几何体内切球与外接球PPT课件

合集下载

8.3.2球的内接与外切类型总结课件(人教版)

8.3.2球的内接与外切类型总结课件(人教版)
和该长方体的5个面相切。
例如,装乒乓球的盒子
如果一个长方体有内切球,那么它一定是 正方体
类型二:长方体方体
长方体的外接球

=
+ +

长方体的(体)对角线等于球直径
设长方体的长、宽、高分别为a、b、c,
则a 2 b 2 c 2 (2 R) 2。
反馈练习
3、一个长方体的各顶点均在同一球面上,且
4 3
球的体积公式 :V R
3
2

R
球的截面问题
例1、一个距离球心为1的平面截球所得的圆面面积为π,则球的表

面积为_______。
解:作轴截面,如图所示,根据球的性质,可得OO′=1,设截
面圆的半径为r,球的半径为R,
因为截面圆的面积为π,所以可得πr2=π,解得r=1
又由R2=OO′2+r2=2,所以 R 2
同一个球面上,且CA CB CC1 a,
ACB 60,求该球的表面积。
O1
O
O2
结论2.直棱柱(圆柱)外接球半径
球心是上、下底面外接圆
圆心所连线段的中点;
o1 r
R
o
h 2
R r ( )
2
2

o2
2
(r为底面外接圆半径,h为体高)
1、已知一长方体的一个顶点处的三条棱长分别是 3, 3, 6
的直径与正方体的棱长是相等的,故可得球的直径为 2,所以球的半径为 1,
4

其体积是 ×π×13= .
3
3
5.圆柱内接于球,圆柱的底面半径为3,高为8,则球的表面积为
100π

外接球与内切球 PPT

外接球与内切球 PPT
②有一个面是直角三角形,且一条棱垂直该面的三棱锥的外接球 可以补成长方体的外接球
③对棱两两相等的三棱锥的外接球可以补成长方体的外接球(所有 的棱为长方体的面对角线)
④有一侧棱垂直于底面的三棱锥的外接球可以补成直三棱柱。
Eg1(1)(2011.辽高考宁)已知球的直径 SC=4,A,B 是该球球面上的两点,
本例(3)中,改为∠BAC=60°,其他条件不变,如何求?若 ∠BAC=90°呢?
解析:若∠BAC=60°,如图,设 O1,O2 分 别为上、下底面的中心,且球心 O 为 O1O2 的中 点,得 AD= 23×2= 3,AO2=23AD=233,OO2 =1.设球的半径为 R,则 R2=AO2=AO22+OO22=43+1=73.
AB= 3 , ASC BSC 30, 则
C 棱锥 S—ABC 的体积为( ) A 3 3 B 2 3 C 3
D1
(2)(2012 课标全国)已知三棱锥 S—ABC 的所有顶点都在球 O的球面上, ABC是边长为 1 的正三角形,SC 为球 O 的直径,且 SC=2,则此棱锥 的体积为




V=13(S 上+S 下+ S上S下)h=13π(r21 +r22+r1r2)h
① 圆锥的侧面展开图的扇形的圆心角: r • 2
l
② 圆台的侧面展开图的扇环的圆心角: r2 r1 • 2
l
直棱柱 正棱锥
正棱台 球
S 侧=Ch′
V=Sh
S 侧=12Ch′(h′为 斜高)
V=13Sh
S 侧=12(C+
V=13(S 上+S 下+
C′)h′
S上S下)h
S 球面=4πR2
V=43πR3
2.几何体的表面积 (1)棱柱、棱锥、棱台的表面积就是各面面积之和. (2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形; 它们的表面积等于侧面积与底面积之和.

球的内切和外接

球的内切和外接

面上,若该正方体的表面积为24,则该球的体 积为 4 3 .
2、求长方体的外接球的有关问题
例2、一个长方体的各顶点均在同一球面上, 且一个顶点上的三条棱长分别为1,2,3 ,则此 球的表面积为 .
解析:关键是求出球的半径,因为长方体内接于 球,所以它的体对角线正好为球的直径。长方体 体对角线长为 14,故球的表面积为 14 . 变式题:已知各顶点都在一个球面上的正四棱柱 高为4,体积为16,则这个球的表面积为( C ) A. 16 B. 20 C. 24 D. 32
常见几何体的内切、外接球
一、 球体的体积与表面积
二、球与多面体的接、切
图3 图4 图5
4 3 ① V球 R 3

S球面 4 R
2
定义1:若一个多面体的各顶点都在一个球的球面上, 则称这个多面体是这个球的内接多面体, 这个球是这个 多面体的外接球 。 定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体, 这个球是这个 多面体的内切球 。 棱切: 一个几何体各个面分别与另一个几 何体各条棱相切。
①若球为正方体 的外接球
2R 3a
若球为正方体的内切球, 2R=a 则
③若球与正方 则
体的各棱相切,
2R 2a
知识拓展 1.几个与球有关的切、接常用结论 (1)正方体的棱长为a,球的半径为R,
①若球为正方体的外接球
2R 3a
2R 2a
②若球为正方体的内切球,则 2R=a ③若球与正方体的各棱相切,则
3
练习 正四棱锥S-ABCD的底面边长和各侧棱长 都为 2 ,点S,A,B,C,D都在同一球面上, 则此球的体积为 .
D
S
C O1 B

正方体内切球、外接球、棱切球、图例演示ppt课件

正方体内切球、外接球、棱切球、图例演示ppt课件
2
S 4R2 3a 2
D A
D A11
D A
D A11
C B O
C1
B1
C B O
C1
B1
正方体的外接球
正方体的外接球
D A
D1 A1
C
B O
C1 B1
对角面 A
A1
C
O
C1
正方体的外接球直径是体对角线
例2.如图,正方体ABCD-A1B1C1D1的棱长 为a,它的各个顶点都在球O的球面上,问球
球的表面积和体积
D1
A1
d
D
S
A
a
C1
c B1
C
b
B
d2 a2 b2 c2
球的体积
球面:半圆以它的直径为旋转轴,旋转所成的曲面。 球(即球体):球面所围成的几何体。
它包括球面和球面所包围的空间。
半径是R的球的体积:V 4R3
3
2、球的表面积
S 4πR2
练习一:
(1)球的半径伸长为原来的2倍,体积变为原 来的——8 倍.
O的表面积。
略解:RtB1 D1ຫໍສະໝຸດ D中 :(2R)2 a 2 ( 2a)2 , 得 R 3a
2
S 4R2 3a 2
D A
D A11
D A
C B
O C1
B1
C B
D A11
O C1
B1
正方体的棱切球
正方体的棱切球直径是面对角线长
(2)若球的表面积变为原来的2倍,则半径变
2
为原来的——倍。
(3)若球半径变为原来的2倍,则表面积变
4
为原来的——倍。
(4)若两球表面积之比为1:2,则其体积之

球的外接和内切课件-高一数学人教A版(2019)必修第二册

球的外接和内切课件-高一数学人教A版(2019)必修第二册
.
1

1 2
= =
=2
°
2 30
1
1
= = 1 = 1
2
2
1

= =



2 + 2 = 5
= 42 = 4 ⋅ 5 = 20

22
例4 (3)正四棱锥的顶点都在同一球面上,若该棱锥的高为6,底面边长为4,
则该球的表面积为(
44
3
)A. π
B.
484
π
9
81
4
C. π
D.16π
05
圆 锥 圆 柱 柱 模 型
五、圆锥与圆柱外接球的求法
R (h R) r
2
2
2
r 2 h2
R
2h
(其中为底面的外接圆半径,1 = ℎ)
h
2
2
( )r R
2
(其中为底面半径,圆柱高为ℎ)
例4
如图所示,半径为4的球中有一内接圆柱,当圆柱的侧面积最
4
正四面体内切球半径为 =
6

12

可以补形为正方体且正方体的棱长
2
3
6
R
a

a ,即正四面体外接球半径
2
2
4

(4)若三棱锥的对棱两两相等,则可将其放入某个长方体内。
四面体中, = = , = = , = = . 这种四面体叫做
对棱相等四面体
01




球的性质
球被平面截得的图形是圆,球心与截面圆圆心的连线与截面圆垂直,球的半径 R,截面圆的
2

关于球的内切和外接专题讲座课件人教新课标

关于球的内切和外接专题讲座课件人教新课标
球与多面体的内切、外接
D
C
A
B
D1
A1
高中数学教师欧阳文丰
O
C1
B1
一、复习
球体的体积与表面积
4
3
① V球 R
3

S球面 4 R
2
二、球与多面体的接、切
定义1:若一个多面体的各顶点都在一个球的球面上,
则称这个多面体是这个球的内接多面体,
这个球是这个多面体的外接球。
定义2:若一个多面体的各面都与一个球的球面相切,
类型二、求长方体外接球的有关问题
例2、一个长方体的各顶点均在同一球面上,
且一个顶点上的三条棱长分别为1,2,3 ,则此
球的表面积为
.
解析:关键是求出球的半径,因为长方体内接于
球,所以它的体对角线正好为球的直径。长方体
体对角线长为 14 ,故球的表面积为14 .
变式题:已知各顶点都在一个球面上的正四棱柱
球心到多面体各顶点的距离均相等
2、正多面体的内切球和外接球的球心重合
3、正棱锥的内切球和外接球球心都在高线上,但不
重合
4、基本方法:构造三角形利用类似比和勾股定理
5、体积分割是求内切球半径的通用做法
类型四、求正棱锥的外接球和内切球有关问题
例5、正三棱锥的高为 1,底面边长为
全面积和它的内切球的表面积。
2
a
2
a
3
r3
a
2
2a
•画出正确的截面:(1)中截面;(2)对角面
•找准数量关系
2a
类型一、球与正方体的“接切”问题
A
C
O
A1
C1
例1、若棱长为3的正方体的顶点都在同一球面

球的内切和外接问题课件

球的内切和外接问题课件

内切与外接问题的解题思路与方法
01
认真审题,明确题目中 的已知条件和所求目标 。
02
分析几何体的结构特征 ,确定内切或外接关系 。
03
合理利用内切或外接的 性质和定理,建立方程 或不等式求解。
04
对于复杂问题,可以采 用数形结合、分类讨论 等数学思想方法。
05
典型例题解析
简单几何体的内切与外接问题
判断一个球是否是多面体的内切球。
利用内切球的性质解决一些与多面体相关的问题,如求解多面体的体积、表面积等 。
外接球的定义与性质
定义
外接球是指一个球完全包含一个多面体,且与多面体的各个 顶点都相切。
性质
外接球的半径等于多面体外接圆半径,也等于从多面体中心 到任意一个顶点的距离。
外接球的计算方法
直接法
,也希望教师能够增加一些互动环节,提高课堂的趣味性。
对未来学习的建议与展望
加强基础知识的巩固
建议学生在课后加强对基础知识的学习和巩固,为后续的学习打下 坚实的基础。
增加实践环节
希望教师能够增加一些实践环节,如小组讨论、案例分析等,帮助 学生更好地应用所学知识解决实际问题。
拓展相关领域的学习
鼓励学生拓展相关领域的学习,如学习其他几何体的内切与外接问题 、了解相关数学史等,以拓宽视野并加深对课程内容的理解。
性质
内切球的半径等于多面体的内切圆半 径,也等于多面体各个面上的内切圆 半径的最小值。
内切球的计算方法
直接法
通过已知条件直接求出内切球的半径。
间接法
利用体积关系求出内切球的半径。对于棱锥、棱柱等多面体,可以先求出其体 积和表面积,再利用体积和表面积的关系求出内切球的半径。

高考数学一轮复习第六章专题六几何体的外接球与内切球问题课件

高考数学一轮复习第六章专题六几何体的外接球与内切球问题课件

)
A.4 3π
B.8π
C.12π
D.20π
解析:在底面△ABC 中,由正弦定理得底面△ABC 外接圆的
半径为
r=2sin B∠CBAC=2sin2
3π= 4
2.
直三棱柱 ABC-A1B1C1 的外接球的半径 R= ( 2)2+12= 3,
r2+A2A12=
则直三棱柱 ABC-A1B1C1 的外接球的体积为43πR3=4 3π.

λ=12时,cos〈E→B,E→G〉=2
3
2 .
∴cos〈E→B,E→G〉的最大值为2
3
2 .
∵A→C=(-1,1,0),A→F=(0,1,1), ∴E→B·A→C=E→B·A→F=0. ∴EB⊥AC,EB⊥AF. ∵AC∩AF=A,∴EB⊥平面 AFC. ∵E→B·E→G>0,∴cos〈E→B,E→G〉即为 EG 与平面 AFC 所成角
如图 6-7 所示,把四面体 S-ABC 补全为长方体 ABCD-SPMN, 其中 SA,AB,BC 为长方体中首尾相连且两两相互垂直的三条棱, 点 H 为 PM 中点.
图 6-7
∵GH∥AP,∴G,H 两点到平面 AEF 的距离相等.
设点 H 到平面 AEF 的距离为 d.
∵△APF 是边长为 2 2的等边三角形,
[例 1]已知一个圆锥底面半径为 1,母线长为 3,则该圆锥内
切球的表面积为( )
A.π
B.32π
C.2π
D.3π
解析:依题意,作出圆锥与球的轴截面,如图
6-1 所示.设球的半径为 r,易知轴截面三角形边 AB
上的高为 2 2,因为△SOD∽△SBE,所以SSOB=OBED,
即2 32-r=1r,解得 r= 22.所以圆锥内切球的表面

正方体内切球外接球棱切球图例演示

正方体内切球外接球棱切球图例演示
C1
B1
正方体的外接球
正方体的外接球
D A
D1 A1
C
B O
C1 B1
对角面 A

A1
C
O
C1
正方体的外接球直径是体对角线
例2.如图,正方体ABCD-A1B1C1D1的棱长 为a,它的各个顶点都在球O的球面上,问球
O的表面积。
略解: Rt B 1 D 1 D 中 :
(2R )2 a 2 ( 2a)2,得
R
3 a
2
S 4R 2 3a 2
D A
D A11
D A
C B
O C1
B1
C B
D A11
O C1
B1
正方体的棱切球
正方体的棱切球直径是面对角线长
分析:正方体内接于球,则由球和正方 体都是中心对称图形可知,它们中心重 合,则正方体对角线与球的直径相等。
略解: Rt B 1 D 1 D 中 :
(2R )2 a 2 ( 2a)2,得 R 3a
2
S 4R 2 3a 2
D A
D A11
D A
D A11
C B O
C1
B1
C B O
1: 2 2
比是———。
练习一
1.球的半径伸长为原来的2倍,体积变为原来的_8 倍.
2.一个正方体的顶点都在球面上,它的棱长是4cm, 这个球的体积为_32_3_ cm3.
3.有三个球,一球切于正方体的各面,一球切于正 方体的各侧棱,一球过正方体的各顶点,求这三 个球的体积之比_1_:_2__2_:3__3_.
例1.钢球直径是5cm,求它的体积.
V4R34(5)312c5m 3 3 32 6

高中数学难点突破:球的外切和内接问题 (共10张PPT)

高中数学难点突破:球的外切和内接问题 (共10张PPT)

解析:设正方体的棱长为a
∵球的外切正方体的棱长等于球直径:2R=a ∴ S甲 = 4πR22 = π
∵球内切于正方体的棱时
正方体的面对角线等于球的直径
2Rห้องสมุดไป่ตู้=
2a
∴ S乙
=
4πR
2 2
=

球的内接正方体的体对角线等于球直径: 2R = 3a S丙 =4πR32 =3π
∴三球表面积之比为1:2:3
跟踪练习2
a
r1
=
a 2
a
r2 =
2a 2
a
r3 =
3a 2
a
2a
2a
• 画出正确的截面:(1)中截面; (2)对角面
• 找准数量关系
典型例题一
若正方体的棱长为a,求:正方体的外接球的体积 .
球的内接正方体的对角线等于球直径 .
D
C
A
A
B
O
D1
C1
对角面

A1
A1
B1
V2
=
4 3
π(
3a)3 = 2
3a3 π 2
解析:作轴截面如图所示,
CC = 6 , AC = 2 6 = 2 3
设球半径为R ,则:
R2 =OO2 +CC2
=( 6 )2 +( 3)2 = 9 ∴ R =3
∴ S球 =4πR2 =36π
V球
=
4 3
πR3
=36π
D’
C’
A’
B’
D
C
A
OB
A’
O’
C’
A
O
C
C 2RO= 3a

正四面体的外接球与内切球PPT讲稿

正四面体的外接球与内切球PPT讲稿

解题小结:
(1) V1:V2=R13:R23; S1:S2=R12:R22.
(2) 注意扩大与扩大到的区别.
(3) 解这类问题的关键:找到变化前 后半径的大小关系.
例3. 长方体的三个相邻面的面积分别为2,3, 6,这个长方体的顶点都在同一个球面上,求这个 球的表面积。
例4.在球心同侧有相距9cm的两个平行截面,它们的面 积分别为49πcm²和400πcm²,求球的表面积。
若将“球心同侧”这个条件去掉,又如何?
O₂
A
O₁
B
O
题组二:
1、一个四面体的所有2的棱都
一球为面上,,则四此个球顶的点表在面同积
( ) A 3л
B 4л C
3 3
D 6л
2、若正四体的棱长都为6,内有一 切球。与求四球个的面表都面相积。
1、一个四面体的所有的2 棱都
一球为面上,,则四此个球顶的点表在A面同积
的外接球,此时球的直径
为 3,
D
S球 =4 (
3 )2 2
3 ,
选A
A
C1 B1
C B
2、若正四体的棱长都为6,内有一
切球,与求四球个的面表都面相积。
解:作出过一条侧棱PC和高PO的截面,则截面三
角形PDC的边PD是斜高,DC是斜高的射影,球被截
P
成的大圆与DP、DC相切,连结EO,设球半径为r,
R2 2 ( 3
2 R)2,解得R 3
3 2
, 所以S球
4
R2
3 .
1、一个四面体的所有的2 棱都 一 (A为球3л面)上,B则四4л 此个C 球顶的点表在3 面同3 积 D 6л
解法2 构造棱长为1的正 方体,如图。则A1、C1、B、D

正四面体内切球和外接球(好用).ppt.ppt

正四面体内切球和外接球(好用).ppt.ppt
A
[题组冲关] 3.假如某爱国实业家在20世纪初需要了解全国各地商业信
息,可采用的最快捷的方式是
(
)
A.乘坐飞机赴各地了解 B.通过无线电报输送讯息 C.通过互联网 D.乘坐火车赴各地了解
解析:本题考查中国近代物质生活的变迁。注意题干信 息“20世纪初”“最快捷的方式”,因此应选B,火车速度
远不及电报快。20世纪30年代民航飞机才在中国出现,
1.李鸿章1872年在上海创办轮船招商局,“前10年盈和,成
为长江上重要商局,招商局和英商太古、怡和三家呈鼎立
之势”。这说明该企业的创办 A.打破了外商对中国航运业的垄断 B.阻止了外国对中国的经济侵略 C.标志着中国近代化的起步 ( )
D.使李鸿章转变为民族资本家
解析:李鸿章是地主阶级的代表,并未转化为民族资本家; 洋务运动标志着中国近代化的开端,但不是具体以某个企业 的创办为标志;洋务运动中民用企业的创办在一定程度上抵
(2)1924年国民党“一大”召开,标志着第 一
关键词——交通和通讯不断进步、辛亥革命和国民大革命顺应 时 代潮流 图说历史 主旨句归纳 (1)20世纪初,孙中山提出“民族、民权、 民生”三民主义,成为以后辛亥革命 的
指导思想。 (2)三民主义没有明确提出反帝要求,也 没 有提出废除封建土地制度,是一个 不彻 底的资产阶级革命纲领。
报先后发明。
(3)近代以来,交通、通讯工具的进步,推 动了经济与社会的发展。
关键词——交通和通讯不断进步、辛亥革命和国民大革命顺应 时 代潮流 图说历史 主旨句归纳 (1)1911年,革命党人发动武昌起义,辛亥
革命
爆发,随后建立了中华民国,颁布了《中 华
民国临时约法》;辛亥革命是中国近代化

2025年高考数学一轮复习 第八章 -球的切、接、截面问题【课件】

2025年高考数学一轮复习 第八章 -球的切、接、截面问题【课件】
第八章 立体几何与空间向量
素能培优(九)球的切、接、截面问题
一、梳理提炼
1.几何体外接球问题
(1)解题关键是确定球心和半径,解题思维流程如下:
(2)求多面体的外接球的半径,常用方法:
①当三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,
求出球的半径;
②直棱柱的外接球的球心为其上、下底面外接圆的圆心连线的中点,再根据勾股定理
外接圆的圆心.设点为外接球的球心,由球的性质可知 ⊥ 平面,作
⊥ ,垂足为,所以四边形为矩形, = = .设 = , = = ,
则 + −


= =

= + , 解得 = ,所以 = + = ,所以球的体积
三棱柱的所有顶点都在同一球面上,则该球的表面积是( C )
A.125π
B.144π
C.169π
D.244π
[解析] ∵ 三棱柱 − 的侧棱垂直于底面, = , = ,∠ = ∘ ,
= ,
∴ 可将三棱柱 − 补成长方体,且长方体的长,宽,高分别为3,4,12.
③作延长线找交点法:若直线相交但在立体几何中未体现,则可通过作延长线的方法先
找到交点,然后借助交点找到截面形成的交线.
④辅助平面法:若三个点两两都不在一个侧面或者底面中,则在作截面时需要作一个辅
助平面.
(2)作截面的步骤
①找截点:(方式1)延长截面上的一条直线,与几何体的棱、面(或其延长部分)相交,
交点即截点;(方式2)过一截点作另外两截点连线的平行线,交几何体的棱于截点.
②连截线:连接同一平面内的两个截点,形成截线.
③围截面:将各截线首尾相连,围成截面.

人教A版高中数学必修球的接切问题,内切球,棱切球,外接球,正四面体ppt演讲教学

人教A版高中数学必修球的接切问题,内切球,棱切球,外接球,正四面体ppt演讲教学

一般的长方体有内切球吗?
没有。一个球在长方体内部,最多 可以和该长方体的5个面相切。
如果一个长方体有内切球,
那么它一定是 正方体
人 教A版高 中数学 必修球 的接切 问题, 内切球 ,棱切 球,外 接球, 正四面 体ppt 演讲教 学
人 教A版高 中数学 必修球 的接切 问题, 内切球 ,棱切 球,外 接球, 正四面 体ppt 演讲教 学
人 教A版高 中数学 必修球 的接切 问题, 内切球 ,棱切 球,外 接球, 正四面 体ppt 演讲教 学
三、补形法
人 教A版高 中数学 必修球 的接切 问题, 内切球 ,棱切 球,外 接球, 正四面 体ppt 演讲教 学
人 教A版高 中数学 必修球 的接切 问题, 内切球 ,棱切 球,外 接球, 正四面 体ppt 演讲教 学
三、 正方体的外接球
2R 3 a 球直径等于正方体的(体)对角线
人 教A版高 中数学 必修球 的接切 问题, 内切球 ,棱切 球,外 接球, 正四面 体ppt 演讲教 学
人 教A版高 中数学 必修球 的接切 问题, 内切球 ,棱切 球,外 接球, 正四面 体ppt 演讲教 学
长方体与球
一、长方体的外接球
二、构造直角三角形
人 教A版高 中数学 必修球 的接切 问题, 内切球 ,棱切 球,外 接球, 正四面 体ppt 演讲教 学
人 教A版高 中数学 必修球 的接切 问题, 内切球 ,棱切 球,外 接球, 正四面 体ppt 演讲教 学
球的性质
性质1:用一个平面去截球,截面是圆面;
用一个平面去截球面, 截线是圆。
R= 2 a 4
正四面体的棱切球就是正方体的内切球
人 教A版高 中数学 必修球 的接切 问题, 内切球 ,棱切 球,外 接球, 正四面 体ppt 演讲教 学

【高中数学】立体几何中外接球内切球 专题课件 高一下学期数学人教A版(2019)必修第二册

【高中数学】立体几何中外接球内切球 专题课件 高一下学期数学人教A版(2019)必修第二册
A.4π B.3π C.2π D.π
答案 A 解析 由已知, 2R 12 12 ( 2)2 2 , S球 4 R2 4 π.
(4)在正三棱锥 S-ABC 中,M,N 分别是棱 SC,BC 的中点,
且 AM MN ,若侧棱 SA 2 3 ,则正三棱锥 S-ABC 外接球的表面
积是________.
2
空间几何体的外接球与内切球十大模型
1.墙角模型; 2.对棱相等模型; 3.汉堡模型; 4.垂面模型; 5.切瓜模型; 6.斗笠模型; 7.鳄鱼模型; 8.已知球心或球半径模型; 9.最值模型; 10.内切球模型.
3
一、墙角模型 墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模
型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线 长(在长方体的同一顶点的三条棱长分别为 a,b,c,外接球的半径为 R, 则 2R= a2+b2+c2.),秒杀公式:R2=a2+b2+c2。可求出球的半径
4
2
7a 2
7
, a 2
.在正四面体
A BCD 的边长为 2,外接球的半径 R
6a 4
6
2 ,外接球的体积
V 4 R3
3
6 .
12
(5) 已 知 三 棱 锥 A BCD , 三 组 对 棱 两 两 相 等 , 且
AB CD 1 , AD BC 3 ,若三棱锥 A BCD 的外接球表面
足为 BC 的中点 M.又 AM=12BC=52,OM=12AA1=6,
所以球 O 的半径 R=OA=
5 2
2+62=13. 2
另解 过 C 点作 AB 的平行线,过 B 点作 AC 的
平行线,交点为 D,同理过 C1 作 A1B1 的平行线,过 B1 作 A1C1 的 平行线,交点为 D1,连接 DD1,则 ABCD-A1B1C1D1 恰好成为球
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档