆球的速度相同D.t a时刻甲、乙两单摆的摆角不等 4.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l,引力常量为G,地球质量为M,摆球到地心的距离为r,则单摆振动周期T与距离r的关系式为() A.T=2GM l B.T=2 l GM

C .T = 2πGM r l D .T =2πl r GM 5.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A 、B 、C 、D ,用刻度尺测出A 、B 间的距离为x 1;C 、D 间的距离为x 2。已知单摆的摆长为L ,重力加速度为g ,则此次实验中测得的物体的加速度为( ) A . 212 ()x x g L π- B . 212 ()2x x g L π- C . 212 ()4x x g L π- D . 212 ()8x x g L π- 6.如图所示,将小球甲、乙、丙(都可视为质点)分别从A 、B 、C 三点由静止同时释放,最后都到达竖直面内圆弧的最低点D ,其中甲是从圆心A 出发做自由落体运动,乙沿弦轨道从一端B 到达最低点D ,丙沿圆弧轨道从C 点运动到D ,且C 点很靠近D 点,如果忽略一切摩擦阻力,那么下列判断正确的是( ) A .丙球最先到达D 点,乙球最后到达D 点 B .甲球最先到达D 点,乙球最后到达D 点 C .甲球最先到达 D 点,丙球最后到达D 点 D .甲球最先到达D 点,无法判断哪个球最后到达D 点 7.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。以钢球的平衡位置为坐标原点,竖直向上为正方向建立x 轴,当钢球在振动过程中某一次经过平衡位置时开始计时,钢球运动的位移—时间图像如图2所示。已知钢球振动过程中弹簧始终处于拉伸状态,则( ) A .1t 时刻钢球处于超重状态

第十三章 机械振动及隔振

第十三章机械振动及隔振 基本要求:要求掌握机械振动的基本概念和回转机械的横向振动、扭转振动临界转速初步计算方法、熟悉机械的动力模型建立的基本方法和机械振动隔离技术。 §13-1 概述 一、机械中的振动问题 早期的机械原理中,把物体看作刚体,机械动力学问题相对比较简单。实际上,由于考虑构件具有弹性和机械中具有弹性元件(如弹簧等),使在机械运转速度较高和对机械工作精度要求较高的场合下,必须考虑机械的弹性振动问题。近年来考虑构件有弹性的机械动力学研究已有迅速发展,如齿轮机构动力学、凸轮机构动力学、弹性连杆机构动力学和机械系统动力学等等。弹性构件机械动力学是研究机械振动特性的一个重要学科分文,它的基础是机械振动理论。 二、机械振动的类别 1.回转机械振动的种类 1)转轴的横向振动:转轴的弯曲所产生的振动,即垂直于轴线方向的振动。 2)转轴的扭转振动:转轴的扭转所产生的振动,亦即绕轴线的振动。 3)转轴的纵向振动:转轴沿轴线方向的振动,这类振动往往较少产生。 2.按机械振动系统的自由度分类 1)单自由度振动系统:确定系统在振动过程中任何瞬时的几何位置只需要一个独立坐标的振动。 2)多自由度振动系统:确定系统在振动过程中任何瞬时的几何位置需要多个独立参数。3.按产生机械振动的原因分类 1)自由振动:当系统的平衡被破坏,只靠其弹性恢复力来维持的振动。它的频率为系统的固有频率。自由振动按阻尼存在与否分为有阻尼自由振动和无阻尼自由振动。 2)受迫振动:在外界激振力的持续作用下,系统被迫产生的振动。它的频率为外界激振力的频率。 三、引起机械振动的原因 1.运转机械的不平衡 从运动特点,机械一般可分为回转式和非回转式。对于回转机械,如泵、电机的静、动平衡比较容易做到。对于非回转式机械,如内燃机、冲压机等的完全平衡是比较困难的。因此使机器运转时由于不平衡引起周期性于扰力,其引起的机械振动的频率常等于机械的转数或其倍数。 2.作用在机械上的外载荷的变化 作用在机械的某些构件上的外力或外转矩的不均匀会引起横向振动或扭转振动。 3.高副机构高副形状误差引起的 齿轮的齿形误差引起变化的动力,引起扭转振动。凸轮表面的误差也会引起附加动力变化、引起机构的振动。 4.机器周围的冲压设备引起的冲击力振动 由于冲压设备,如冲床、锻床产生的冲击力使机器引起振动。

N考核《大学物理学》机械振动与机械波部分练习题(解答)

《大学物理学》机械振动与机械波部分练习题(解答) 一、选择题 1.一弹簧振子,当把它水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 ( C ) (A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。 2.两个简谐振动的振动曲线如图所示,则有 ( A ) (A )A 超前/2π; (B )A 落后/2π; (C )B 超前/2π; (D )B 落后/2π。 3.一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: ( D ) (A )/4T ; (B )/6T ; (C )/8T ; (D )/12T 。 4.分振动方程分别为13cos(50)4 x t π π=+ 和234cos(50)4 x t ππ=+ (SI 制)则它们的合 振动表达式为: ( C ) (A )5cos(50)4 x t π π=+ ; (B )5cos(50)x t π=; (C )1 15cos(50)2 7 x t tg π π-=+ +; (D )1 45cos(50)2 3 x t tg π π-=+ +。 5.两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l ?和2l ?,且1l ?=22l ?,两弹簧振子的周期之比T 1:T 2为 ( B ) (A )2; (B )2; (C )1/2; (D )2/1。 6.一个平面简谐波沿x 轴负方向传播,波速u=10m/s 。x =0处,质点振动曲线如图所示,则该波的表式为 (A ))2 20 2 cos( 2π π π + + =x t y m ; (B ))2 20 2 cos( 2π π π - + =x t y m ; (C ))2 20 2 sin( 2π π π + + =x t y m ; (D ))2 20 2 sin( 2π π π - + =x t y m 。 2 -

2017-2018学年高中物理 第十一章 机械振动 第1节 简谐运动教学案 新人教版选修3-4

第1节 简谐运动 一、弹簧振子 1.弹簧振子 图11-1-1 如图11-1-1所示,如果球与杆或斜面之间的摩擦可以忽略,且弹簧的质量与小球相比也可以忽略,则该装置为弹簧振子。 2.平衡位重 振子原来静止时的位置。 3.机械振动 振子在平衡位置附近所做的往复运动,简称振动。 二、弹簧振子的位移—时间图像 1.振动位移 从平衡位置指向振子某时刻所在位置的有向线段。 2.建立坐标系的方法 以小球的平衡位置为坐标原点,沿振动方向建立坐标轴。一般规定小球在平衡位置右边 1.平衡位置是振子原来静止的位置,振子在其附近 所做的往复运动,是一种机械振动,简称振动。 2.如果质点的位移与时间的关系遵从正弦函数的 规律,即它的振动图像(x -t 图像)是一条正弦曲线, 这样的振动叫做简谐运动,它是一种最简单、最基 本的振动,是一种周期性运动。 3.简谐运动的位移一时间图像表示质点离开平衡 位置的位移随时间变化的关系,而非质点的运动轨 迹。由该图像可以确定质点在任意时刻偏离平衡位 置的位移和运动情况。

(或上边)时,位移为正,在平衡位置左边(或下边)时,位移为负。 3.图像绘制 用频闪照相的方法来显示振子在不同时刻的位置。 三、简谐运动及其图像 1.定义:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。 2.特点:简谐运动是最简单、最基本的振动,其振动过程关于平衡位置对称,是一种往复运动。弹簧振子的运动就是简谐运动。 3.简谐运动的图像 (1)形状:正弦曲线,凡是能写成x=A sin(ωt+φ)的曲线均为正弦曲线。 (2)物理意义:表示振动的质点在不同时刻偏离平衡位置的位移,是位移随时间的变化规律。 1.自主思考——判一判 (1)平衡位置即速度为零时的位置。(×) (2)平衡位置为振子能静止的位置。(√) (3)振子的位移-5 cm小于1 cm。(×) (4)简谐运动的轨迹是一条正弦(或余弦)曲线。(×) (5)简谐运动是一种匀变速直线运动。(×) 2.合作探究——议一议 (1)简谐运动与我们熟悉的匀速运动比较,速度有何不同的特点?如何判断一个物体的运动是不是简谐运动? 提示:简谐运动与匀速运动的区别在于其速度大小、方向都不断变化,只要质点的位移随时间按正弦规律变化,则这个质点的运动就是简谐运动。 (2)如图11-1-2所示为振子的位移—时间图像,振子的位移—时间图像就是振子的运动轨迹吗? 图11-1-2

(完整版)浙江大学《机械振动基础》期末试卷

诚信考试沉着应考杜绝违纪 浙江大学2013–2014学年夏学期 《机械振动基础》课程期末考试试卷A卷 开课学院:化工系,考试形式:闭卷,允许带 1张A4纸的笔记入场 考试时间: 2014 年 7 月 2 日, 下午14:00~16:00 ,所需时间: 120 分钟 考生姓名: __学号:专业:过程装备与控制工程 . 注意事项: (1)、考试形式为闭卷,允许带1页A4纸大小的参考资料、计算器和尺子。不允许带 PPT课件打印稿、作业本、笔记本草稿纸等纸质材料,不允许带计算机、IPad等智能电子设备。 (2)、第一、二大题答题内容写在试卷上,第三大题答题内容写在试卷所附答题纸上。试题(三个大题,共100分): 一、判断题(每题2分,共18分) 1.1 杆的纵向振动、弦的横向振动和轴的扭转振动虽然在运动表现形式上并不相同, 但它们的运动微分方程是同类的,都属于一维波动方程。() 1.2 稳态响应的振幅及相位只取决于系统本身的物理性质(m, k, c)和激振力的频率 及力幅,而与系统进入运动的方式(即初始条件)无关. () 1.3 在受到激励开始振动的初始阶段,振动系统的响应是暂态响应与稳态响应的叠 加。即使在零初始条件下,也有自由振动与受迫振动相伴发生。() 1.4 为减轻钢丝绳突然被卡住时引起的动张力,应适当减小升降系统的刚度。() 1.5 汽轮机等高速旋转机械在开、停机过程中经过某一转速附近时,支撑系统会发生 剧烈振动,此为转子系统的临界转速,即转子横向振动的固有频率。() 1.6 谐波分析法是将非周期激励通过傅立叶变换表示成了一系列频率为基频整数倍的 简谐激励的叠加,从而完成系统响应分析。 () 1.7阻尼自由振动的周期小于无阻尼自由振动的周期。 () 1.8叠加原理可用于线性和非线性振动系统。 () 1.9若将激振力 F(t) 看作一系列单元脉冲力的叠加,则线性振动系统对任意激振力的 响应等于激振力作用时间内各个单元脉冲响应的总和。 ()

高考物理专题16机械振动和机械波 真题分类汇编(教师版)

专题16 机械振动和机械波 1.(2019·新课标全国Ⅰ卷)一简谐横波沿x 轴正方向传播,在t = 2 T 时刻,该波的波形图如图(a )所示,P 、Q 是介质中的两个质点。图(b )表示介质中某质点的振动图像。下列说法正确的是 A .质点Q 的振动图像与图(b )相同 B .在t =0时刻,质点P 的速率比质点Q 的大 C .在t =0时刻,质点P 的加速度的大小比质点Q 的大 D .平衡位置在坐标原点的质点的振动图像如图(b )所示 E .在t =0时刻,质点P 与其平衡位置的距离比质点Q 的大 【答案】CDE 【解析】由图(b )可知,在2T t = 时刻,质点正在向y 轴负方向振动,而从图(a )可知,质点Q 在2 T t = 正在向y 轴正方向运动,故A 错误;由2 T t = 的波形图推知,0t =时刻,质点P 正位于波谷,速率为零;质点Q 正在平衡位置,故在0t =时刻,质点P 的速率小于质点Q ,故B 错误;0t =时刻,质点P 正位于波谷,具有沿y 轴正方向最大加速度,质点Q 在平衡位置,加速度为零,故C 正确;0t =时刻,平衡位置在坐标原点处的质点,正处于平衡位置,沿y 轴正方向运动,跟(b )图吻合,故D 正确;0t =时刻,质点P 正位于波谷,偏离平衡位置位移最大,质点Q 在平衡位置,偏离平衡位置位移为零,故E 正确。故本题选CDE 。 2.(2019·新课标全国Ⅱ卷)如图,长为l 的细绳下方悬挂一小球a 。绳的另一端固定在天花板上O 点处,在O 点正下方3 4 l 的O '处有一固定细铁钉。将小球向右拉开,使细绳与竖直方向成一小角度(约为2°)后由静止释放,并从释放时开始计时。当小球a 摆至最低位置时,细绳会受到铁钉的阻挡。设小球相对于其平衡位置的水平位移为x ,向右为正。下列图像中,能描述小球在开始一个周期内的x-t 关系的是

2021 第13章 第1节 机械振动

第1节机械振动 一、简谐运动的特征 1.简谐运动 (1)定义:如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。 (2)平衡位置:物体在振动过程中回复力为零的位置。 (3)回复力

①定义:使物体返回到平衡位置的力。 ②方向:总是指向平衡位置。 ③来源:属于效果力,可以是某一个力,也可以是几个力的合力或某个力 的分力。 2.简谐运动的两种模型 模型弹簧振子单摆 示意图 弹簧振子(水平) 简谐运动 条件 ①弹簧质量要忽略 ②无摩擦等阻力 ③在弹簧弹性限度内 ①摆线为不可伸缩的轻细线 ②无空气阻力等 ③最大摆角小于等于5° 回复力弹簧的弹力提供 摆球重力沿与摆线垂直方向(即 切向)的分力 平衡位置弹簧处于原长处最低点 周期与振幅无关T=2π L g 能量转化 弹性势能与动能的相互转化,机 械能守恒 重力势能与动能的相互转化,机 械能守恒 1.简谐运动的表达式 (1)动力学表达式:F=-kx,其中“-”表示回复力与位移的方向相反。 (2)运动学表达式:x=A sin(ωt+φ),其中A代表振幅,ω=2πf,表示简谐运动的快慢,ωt+φ代表运动的相位,φ代表初相位。 2.简谐运动的图象 (1)从平衡位置开始计时,函数表达式为x=A sin ωt,图象如图甲所示。 甲乙

(2)从最大位置开始计时,函数表达式为x=A cos ωt,图象如图乙所示。 三、受迫振动和共振 1.受迫振动 (1)概念:振动系统在周期性驱动力作用下的振动。 (2)特点:受迫振动的频率等于驱动力的频率,跟系统的固有频率无关。 2.共振 (1)现象:当驱动力的频率等于系统的固有频率时,受迫振动的振幅最大。 (2)条件:驱动力的频率等于固有频率。 (3)特征:共振时振幅最大。 (4)共振曲线(如图所示)。 1.思考辨析(正确的画“√”,错误的画“×”) (1)简谐运动的平衡位置就是质点所受合力为零的位置。(×) (2)做简谐运动的质点先后通过同一点,回复力、速度、加速度、位移都是相同的。(×) (3)公式x=A sin ωt说明是从平衡位置开始计时。(√) (4)简谐运动的图象描述的是振动质点的轨迹。(×) (5)物体做受迫振动时,其振动频率与固有频率无关。(√) (6)物体受迫振动的频率与驱动力的频率无关。(×) 2.(多选)做简谐运动的物体,当它每次经过同一位置时,相同的物理量是() A.位移B.速度C.加速度 D.回复力E.动量 ACD[简谐运动的位移是指由平衡位置指向物体所在位置的有向线段,物体经过同一位置时,运动位移一定相同,选项A正确;回复力产生加速度,回复力与位移满足F=-kx的关系,只要位移相同,回复力一定相同,回复力产

机械振动大作业-求初始激励的自由振动响应

图示系统中, m1=m2=m3=m, k1=k2=k3=k, 设初始位移为1, 初始速度为0, 求初始激励的自由振动响应。 要求: (1)利用影响系数法求解刚度阵K和质量阵M,建立控制方程;(15分) (2)求解系统固有频率和基准化振型;(13分) (3)求解对初始激励的响应(运动方程);(12分) (4)利用软件仿真对初始激励响应曲线(Matlab,simulink,excel均可),给出仿真程序(或框图)、分析结果;尝试对m、k赋值,分析曲线变化; (10分) (5)浅谈对本课程的理解、体会,对授课的意见、建议;(10分) 字迹清晰,书写规整。(10分)

(1)利用影响系数法求解刚度阵K 和质量阵M ,建立控制方程; ①求解刚度矩阵K 令[]T 00 1 =X ,则弹簧变形量δ=[1 1 0]T , 在此条件下系统保持平衡,按定义需加于三物块的力312111、、k k k 如图所示 根据平衡条件可得 0,,2312222121221111=-=-=-==+=+=k k k k k k k k k k k δδδ 同理,令[]T 010=X 得 k k k k k k k k k k -=-==+=-=-=3323222212,2, 令[]T 100=X 得 k k k k k k k ===-==33332313,-,0 故刚度矩阵为 ②求解质量矩阵M 令[ ]T 001=X 得m m m ==111,021=m ,031=m 令[]T 010=X 得012=m ,m m m ==222,032=m 令[]T 100=X 得013=m ,023=m ,m m m ==333 故质量矩阵为

相关文档
最新文档