多面体与球的内切和外接常见类型归纳
多面体的外接球及内切球
多面体的外接球及内切球一、长方体、正方体(1)球与正方体的每个面都相切,切点为每个面的中心,显然球心为正方体的中心。
设正方体的棱长为a ,球半径为R 。
如图3,截面图为正方形EFGH 的内切圆,得2a R =; (2)与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截面图,圆O 为正方形EFGH 的外接圆,易得a R 22=。
(3)正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面1AA 作截面图得,圆O 为矩形C C AA 11的外接圆,易得a O A R 231==。
(4)长方体的外接球:R =12√a 2+b 2+c 2例1、在球面上有四个点P 、A 、B 、C .如果PA 、PB 、PC 两两互相垂直,且a PC PB PA ===,那么这个球的表面积是______.练习1、已知三棱锥D -ABC 中,AB =BC =1,AD =2,BD =5,AC =2,BC ⊥AD ,则该三棱锥的外接球的表面积为( )A .6πB .6πC .5πD .8π答案 B解析 ∵由勾股定理易知AB ⊥BC ,DA ⊥BC ,∴BC ⊥平面DAB .∴CD =BD 2+BC 2=6.∴AC 2+AD 2=CD 2.∴DA ⊥AC .取CD 的中点O ,由直角三角形的性质知O 到点A ,B ,C ,D 的距离均为62,其即为三棱锥的外接球球心.故三棱锥的外接球的表面积为4π×⎝⎛⎭⎫622=6π. 练习2、如图,边长为2的正方形ABCD 中,点E ,F 分别是边AB ,BC 的中点,将△AED ,△EBF ,△FCD 分别沿DE ,EF ,FD 折起,使A ,B ,C 三点重合于点A ′,若四面体A ′EFD 的四个顶点在同一个球面上,则该球的半径为( )A. 2 B .62 C.112D .52【解析】易知四面体A ′EFD 的三条侧棱A ′E ,A ′F ,A ′D 两两垂直,且A ′E =1,A ′F =1,A ′D =2,把四面体A ′EFD 补成从顶点A ′出发的三条棱长分别为1,1,2的一个长方体,则长方体的外接球即为四面体A ′EFD 的外接球,球的半径为r =1212+12+22=62.故选B. 【答案】 B二、根据性质确定球心1、正四面体的外接球与内切球(正四面体可以看作是正方体的一部分). 外接球:球心是正四面体的中心;半径r =64a (a 为正四面体的棱长). 内切球:球心是正四面体的中心;半径r =612a (a 为正四面体的棱长). 例2、正四面体的外接球和内切球的半径是多少?2、其它多面体例3、正三棱锥A BCD 内接于球O ,且底面边长为3,侧棱长为2,则球O 的表面积为________. 【解析】如图,M 为底面△BCD 的中心,易知AM ⊥MD ,DM =1,AM = 3.在Rt △DOM 中,OD 2=OM 2+MD 2,即OD 2=(3-OD )2+1,解得OD =233,故球O 的表面积为4π×⎝⎛⎭⎫2332=163π. 【答案】163π 练习3、已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.【解析】设球O 的半径为R ,因为SC 为球O 的直径,所以点O 为SC 的中点,连接AO ,OB ,因为SA =AC ,SB =BC ,所以AO ⊥SC ,BO ⊥SC ,因为平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,所以AO ⊥平面SCB ,所以V S ABC =V A SBC =13×S △SBC ×AO =13×(12×SC ×OB )×AO ,即9=13×(12×2R ×R )×R ,解得R =3,所以球O 的表面积为S =4πR 2=4π×32=36π.练习4、如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,表面积为S 1,球O 的体积为V 2,表面积为S 2,则V 1V 2的值是__________,S 1S 2=________.【解析】 (1)设圆柱内切球的半径为R ,则由题设可得圆柱O 1O 2的底面圆的半径为R ,高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.S 1S 2=2πR ·2R +2πR 24πR 2=32. 【答案】 (1)32 32例4、在边长为32的菱形ABCD 中,60BAD ∠=︒,沿对角线BD 折成二面角C BD A --为120︒的四面体ABCD ,则此四面体的外接球表面积为.【解析】取BD 的中点M ,ABD △和CBD △的外接圆半径为221==r r ,ABD △和CBD △的外心21,O O 到弦BD 的距离(弦心距)为121==d d ,四边形21MO OO 的外接圆直径2=OM ,7=R ,28πS =.三、空间向量法在外接球中的应用例5、在四面体ABCD 中BC =CD =BD =AB ,90ABC ∠=,二面角A BC D 的平面角为150,则求四面体ABCD 外接球的表面积。
多面体与球的接切
3. 三棱锥的三条侧棱两两垂直, 其长分别是 1、 2、 3, 则此三棱锥的外接球的表面积是( ) A.6π B.12π C.18π D.24π
解析:由三棱锥的三条侧棱两两垂直,可使我们想象到 把它补成一个长方体,且长方体的八个顶点都在球面上,它 的长、宽、高分别是 1、 2、 3,它的体对角线是球的直径, 2 2 2 ∴外接球的直径为 2R= 1 + 2 + 3 = 6,表面 积为 6π.
1.正方体与球
正方体的内切球,外接球,棱切球
内 切
棱 切
外 接
1: 2 : 3
一、正方体的内切球
o
2R a
切点:各个面的中心。
球心:正方体的中心。
直径:相对两个面中心连线。 球的直径等于正方体棱长。
二、球与正方体的棱相切
2R 2 a
切点:各棱的中点。
球心:正方体的中心。
直径: “对棱”中点连线
答案:6πR2
5.把直径分别为 6 cm,8 cm,10 cm 的三个铜球熔制成一 个较大的铜球,再把球削成一个棱长最大的正方体,求此正 方体的体积.
4 3 3 3 4 3 解: 设熔制后的大铜球半径为 r, 则 π(3 +4 +5 )= πr , 3 3 ∴r=6 cm. 据题意:正方体为球的内接正方体,球的直径即为正方 2r 12 体对角线的长,故正方体的棱长 a= = =4 3 cm. 3 3 ∴V 正方体=a3=(4 3)3=192 3 cm3.
1.求棱长为a的正四面体的外接球的半径R.
将正四面体放到正方体中, 2 得正方体的棱长为 a, 2 且正四面体的外接球 即正方体的外接球, 6 所以R= a. 4
2.求棱长为a的正四面体的棱切球的半径R.
多面体的外接球和内切球(解析版)
多面体的外接球和内切球一、结论1、球与多面体的接、切定义1;若一个多面体的各顶点都在一个球面上,则称这个多面体是这个球的内接多面体,这个球是多面体的外接球。
定义2;若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是多面体的内切球。
球的内切问题(等体积法)例如:在四棱锥P -ABCD 中,内切球为球O ,求球半径r .方法如下:V P -ABCD =V O -ABCD +V O -PBC +V O -PCD +V O -PAD +V O -PAB即:V P -ABCD =13S ABCD ⋅r +13S PBC ⋅r +13S PCD ⋅r +13S PAD ⋅r +13S PAB ⋅r ,可求出r .球的外接问题1.公式法正方体或长方体的外接球的球心为其体对角线的中点2.补形法(补长方体或正方体)①墙角模型(三条线两个垂直)题设:三条棱两两垂直(重点考察三视图)②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB =CD ,AD =BC ,AC =BD )3.单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥P-ABC中,选中底面ΔABC,确定其外接圆圆心O1(正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2r=asin A);②过外心O1做(找)底面ΔABC的垂线,如图中PO1⊥面ABC,则球心一定在直线(注意不一定在线段PO1上)PO1上;③计算求半径R:在直线PO1上任取一点O如图:则OP=OA=R,利用公式OA2=O1A2+OO12可计算出球半径R.4.双面定球心法(两次单面定球心)如图:在三棱锥P-ABC中:①选定底面ΔABC,定ΔABC外接圆圆心O1②选定面ΔPAB,定ΔPAB外接圆圆心O2③分别过O1做面ABC的垂线,和O2做面PAB的垂线,两垂线交点即为外接球球心O.二、典型例题1(2023春·湖南湘潭·高二统考期末)棱长为1的正方体的外接球的表面积为()A.3π4B.3πC.12πD.16π【答案】B【详解】解:易知,正方体的体对角线是其外接球的直径,设外接球的半径为R,则2R=12+12+12=3,故R=3 2.所以S=4πR2=4π×322=3π.故选:B.【反思】本例属于正方体外接球问题,其外接球半径公式可直接记忆.2(2023春·湖南长沙·高三长沙一中校考阶段练习)在四面体PABC中,PA⊥AB,PA⊥AC,∠BAC= 120°,AB=AC=AP=2,则该四面体的外接球的表面积为()A.12πB.16πC.18πD.20π【答案】D【详解】因为PA⊥AB,PA⊥AC,AB∩AC=A,AB,AC⊂平面ABC,所以PA⊥平面ABC.设底面△ABC的外心为G,外接球的球心为O,则OG⊥平面ABC,所以PA⎳OG.设D为PA的中点,因为OP=OA,所以DO⊥PA.因为PA⊥平面ABC,AG⊂平面ABC,所以PA⊥AG,所以OD⎳AG.因此四边形ODAG为平行四边形,所以OG=AD=12PA=1.因为∠BAC=120°,AB=AC=2,所以BC=AB2+AC2-2AB⋅AC cos∠BAC=4+4-2×2×2×-1 2=23,由正弦定理,得2AG=2332=4⇒AG=2.所以该外接球的半径R满足R2=OG2+AG2=5,故该外接球的表面积为S=4πR2=20π.故选:D.【反思】本例属于单面定球心问题①用正弦定理求出ΔABC外心G;②过G做平面ABC的垂线,则外接球球心O在此垂线上;③通过计算算出半径.3(2023秋·湖南娄底·高三校联考期末)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P-ABCD 是阳马,PA⊥平面ABCD,PA=5,AB=3,BC=4.则该阳马的外接球的表面积为()A.1252π3B.50π C.100π D.500π3【答案】B【详解】因PA⊥平面ABCD,AB⊂平面ABCD,AD⊂平面ABCD,则PA⊥AB,PA⊥AD,又因四边形ABCD为矩形,则AB⊥AD.则阳马的外接球与以PA,AB,AD为长宽高的长方体的外接球相同.又PA=5,AB=3,AD=BC=4.则外接球的直径为长方体体对角线,故外接球半径为:R=PA 2+AB 2+AD 22=32+42+522=522,则外接球的表面积为:S =4πR 2=4π⋅504=50π.故选:B【反思】本例属于墙角型模型,通过补形,将原图形补成长方体模型,借助长方体模型求外接球半径.4(2023·全国·高三专题练习)已知菱形ABCD 的各边长为2,∠D =60°.如图所示,将ΔACD 沿AC 折起,使得点D 到达点S 的位置,连接SB ,得到三棱锥S -ABC ,此时SB =3.E 是线段SA 的中点,点F 在三棱锥S -ABC 的外接球上运动,且始终保持EF ⊥AC ,则点F 的轨迹的周长为()A.233π B.433π C.533π D.2213π【答案】C【详解】取AC 中点M ,则AC ⊥BM ,AC ⊥SM ,BM ∩SM =M ,∴AC ⊥平面SMB ,SM =MB =3,又SB =3,∴∠SBM =∠MSB =30°,作EH ⊥AC 于H ,设点F 轨迹所在平面为α,则平面α经过点H 且AC ⊥α,设三棱锥S -ABC 外接球的球心为O ,△SAC ,△BAC 的中心分别为O 1,O 2,易知OO 1⊥平面SAC ,OO 2⊥平面BAC ,且O ,O 1,O 2,M 四点共面,由题可得∠OMO 1=12∠O 1MO 2=60°,O 1M =13SM =33,解Rt △OO 1M ,得OO 1=3O 1M =1,又O 1S =23SM =233,则三棱锥S -ABC 外接球半径r =OO 21+O 1S 2=73,易知O 到平面α的距离d =MH =12,故平面α截外接球所得截面圆的半径为r 1=r 2-d 2=73-14=536,∴截面圆的周长为l =2πr 1=533π,即点F 轨迹的周长为533π.故选:C 【反思】此题典型的双面定球心。
【课件】球与多面体的内切、外接课件2022-2023学年高一下学期数学人教A版(2019)必修第二册
o2
o
5πa2
●
R
r o1
课堂练习
2.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球
32π
的体积为
,那么这个正三棱柱的体积是(
3
A.96 3
C.24 3
)
B.16 3
√D.48
3
1 3
3
设正三棱柱的底面边长为a,则球的半径 R= × a= a,
3 2
6
3
正三棱柱的高为 a.
3
4 3 32π
三棱锥、四个面都是直角三角形的三棱锥都分别可构造长方体或
A
正方体.
P
B
C
探究新知
总结:正四面体的棱长与外接球、内切球的半径总结的关系
1.若正四面体棱长为a,外接球半径为R,内切球半径为r,则
r PO R
6
R
a
4
R : r 3 :1
6
r
a
12
6
6
6
a
a
a.
3
4
12
P
P
a
a
A
V 球= πR = .∴a=4 3.
3
3
3
3
2
∴V 柱= ×(4 3) × ×4 3=48 3.
4
3
例题讲解
(4)正棱锥、圆锥 ①内切球
P
例6 正三棱锥的高为1,底面边长为2,内有一个球与
它的四个面都相切,求内切球的表面积与体积.
A
解1:如图,P-ABC为正三棱锥,
设球的半径为r,底面中心为D,取BC边中点E ∴PD=2,易知
1
V锥体 Sh
3
MS02多面体的外接球与内切球
多面体的外接球与内切球定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。
1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。
2、正多面体的内切球和外接球的球心重合。
3、正棱锥的内切球和外接球球心都在高线上,但不重合。
4、基本方法:构造三角形利用相似比和勾股定理。
5、体积分割是求内切球半径的通用做法。
例1:在球面上有四个点P 、A 、B 、C .如果PA 、PB 、PC 两两互相垂直,且a PC PB PA ===,求这个球的表面积是: .解:根据题意可得,C B A P 、、、位于一个棱长为a 的正方体上,故球为正方体的外接球,a R 23=,故这个球的表面积为22232344a a R S πππ=⎪⎪⎭⎫⎝⎛== 1.设,,,P A B C 是球O 面上的四点,且,,PA PB PC 两两互相垂直,若PA PB PC a ===,则球心O 到截面ABC 的距离是 .2.正方体的内切球与其外接球的体积之比为 ( )A . 1∶3B . 1∶3C . 1∶33D . 1∶9 3.若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 .4.在正三棱锥S ABC -中,侧棱SC SAB ⊥侧面,侧棱2SC =,则此正三棱锥的外接球的表面积为5.设正方体的全面积为24,那么其内切球的体积是( )A .B .C .D .6.将棱长为1的正方体木块切削成一个体积最大的球,则该球的体积为7.三棱锥P ﹣ABC 中,△ABC 为等边三角形,PA=PB=PC=2,PA ⊥PB ,三棱锥P ﹣ABC 的外接球的表面积为( ) A .48π B .12π C .4π D .32π秒杀秘籍:正方体的外接球与内切球设正方体的棱长为a ,求(1)内切球半径;(2)外接球半径;(3)与棱相切的球半径。
数学高考重点内容多面体外接球、内切球常见解题方法总结
多面体外接球、内切球半径常见的5种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同9一个球面上,且该六棱柱的体积为三,底面周长为3,则这个球的体积为86x=3,f1JQ———解设正六棱柱的底面边长为X,高为则有9后,2'§=6x甘",]入=右.正六棱柱的底面圆的半径r=~,球心到底面的距离d=—.:.外接球的半径22R=J/+J?=]....v球=—.3小结本题是运用公式R2=r-+d2求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16^B.20ttC.24>tD.32i解设正四棱柱的底面边长为X,外接球的半径为R,则有4/=16,解得%=2, 2R=a/22+22+42=2^6,:.R=£.这个球的表面积是4*=24^,选C.小结本题是运用''正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3若三棱锥的三个侧棱两两垂直,且侧棱长均为右,则其外接球的表面积是—.解据题意可知,该三棱锥的三条侧棱两两垂直,...把这个三棱锥可以补成一个棱长为73的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R,则有(27?)2=(、厅『+(、行『+(^3)2=9./.R2=|,故其外接球的表面积S=4*=9兀.小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为0、/?、c,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为A,则有2R=7a2+b2+c2.寻求轴截面圆半径法例4正四棱锥S-ABC。
球与多面体的内接与外切类型总结(上课课件)
.
14π 解析:由题意可知长方体的体对角线长为
12+22+32= 14,∴长方体外接球的半径为 214,
∴球的表面积 S=4π·
2142=14π.
【例 2】用与球心的距离为 1 的平面去截球,所得的截面积为 π, 求这个球的体积与表面积.
解:由题意得球心到截面圆的距离为 1, 又 S 截=πr2=π,得 r=1.即截面圆的半径 r=1. ∴球的半径 R= 2, ∴S 球=4πR2=8π,V 球=43πR3=8 3 2π.
A.1030π cm3
B.2038π cm3
C.5030π cm3
D.416313π cm3
C 解析:根据球的截面性质,有 R= r2+d2= 32+42=5,所
以 V 球=34πR3=5300π(cm3).
4.一个长方体的各顶点均在同一球的球面上,且一个顶点上的
三条棱的长分别为 1,2,3,则此球的表面积为
A. 1:2:3
B. 1: 2: 3 C. 1:3 4:3 9 D. 1: 8: 27
类型二:长方体
探究新知
一、长方体的内切球
思考:一般的长方体有内切球吗?
没有。一个球在长方体内部,最多可以 和该长方体的5个面相切。
例如,装乒乓球的盒子
如果一个长方体有内切球,那么它一定是 正方体
探究新知
二、 长方体的外接球
A.
B. C.
D.
类型三:圆柱、直棱柱
反馈练习
例1 设三棱柱的侧棱垂直于底面,顶点都在 同一个球面上,且CA CB CC1 a, ACB 60,求该球的表面积。
O1
O O2
小结:直棱柱外接球半径求法
o1 r
R
o●
多面体与球的内切和外接常见类型归纳
多里体与球的内切战中接罕睹典型归纳之阳早格格创做正在寻常教教中,坐体几许的多里体与球的位子闭系,是培植教死的坐体感,空间设念本领的佳课本.但是教死正在二个几许体的拉拢后,往往感触无从下脚.针对于那种情况,笔者把凡是教教中有闭那圆里的习题加以归纳战归类如下:一.正四周体与球如图所示,设正四周体的棱少为a,r为内切球的半径,R为中接球的半径.则下斜下,OE=r=SE-SO,又SD=BD,BD=SE-OE,则正在特性分解:1.由于正四周体是一个核心对于成图形,所以它的内切球与中接球的球心为共一个.2.此论断不妨影象.例题一.1一球里上,则此球的表面积为()分解:借帮论断,所以2、球的内接正四周体又有一个内切球,则大球与小球的表面积之比是( )分解:借帮R=3r ,问案为9:1.二、特殊三棱锥与球 四个里皆是曲角三角形的三棱锥.果为,,球心降正在SC 的中面处.所以三.正圆体与球. 1.正圆体的中接球即正圆体的8个定面皆正在球里上.闭键找出截里图:ABCD 为正圆体的体对于角里.设正圆体的边少为a ,则,BD=2R ,AD=a , C2.正圆体的内切球.(1)与正圆体的各里相 切.如图:ABCD 为正圆CD BACC D体的仄止正里的正圆形.(2)与正圆体的各棱相切.如图:大圆是正圆形ABCD的中接圆.AB=CD=a,3.正在正圆体以一个顶面为接面的三条棱组成的三棱锥,特性是:三棱锥的三条侧棱互相笔曲且相等,它的中接球可把三棱锥补产死正圆体的中接球,再供解.例题:1.正圆体的周到积是24,它的顶面皆正在共一球里上,那个球的表面积是剖析:隐然,球是正圆体的中接球,a=2,则2.一个球与棱少为1 的正圆体的12条棱皆相切,则球的体积剖析:如果精确了上头的论断,问题很简单办理3.将棱少为1 的正圆体削成体积最大的球,则球的体积为剖析:削成体积最大,即央供球是正圆体的内切球,与正圆体的俄各里皆相切4.P 、A 、B 、C 、是球O 里上的四个面,PA 、PB 、PC 二二笔曲,且PA=PB=PC=1,则球的体积是剖析:共过条件分解,可采与把三棱锥补产死正圆体,则球是正圆体的中接球,所以四、正棱柱与球 1.正三棱柱中接球.如图所示:过A 面做AD 笔曲BC,D 为三角形ABC 的核心,D 1共样得到.则球心O 必降正在DD 1的中面上.利用三角形OAD 为曲角三角形,OA=R,可供出R. 2.正四棱柱中接球.讲理与上头相似.主假如找截里,构制曲角三角形,利用勾股定理供得.例题:1.的内接正三棱柱,则那一正三棱柱的体积是 剖析:如上图,OA=,OD=,a =6,2. 正四棱柱ABCD-A 1B 1C 1D 1的各个顶面皆正在半径为R的球里上,则正四棱柱B的正里积有最值,为剖析:截里如图:ABCD 为正四棱柱的体对于角里OD=R ,设AD=a ,底里正圆形的边少为b ,则有,则R 2=(a/2)2+)2,五、少圆体与球 1.少圆体的中接球.截里图如左图:真量构制曲角三角形,通联半径与少圆体的少宽下.半径为体对于角线的一半.2.正在少圆体以一个顶面为接面的三条棱组成的三棱锥,特性是:三棱锥的三条侧棱互相笔曲没有相等,它的中接球可把三棱锥补产死少圆体的中接球,再供解.例题:一个三棱锥三条棱二二笔曲,其少分别是3,4,5,则它的中接球的表面积是剖析:共过条件分解,可采与把三棱锥补产死少圆体,则球是少圆体的中接球,所以。
多面体外接球半径内切球半径的常见几种求法
多面体外接球、内切球半径常见的5种求法 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,8x x x h h =⎧⎧=⎪⎪∴⎨⎨=⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧棱两两垂直,则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =寻求轴截面圆半径法例4 正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图3所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. 出现多个垂直关系时建立空间直角坐标系,利用向量知识求解【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,︒=∠120BAC ,2===AC AD AB解:由已知建立空间直角坐标系)000(,,A )002(,,B )200(,,D 3,, CD A B S O 1图3A O D B 图4C y设球心坐标为),,(z y x O 则DO CO BO AO ===,由空间两点间距离公式知222222)2(z y x z y x ++-=++ 222222)2(-++=++z y x z y x 222222)3()1(z y x z y x +-+-=++解得 1331===z y x所以半径为3211331222=++=)(R 【结论】:空间两点间距离公式:221221221)()()(z z y y x x PQ -+-+-=四面体是正四面体外接球与内切球的圆心为正四面体高上的一个点,根据勾股定理知,假设正四面体的边长为a 时,它的外接球半径为a 46。
球的内切和外接问题
目录
• 球的内切问题 • 球的外接问题 • 球的切接问题在几何图形中的应用 • 球的切接问题的求解方法
01
球的内切问题
球与多面体的内切
总结词
当一个球完全内切于一个多面体时,多面体的每个面都会与球面相切,形成一系列的圆。
详细描述
球与多面体的内切是指球心位于多面体的内部,并且球面与多面体的每个面都相切。这种情况下,多面体的每个 面都会与球面形成相切的圆。这种内切关系在几何学中具有重要意义,是研究球与多面体关系的基础。
详细描述
在几何作图题中,经常需要利用球的切接性质来进行几何作图,例如作一个圆或一个圆 锥的内切于另一个圆或圆锥。通过球的切接性质,可以确定相关的点和线的位置,进而
完成几何作图。
04
球的切接问题的求解方 法
利用球心距和半径关系求解
1 2
球心距
球心到球面任一点的距离等于球的半径。
求解方法
利用球心距和半径的关系,通过代数运算求出相 关量。
斜放的圆锥体的外接球
对于斜放的圆锥体,其外接球的球心位于通过顶点和底面圆 心的直线上,但不一定在轴线上。
03
球的切接问题在几何图 形中的应用
在几何证明题中的应用
总结词
利用球的切接性质,经常需要利用球的切接性 质来证明一些几何图形的性质和关系,例如 证明两个圆或两个圆锥相切于同一个点,或 者证明一个圆或一个圆锥内切于另一个圆或 圆锥等。通过球的切接性质,可以推导出相 关的角度、距离等关系,进而证明题目的结 论。
在几何计算题中的应用
总结词
利用球的切接性质,计算几何图形的相关量 。
详细描述
在几何计算题中,经常需要利用球的切接性 质来计算一些几何图形的相关量,例如计算 两个圆或两个圆锥相切时的半径、高、角度 等。通过球的切接性质,可以建立相关的数
专题12多面体的外接球和内切球
专题12 多面体的外接球和内切球一、结论1.球与多面体的接、切定义1;若一个多面体的各顶点都在一个球面上,则称这个多面体是这个球的内接多面体,这个球是多面体的外接球。
定义2;若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是多面体的内切球。
类型一 球的内切问题(等体积法)例如:在四棱锥P ABCD -中,内切球为球O ,求球半径r .方法如下: P ABCD O ABCD O PBC O PCD O PAD O PAB V V V V V V ------=++++即:可求出.类型二 球的外接问题1、公式法正方体或长方体的外接球的球心为其体对角线的中点2、补形法(补长方体或正方体)①墙角模型(三条线两个垂直)题设:三条棱两两垂直(重点考察)②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(,)3、单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥P ABC -中,选中底面ABC ∆,确定其外接圆圆心1O (正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2sin a r A=); ②过外心1O 做(找)底面ABC ∆的垂线,如图中1PO ⊥面ABC ,则球心一定在直线(注意不一定在线段1PO 上)1PO 上;③计算求半径R :在直线1PO 上任取一点O 如图:则OP OA R ==,利用公式22211OA O A OO =+可计算出球半径R .4、双面定球心法(两次单面定球心)如图:在三棱锥P ABC -中:①选定底面ABC ∆,定ABC ∆外接圆圆心1O②选定面PAB ∆,定PAB ∆外接圆圆心2O③分别过1O 做面ABC 的垂线,和2O 做面PAB 的垂线,两垂线交点即为外接球球心O . 二、典型例题1.(2022·山西吕梁·一模(文))在《九章算术·商功》中,将四个面都为直角三角形的四面体称为鳖臑,如图在鳖臑中,平面,则鳖臑内切球的表面积为A .3πB.(3π- C .12πD.(3π+【答案】B【解析】解:因为四面体四个面都为直角三角形,平面,所以,设四面体内切球的球心为,则, 所以3ABCD V r S =内, 因为四面体ABCD的表面积为1ABCD ABC ABD ACD BCD S S S S S =+++=△△△△又因为四面体ABCD 的体积16ABCD V =,所以3V r S ==内24(3S r ππ==-球, 故选:B【反思】本例中涉及到求内切球问题,典型的等体积法.2.(2021·四川省南充高级中学高二期中(文))在三棱锥P -ABC 中,两两垂直,则该三棱锥的外接球的表面积为A .494πB .56π CD .14π【答案】D【解析】将三棱锥P -ABC 补全为长方体,则长方体的外接球就是所求的外接球,设球半径为R ,则()222224214R R PA PB PC ==++=,所以球的表面积为2414S R ππ==. 故选:D .【反思】由题意,两两垂直,可直接用补形法,补成长方体,利用长方体求外接球. 3.(2021·全国·高一课时练习)已知三棱锥,在底面中,面,则此三棱锥的外接球的表面积为A .163πB .43πC .323πD .16π【答案】D【解析】设三棱锥的外接球半径为R,已知其外接圆半径为1。
外接球内切球公式总结
外接球内切球公式总结外接球和内切球分别是三维空间中一个多面体的外、内接球。
外接球和内切球在计算几何中有着广泛的应用,例如判断多面体的大小、相似性等。
下面对外接球和内切球的公式做出详细总结。
一、外接球外接球是以多面体的所有顶点为球面上的点,且球面必须与多面体紧密相切。
下面给出外接球的计算方法与公式。
1. 普通多面体以正四面体为例,设四面体ABC为正四面体,O为外接球圆心,r为外接球半径,则有以下公式:(1) OA²=3r²;(2) AB²=4r²。
证明:OA²= (0.5AB)²+(AO-BO)²=(0.5AB)²+(3r-0.5AB)²=3r²AB²= (2/3)AH²+(2/3)HB²=(2/3)(AO²-0.25AB²)+(2/3)(BO²-0.25AB²)=4r²2. 不规则多面体以一个三角形棱锥为例,设棱锥ABCDEF的外接球圆心为O,外接球半径为r,则有以下公式:(1)OA²= R² + H²R为三角形ABC的外接圆半径H为三角形ABC到O的距离(2)其他面的公式均可类比。
证明:OA² = OB² + AB²/4= R² + [H + (R²-H²)^(1/2)]²= R² + H² + R² - 2H(R²-H²)^(1/2)= R² + H²二、内切球内切球是以多面体某一面上的所有点为球面上的点,且球面与多面体的这个面及其相邻面紧密相切。
下面给出内切球的计算方法与公式。
1. 普通多面体以立方体为例,设立方体的内切球半径为r,则有以下公式:r = V/4S其中V为立方体的体积,S为立方体的表面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多面体与球的内切和外接常见类型归纳
在平常教学中,立体几何的多面体与球的位置关系,是培养学生的立体感,空间想象能力的好教材。
可是学生在两个几何
体的组合后,往往感到无从下手。
针对这种情况,笔者把日常教
学中有关这方面的习题加以总结和归类如下:
・正四面体与球
如图所示,设正四面体的棱长为a, r为内切球的半径,R为外接球的半径。
则高SE=、岸a,斜高SD= £a , OE=r=SE-SO ,
SD=BD,BD=SE-OE,贝U
在
直角OEB中0E2+ EB2 = BD2 = (SE- OE)2
S
又
A
B
C
r=^a。
R=SO=OB=^a
12 4
特征分析:
1・由于正四面体是一个中心对成图形,所以它的内切球与外接球的球心为同一个。
4676
2. R=3r.「=卷R=a。
12 4
此结论可以记忆。
例题一。
1、一个四面体的所有棱长都为72,四个顶点在同一球面上,则此球的表面积为(
分析:借助结论,R=<=£乐負所以s=g=3J
2、球的内接正四面体又有一个内切球,则大球与小球的表面积
之比是(
)
分析:借助R=3r ,答案为9: 1。
、特殊三棱锥与球
四个面都是直角三角形的三棱锥。
SA 丄面ABC , ABC 为直角三角形,BC 丄AB
因为SA 丄AC ,SB 丄BC ,球心落在 SC 的中点处。
所以R=SC。
2
三.正方体与球。
C
1.正方体的外接球
即正方体的8个定点都在球面上。
R W 。
2
关键找出截面图:ABCD 为正方体 的体对角面。
设正方体的边长为 a ,
贝y AB= 72 a, BD=2R ,
AD=a ,
2. 正方体的内切球。
(1)与正方体的各面相
切。
如图:ABCD 为正方 体的平行侧面的正方形。
R=a
2
(2)与正方体的各棱相切。
如图:大圆是正方形 ABCD 的外接圆。
AB=CD=a ,
3. 在正方体以一个顶点为交点的三条棱组成的三棱锥,特征
是:三棱锥的三条侧棱互相垂直且相等,它的外接球可把 三棱锥补形成正方体的外接球,再求解。
例题:1。
正方体的全面积是24,它的顶点都在同一球面上,这 个球的表面积是
解析:显然,球是正方体的外接球,a=2,则R=¥2 = 73 , S=12兀。
2.—个球与棱长为1的正方体的12条棱都相切,则球的体积
解析:如果明确了上面的结论,问题很容易解决。
R ==¥I ==¥
3.将棱长为1的正方体削成体积最大的球,则球的体积为
解析:削成体积最大,即要求球是正方体的内切球,与正方体的 R=- , V= 4兀。
2
3
4. P 、A 、B 、C 、是球0面上的四个点,
俄各面都相切。
PA 、PB 、PC 两两垂
直,且PA=PB=PC=1,则球的体积是
解析:同过条件分析,可采用把三棱锥补形成正方体,则球是正
方体的外接球,所以R= — , V=^
2 2
四、正棱柱与球
1.正三棱柱外接球。
2.正四棱柱外接球。
道理与上面相似。
主要是找截面,构造直角三角形,利用勾股定 理求得。
例题:1。
已知一个半径为42的球中有一个各条棱长都相等的内 接正三棱柱,则这一正三棱柱的体积是 解析:如上图,OA=72i ,OD=a , AD=^a ,
2
3
可求 a = 6, V=54 73.
2.正四棱柱ABCD-A i B i C i D i 的各个顶点都
有最 _____ 值,为 解析:截面如图:ABCD 为正四棱柱的体对 角面OD=R ,设AD=a ,底面正方形的边长 为 b ,则有 DC= 42 b ,贝y R 2= ( a/2) 2+ (应 b/2) 2
如图所示:过A 点作AD 垂直BC,D 为三角形ABC 的中心,D i 同样得 到。
则球心0必落在DD 1的中点上。
利用三角形 OAD 为直角三角形,
OA=R,可求出R.
在半径为R 的球面上,则正四棱柱的侧面积
S=4ba<72(a2 +2b2)=472R2。
五、长方体与球
1.长方体的外接球。
截面图如右图:实质构造直角三角形,
联系半径与长方体的长宽高。
半径为
体对角线的一半。
2.在长方体以一个顶点为交点的三条
棱组成的三棱锥,特征是:三棱锥的
三条侧棱互相垂直不相等,它的外接球可把三棱锥补形成长方体
的外接球,再求解。
例题:一个三棱锥三条棱两两垂直,其长分别是3, 4, 5,则它的外接球的表面积是
解析:同过条件分析,可采用把三棱锥补形成长方体,则球是长
方体的外接球,所以
R=^, S=5^。
2。