流体力学简介

合集下载

流体力学知识点范文

流体力学知识点范文

流体力学知识点范文流体力学是研究流体静力学和流体动力学的一个学科,涉及到流体的运动、力学性质以及相关实验和数值模拟方法。

流体力学的应用广泛,包括气象学、海洋学、土木工程、航空航天工程等领域。

以下是流体力学的一些重要知识点。

1.流体的性质流体是一种能够自由流动的物质,包括气体和液体。

与固体不同,流体具有可塑性、可挤压性和物质变形后恢复自然形状的性质。

流体的密度、压力、体积、温度和粘度是流体性质的基本参数。

2.流体的运动描述流体的运动包括膨胀、收缩、旋转和流动等。

为了描述流体的运动,需要引入一些描述流体运动的物理量,如速度、流速、加速度和流量。

流体的速度矢量表示流体粒子的运动方向和速度大小。

3.流体静力学流体静力学研究的是在静压力的作用下,流体内各点之间的静力平衡关系。

流体的静力压力与深度成正比,由于流体的可塑性,静压力会均匀传输到容器中的各个部分。

流体静力学应用于液压系统、液态储存设备和液压机械等领域。

4.流体动力学流体动力学研究的是流体在外力作用下的运动行为。

流体动力学分为流体动力学和流体动量守恒两个方面。

流体动力学研究的是流体的速度和加速度,以及流体流动的力学性质。

流体动量守恒研究的是流体在内外力作用下动量的转移和守恒。

流体动力学应用于气象学、水力学、航空航天工程等领域。

5.流体的流动方程流体力学的基本方程是质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程描述了流体的质量守恒原理,即质量在流体中是守恒的。

动量守恒方程描述了流体的动量守恒原理,即外力对流体的动量变化率等于流体的加速度乘以单位质量的流体体积。

能量守恒方程描述了流体的能量守恒原理,即流体在流动过程中能量的转化和传输。

6.流体力学问题的数值模拟由于流体力学问题具有复杂性和非线性性,很多问题难以通过解析方法得到解析解。

因此,数值模拟成为解决流体力学问题的一种重要方法。

数值模拟方法包括有限元法、有限差分法和有限体积法等。

这些方法通过将流体力学问题离散化为一组代数方程来进行数值求解。

流体力学简介

流体力学简介

一、著名科学家介绍* 钱学森中国现代科学家,1911年生于上海。

1934年毕业于上海交通大学,1935至1938年在美国麻省理工学院和加利福尼亚理工学院航空工程系学习。

1938年获博士学位,后在著名的喷气推进实验室、麻省理工学院等院校所从事研究。

1955年回国,任中国科学院力学所所长、国防科工委副主任等职。

主要成就有:提出跨声速流动相似律,建立卡门--钱学森公式。

著作有《工程控制论》、《星际航行概论》、《论系统工程》等。

* 卡门近代力学家,1881年5月11日生于匈牙利布达佩斯;中学毕业后,卡门进入皇家约瑟夫综合技术大学(现在为布达佩斯技术大学)学习,在那里他开始对力学产生兴趣,并发表了最初几篇论文。

1902年,卡门大学毕业。

1906年,卡门到德国格丁根大学作了力学家L.普朗特(Prandtl)的博士研究生。

1908年完成博士论文,并留校作试用教员,提出了著名的卡门涡街理论。

1913年初,在克莱因的推荐下,出任德国亚琛工业大学的航空学教授。

1926年,迁居美国。

1930年,就任美国加州理工学院古根海姆航空实验室(GALCIT)主任,我国当代的许多著名科学家,如钱学森、钱伟长、郭永怀等就是在这一时期来到GALCIT的。

第二次世界大战期间,他作为加州理工学院新成立的喷气推进实验室主任(1938--1944),与美国军方进行了密切合作。

1951年,卡门发起成立了北约组织内的航空研究发展咨询局(AGARD)。

1956年,根据他的建议成立了国际航空科学理事会。

后来他又创立了国际航天学院,他任这两个机构的领导职务直至逝世。

他的一生,在固体力学和流体力学的理论研究方面取得了许多卓越的学术成就。

* 普朗特1875年2月4日生于德国慕尼黑附近的弗赖辛;1894年--1898年在慕尼黑工业大学学习机械工程,毕业留校任教,从事工程力学教学及材料实验室工作。

1900年初加入纽伦堡机械制造协会,同年获慕尼黑大学哲学博士学位。

流体力学简介

流体力学简介
前言.流体力学介绍
宇 航 推 进 系 流 体 力 学 ---
0.1流体力学的研究对象 0.2流体力学的研究方法 0.3流体力学发展史 0.4流体力学的展望
力学分支
宇 航 推 进 系 流 体 力 学 ---力学
理论力学
弹塑性力学
弹性力学
流体力学 空气动力学
…………
材料力学 …………
计算流体力学 …………

燃烧离不开气体,这是有化学反应和热能变化的流 体力学问题,是物理-化学流体动力学的内容之一。 爆炸是猛烈的瞬间能量变化和传递过程,涉及气体 动力学,进而形成了爆炸力学。
0.1流体力学的研究对象
宇 航 推 进 系 流 体 力 学 ---
新兴的流体力学研究:

交通流体力学 电磁流体力学 生物流体力学 微尺度流动 稀薄空气动力学 ……
水闸
宇 航 推 进 系 流 体 力 学 ----
桥梁
宇 航 推 进 系 流 体 力 学 ----
ቤተ መጻሕፍቲ ባይዱ
航天飞机
宇 航 推 进 系 流 体 力 学 ----
模拟水坝
宇 航 推 进 系 流 体 力 学 ----
0.2流体力学的研究方法
宇 航 推 进 系 流 体 力 学 ---

理论分析是根据流体运动的普遍规律如质量守恒、 动量守恒、能量守恒等,利用数学分析的手段, 研究流体的运动,解释已知的现象,预测可能发 生的结果。理论分析的步骤大致如下: 首先是建立“力学模型”,即针对实际流体的力 学问题,分析其中的各种矛盾并抓住主要方面, 对问题进行简化而建立反映问题本质的“力学模 型”。流体力学中最常用的基本模型有:连续介 质、牛顿流体、不可压缩流体、理想流体、平面 流动等。

流体力学简介

流体力学简介

设环流速度为u,机翼远前方气流的速度和压强可视为
常量,与位置无关,分别设为v和p0,机翼上部的压强为 p1,下部为p2,则由伯努利方程,有
p0

1 2
v2

p1

1 2
(v
u)2
由此得
p0

Байду номын сангаас1 2
v2

p2

1 2
(v

u)2
p2

p1

1 2
[(v

u)2

(v

u)2 ]

2uv
a1 b1
因为时间t极短,所以 p1 S1
v1
a1b1和a2b2是两段极短的 位移,在每段极短的位
移中,压强p、截面积S
h1
和流速v都可看作不变。
a2 b2
h2 p2
v2 S2
设p1、S1、v1和p2、S2、v2分
a1 b1
别是a1b1与a2b2处流体的压 强、截面积和流速,则后方
p1 S1
v1
根据伯努利方程,在等 高(水平)流管中,有
p 1 v2 常量
2
即,流速大处压强小,流速小处压强大.
例题1 水电站常用水库出水管道处水流的动能来发 电.出水管道的直径与管道到水库水面高度h相比为 很小,管道截面积为S.试求出水处水流的流速和流 量。
解:把水看作理想流体.在 水库中出水管道很小,水 流作定常流动.如图所示, 在出水管中取一条流线ab. 在水面和管口这两点处的 流速分别为va和vb.在大水 库小管道的情况下,水面 的流速va远比管口的小,可 以忽略不计,即va=0.
网球、乒乓球中的”弧 圈球”以及足球中的” 香蕉球”偏离原运动方 向的现象,就是由于这一 效应造成的.

(完整版)工程流体力学

(完整版)工程流体力学
Ocean Engineering & Naval Architecture
➢ Offshore structures, coastal structures, harbors, ports, …
➢ Ships, submarines, remote-operated vehicles,
Engineering Applications
Bernoulli
(1667-1748)
Euler
(1707-1783)
Navier
(1785-1836)
Stokes
(1819-1903)
Reynolds
(1842-1912)
Prandtl
(1875-1953)
Taylor
(1886-1975)
流体力学在生活中
• 无处不在
– 天气和气候 – 运输工具: 汽车, 火车, 船和飞机. – 环境 – 生物工程和医学 – 运动和休闲 – 人体内的流体 – ………………………………
• 秦朝在公元前256—公元前210年修建了我国历史上 的三大水利工程(都江堰、郑国渠、灵渠)——明 渠水流、堰流。
• 古代的计时工具“铜壶滴漏”——孔口出流。
• 清朝雍正年间,何梦瑶在《算迪》一书中提出流量 等于过水断面面积乘以断面平均流速的计算方法。
• 隋朝(公元587—610年)完成的南北大运河。
Water sports
运动和休闲
Cycling
Offshore racing
Auto racing
Surfing
What fluids are needed to run your
car?
➢ Gasoline (fuel) ➢ Air (air/fuel mixture,

流体力学简介及其应用领域

流体力学简介及其应用领域

流体力学简介及其应用领域流体力学是研究流体在各种情况下的力学性质的学科。

流体力学的研究对象是流体,即液体和气体。

本文将介绍流体力学的基本概念和原理,以及它在各个领域中的应用。

一、流体力学概述流体力学是研究流体在力学作用下的运动规律和力学性质的学科。

流体力学基于质点力学的基本原理,结合了质点力学和连续介质力学的概念和方法进行研究。

它主要包含两个方面的内容:流体静力学和流体动力学。

1. 流体静力学流体静力学是研究静止的流体的力学性质和平衡条件的学科。

静止的流体受重力的作用下,压力在不同位置上会有不同的分布。

通过应用压力梯度的概念和压强的定义,可以得到流体静力学的基本方程。

2. 流体动力学流体动力学是研究流体在外力作用下的运动规律和力学性质的学科。

流体动力学研究的是流体的流动状态,包括速度场、压力场等各个方面的特性。

通过应用质量守恒、动量守恒和能量守恒等基本原理,可以得到流体动力学的基本方程,如连续方程、动量方程和能量方程。

二、流体力学的应用领域流体力学的理论和方法广泛应用于各个领域,涵盖了自然科学、工程技术和生物医学等多个领域。

以下将介绍一些典型的应用领域。

1. 工程力学流体力学在工程力学中的应用非常广泛。

例如,水利工程中的水流运动、水力发电和水污染控制等问题,以及空气动力学、飞行器的设计与优化等问题,都离不开流体力学的理论和方法。

2. 汽车工程在汽车工程中,流体力学被广泛应用于汽车空气动力学和燃烧过程等方面的研究。

通过流体力学的理论和模拟方法,可以对汽车的空气动力学特性进行研究和优化,提高汽车的性能和燃油利用率。

3. 航空航天工程流体力学在航空航天工程中的应用也非常重要。

例如,飞行器的气动外形设计、空气动力学特性的研究、喷气发动机的燃烧过程等问题,都需要运用流体力学的理论和方法进行分析和研究。

4. 生物医学生物医学领域中的许多问题也涉及到流体力学的研究。

例如,血液在血管中的流动、气体交换和呼吸过程等问题,都可以通过流体力学的分析和计算方法进行研究和模拟,对疾病的诊断和治疗有一定的指导意义。

ug流体力学仿真管道

ug流体力学仿真管道

ug流体力学仿真管道摘要:1.流体力学简介2.仿真管道技术概述3.UG流体力学仿真管道软件介绍4.UG软件在管道仿真中的应用实例5.总结与展望正文:一、流体力学简介流体力学是研究流体在不同条件下运动和变形的物理学分支。

在工程领域,流体力学应用广泛,涉及航空航天、汽车制造、化工、能源等多个领域。

流体力学仿真是一种通过计算机模拟流体在特定环境中的运动和变化过程的技术。

二、仿真管道技术概述仿真管道技术是一种基于计算机的流体力学仿真方法,通过对流体在管道内流动的建模和求解,可以预测和评估管道的性能、安全性以及优化设计。

该技术在工程实践中具有很高的实用价值,有助于降低试验成本和缩短研发周期。

三、UG流体力学仿真管道软件介绍UG(Unigraphics)是一款强大的计算机辅助设计(CAD)和计算机辅助制造(CAM)软件,广泛应用于工程、制造业等领域。

UG软件内置了流体力学仿真模块,可以方便地对管道系统进行建模、分析和优化。

四、UG软件在管道仿真中的应用实例1.管道设计优化:通过UG软件对不同管道形状、尺寸和材料进行仿真分析,比较其性能指标,从而找到最优设计方案。

2.流体动力学分析:模拟流体在管道内的速度、压力、密度等参数分布,评估管道的流动性能和安全性能。

3.管道振动分析:分析流体在管道内流动过程中产生的振动,预测和防止管道系统的疲劳破坏。

4.泵和阀门性能评估:通过仿真泵和阀门的流体动力学特性,优化设计和提高产品性能。

五、总结与展望UG流体力学仿真管道软件为工程界提供了一种高效、可靠的流体力学分析方法。

随着计算机技术的不断发展,未来仿真管道技术将在更多领域得到应用,为我国工程实践和创新研发贡献力量。

流体力学简介(土木上课)

流体力学简介(土木上课)
52
生产发 展 1.论浮体 实验水力学
建立在实验、 直观基础上
两者 结合 2流体力学
自然科 学发展 3古典水力学
计算机 发展 4计算流体力学
纯理论分析、 理论模型
53
• 7、流体力学中的名人
54
55
• 7、流体力学中的名人
56
• 第一阶段:萌芽阶段
• 阿基米德BC250年《论浮体》,他建立了包括物理浮力定律 和浮体稳定性在内的液体平衡理论,奠定了静水力学的基础。 • 达芬奇1500年《论水的运动和水的测量》,系统地研究了物 体的沉浮、孔口出流、物体的运动阻力以及管道、明渠中水 流等问题。----动的开端 • 斯蒂文(S.Stevin,1548-1620)将用于研究固体平衡的凝结原 理转用到流体上。 • 伽利略(Galileo,1564-1642)在流体静力学中应用了虚位移 原理,并首先提出运动物体的阻力随着流体介质密度的增大 和速度的提高而增大。 • 托里析利(E.Torricelli,1608-1647)论证了孔口出流的基本规 律。 • 帕斯卡(B.Pascal,1623-1662)提出了密闭流体能传递压强的 原理----帕斯卡原理。阐明了静止流体中压力的概念.
43
注1:适用性
注2:流体分子的影响 流体的分子运动是客观存在的,在一般的工程计算中 可以把流体看成连续的介质,但在特殊情 况下还是 应加以考虑的。
44
注3:应用范围
注:当流动的特征长度小到可以和分子尺度相比拟 (如稀薄空气中一般物体的运动、液体中的布朗运动)时, 欧拉连续介质模型都不适用。
45
定义:宏观体积足够小(可以忽略线性尺寸),但 又包含无数分子、具有一定质量的流体微元。 ——有连续介质模型出发引进的、是研究流体的最小单元。

工程流体力学原理介绍

工程流体力学原理介绍
流体力学
如果孔口直径d远小于管道直径D,则称为小孔口,(d/D)4≈0 于是从上式可得小孔口的出流速度以及所有的孔口出流系 数根据:孔口出流射入大气后即成为平抛运动,通过分析这 种运动规律可得与雷诺数有关的各种出流系数曲线图
流体力学
大孔口出流常常用于孔板流量计中,小孔口出流常常用于 小孔阻尼器或小空节流中; 孔板、喷嘴和文丘里管流量计原理:静压能转变成动能, 流量大小表现为压力降的大小。当d并非远小于D时,
流体力学
局部阻力:管路的功用是输送流体,为了保证流体输送 中可能遇到的转向、调节、加速、升压、过滤、测量 等需要,在管路上必须要装管路附件。例如常见的弯 头、三通、检测表、变径段、进出口、过滤器、溢流 阀、节流阀、换向阀等。
流体力学
经过这些装置时,流体运动受到扰乱,必然产生压强(或水 头、能量)损失,这种在管路局部范围内产生损失的原因 统称为局部阻力。 局部水头损失:hf=ξv2/2g ξ为局部阻力系数
流体力学
雷诺通过实验测定得知: 当Re>13800时,管中流动状态是紊流; Re<2320时,管中流动状态是层流; 2320<Re<13800时,层流紊流的可能性都存在,不过紊流 的情况居多。因为雷诺数较高时层流结构极不稳定,(实验 表明)遇有外界振动干扰就容易变为紊流。
流体力学
管路计算的基础知识 流体在管路中所受的阻力包括沿程阻力和局部阻力 沿程阻力:在等径管路中,由于流体与管壁以及流体本身的 内部摩擦,使得流体能量沿流动方向逐渐降低,这种引起能 量损失的原因叫作沿程阻力。用压强损失、水头损失、或 功率损失三种形式表示。 压强损失:∆p=32 µ lv/d2 水头损失:hf=32 ‫ ע‬lv/gd2=λlv2/2gd 功率损失:N=128 µlQ2/πd4

流体学小知识点总结

流体学小知识点总结

流体学小知识点总结
流体力学的基本概念包括流体的性质如压力、密度、黏度、表面张力、粘性、并且需要注意流体的类型如牛顿流体和非牛顿流体。

流体的运动包括流体的直线运动和曲线运动,对于流体力学的研究,需要了解如何描述流体的运动、速度分布和流线等。

此外,还需要了解流体力学的实验方法和模拟方法,包括雷诺数、科里奥利力等。

最重要的应用是通过流体的运动来实现工程的设计和改进。

在空气动力学中,翼型设计是重要的一环,研究翼型在各种条件下的流动特性,以及飞机、汽车等车辆的空气阻力可以有效地减少气动力的损失,提高能效。

在水力学中,通过研究河流、水库、水电站的水流情况,可以避免水灾、引发治理。

当然,还有其他很多应用,如气象学、地质学等等。

总之,流体力学是一门非常有用和有趣的学科,通过研究流体的性质和运动规律,可以帮助人类更好地理解自然,同时也为工程技术的发展提供了重要的理论工具。

通过对流体力学的学习,不仅可以提高自己的物理学水平,更可以为人类社会的发展贡献自己的力量。

流体力学

流体力学

流体力学(简介)流体力学是在人类与自然界相处和生产实践中逐步发展起来的。

对流体力学学科的形成做出卓越贡献的是古希腊哲学家阿基米德(《论浮体》,公元前250年)建立了包括浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。

流体力学原理主要指计算流体动力学中的数值方法的现状;运用基本的数学分析,详尽阐述数值计算的基本原理;讨论流域和非一致结构化边界适应网格的几何复杂性带来的困难等。

一、发展简史各物理量关系构成牛顿内摩擦定律,τ=μ*du/dy动压和总压。

显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。

飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。

据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。

在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。

在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项[1]。

图为验证伯努利方程的空气动力实验。

补充:p1+1/2ρv1^2+ρgh1=p2+1/2ρv2^2+ρgh2(1)p+ρgh+(1/2)*ρv^2=常量(2)均为伯努利方程其中ρv^2/2项与流速有关,称为动压强,而p和ρgh称为静压强。

伯努利方程揭示流体在重力场中流动时的能量守恒。

由伯努利方程可以看出,流速高处压力低,流速低处压力高。

后人在此基础上又导出适用于可压缩流体的N-S方程。

N-S方程反映了粘性流体(又称真实流体)流动的基本力学规律,在流体力学中有十分重要的意义。

它是一个非线性偏微分方程,求解非常困难和复杂,目前只有在某些十分简单的流动问题上能求得精确解;但在有些情况下,可以简化方程而得到近似解。

例如当雷诺数Re1时,绕流物体边界层外,粘性力远小于惯性力,方程中粘性项可以忽略,N-S方程简化为理想流动中的欧拉方程(=-&Ntilde;p+ρF);而在边界层内,N-S方程又可简化为边界层方程,等等。

流体力学中的流体流动控制

流体力学中的流体流动控制

流体力学中的流体流动控制流体力学是研究流体在运动和静止状态下的行为和规律的学科。

在工程领域中,流体流动控制是一项重要的研究内容。

本文将从流体动力学、流体流动控制的目的和方法以及一些典型的流体流动控制技术进行论述。

一、流体动力学简介流体力学是研究流体运动和静止状态下行为的学科。

液体和气体都属于流体,其运动行为可以通过质量、动量和能量守恒方程来描述。

在流体力学中,流体的流动可以分为层流和湍流两种状态。

层流指的是流体按照整齐的层次流动,具有可预测的运动方式;湍流则是流体运动中的失稳状态,具有随机性和无规则性。

二、流体流动控制的目的流体流动控制的目的是通过改变流体运动的方式和性质,实现对流体的控制和操纵。

流体流动控制可以用于提高流体系统的效率、减小能量损失、降低流体的阻力和噪音、实现流体流动的定向和稳定等。

在工程领域,控制和调节流体流动对于许多应用至关重要,如水利工程、空气动力学、航空航天等。

三、流体流动控制的方法流体流动控制的方法可以分为主动控制和被动控制两种。

主动控制是通过外部的力或能量激励来直接改变流体的运动状态。

常用的主动控制方法有增加或减少流体的驱动力、改变流道的几何形状、引入有源控制器等。

被动控制则是通过优化流体系统的结构和组件设计,使其能够自动调节和控制流体的运动和性质。

被动控制方法的典型代表包括细纹管、尾流发生器、湍流控制器等。

四、典型的流体流动控制技术1. 细纹管细纹管是一种通道内壁粗糙度较高的管道,其内壁形成了一系列微小的细纹。

细纹管可以通过引入适当的剪切力和扰动,改变流体的速度分布和流动方向,达到控制流体流动的目的。

细纹管在湍流控制、增加混合和分离、刺激和响应等方面具有广泛的应用。

2. 尾流发生器尾流发生器是一种用于改变流体尾流结构的装置。

尾流是介质不同速度流动的过渡区域,在许多工程应用中需要控制尾流的形状和性质。

尾流发生器可以通过改变流道形状、引入微小的结构和利用惯性效应来控制尾流的发展和扩散,实现对流体流动的控制。

《流体力学》第一章绪论

《流体力学》第一章绪论

欧拉法
以空间固定点作为研究对 象,通过研究流体质点经 过固定点的速度和加速度 来描述流体的运动。
质点导数法
通过研究流体质点在单位 时间内速度矢量的变化率 来描述流体的运动。
流体运动的分类
层流运动
流体质点沿着直线或近似的直线路径运动,各层 流体质点互不混杂,具有规则的流动结构。
湍流运动
流体质点运动轨迹杂乱无章,各流体质点之间相 互混杂,流动结构复杂多变。
流体静力学基础
总结词
流体静力学基础
详细描述
流体静力学是研究流体在静止状态下的力学性质的科学。其基础概念包括流体静压力、流体平衡的原理等,这些 原理在工程实践中有着广泛的应用。
03
流体运动的基本概念
流体运动的描述方法
01
02
03
拉格朗日法
以流体质点作为研究对象, 通过追踪流体质点的运动 轨迹来描述流体的运动。
《流体力学》第一章 绪论
目录
• 流体力学简介 • 流体的基本性质 • 流体运动的基本概念 • 流体动力学方程 • 绪论总结
01
流体力学简介
流体力学的定义
流体力学是研究流体(液体和气体) 的力学性质和运动规律的学科。
它涉及到流体在静止和运动状态下的 各种现象,以及流体与其他物体之间 的相互作用。
波动运动
流体在压力、温度、浓度等外部扰动作用下产生 波动现象,如声波、水波等。
流体运动的守恒定律
动量守恒定律
流体系统中的动量总和在封闭系统中保持不变,即流入和流出封 闭系统的动量之差等于系统内部动量的变化量。
质量守恒定律
流体系统中质量的增加或减少等于流入和流出封闭系统的质量流量 之差。
能量守恒定律
古希腊哲学家阿基米德研 究了流体静力学的基本原 理,奠定了流体静力学的 基础。

流体力学发展简介

流体力学发展简介

庆新油田储层的敏感性评价 李冰父子修建都江堰
工作特性
气蚀特性 关于出口压力稳定性
流体力学的发展简史
对流体力学学科的 形成作出第一个贡献的 是古希腊的阿基米德,
他建立了包括物理浮力
定律和浮体稳定性在内 的液体平衡理论,奠定 了流体静力学的基础。 此后千余年间,流体力
牛顿是17世纪科学革命的顶峰人物,在力学上提出作为近
代物理学基础的力学三大定律和万有引力定律;他关于白光由 色光组成的发现为物理光学奠定了基础;他还是数学上微积分
学的创始人;他的《自然哲学的数学原理》是近代科学史上最
重要的著作。 1999年12月29日,在英国广播公司评选千年人物的活动中 列第三位;在路透社评选千年人物的活动中列第四位。2003年 在英国广播公司进行的一项全球性民意调查中,科学家牛顿荣 获“最伟大的英国人”称号。
行地发展。
流体力学的发展简史
1822年,纳维建立了粘性流体的基本运动方程;
1845年,斯托克斯又以更合理的基础导出了这个方程,并
将其所涉及的宏观力学基本概念论证得令人信服。 这组方程就是沿用至今的纳维-斯托克斯方程(简称N-S方
程),它是流体动力学的
理论基础。 上面说到的欧拉方程 正是N-S方程在粘度为零时 的特例。
流体力学的发展简史
伯努利从经典力学的能量守恒出发,研究供水管道中水的流 动,精心地安排了实验并加以分析,得到了流体定常运动下的流 速、压力、管道高程之间的关系——伯努利方程。
p u2 z c g 2g
流体力学的发展简史
丹尼尔· 伯努利(Daniel Bernoulli,1700-1782) 1700年1月29日生于尼德兰的格罗宁根。他自幼兴趣广泛, 先后就读于尼塞尔大学、斯特拉斯堡大学和海德堡大学,学习 逻辑、哲学、医学和数学。1724年,丹尼尔获得有关微积分议 程的重要成果,从而轰动了欧洲科学界。他还把牛顿力学引入 对流体力学的研究,其著名的《流体力学》一书影响深远。他 同时还是一位气体动力学专家。 1726年,伯努利通过无数次实验,发现了“边界层表面效 应”:流体速加快时,物体与流体接触的界面上的压力会减小, 反之压力会增加。 纪念这位科学家的贡献,这一发现被称为 “伯努利效应”。伯努利效应适用于包括气体在内的一切流体。 1782年3月17日,丹尼尔· 伯努利在瑞士塞尔去世。

流体力学蔡增基

流体力学蔡增基

流体力学蔡增基引言流体力学是研究流体运动的学科,是物理学的重要分支之一。

在流体力学中,蔡增基是中国著名的学者之一,他在这一领域做出了杰出的贡献。

本文将介绍流体力学的基本概念,并重点介绍蔡增基的研究成果和影响。

流体力学概述流体力学是研究流体运动和相互作用的科学。

它涉及到液体和气体的力学性质、流动规律和应用。

流体力学分为两个主要分支:流体静力学和流体动力学。

流体静力学研究静止流体中的力学性质,主要研究压力、密度等静态参数的分布和变化规律。

而流体动力学研究流体在运动状态下的力学性质,主要研究流速、流量、压力损失等动态参数的变化规律。

蔡增基个人简介蔡增基(1934年-2019年)是中国力学学会和中国工程院的院士,被称为“流体力学之父”。

他是中国流体力学研究的奠基人之一,对流体力学的研究和发展做出了重要贡献。

蔡增基在1960年代开始研究流体力学,并在70年代提出了一种新的流体力学理论——相对运动理论,在国际上产生了重大影响。

他的研究成果使得传统流体力学的理论得以扩展和完善,为进一步研究和应用流体力学提供了新的思路和方法。

蔡增基的研究成果1.相对运动理论蔡增基在70年代提出的相对运动理论是他最重要的研究成果之一。

相对运动理论引入了微分运动变量,将流体运动的描述从欧拉描述转变为拉格朗日描述。

这一理论充分考虑了流体粒子间的相互作用,对于高速流动和复杂流动问题的研究具有重要意义。

2.流动控制技术蔡增基还在流体力学的应用领域做出了突出贡献。

他提出并研究了多孔介质流动控制技术,该技术可用于控制流体的流动行为,对于提高流体传递效率、减小流体阻力等方面具有重要作用。

这一技术在航空航天、能源、化工等领域得到了广泛应用。

3.教育与推广工作蔡增基不仅在科研方面取得了杰出成就,还致力于流体力学的教育与推广工作。

他培养了一大批优秀的学生,并在学术交流和学术会议上积极推广流体力学的发展。

蔡增基的影响和荣誉蔡增基的研究成果对于国内外学术界产生了重要影响,他的相对运动理论为流体力学的发展提供了新的视角和方法。

使用ANSYSCFX进行流体力学模拟入门

使用ANSYSCFX进行流体力学模拟入门

使用ANSYSCFX进行流体力学模拟入门一、流体力学介绍流体力学是研究流体的运动规律以及液体和气体在外力作用下的行为的科学。

在工程领域中,流体力学模拟是一种有效的分析方法,可以预测和理解流体的行为,以帮助设计和优化流体系统。

在本文中,我们将介绍使用ANSYS CFX进行流体力学模拟的入门知识。

二、ANSYS CFX简介ANSYS CFX是一种流体力学模拟软件,它可以对各种流动和传热问题进行模拟和分析。

它利用计算流体动力学(CFD)技术,通过数值方法对流体力学问题进行求解。

CFX具有强大的求解器和后处理功能,可以模拟复杂的流体现象,并提供详细的结果分析。

三、CFD模拟基本步骤1. 几何建模:在进行流体力学模拟之前,需要创建一个几何模型,用于描述流体系统的形状和边界条件。

可以使用ANSYS DesignModeler等工具进行几何建模。

2. 网格生成:为了进行数值求解,需要将几何模型离散化为网格。

网格的质量和细度对模拟结果有很大影响,因此需要根据具体问题进行合理的网格划分。

ANSYS CFX提供了自动网格生成工具,也支持导入其他网格生成软件生成的网格。

3. 物理模型:根据具体问题,选择合适的物理模型和边界条件。

ANSYS CFX提供了各种模型和边界条件选项,如湍流模型、传热模型、流体材料属性等。

根据具体需求进行设置。

4. 数值求解:在设定好物理模型和边界条件后,可以进行数值求解。

ANSYS CFX提供了强大的求解器,可以根据设定自动求解流体力学问题。

求解过程需要进行收敛准则的设置,以确保数值计算稳定。

5. 后处理:模拟完成后,可以对结果进行后处理和分析。

ANSYS CFX提供了丰富的后处理工具,可以进行流场可视化、数据提取和结果分析等操作。

可以根据需求生成报告和图表,以帮助理解和解释模拟结果。

四、案例分析:CFD模拟流过汽车的空气流动以汽车流动为例,介绍使用ANSYS CFX进行CFD模拟的基本步骤和注意事项。

第1章 流体力学基本知识

第1章 流体力学基本知识

数学表达式:
二、流体的粘滞性 粘滞性 :流体内部质点间或层流间因相对运动 而产生内摩擦力(切力)以反抗相对运动的 性质。
牛顿内摩擦定律:
F-内摩擦力,N; S-摩擦流层的接触面面积,m2;
τ-流层单位面积上的内摩擦力(切应力),N/
m2;
du/dn-流速梯度,沿垂直流速方向单位长度 的流速增值;

hω1-2 =Σhf+Σhj
二、流动的两种型态--层流和紊流
二、流动的两种型态--层流和紊流

实验研究发现,圆管内流型由层流向湍流 的转变不仅与流速u有关,而且还与流体的 密度、粘度 以及流动管道的直径d有关。 将这些变量组合成一个数群du/,根据该 数群数值的大小可以判断流动类型。这个 数群称为雷诺数,用符号Re表示,即

从元流推广到总流,得:

由于过流断面上密度ρ为常数,以
u d u d
1 1 1 2 2 1 2
2

带入上式,得:


ρ1Q1 =ρ2 Q2 Q=ωv ρ1ω1v 1=ρ2ω2v 2
(1-11)
(1-11a)

(1-11)、 (1-11a) --质量流量的连 续性方程式。
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介

本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。


v
2 2 2
2g
h12

大学物理生物流体力学简介

大学物理生物流体力学简介

比如泥浆、纸浆、高分子溶液等都属于假塑性流体。
dv dv 3)涨塑性流体:当 较小时, 对 的变化率 dy dy dv 较小;当 dv 较大时, 对 的变化率逐渐变大: dy dy
dv dy
n
(n 1)
一些乳化液、油漆、油墨等都属于涨塑性流体。
二、生物流体的分类
剪切应力 设在两块水平平行薄板之间充满某种 粘滞液体,下板固定不动,而上板在 力F的作用下向右以一定的速度v运动
y
F S
x
F S
流 体
表示 剪应力。
dv dy
比如空气、水、石油等绝大 多数机械工业中常用的流体
牛顿流体 非牛顿流体
与时间无关的非牛顿流体 与时间有关的非牛顿流体 (粘弹性流体)
1-牛顿流体 2- 塑性流体 3-假塑性流体 4-涨塑性流体
dv dv 2)假塑性流体:当 较小时, 对 的变化率 dy dy 较大,近似于塑性流体有初始应力的情况;但当 dv 较大 dy dv 时, 对 的变化率又逐渐降低: dy
dv dy
n
(n 1)
§2.6 生物流体力学简介
一、生物流体力学的基本概念
生物流体 与生命现象有关的流体的总称。生物流体力学就是 在传统流体力学的基础上研究生物流体流动规律的 边缘学科。 生物体内流体的流动。如植物体内水和糖分的输送
过程;动物体内血液流动、呼吸气流、淋巴循环、胆汁分 泌、肠道蠕动及吸收、排泄、细胞分裂中的流动与变形规 律,水生植物细胞内以及黏菌体内原生质的运动等。
dv 根据 与 的关系,非牛顿流体可分为几大类: dy
1) 塑性流体:它有一个保持不产生剪切变形的初Байду номын сангаас应 力 (称为致流应力),只有克服这个初始应力 0后,切 向应力 才与 dv 成正比例关系: 2

第1章流体力学基本知识-PPT精品

第1章流体力学基本知识-PPT精品
ρ1u1dω1dt=ρ2u2dω2dt 或 ρ1u1dω1=ρ2u2dω2
从元流推广到总流,得:
1u1d1 2u2d2
1
2
由于过流断面上密度ρ为常数,以
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv
ρ1ω1v 1=ρ2ω2v 2
(1-11) (1-11a)
单位时间内通过过流断面dω的液体体积为 udω =dQ
4.流量:单位时间内通过某一过流断面的流体 体积。一般流量指的是体积流量,单位是 m3/s或L/s。
5.断面平均流速:断面上各点流速的平均值。 通过过流断面的流量为
Qvud
断面平均流速为:
v

ud


Q
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
确定流体等压面的方法,有三个条件:
必须在静止状态;在同一种流体中; 而且为连续液体。
2.分析静止液体中压强分布:
静止液体中压强分布
分析铅直小圆柱体,作用于轴向的外力有: 上表面压力
分析铅直小圆柱体,作用于轴向的外力有: 下底面的静水压力
分析铅直小圆柱体,作用于轴向的外力有: 柱体重力
静压。 rv2/2g--工程上称动压。
p12vg12 p22vg22h12
p + rv2/2g--过流断面的静压与动 压之和,工程上称全压。

N-S方程相关知识课件

N-S方程相关知识课件
计算流体动力学的简称。是利用数值方法通过计算机求解描述流体流 动的数学方程,获得空间和时间离散位置处的数值解,揭示流动的物理 规律和研究流动的物理特性的学科。是计算力学的一个分支。计算流体 力学是为弥补理论分析方法的不足而于20世纪60年代发展起来的,并相 应地形成了各种数值解法。主要是有限差分法和有限元法。流体力学运 动偏微分方程有椭圆型、抛物型、双曲型和混合型之分,计算流体力学 很大程度上就是针对不同性质的偏微分方程采用和发展了相应的数值解 法。
一、流体力学简介
欧拉法,其着眼点不是流体质点,而是空间点,设法在空间中的每一 点上描述出流体运动随时间的变化状况。
一、流体力学简介
拉格朗日法:是以研究单个流体质点运动过程作为基础,综合所有质 点的运动,构成整个流体的运动。—质点系法 它以某一起始时刻每个质点的坐标位置(a、b、c)作为该质点的 标志。任何时刻任意质点在空间的位置(x、y、z)都可以看成是(a、b、 c和t的函数。 拉格朗日法基本特点:追踪流体质点的运动。研究的是具体的流体微团。 当流体在空间流动时,我们为了观察得到整个流场的情况,可以假设先 跟踪某一个流体微团,那么这个微团的运动状态是空间和时间的函数。 推广之,当我们给空间的每一个流体微团都确定一个函数时,这个流场 的运动也就清楚了。因为流场的运动由流体微团的运动组成的。 优点: 可直接运用固体力学中质点动力学进行分析,拉格朗日方法着眼于 流体质点。设法描述出每个流体质点自始至终的运动过程,即它们的位 置随时间变化的规律。如果知道了所有流体质点的运动规律,那么整个 流体的运动状况也就知道了。
一、流体力学简介
流体力学基本假设
基本假设以方程的形式表示。例如,在三维的不可压缩流体中,质量守 恒的假设的方程如下:在任意封闭曲面(例如球体)中,由曲面进入封 闭曲面内的质量速率,需和由曲面离开封闭曲面内的质量速率相等。 (换句话说,曲面内的质量为定值,曲面外的质量也是定值)以上方程 可以用曲面上的积分式表示。 流体力学所有流体满足以下假设: 质量守恒 动量守恒 连续体假设
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建工程学院
2019 年硕士研究生入学考试专业课课程(考试)大纲
一、考试科目名称: 流体力学
二、招生学院(盖学院公章):生态环境与城市建设学院
说明:
1、考试基本内容:一般包括基础理论、实际知识、综合分析和论证等几个方面的内容。

有些课程还应有基本运算和实验方法等方面的内容。

字数一般在300字左右。

2、难易程度:根据大学本科的教学大纲和本学科、专业的基本要求,一般应使大学本科毕业生中优秀学生在规定的三个小时内答完全部考题,略有一些时间进行检查和思考。

排序从易到难。

相关文档
最新文档