数控系统故障诊断技术

合集下载

数控系统故障诊断方法

数控系统故障诊断方法

数控系统故障诊断方法以下是 8 条关于数控系统故障诊断方法:1. 观察不就行吗?就像医生看病先观察症状一样,咱面对数控系统故障,先仔细观察啊!比如机床运行时是不是有异常响声,或者某些指示灯是不是不正常闪烁。

你说这观察重不重要?例子:上次厂里那台机床出问题,我啥也没干,就先站那儿观察了一会儿,嘿,还真就发现了点蛛丝马迹。

2. 测试一下也很关键呀!你想想,要是人生病了还得各种检查呢,数控系统也是呀!可以进行一些简单的功能测试。

这不就像给它做个体检嘛!例子:那次我们发现加工精度有问题,赶紧进行了几项针对性的测试,一下子就找到问题所在啦。

3. 系统报错信息可不能忽视哦!这就好比有人直接告诉你哪里不舒服,多直接呀!一定要认真对待这些报错信息。

难道不是吗?例子:有一回就是靠那报错信息,我们顺藤摸瓜,很快就解决了故障。

4. 互相交流多好呀!和同事们一起讨论讨论,说不定别人就有好点子呢!这就像头脑风暴一样,众人拾柴火焰高嘛!例子:那次遇到个难题,我和老李一交流,他的一个想法就给了我很大启发。

5. 查看历史记录呀!这可是它的过去经历呢,了解了这些,可不是能更容易找到问题所在嘛!这跟了解一个人的过往是不是很像?例子:有次故障,我们翻看历史记录,发现之前也有类似情况,照着上次的解决方法一试,还真行!6. 零部件检查也不能忘啊!数控系统就是由这些零部件组成的呀,就像大楼是由一块块砖建成的。

有问题的零部件就得赶紧换掉。

对吧?例子:有个小零件松动了,就导致整个系统不稳定,换了个新的就好了。

7. 软件更新也很有必要呢!你想想,咱手机软件还经常更新呢,数控系统也得与时俱进呀!这不是很重要吗?例子:有次就是因为软件版本太低,导致出现一些莫名其妙的问题,更新后立马就好了。

8. 有时候还得靠经验呀!经验这东西可神奇了,就像一位无声的导师。

有经验的人往往能更快地判断出问题所在。

这没错吧?例子:老张干了这么多年,很多故障他一看就大概知道是怎么回事了。

数控机床典型故障诊断与维修

数控机床典型故障诊断与维修

数控机床典型故障诊断与维修一、数控机床常见故障及其原因1. 通讯故障通讯故障是数控机床中比较常见的故障之一。

通讯故障的主要原因包括通讯电缆连接不良、通讯软件设置错误、通讯卡故障等。

这些原因导致的通讯故障会导致数控机床无法正常与上位机进行通讯,从而影响数控机床的工作效率。

2. 电气故障电气故障是数控机床常见的故障之一,主要原因包括电气元件老化、电气接线错误、电气元件损坏等。

电气故障会影响数控机床的正常电气供电,导致数控机床无法正常工作。

3. 传感器故障数控机床中的传感器故障也比较常见,主要原因包括传感器损坏、传感器灵敏度调整不当、传感器连接错误等。

传感器故障会导致数控机床无法准确感知工件位置或运动状态,从而影响数控机床的加工精度。

4. 润滑系统故障润滑系统故障是数控机床常见的故障之一,主要原因包括润滑油不足、润滑系统堵塞、润滑泵故障等。

润滑系统故障会导致数控机床在运行过程中出现摩擦增大、温升过高等问题,影响数控机床的工作效率和使用寿命。

5. 机械传动系统故障二、数控机床故障诊断方法硬件故障诊断是数控机床故障诊断的重要内容之一。

硬件故障诊断主要通过检查、测量、比对数控机床的各个硬件部件来发现故障原因。

比如通过检查通讯电缆连接状态、检测传感器输出信号、测量电气元件的电压电流等方法来诊断数控机床的硬件故障。

3. 综合故障诊断综合故障诊断是数控机床故障诊断的综合性方法,主要通过对数控机床的硬件、软件以及工艺加工情况进行综合分析,找出故障的根本原因。

综合故障诊断需要运用多种故障诊断方法,结合数控机床的实际工作情况进行综合分析,以确保找出故障的准确原因。

硬件故障维修是数控机床故障维修的重要内容之一。

硬件故障维修主要通过更换损坏的硬件部件、重新连接电气接线、调整机械传动系统等方法来修复数控机床的硬件故障。

数控机床故障诊断与维修是数控机床维护管理工作的重要内容,对于保证数控机床的正常工作、提高数控机床的使用寿命具有重要意义。

华中数控系统常见故障及诊断办法

华中数控系统常见故障及诊断办法

华中数控系统常见故障及诊断办法目录一.系统类故障判断维修1.故障现象一:系统不能正常启动z屏幕没有显示;z屏幕没有显示但工程面板能正常控制z DOS 系统不能启动z不能进入数控主菜单z进入数控主菜单后黑屏z运行或操作中出现死机或重新启动z开机后系统报坐标轴机床位置丢失2.故障现象二:急停和复位3.故障现象三:系统跟踪误差过大或定位误差过大4.故障现象四:回零(回参考点)故障5.故障现象五: 伺服电机抱闸失效6.故障现象六: 手摇故障二.伺服电机类故障判断维修三.变频或伺服主轴运转故障判断维修z主轴超速或不可控四.机床运行故障判断维修z刀架运转故障五.附表:系统内部报警信息一.系统类故障判断维修1.故障现象一:系统不能正常启动z屏幕没有显示故障原因 措施 参考系统电源不正确 1.检查电源插座(XS1)2.检查输入电源是否正常,应该为AC24V 或DC24V接线极性是否正确参见《世纪星连结说明书》2.3 节亮度调整太低或太高调整亮度调节开关 仅限HNC-18i/19i硬件板卡损坏 需更换系统或送厂维修z屏幕没有显示但工程面板能正常控制故障原因 措施 参考 亮度调整太低或太高调整亮度调节开关 仅限HNC-18i/19i 主板分辨率设置太高 调整主板COMS分辨率参数为640X480液晶屏损坏 需更换系统或送厂维修z DOS 系统不能启动故障原因 措施 参考文件被破坏1.软盘运行系统2.用杀毒软件检查软件系统3.重新安装系统软件CF卡、电子盘物理损坏 更换CF卡、电子盘z不能进入数控主菜单故障原因 措施 参考 系统文件被破坏1.用杀毒软件检查系统2.重新安装系统软件CF卡、电子盘物理损坏 更换CF卡、电子盘z进入数控主菜单后黑屏故障原因 措施 参考接线电源不正确1.检查电源插座2.检查电源电压3.确认电源的负载能力应该不低于100W 参见《世纪星连结说明书》2.3 节系统文件被破坏1.用杀毒软件检查系统2.重新安装系统软件z运行或操作中出现死机或重新启动故障原因 措施 参考参数设置不当重新启动后在急停状态下检查参数,检查坐标轴参数、PMC 用户参数作为分母的参数不应该为0参见《世纪星连结说明书》3.7.3、3.7.7 节1.操作同时运行了系统以外的其 他内存驻留程序2.调用较大的程序3.调用已损坏程序 1.等待2.中断零件程序的调用系统文件被破坏1.用杀毒软件检查系统2.重新安装系统软件 DOS 系统配置文件CONFIG.SYS 中,同时打开的文件数量过少设置为50 或更多FILES=50电源功率不够 1.检查电源插座2.检查电源电压3.确认电源的负载能力应该不低于100W参见《世纪星连结说明书》2.3 节硬件板卡损坏 需更换系统或送厂维修z开机后系统报坐标轴机床位置丢失故障原因 措施 参考18i\19i系统没有专门位置存储芯片任意移动一个坐标轴 仅限HNC-18i/19i坐标轴正在移动中突然关闭系统(非必然性)任意移动一个坐标轴2.故障现象二:急停和复位z系统始终保持急停状态不能产生复位信号故障原因 措施 参考急停回路没有闭合1.检查超程限位开关的常闭触点2.检查急停按钮的常闭触点,若未装手持单元或手持单元上无急停按钮,XS8 接口中的4 和17 脚应短接参见《世纪星连结说明书》2.10 节未向系统发送复位信息 1.检查’’外部运行允许’’的输入端口2.检查PMC 用户参数P[50]是否对应’’外部运行允许’’的输入点PLC软件 检查PLC 程序硬件板卡损坏 需更换系统或送厂维修z系统始终保持复位状态故障原因 措施 参考系统复位需要完成的信号未满足要求1.检查输入端口2.检查电路3.检查电源模块4.检查驱动模块5.检查主轴模块6.检查伺服动力电源空气开关参数设置不当 检查PMC 用户参数P[51]-P[63]是否对应输入点PLC软件 检查PLC 程序硬件板卡损坏 需更换系统或送厂维修z系统可以手动运行但无法切换到自动或单段状态故障原因 措施 参考坐标轴超程检查超程限位开关 参见《世纪星连结说明书》2.10 节系统信号未满足要求 1.检查输入端口2.检查电路3.检查电源模块4.检查驱动模块5.检查主轴模块6.检查刀具夹紧/松开信号7.检查伺服动力电源空气开关参数设置不当 检查PMC 用户参数P[51]-P[63],P[77]是否对应输入点PLC软件 检查PLC 程序硬件板卡损坏 需更换系统或送厂维修3.故障现象三:系统跟踪误差过大或定位误差过大故障原因 措施 参考伺服驱动器未上强电 1.检查电路2.检查电源模块3.检查驱动模块4.检查伺服动力电源空气开关电机编码器反馈电缆与电机强电电缆不一一对应检查电机接线数控装置与伺服驱动器之间的坐标轴控制电缆未接好 检查坐标轴控制电缆 (XS30 XS31 XS32 XS33)坐标轴控制电缆受干扰 1.坐标轴控制电缆应采用双绞屏蔽电缆2.坐标轴控制电缆屏蔽可靠接地3.坐标轴控制电缆尽量不要缠绕4.坐标轴控制电缆与其他强电电缆尽量远离且不要平行布置伺服驱动器特性参数调得太硬或太软 检查伺服驱动器有关增益调节的参数,仔细调整参数参见《伺服驱动器使用手册》伺服驱动器参数错 1.检查伺服驱动器控制方式2.检查伺服驱动器脉冲形式3.检查伺服驱动器电机极对数4.检查伺服驱动器电机编码器反馈线数参见《伺服驱动器使用手册》伺服驱动器未上使能 1.检查输出端口 2.检查电路 3.检查驱动模块系统特性参数不当 2.检查坐标轴的加减速时间常数3.检查坐标轴的反馈电子分子/分母3.检查坐标轴参数中的最高快移速度是否超出了电机额定转速伺服驱动器/电机选型错误 需更换伺服驱动器/电机伺服驱动器/电机损坏 需更换伺服驱动器/电机硬件板卡损坏 需更换系统或送厂维修机械卡死 调整机械4.故障现象四:回零(回参考点)故障z回零(回参考点)时报硬件故障故障原因 措施 参考 伺服电机编码器损坏需更换伺服电机电机编码器反馈电缆未接好或断路 1.检查电机编码器反馈电缆2.需更换电机编码器反馈电缆数控装置与伺服驱动器之间的坐标轴控制电缆未接好或断路 1.检查坐标轴控制电缆2.需更换坐标轴控制电缆硬件板卡损坏 需更换系统或送厂维修z回零(回参考点)时坐标轴无反应故障原因 措施 参考系统参数错1.检查坐标轴参数中的回参考点方式,通常对伺服电机应设为2(+-+)2.检查坐标轴参数中的回参考点快移和定位速度伺服驱动器未上使能 1.检查输出端口2.检查电路3.检查驱动模块伺服驱动器未上强电 1.检查电路2.检查电源模块3.检查驱动模块4.检查伺服动力电源空气开关数控装置与伺服驱动器之间的坐标轴控制电缆未接好或断路 1.检查坐标轴控制电缆2.需更换坐标轴控制电缆PLC软件 检查PLC 程序z回零(回参考点)时坐标轴反向低速移动直到压到超程限位开关 故障原因 措施 参考坐标轴回零(回参考点)开关始终保持闭合 1.检查坐标轴回零(回参考点)开关2. 需更换坐标轴回零(回参考点)开关系统开关量输入电缆接错或短路 1.检查开关量输入电缆2. 需更换开关量输入电缆PLC软件 检查PLC 程序硬件板卡损坏 需更换系统或送厂维修z回零(回参考点)精度差故障原因 措施 参考坐标轴控制电缆受干扰 1.坐标轴控制电缆应采用双绞屏蔽电缆2.坐标轴控制电缆屏蔽可靠接地4.标轴控制电缆尽量不要缠绕5.坐标轴控制电缆与其他强电电缆尽量远离且不要平行布置电机没有可靠接地 检查电机强电电缆电机编码器反馈电缆不可靠 1.需更换电机编码器反馈电缆,应采用双绞屏蔽电缆2.加粗位置反馈电缆中的电源线线径,如采用多根线并用3.电缆屏蔽层可靠接地4.电缆两端加磁环伺服电机编码器损坏需更换伺服电机硬件板卡损坏 需更换系统或送厂维修机械机械连接不可靠 调整机械连接z两次回参考点机床位置相差一个整螺距故障原因 措施 参考坐标轴回零(回参考点)开关信号与进给电机编码器Z 脉冲位置太近调整坐标轴回零(回参考点)开关位置5.故障现象五: 伺服电机抱闸失效z打开急停开关后升降轴自动下滑故障原因 措施 参考参数设置不当 检查PMC 用户参数P[68],增大数值机械配重或平衡装置失效或工作不可靠检查配重或平衡装置伺服电机抱闸机构损坏 需更换伺服电机z伺服电机抱闸无法打开或不稳定故障原因 措施 参考抱闸机构电源不正确 1.检查抱闸机构电源是否正常,应该为DC24V.必须采用 稳定的开关电源供电形式, 严禁采用简易桥式电路供电 2. 接线极性是否正确无开抱闸输出 1.检查输出端口2.检查开关量输出电缆3.检查电路伺服电机抱闸机构损坏 需更换伺服电机PLC软件 检查PLC 程序硬件板卡损坏 需更换系统或送厂维修6.故障现象六: 手摇故障z系统无手摇工作方式故障原因 措施 参考 手持单元未连结到XS8 接口检查XS8 接口手持单元电缆未接好或断路 检查手持单元电缆硬件板卡损坏 需更换系统或送厂维修PLC软件 检查PLC 程序z系统有手摇工作方式但手摇无反应故障原因 措施 参考手持单元电缆未接好或断路1.检查XS8 接口2.检查手持单元电缆 6.检查手摇脉冲发生器5V 电源手摇脉冲发生器损坏 需更换手摇脉冲发生器 手持单元的轴选择开关或倍率开关损坏需更换手持单元 硬件板卡损坏 需更换系统或送厂维修 PLC软件 检查PLC 程序参数设置错 1.检查硬件配置参数:部件型号:5301标识:31配置[0]:72.检查PMC系统参数中手摇0部件号是否与硬件配置参数对应。

数控机床系统故障诊断与维修

数控机床系统故障诊断与维修

数控机床系统故障诊断与维修摘要:本文主要介绍了数控机床系统故障诊断与维修相关的知识。

首先,介绍了数控机床的基本概念和应用领域。

然后,探讨了数控机床系统的结构和工作原理,重点介绍了数控系统的主要组成部分。

接着,讨论了数控机床故障的分类和诊断方法。

最后,介绍了数控机床故障维修的基本步骤和注意事项。

关键词:数控机床;系统结构;故障分类;诊断方法;维修步骤正文:一、数控机床的基本概念和应用领域数控机床是一种利用数字控制技术实现数控运动的机床,它可以实现高精度、高效率、高自动化的加工过程。

数控机床广泛应用于航空航天、汽车、电子、微电子、光学等制造领域,成为现代工业生产的重要装备之一。

二、数控机床系统的结构和工作原理数控机床系统主要由数控系统、电气系统、机械系统、液压系统组成。

其中,数控系统是整个系统的核心,它控制着机床的运动、加工和现场控制等操作。

电气系统负责调节机床的电气信号和电动机的转速、转向等参数。

机械系统则是机床的机械部分,包括工作台、主轴、进给机构等。

液压系统主要是用来控制机床液压元件的工作。

三、数控机床故障的分类和诊断方法数控机床的故障分类主要包括电气故障、机械故障、液压故障、数控系统故障等。

诊断方法一般分为四个步骤:信息采集、现象分析、故障定位、原因分析。

四、数控机床故障维修的基本步骤和注意事项数控机床故障维修一般分为五个步骤:现场查看、设备检查、故障排除、恢复正常加工、故障分析。

在进行维修时,需要注意安全措施、操作规程、使用工具等,以避免二次故障的发生。

综上所述,数控机床系统故障诊断与维修是数控技术应用过程中不可避免的一部分,只有熟练掌握故障诊断和维修技巧,才能更好地保障生产效率和质量,为工业现代化做出积极贡献。

五、数控机床系统故障维修的总结与展望数控机床作为现代制造业的重要装备,已成为实现高精度、高效率、高自动化生产的关键技术。

然而,由于其复杂的结构和工作原理,故障和维修也成为了其使用和维护过程中难以避免的问题。

专题一:数控机床故障与诊断

专题一:数控机床故障与诊断

轨上
图2-7 滚珠导轨的预紧
例9
由某龙门数控铣削中心加工的零件,在检验中发
现工件Y轴方向的实际尺寸与程序编制的理论数据存在不 规则的偏差。该数控机床布局如图2-8所示。
图2-8 龙门数控铣削中心
从数控机床控制的角度来说,零件在Y轴方向的尺寸 偏差是由机床的Y轴在进给过程中产生的偏差所造成。该 机床数控系统为SINUMERIK 810M,伺服系统为SIMODRIVE 611A驱动装臵,Y轴进给电动机为带内装式ROD302编码器 的1FT5交流伺服电动机。 1)通过检查Y轴有关位臵参数(如反向间隙、夹紧允许
2)因导轨、主轴等运动部件的干涉、摩擦过大等原因引 起的故障。 3)因机械零件的损坏、连接不良等原因引起的故障等。
(2)电气控制系统故障
电气控制系统故障通常分为“强电”故障和“弱电”
故障两大类 ;“弱电”故障又有硬件故障与软件故障之 分
2.按故障的性质分类
(1)确定性故障
确定性故障是指控制系统主机中的硬件损坏或只 要满足一定的条件,数控机床必然会发生的故障。 (2)随机性故障 随机性故障是指数控机床在工作过程中偶然发生
的故障。
3.按故障的指示形式分类
(1)有报警显示的故障
1)指示灯报警显示
2)显示器报警显示
(2)无报警显示的故障 4.按故障产生的原因分类 (1)数控机床自身故障 (2)数控机床外部故障
1.2
数控机床故障诊断原则
1.先外部后内部 2.先机械后电气
3.先静态后动态
4.先简单后复杂
1.3
数控机床的故障诊断技术
1.5 数控机床维修后的开机调试
1.6 维修调试后的技术处理
练习
1.1 数控机床故障分类

数控机床典型故障诊断与维修

数控机床典型故障诊断与维修

数控机床典型故障诊断与维修一、数控机床典型故障1. 伺服电机故障:伺服电机是数控机床的主要驱动元件,如伺服电机出现故障,会导致机床无法正常工作。

常见的伺服电机故障包括:电机运行异常、电机发热、电机无法正常启动等。

2. 数控系统故障:数控系统是数控机床的核心,一旦出现故障,会导致整个数控机床无法正常工作。

常见的数控系统故障包括:程序执行错误、操作界面死机、通讯故障等。

3. 传感器故障:传感器在数控机床中起着重要的作用,它能够感知机床状态并将信息反馈到数控系统。

常见的传感器故障包括:传感器信号异常、传感器损坏等。

4. 润滑系统故障:数控机床在工作过程中需要进行润滑,以减少摩擦、降低磨损。

润滑系统故障会导致机床零部件磨损加剧,影响加工精度和机床寿命。

5. 电气元件故障:数控机床中包含大量的电气元件,如断路器、接触器、继电器等。

这些元件一旦出现故障,会直接影响机床的正常运行。

1. 故障现象分析:当数控机床出现故障时,首先要对故障现象进行分析。

包括故障出现的时间、频率、程度等方面,有助于确定故障的性质和范围。

2. 信息收集:通过观察、询问、检测等方式,收集与故障相关的信息,包括数控系统显示的报警信息、机床运行时的异常声音、异味等。

3. 故障检测:根据故障现象和信息收集的结果,对机床进行检测,包括物理检测和电气检测。

物理检测可以发现机床结构的故障,电气检测可以发现电气元件的故障。

4. 故障定位:通过检测结果,确定故障发生的位置和原因,例如伺服电机故障、数控系统故障、传感器故障等。

5. 分析解决方案:根据故障定位结果,分析可能的解决方案,并进行相应的维修或调整。

1. 伺服电机维修:伺服电机故障通常需要专业的维修人员进行处理,首先要对电机进行检测和分析,确定故障原因,然后进行修复或更换。

2. 数控系统维修:数控系统故障可能是软件问题或硬件问题,软件问题可以通过重新设置参数、升级或更换软件来解决,硬件问题则需要更换故障部件。

数控机床常见故障诊断及排除方法

数控机床常见故障诊断及排除方法

数控机床常见故障诊断及排除方法不同的数控系统虽然在结构和性能上有所区别,但随着微电子技术的发展,在故障诊断上有它的共性。

1、数控机床故障诊断原则在故障诊断时应掌握以下原则:(1)先外部后内部数控机床是集机械、液压、电气和光学为一体的机床,故其故障的发生也会由这四者综合反映出来。

维修人员应先由外向内逐一进行排查。

尽量避免随意地启封、拆卸机床,否则会扩大故障,使机床大伤元气,丧失精度,降低性能。

(2)先机械后电气一般来说,机械故障较易发觉,而数控系统故障的诊断则难度较大些。

在故障检修之前,首先注意排除机械性的故障,往往可达到事半功倍的效果。

(3)先静后动先在机床断电的静止状态,通过了解、观察测试、分析确认为非破坏性故障后,方可给机床通电。

在运行工况下,进行动态的观察、检验和测试,查找故障。

而对破坏性故障,必须先排除危险后,方可通电。

(4)先简单后复杂当出现多种故障互相交织掩盖,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。

往往简单问题解决后,难度大的问题也可能变得容易。

2、数控机床的故障诊断技术数控系统是高技术密集型产品,要想迅速而正确的查明原因并确定其故障的部位,要借助于诊断技术。

随着微处理器的不断发展。

诊断技术也由简单的诊断朝着多功能的高级诊断或智能化方向发展。

诊断能力的强弱也是评价CNC数控系统性能的一项重要指标。

目前所使用的各种CNC系统的诊断技术大致可分为以下几类:1. 启动诊断(Start Up Diagnostics)启动诊断是指CNC系统每次从通电开始,系统内部诊断程序就自动执行诊断。

诊断的内容为系统中最关键的硬件和系统控制软件,如CPU、存储器、I/O等单元模块,以及MDI/CRT单元、纸带阅读机、软盘单元等装置或外部设备。

只有当全部项目都确认正确无误之后,整个系统才能进入正常运行的准备状态。

否则,将在CRT画面或发光二极管用报警方式指示故障信息。

此时启动诊断过程不能结束,系统无法投入运行。

数控机床故障诊断与维修技术

数控机床故障诊断与维修技术

第一章现代数控机床故障诊断与维修技术数控系统是数控机床的核心,数控机床根据功能和性能的要求配置不同的数控系统。

目前,我国数控机床行业占主导地位的数控系统有日本FANUC、德国的SIEMENS等公司的数控系统及相关产品。

本书以FANUC系列为例,探讨数控机床故障诊断与维修方法,使读者掌握现代数控机床维修技术。

1.1 FANUC 0i系列数控系统的特点FANUC数控系统以其高质量、低成本、高性能等特点适用于各种机床,在市场的占有率远远超过其他的数控系统,其中以FANUC公司中档产品0i系列为主要代表。

i代表产品的硬件集成度高,通信功能强,并采用高速矢量控制(HRV 控制),最快的响应时间是62.5us,特别适应加工模具。

现代FANUC系统产品的发展趋势如下图:1-1全功能、可靠性FANUC—OC系列 FANUC-18系统FANUC-OiA系统FANUC-18i FANUC-16i(分离型系统)(一体型系统)FANUC—21i系统 FANUC—OiC图1-1 现代FANUC系统发展趋势0i系列用于中小型加工中心、铣床和车床,车床和铣床的许多有用的CNC 功能包含在一个标准包中提供给用户。

0iC系列数控系统的基本配置如下:・最大控制轴数 4 轴・最大控制主轴电机数 2个・可连接的伺服电机αi S 伺服电机・可连接的主轴电机αi主轴电机・伺服接口 FANUC 串行伺服总线 (FSSB)・显示单元 7.2”单色LCD8.4” /10.4”彩色LCD・简单的操作编程支持工具:MANUAL GUIDE 0i・针对磨床的独特控制功能・以太网功能・数据服务器功能FANUC—16i/18I/21i系列是具有网络接口的超小型CNC,CNC控制单元装在LCD显示器后面,主要功能和特点如下:(1)通过使用高速RISC处理器,可以在进行纳米插补的同时,以适合于机床性能的最佳进给速度进给加工。

(2)超高速伺服串行通信(FSSB) 利用光导纤维将CNC控制单元和多个伺服放大器连接起来的高速串行总线,可以实现高速度的数据通信并减少连接电缆。

数控机床故障诊断的七种方法

数控机床故障诊断的七种方法

数控机床故障诊断的七种方法数控机床是涉及多个应用学科的非常简单的系统,加之数控系统和机床本身的种类繁多,功能各异,不行能找出一种适合全部数控机床、全部类型故障的通用诊断方法。

这里我们仅对一些常用的一般性方法加以介绍,这些方法相互联系,在实际的故障诊断中,对这些方法要综合运用。

1.自诊断功能法现代的数控系统虽然尚未达到智能化很高的程度,但已经具备了较强的自诊断功能。

能随时监视数控系统的硬件和软件的工作状况。

一旦发觉特别,马上在CRT上显示报警信息或用发光二极管指示出故障的大致起因。

利用自诊断功能,也能显示出系统与主机之间接口信号的状态,从而推断出故障发生在机械部分还是数控系统部分。

这个方法是当前修理工作最有效的方法之一。

2.功能程序测试法所谓功能程序测试法就是将数控系统的常用功能和特别功能,如直线定位、圆弧插补、螺旋切削、固定循环、用户宏程序等用手工编程或自动编程方法,编制成一个功能测试程序,输入到数控系统中,然后启动数控系统使之运行,借以检查机床执行这些功能的精确性和牢靠性,进而推断出故障发生的可能缘由。

本方法对于长期闲置的数控机床第一次开机时的检查以及机床加工造成废品但又无报警的状况下,一时难以确定是编程错误还是操作错误,或者是机床故障的缘由,这是一个较好的推断方法。

3.隔离法隔离法是将某些掌握回路断开,从而达到缩小查找故障区域的目的。

例:某加工中心,在JOG方式下,进给平稳,但自动则不正常。

首先要确定是NC故障还是伺服系统故障,先断开伺服速度给定信号,用电池电压作信号,故障照旧,说明NC系统没有问题。

进一步检查是Y轴夹紧装置出了故障。

4.局部升温法CNC系统经过长期运行后元器件均要老化,性能会变差。

当它们尚未完全损坏时,消失的故障会变得时有时无。

这时可用热吹风机或电烙铁等来局部升温被怀疑的元器件,加速其老化,以便彻底暴露故障部件。

当然,采纳此法时,肯定要留意元器件的温度参数,不要将原来是好的器件烤坏。

cnc数控机床基本故障诊断流程

cnc数控机床基本故障诊断流程

cnc数控机床基本故障诊断流程1.首先检查数控机床的电源线是否连接正常。

First, check whether the power supply of the CNC machine tool is connected properly.2.然后检查数控系统的断电保护装置是否触发。

Then, check whether the power-off protection device of the CNC system has been triggered.3.如果断电保护装置已触发,复位装置并重新启动数控系统。

If the power-off protection device has been triggered, reset the device and restart the CNC system.4.检查数控系统是否显示任何故障代码或警报信息。

Check whether the CNC system displays any fault codes or alarm messages.5.根据显示的故障代码或警报信息,查阅数控机床的故障诊断手册进行进一步的分析。

Refer to the CNC machine tool's fault diagnosis manual for further analysis based on the displayed fault codes or alarm messages.6.检查数控机床的润滑系统是否工作正常。

Check whether the lubrication system of the CNC machine tool is functioning properly.7.检查数控机床的传感器和执行器是否受损或松动。

Check whether the sensors and actuators of the CNC machine tool are damaged or loose.8.检查数控系统的参数设置是否正确。

数控机床故障诊断八大办法

数控机床故障诊断八大办法

数控机床故障诊断八大办法数控机床故障诊断八大办法数控机床故障诊断方法数控机床电气故障诊断有故障检测、故障判断及隔离和故障定位三个阶段。

第一阶段的故障检测就是对数控机床进行测试,判断是否存在故障;第二阶段是判定故障性质,并分离出故障的部件或模块;第三阶段是将故障定位到可以更换的模块或印制线路板,以缩短修理时间。

为了立即发现系统出现的故障,快速确定故障所在部位并能立即排除,要求故障诊断应尽可能少且简便,故障诊断所需的时间应尽可能短。

为此,可以采用以下的诊断方法:一、直观法利用感觉器官,注意发生故障时的各种现象,如故障时有无火花、亮光产生,有无异常响声、何处异常发热及有无焦味等。

仔细观察可能发生故障的每块印制线路板的表面状况,有无烧毁和损伤痕迹,以进一步缩小检查范围,这是一种最基本、最常用的方法。

二、CNC系统的自诊断功能依靠CNC 系统快速处理数据的能力,对出错部位进行多路、快速的信号采集和处理,然后由诊断程序进行逻辑分析判断,以确定系统是否存在故障,立即对故障进行定位。

现代CNC系统自诊断功能可以分为以下两类:(1) 开机自诊断开机自诊断是指从每次通电开始至进入正常的运行准备状态为止,系统内部的诊断程序自动执行对CPU、存储器、总线、I/O 单元等模块、印制线路板、CRT 单元、光电阅读机及软盘驱动器等设备运行前的功能测试,确认系统的主要硬件是否可以正常工作。

(2) 故障信息提示当机床运行中发生故障时,在CRT 显示器上会显示编号和内容。

根据提示,查阅有关维修手册,确认引起故障的原因及排除方法。

一般来说,数控机床诊断功能提示的故障信息越丰富,越能给故障诊断带来方便。

但要注意的是,有些故障根据故障内容提示和查阅手册可直接确认故障原因;而有些故障的真正原因与故障内容提示不相符,或一个故障显示有多个故障原因,这就要求维修人员必须找出它们之间的内在联系,间接地确认故障原因。

三、数据和状态检查CNC系统的自诊断不但能在CRT 显示器上显示故障报警信息,而且能以多页的“诊断地址”和“诊断数据”的形式提供机床参数和状态信息,常见的`数据和状态检查有参数检查和接口检查两种。

排除数控机床故障的六种方法

排除数控机床故障的六种方法

排除数控机床故障的六种方法数控机床故障的六种排解方法:一、直观法:修理人员通过故障发生时的各种光、声、味等特别现象的观看,仔细察看系统的各个部分,将故障范围缩小到一个模块或一块印刷线路板。

例1 :数控机床加工过程中,突然消失停机。

打开数控柜检查发觉Y轴电机主电路保险管烧坏,经认真观看,检查与Y轴有关的部件,最终发觉Y轴电机动力线外皮被硬物划伤,损伤处遇到机床外壳上,造成短路烧断保险,更换Y轴电机动力线后,故障消退,机床恢复正常。

二、自诊断功能法:数控系统的自诊断功能,已经成为衡量数控系统性能特性的重要指标,数控系统的自诊断功能随时监视数控系统的工作状态。

一旦发生特别状况,马上在CRT上显示报警信息或用发光二极管指示故障的大致起因,这是修理中最有效的一种方法。

例2 :AX15Z数控车床,配置FANUC1 0TEF系统,故障显示:FS10TE1399BROM TEST:ENDRAM TEST:CRT的显示表明ROM测试通过,RAM测试未能通过。

RAM测试未能通过,不肯定是RAM故障,可能是RAM中参数丢失或电池接触不良一起的参数丢失,经检查故障缘由是由于更换电池后电池接触不良,所以一开机就消失上述故障现象。

三、功能程序测试法:功能程序测试法就是将数控系统的常用功能和特别功能用手工编程或自动编程的方法,编制成一个功能测试程序,送入数控系统,然后让数控系统运行这个测试程序,借以检查机床执行这些功能的精确性和牢靠性,进而推断出故障发生的可能缘由。

例4:TH63 50加工中心旋转工作台抬起后旋转不止,且无减速,无任何报警信号消失。

对这种故障,可能是由于旋转工件台的简易位控器故障造成的,为进一步证明故障部位,考虑到该加工中心的刀库的简易位控器与转台的基本一样。

于是采纳交换法进行检查,交换刀库与转台的位控器后,并按转台位控器的设定对刀库位控器进行了重新设定,交换后,刀库则消失旋转不止,而转台运行正常,证明了故障的确出在转台的位控器上。

数控机床系统故障诊断与维修

数控机床系统故障诊断与维修

OCCUPATION2011 3122数控机床系统故障诊断与维修文/许新伟 王庆民当数控机床发生故障时,要能够迅速定位,进行维修,尽快恢复生产。

如何维护好这些设备,是摆在每位维修人员面前的难题。

维修工作人员应具备高度的责任心与良好的职业道德,经过相关培训,掌握数控、驱动及PLC原理,懂得CNC编程和编程语言,并且具有较强的操作能力。

在维修手段上,应备好常用备品、配件。

一、数控系统的故障诊断1.报警处理(1)系统报警。

数控系统发生故障时,一般在操作面板上给出故障信号和相应的信息。

通常系统相关手册中都有详细的报警号、报警内容和处理方法,维修人员可根据警报后面给出的信息与处理办法自行处理。

(2)机床报警和操作信息。

根据机床的电气特点,应用PLC程序,将一些能反映机床接口电气控制方面的故障或操作信息以特定的标志,通过显示器给出,并可通过特定键,看到更详尽的报警说明。

2.故障诊断(1)仪器测量法。

系统发生故障后,采用常规电工检测仪器、工具,按系统电路图及机床电路图对故障部分的电压、电源、脉冲信号等进行实测判断故障所在,用可编程控制器进行PLC中断状态分析,或者检查接口信号。

(2)诊断备件替换法。

电路的集成规模越来越大,技术越来越复杂。

有时,很难把故障定位到一个很小的区域,可以根据模块的功能与故障现象,用诊断备件替换。

(3)利用系统的自诊断功能。

现代数控系统,尤其是全功能数控,具有很强的自诊断能力,通过实施监控系统各部分的工作,及时判断故障,给出报警信息,做出相应的动作,避免事故发生。

3.用诊断程序进行故障诊断所谓诊断程序,就是对数控机床各部分包括数控系统本身进行状态或故障检测的软件。

当数控机床发生故障时,可利用该程序诊断出故障源所在范围或具体位置。

二、数控系统的常见故障分析1.位置环常见故障包括:位控环报警,可能是测量回路开路;测量系统损坏,位控单元内部损坏;不发指令就运动,可能是漂移过高,正反馈,位控单元故障;测量元件故障,一般表现为无反馈值;机床回不了基准点;高速时漏脉冲产生报警可能的原因是光栅或读头脏了;光栅坏了。

数控系统的常见故障分析及排除方法

数控系统的常见故障分析及排除方法

数控系统的常见故障分析及排除方法1、常见故障分析根据数控系统的构成、故障部位及故障现象、工作原理和特点,结合我们在维修中的经验,将常见的故障部位及故障现象分析如下:(1) 位置环这是数控系统发出控制指令,并与位置检测系统的反馈值相比较,进一步完成控制任务的关键环节,具有很高的工作频度,并与外设相联接,所以容易发生故障。

常见的故障有:·位控环报警,可能是测量回路开路;测量系统损坏,位控单元内部损坏。

·不发指令就运动,可能是漂移过高,正反馈,位控单元故障;测量元件损坏。

·测量元件故障,一般表现为无反馈值;机床回不了基准点;高速时漏脉冲产生报警可能的原因是光栅测量元件内灯泡坏了,光栅或读头脏了或是光栅损坏。

(2) 伺服驱动系统关联伺服驱动系统与电源电网、机械系统等相关联,而且在工作中一直处于频繁的启动和运行状态,因而这也是故障较多的部分。

主要故障有:·系统损坏一般由于网络电压波动太大,或电压冲击造成。

我国大部分地区电网质量不好,会给机床带来电压超限,尤其是瞬间超限,如无专门的电压监控仪,则很难测到,在查找故障原因时,要加以注意,还有一些是由于特殊原因造成的损坏,如华北某厂由于雷击中工厂变电站并窜入电网而造成多台机床伺服系统损坏。

·无控制指令,而电机高速运转。

这种故障的原因是速度环开环或正反馈。

如在东北某厂,引进的西德WOTAN公司转子铣床在调试中,机床X轴在无指令的情况下高速运转,经分析我们认为是正反馈造成的。

因为系统零点漂移,在正反馈情况下,就会迅速累加使电机在高速下运转,而我们按标签检查线路后完全正确,机床厂技术人员认为不可能接错,在充分分析与检测后我们将反馈线反接,结果机床运转正常。

机床厂技术人员不得不承认德方工作失误。

·还有一例子,我们在天津某厂培训讲学时,应厂方要求对他们厂一台自进厂后一直无法正常工作的精密磨床进行维修,其故障是:一启动机床其电机就运转,而且越来越快,直到最高转速,根据工作人员的讲述,我们分析认为是由于速度环开路,系统漂移无法抑制造成,经检查是速度反馈线接到了地线上造成的。

数控系统故障诊断的几种方法探析

数控系统故障诊断的几种方法探析

1数控 系 统常 见的 故 障 随着微 机制造 技术 和相 应伺 服驱 动技 术的发 展 ,现在 很多 数控 商 品无故 障运 行时 间都 能达到 2 0 0 h以上 。但是 ,数控 机床 在生 产使 用 中也难 免受 50 到外 界影 响从而 引发 各种 故障 ,如机 械损 坏 、电 网波 动 、液压 驱动部 件 失控 等 ,这些 因素会 使数控 系 统不 能工作 造成 故障 。 一般 数控 系统 的故 障诊 断包 括 以下几项 内容 :() 1 数控 系统 主控 板硬 、软件 故障;() 2 数控 系统 内装 P C L 的 硬 、软件故 障;( ) 3 伺服 系统 的伺服 单元 和伺 服 电机故 障 ( 如机床 不 能正 常返 回基 准点并 且报 警 ) 4数 控机 床对 外界 干扰 的失控 故 障;() 控系 统 电源 ;() 5数 接通后 ,显 示器 (R ) C T 无灰 度或无 任 何画 面 。6 手摇 脉冲发 生 器不 能正 常: () [ 作 。以上这 些故 障基本 涵盖 了数 控系 统各个 方面 可 能遇到 的 问题 ,在 实 际操 作过 程 中往 往 同一 故 障 由不 同原 因 引起 ,故 应仔 细 诊 断 并进 行 维 修 。 2数控 系统 故障 的诊 断 方法 数控 机床 是涉及 多个 应用 学科 的 分复 杂的 系统 ,加之 数控 系统 和机 床 本 身 的种 类 繁 多,功 能 各异 ,不 可 能找 出 一种 适 合各 种 数控 机 床 、各类 故 障的 通用 诊 断方 法 。此 外 ,在诊 断方 法 中 ,系统 自诊 虽然 是 数控 系 统 故障 诊 断 很有 效 的方 法 ,但 是数 控机 床 产 生 故障 的原 凼 是 复杂 的 ,一个 报 警 号 往 往提 示诸 多可 能引起 故障 的因素 ,不 能将 故障定 位 到具体 的部 位或 元器 件 上 。 因此 ,诊断 故 障需 要 多种 有 效 的方 法 。这里 对 常见 的及 更 多的 方法 作 以介 绍 ,在 实 际 的故 障 诊 断 中 , 可 以 综 合 运 用 。 ( 1)系 统 自诊 。将 “ 题 ”装 置通 电 , 系统 自诊 断 软件 对 “ 问 问题 ” 装 置 中最 关键 的硬件 ( CU A 、RM和 M I 如 P 、R M O D 、监 视器 、I/0 模块 )和 软 件 ( 监控 软件 和系统 软件 )等 逐 一进行检 测 ,并将检 测 结果在 监视 器上 显示 出来 。系统 自诊可 以将故 障定位 到 电路板 或模 块 ,甚至 可 以定位 到芯 片 ,故 障 定位之 后维 修人 员可 参 照维修 手 册进一 步 查找 原 冈并加 以排 除 。 另外 ,还 可 以运 行 内部 诊 断程 序 ,对 系统 本 身 、伺 服 驱动 单 元 、P C L 以及 与数控 装置 相连 的其 他外 部装 置进行 自动 检测 ,显 示有关 状态信 息 和故 障信 息 。充 分利 用 C C系统 提供 的这些 状态 信息 ,有 时可 以迅速 准确 地查 明 N 故障并进行排除。 ( 2)直观 检 查 法 。这 是 故 障 分 析 必 用 的方 法 ,就 是 利用 感 官 进 行 检 查 向故障 现场 人员仔 细询 问故 障产 生 的过程 、故 障表 象及故 障后 果 ;总体 查看机 床各 部分 : 作状 态是 否处 于正 常状 态 ( I = 例如 各坐 标轴 位置 等) ,各 电控 装置 ( 如数 控系 统等 ) 有无 报警 指示 ,局 部 查看 有无 保险烧 断 ,元 器件 烧焦 、 开裂 、 电线 电缆 脱落等 ;在 整机 断 电条 件下 可 以通 过触 摸各 主要 电路 板 的安 装 状况 、各插 头座 的插接 状 况、各 功率信 号 导线 ( 伺服 电机 与接触 器接 线) 如 的连接 状况等 ;检 查有 无 冒烟、 打火 、异常 声音 、异 味 以及 过 热等迹 象 ,逐 步 缩 小故 障 范 围 。 ( 3)测 量 比 较 法 。为 检 测 方 便 ,模 块 或 单元 设 有 检 测 端 子 ,利 用 万 用表 、 示波器 等仪 器仪表 ,通 过这 些端 子检 测到 的 电压或波 形 ,将 正 常值 与 故 障时 的值相 比较 ,可 以分析 出故 障 的原 因及 故 障的所 在位 置 。以上方 法 有 时要 同 时应用 进行 综合 分 析,快 速诊 断 出故 障的 部位 从而 排 除故 障。 ( 4)报 警 号故 障 渗断法 。这 一 法 与系 统 自诊 基本 相 同 ,当机 床 发生 方 故障 时 ,可对整 个机床 包 括数控 系 统 自身进行 全面 的检 奄和 诊断 ,并将 诊 断 到 的故障 或错误 以报警 弓或错误 代码 的形 式显 示在 C T 。利用 报 警 号进 行 R上 故障 诊断 是数控 系统 故障 诊断 的主要 方法 之一 。女I 机床 数控 系统 发生 了故 I 果 障 ,且有报 警号 显示 在 C T上, 首先就 是要 根据 报警 号 的内容进 行 相应 的分 R 析 ,缩 小检 查 的范 嗣,有 目的地进 行某 个方 而 的检 查 。 ( )数 控系 统发 光二 极 管或 数码 管指 示 故障诊 断 法。数 控 系统 的 ( 光 5 发 二极 管 L D 或 数码管 指示 也是 一 白诊 断指 示方法 。 E) 种 如果 和故 障报 警号 同 时 报警 ,综合 两者 的报警 内容 ,可 更加 明确地 指 示 出故障 的位 置 。在 C T上的 R 报警 号末 出现 或 C T 亮 时,L D或数 码管 指示 就是惟 的报 警 内容 了。 R不 E ( 6)功 能 程 序 测 试法 。将 数 控 系统 G、M、S、 T、F 功能 的全 部 使 用 指令 编成 ’ 个试 验程 序 ,穿成 纸带 或存储 在 软盘上 ,故 障诊 断时 运行这 个 试 验程 序 。功 能程 序测 试法 常应用 r,在机 床加 一 中出现 废 品,无 法确 定是 J 由于加 工程序 错误 、操 作不 当还 是数控 系统 本 身的故 障 引起 的;数控 系统 出 现 随机 性故 障,难 以区 别是 外来 干扰 ,还 足系统 稳定 性不 好 引起 的;闲 置时

数控系统的故障诊断和方法

数控系统的故障诊断和方法

数控系统的故障诊断和方法数控系统的故障诊断:(1)初步判别通常在资料较全时,可通过资料分析判断故障所在,或采取接口信号法根据故障现象判别可能发生故障的部位,而后再按照故障与这一部位的具体特点,逐个部位检查,初步判别。

在实际应用中,可能用一种方法即可查到故障并排除,有时需要多种方法并用。

对各种判别故障点的方法的掌握程度主要取决于对故障设备原理与结构掌握的深度。

(2)报警处理①系统报警的处理:数控系统发生故障时,一般在显示屏或操作面板上给出故障信号和相应的信息。

通常系统的操作手册或调整手册中都有详细的报警号,报警内容和处理方法。

由于系统的报警设置单一、齐全、严密、明确、维修人员可根据每一警报后面给出的信息与处理办法自行处理。

②机床报警和操作信息的处理:机床制造厂根据机床的电气特点,应用PLC 程序,将一些能反映机床接口电气控制方面的故障或操作信息以特定的标志,通过显示器给出,并可通过特定键,看到更详尽的报警说明。

这类报警可以根据机床厂提供的排除故障手册进行处理,也可以利用操作面板或编程器根据电路图和PLC程序,查出相应的信号状态,按逻辑关系找出故障点进行处理。

(3)无报警或无法报警的故障处理当系统的PLC无法运行,系统已停机或系统没有报警但工作不正常时,需要根据故障发生前后的系统状态信息,运用已掌握的理论基础,进行分析,做出正确的判断。

下面阐述这种故障诊断和排除办法。

故障诊断方法:1、常规检查法:目测目测故障板,仔细检查有无保险丝烧断,元器件烧焦,烟熏,开裂现象,有无异物断路现象。

以此可判断板内有无过流,过压,短路等问题。

手摸用手摸并轻摇元器件,尤其是阻容,半导体器件有无松动之感,以此可检查出一些断脚,虚焊等问题。

通电首先用万用表检查各种电源之间有无断路,如无即可接入相应的电源,目测有无冒烟,打火等现象,手摸元器件有无异常发热,以此可发现一些较为明显的故障,而缩小检修范围。

例如:在哈尔滨某工厂排除故障时,机床的数控系统和PLC运行正常,但机床的液压系统无法启动,用编程器检查PLC程序运行正常,各所需信号状态均满足开机条件。

华中数控系统常见故障及诊断办法

华中数控系统常见故障及诊断办法
二.伺服电机类故障判断维修
三.变频或伺服主轴运转故障判断维修 z 主轴超速或不可控
四.机床运行故障判断维修 z 刀架运转故障
五.附表:系统内部报警信息
一.系统类故障判断维修
1.故障现象一:系统不能正常启动
z 屏幕没有显示
故障原因
措施
1.检查电源插座(XS1)
2.检查输入电源是否正常,
系统电源不正确
应该为AC24V 或DC24V
检查电机接线
1.检查伺服电机编码器反馈 电缆 2.需更换电机编码器反馈电 缆
参考
1.《伺服电机说明书》 2.《伺服驱动器使用 手册》
z 伺服电机静止时抖动 故障原因
伺服电机编码器反馈电缆未接好
伺服电机编码器损坏 伺服驱动器特性参数调得太硬
措施
检查伺服电机编码器反馈电 缆
需更换伺服电机 检查伺服驱动器有关增益调 节的参数,仔细调整参数
参考
参见《伺服驱动器使用 手册》
8
伺服驱动器/电机选型错误
需更换伺服驱动器/电机
z 伺服电机缓慢转动零漂 故障原因
伺服驱动器参数错 数控装置与伺服驱动器之间的坐标 轴控制电缆未接好 坐标轴控制电缆受干扰
电机没有可靠接地 伺服电机编码器损坏
措施
1.检查伺服驱动器控制方式 2.检查伺服驱动器脉冲形式 3.检查伺服驱动器电机极对 数 4.检查伺服驱动器电机编码 器反馈线数 检查坐标轴控制电缆 (XS30 XS31 XS32 XS33) 1.坐标轴控制电缆应采用双 绞屏蔽电缆 2.坐标轴控制电缆屏蔽可靠 接地 3.标轴控制电缆尽量不要缠 绕 4.坐标轴控制电缆与其他强 电电缆尽量远离且不要平行 布置 检查电机强电电缆 需更换伺服电机
检查手持单元电缆 需更换系统或送厂维修 检查PLC 程序

数控机床故障诊断一般步骤和常用方法

数控机床故障诊断一般步骤和常用方法

数控机床故障诊断一般步骤和常用方法数控机床故障诊断一般包括三个步骤:第一个步骤是故障检测。

这是对数控机床进行测试,检查是否存在故障。

第二个步骤是故障判定及隔离。

这个步骤是要判断故障的性质,以缩小产生故障的范围,分离出故障的部件或模块。

第三个步骤是故障定位。

将故障定位到产生故障的模块或元器件,及时排除故障或更换元件。

数控机床故障诊断一般采用追踪法、自诊断、参数检查、替换法、测量法。

(1)追踪法追踪法是指在故障诊断和维修之前,维修人员先要对故障发生的时间、机床的运行状态和故障类型进行详细了解,然后寻找产生故障的各种迹象。

大致步骤如下:①故障发生的时间故障发生的时间和次数;故障的重复性;故障是否在电源接通时出现;环境温度如何;有否雷击,机床附近有无振动源或电磁干扰源。

②机床的运行状态故障发生时机床的运行方式;故障发生时进给坐标轴的速度情况;故障发生时主轴的速度情况;刀具轨迹是否正常;工作台、刀库运行是否正常;辅助设备运行是否正常;机床是否运行新编程序;故障是否发生在子程序;故障是否出现在执行M、S、T代码;故障是否与螺纹加工有关;机床在运行过程中是否改变了工作方式;方式选择开关设定是否正确;速度倍率开关是否设置为零;机床是否处于锁定状态。

③故障类型监视器画面是否正常;监视器是否显示报警及相应的报警号;故障发生之前是否出现过同样的故障;故障发生之前是否维修或调整过机床;是否调整过系统参数。

接下来可以进行停电检查,利用视觉、嗅觉、听觉和触觉寻找产生故障的各种迹象。

例如仔细观察加工零件表面的情况,机械有无碰撞的伤痕,电气柜是否打开,有无切屑进入电气柜,元器件有无烧焦,印刷电路板阻焊层有无因元器件过流过热而烧黄或烧黑,元器件有无松动,电气柜和器件有无焦糊味,部件或元器件是否发热,熔丝是否熔断,电缆有否破裂和损伤,气动系统或液压系统的管路与接头有无泄漏,操作面板上方式开关设定是否正确,电源线和信号线是否分开安装或分开走线,屏蔽线接线是否正确等。

数控机床常见故障的诊断与排除

数控机床常见故障的诊断与排除

数控机床常见故障的诊断与排除数控机床是一种高精度、高自动化程度的机床,由于其工作环境复杂,操作人员技术水平不一,常常会出现各种故障。

本文将介绍数控机床常见故障的诊断与排除方法,帮助用户更好地解决问题。

一、数控系统故障的诊断与排除数控系统是数控机床的核心部分,常见故障包括系统启动失败、程序执行错误、轴运动异常等。

以下是一些常见故障的诊断与排除方法。

1. 系统启动失败故障现象:数控系统无法启动,开机后没有显示屏或显示屏闪烁。

故障原因及处理方法:- 检查电源是否连接正常,检查电源开关是否打开,如果有问题及时修复。

- 检查电源线是否损坏,如有问题及时更换。

- 检查控制柜内部的接线是否松动,如有问题及时重新插拔。

2. 程序执行错误故障现象:数控机床按照程序执行时出现偏差、停止或报错。

故障原因及处理方法:- 检查程序是否正确,查看程序中是否有错误的指令或参数。

- 检查刀具长度和半径是否正确,如不正确需要重新设置。

- 检查工件坐标系和机床坐标系是否正确对应,如出现错位需要修正。

3. 轴运动异常故障现象:数控机床的轴运动不正常,包括速度不稳定、动作迟滞等。

故障原因及处理方法:- 检查伺服系统是否正常,包括伺服驱动器是否损坏、伺服电机是否接触不良等。

如有问题需要修复或更换。

- 检查伺服参数是否正确,如伺服增益、速度环参数等。

如不正确需要重新调整。

- 检查传感器是否正常,如位置传感器或速度传感器是否损坏。

如有问题需要修复或更换。

二、传动系统故障的诊断与排除传动系统是数控机床实现各种运动的关键部分,常见故障包括传动带断裂、滚珠丝杠卡滞等。

以下是一些常见故障的诊断与排除方法。

1. 传动带断裂故障现象:机床的轴无法运动,传动带松动或断裂。

故障原因及处理方法:- 检查传动带是否过紧或过松,如过紧需要调整松度,如过松需要重新调整紧度。

- 检查传动带是否损坏,如发现传动带断裂需要及时更换。

2. 滚珠丝杠卡滞故障现象:机床的轴运动不顺畅,有卡滞现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 从数控系统中取下某电路板时,应记录相对应的 位置和连接的电缆号
▪ 电路板上刷有阻焊膜,不要任意铲除;测线路间 阻值时,先切断电源。每测一处均应红黑笔对调 一次,以阻值大的为参考值
▪ 不应随意切断印刷电路 ▪ 在无把握确定某一元件为故障元件时,不要随意
拆卸,更换故障元件时避免同一焊点的长时间加 热和对故障元件的硬取 ▪ 查清电路板的电源配置及种类,按检测需要,采 取局部供电或全部供电
▪ 先静后动
➢ 不盲目动手
了解故障发生的过程及状态 查阅说明书、系统资料 先在机床断电的静止状态,观察、分析 确认无恶性故障或破坏性故障,方可给机床通电,进行动态观察检验和测试 恶性故障或破坏性故障先排除故障才通电诊断
▪ 先公用后专用
➢ 如CNC、PLC、电源、液压等公用部分
▪ 先简单后复杂 ▪ 先一般后特殊
三、故障自诊断技术
▪ CNC系统的自诊断:向被诊断的部件或装置写入一串成 为测试码的数据,然后观察系统相应的输出数据(校验 码),根据事先已知的测试码、校验码与故障的对应关系, 通过对观察结果的分析以确定故障。
每年更换一次
电池的更换应在数控系统供 电的状态下进行,以免参数 丢失
➢ ➢
有操作规程 不宜长期封存不用
每周通电1-2次,每次空运行1 小时左右

数控系统长期不用时的维护 经常给数控系统通电 对于直流电动机应将电刷取
▪ 数控系统的维护
出,以免腐蚀换向器
➢ 严格遵守操作规程和日常维护制度 ➢ 备用电路板的维护
二、数控机床的维护
▪ 数控机床使用中应注意的问题
➢ 定时清扫数控柜的散热通风系统
➢ 使用环境:
➢ 定期检查和更换直流电动机电刷
避免阳光的直射和其他辐射 ➢ 经常监视数控系统的电网电压
避免太潮湿或粉尘过多的场所 ➢ 定期更换存储器用电池
避免有腐蚀气体的场所 要远离振动大的设备 ➢ 电源要求: 允许波动±10%
➢ PLC编程器 ➢ IC测试仪
离线快速测试集成电路的好坏
➢ IC在线测试仪
在线对电路板上的芯片直接进行功能、状态和外特性测试,确认其 逻辑功能是否失效
➢ 短路追踪仪 ➢ 逻辑分析仪
专门用于测量多路数字信号的测试仪器,可同时显示8、16、64个 道的逻辑方波信号
▪ 维修工具
➢ 电烙铁 ➢ 吸锡器 ➢ 螺丝刀 ➢ 钳类工具 ➢ 扳手 ➢ 其他
➢ 建立专业维修组织和维修协作网 ▪ 点检管理:按有关文件的规定,对设备进行定点、定时的检查和维护
➢ 点检的内容:定点、定标、定期、定项、定人、定法、检查、记录、 处理、分析
➢ 分类: 日常点检:对机床一般部件的点检,处理和检查机床在运行过程 中出现的故障,由机床操作人员进行 专职点检:对机床关键部位和重要部件按周期进行重点点检和 设备状态监测与故障诊断,制定点检计划,做好诊断记录,分析维 修结果,提出改善设备维护管理的建议,由专职维修人员进行
第三节 数控系统故障诊断
▪ 一、故障分类
➢ 有报警显示的故障
硬件报警显示的故障:各单元装置上的报警灯 软件报警显示故障:CRT显示器上显示出来的报警号报警信息
来自NC的报警和来自PLC的报警
➢ 存储器报警 ➢ 过热报警 ➢ 伺服系统报警 ➢ 轴超程报警 ➢ 程序出错报警 ➢ 主轴报警 ➢ 过载报警 ➢ 断线报警
数控系统故障诊断技术
第一节 数控机床的维护 第二节 数控系统维修技术 第三节 数控系统故障诊断
第一节 数控机床的维护
▪ 一、数控机床维修管理的特点:
➢ 选择合理的维修方式 维修方式有:事后维修、预防维修、改善维修、预知维修或 状态监测维修、维修预防 从修理费用、停产损失、维修组织工作和修理效果等方面去 衡量
➢ 无报警显示的故障
无任何硬件或软件的报警显示,分析难度较大
二、故障诊断原则
▪ 先外部后内部
➢ 外部的行程开关、按钮开关、液压气动元件、印刷电路板间的连接部位, 接触不良,是产生数控机床故障的重要因素
➢ 尽量避免随意地启封、拆卸,以避免扩大故障,降低机床性能
▪ 先机械后电气
➢ 机械故障容易察觉 ➢ 大部分故障是机械部件失灵造成的
▪ 化学用品
➢ 松香、纯酒精、清洁触点用喷剂、润滑油
三、必要的技术资料和技术准备
▪ 数控装置部分 ▪ PLC装置部分
➢ PLC装置及其编程器的连接、编程、操作方面的技术说明书 ➢ PLC用户程序清单或梯形,I/O地址及意义清单、报警文本及PLC的外部
连接图
▪ 伺服单元
➢ 进给和主轴伺服单元原理、连接、调整和维修方面的技术说明书 ➢ 包括:伺服单元的电气原理图、接线图、故障的报警显示、重要的调整
▪ MTBF=总工作时间/总故障次数 ▪ 2、平均修复时间(Mean Time To Restore)指数控机床
在寿命范围内,每次从出现故障开始维修,直至能正常工 作所用的平均时间。(该时间越短越好) ▪ MTTR=总故障时间/总故障次数 ▪ 有效度(Availability)是考核数控机床可靠性和可维修性 的指标。(A是一个小于1的数,越接近1越好。) ▪ A=MTBF/(MTBF+MTTR)
第二节 数控系统维修技术
▪ 一、数控系统现场维修要求
➢ 现场维修的基本条件 必要的维修工具 必要的技术资料和技术准备 必要的备件
➢ 现场维修的阶段划分与工作步骤 ➢ 维修中的元器件替代
▪ 二、必要的维修用器具
▪ 测量仪器、仪表 ➢ 万用表 ➢ 逻辑测试笔和脉冲信号笔 使用TTL和CMOS逻辑电平通用型 ➢ 示波器 频带宽度为10~100MHZ范围内的双通道示波器 测电平、脉冲上下沿、脉宽、周期、频率、两信号的相位和 电平幅度的比较
➢ 应尽量少开数控柜和强电柜的门 ➢ 做好维修前的准备工作:技术准备 ➢ 数控系统的输入/输出装置的定期 \工具准备\备件准备
维护
三、数控机床的可靠性指标
▪ 1、平均无故障时间(Mean Time Between Failure):指 数控机床在两次故障之间能正常工作的时间的平均值。 (该时间越长越好)
点和测试点,伺服单元参数的意义和设置
▪ 机床部分
➢ 机床安装、使用、操作和维修的技术说明 ➢ 机床的操作面板布置及其操作说明 ➢ 机床电气原理图、布置图、接线图 ➢ 液压回路图和气动回路图
▪ 其他
➢ 元器件技术资料——元器件清单、备件清单、通用元器件手册 ➢ 数据程序备份 ➢ 故障维修记录
四、维修中注意事项
相关文档
最新文档