数据挖掘作业 (2)
数据挖掘期末大作业任务
数据挖掘期末大作业1.数据挖掘的发展趋势是什么?大数据环境下如何进行数据挖掘。
对于数据挖掘的发展趋势,可以从以下几个方面进行阐述:(1)数据挖掘语言的标准化描述:标准的数据挖掘语言将有助于数据挖掘的系统化开发。
改进多个数据挖掘系统和功能间的互操作,促进其在企业和社会中的使用。
(2)寻求数据挖掘过程中的可视化方法:可视化要求已经成为数据挖掘系统中必不可少的技术。
可以在发现知识的过程中进行很好的人机交互。
数据的可视化起到了推动人们主动进行知识发现的作用。
(3)与特定数据存储类型的适应问题:根据不同的数据存储类型的特点,进行针对性的研究是目前流行以及将来一段时间必须面对的问题。
(4)网络与分布式环境下的KDD问题:随着Internet的不断发展,网络资源日渐丰富,这就需要分散的技术人员各自独立地处理分离数据库的工作方式应是可协作的。
因此,考虑适应分布式与网络环境的工具、技术及系统将是数据挖掘中一个最为重要和繁荣的子领域。
(5)应用的探索:随着数据挖掘的日益普遍,其应用范围也日益扩大,如生物医学、电信业、零售业等领域。
由于数据挖掘在处理特定应用问题时存在局限性,因此,目前的研究趋势是开发针对于特定应用的数据挖掘系统。
(6)数据挖掘与数据库系统和Web数据库系统的集成:数据库系统和Web数据库已经成为信息处理系统的主流。
2. 从一个3输入、2输出的系统中获取了10条历史数据,另外,最后条数据是系统的输入,不知道其对应的输出。
请使用SQL SERVER 2005的神经网络功能预测最后两条数据的输出。
首先,打开SQL SERVER 2005数据库软件,然后在界面上右键单击树形图中的“数据库”标签,在弹出的快捷菜单中选择“新建数据库”命令,并命名数据库的名称为YxqDatabase,单击确定,如下图所示。
然后,在新建的数据库YxqDatabas中,根据题目要求新建表,相应的表属性见下图所示。
在新建的表完成之后,默认的数据表名称为T able_1,并打开表,根据题目提供的数据在表中输入相应的数据如下图所示。
数据挖掘作业讲解
《数据挖掘》作业第一章引言一、填空题(1)数据库中的知识挖掘(KDD)包括以下七个步骤:数据清理、数据集成、数据选择、数据变换、数据挖掘、模式评估和知识表示(2)数据挖掘的性能问题主要包括:算法的效率、可扩展性和并行处理(3)当前的数据挖掘研究中,最主要的三个研究方向是:统计学、数据库技术和机器学习(4)在万维网(WWW)上应用的数据挖掘技术常被称为:WEB挖掘(5)孤立点是指:一些与数据的一般行为或模型不一致的孤立数据二、单选题(1)数据挖掘应用和一些常见的数据统计分析系统的最主要区别在于:(B )A、所涉及的算法的复杂性;B、所涉及的数据量;C、计算结果的表现形式;D、是否使用了人工智能技术(2)孤立点挖掘适用于下列哪种场合?(D )A、目标市场分析B、购物篮分析C、模式识别D、信用卡欺诈检测(3)下列几种数据挖掘功能中,( D )被广泛的应用于股票价格走势分析A. 关联分析B.分类和预测C.聚类分析D. 演变分析(4)下面的数据挖掘的任务中,( B )将决定所使用的数据挖掘功能A、选择任务相关的数据B、选择要挖掘的知识类型C、模式的兴趣度度量D、模式的可视化表示(5)下列几种数据挖掘功能中,(A )被广泛的用于购物篮分析A、关联分析B、分类和预测C、聚类分析D、演变分析(6)根据顾客的收入和职业情况,预测他们在计算机设备上的花费,所使用的相应数据挖掘功能是( B )A.关联分析B.分类和预测C. 演变分析D. 概念描述(7)帮助市场分析人员从客户的基本信息库中发现不同的客户群,通常所使用的数据挖掘功能是( C )A.关联分析B.分类和预测C.聚类分析D. 孤立点分析E. 演变分析(8)假设现在的数据挖掘任务是解析数据库中关于客户的一般特征的描述,通常所使用的数据挖掘功能是( E )A.关联分析B.分类和预测C. 孤立点分析D. 演变分析E. 概念描述三、简答题(1)什么是数据挖掘?答:数据挖掘是指从大量数据中提取或“挖掘”知识。
数据挖掘的功能及应用作业
数据挖掘的其他基本功能介绍一、关联规则挖掘关联规则挖掘是挖掘数据库中和指标(项)之间有趣的关联规则或相关关系。
关联规则挖掘具有很多应用领域,如一些研究者发现,超市交易记录中的关联规则挖掘对超市的经营决策是十分重要的。
1、 基本概念设},,,{21m i i i I =是项组合的记录,D 为项组合的一个集合。
如超市的每一张购物小票为一个项的组合(一个维数很大的记录),而超市一段时间内的购物记录就形成集合D 。
我们现在关心这样一个问题,组合中项的出现之间是否存在一定的规则,如A 游泳衣,B 太阳镜,B A ⇒,但是A B ⇒得不到足够支持。
在规则挖掘中涉及到两个重要的指标:① 支持度 支持度n B A n B A )()(⇒=⇒,显然,只有支持度较大的规则才是较有价值的规则。
② 置信度 置信度)()()(A n B A n B A ⇒=⇒,显然只有置信度比较高的规则才是比较可靠的规则。
因此,只有支持度与置信度均较大的规则才是比较有价值的规则。
③ 一般地,关联规则可以提供给我们许多有价值的信息,在关联规则挖掘时,往往需要事先指定最小支持度与最小置信度。
关联规则挖掘实际上真正体现了数据中的知识发现。
如果一个规则满足最小支持度,则称这个规则是一个频繁规则;如果一个规则同时满足最小支持度与最小置信度,则通常称这个规则是一个强规则。
关联规则挖掘的通常方法是:首先挖掘出所有的频繁规则,再从得到的频繁规则中挖掘强规则。
在少量数据中进行规则挖掘我们可以采用采用简单的编程方法,而在大量数据中挖掘关联规则需要使用专门的数据挖掘软件。
关联规则挖掘可以使我们得到一些原来我们所不知道的知识。
应用的例子:* 日本超市对交易数据库进行关联规则挖掘,发现规则:尿片→啤酒,重新安排啤酒柜台位置,销量上升75%。
* 英国超市的例子:大额消费者与某种乳酪。
那么,证券市场上、期货市场上、或者上市公司中存在存在哪些关联规则,这些关联规则究竟说明了什么?关联规则挖掘通常比较适用与记录中的指标取离散值的情况,如果原始数据库中的指标值是取连续的数据,则在关联规则挖掘之前应该进行适当的数据离散化(实际上就是将某个区间的值对应于某个值),数据的离散化是数据挖掘前的重要环节,离散化的过程是否合理将直接影响关联规则的挖掘结果。
浙江大学数据挖掘在线作业答案
您的本次作业分数为:100分1.【第001章】孤立点挖掘适用于下列哪种场合?A 目标市场分析B 购物篮分析C 模式识别D 信用卡欺诈检测正确答案:D2.【第01章】根据顾客的收入和职业情况,预测他们在计算机设备上的花费,所使用的相应数据挖掘功能是()。
A 关联分析B 分类和预测C 演变分析D 概念描述正确答案:B3.【第01章】数据挖掘应用和一些常见的数据统计分析系统的最主要区别在于()。
A 所涉及的算法的复杂性B 所涉及的数据量C 计算结果的表现形式D 是否使用了人工智能技术正确答案:B4.【第01章】下列几种数据挖掘功能中,()被广泛的应用于股票价格走势分析。
A 关联分析B 分类和预测C 聚类分析D 演变分析正确答案:D5.【第01章】下列几种数据挖掘功能中,()被广泛的用于购物篮分析。
A 关联分析B 分类和预测C 聚类分析D 演变分析正确答案:A6.【第01章】帮助市场分析人员从客户的基本信息库中发现不同的客户群,通常所使用的数据挖掘功能是()。
A 关联分析B 分类和预测C 聚类分析D 孤立点分析E 演变分析正确答案:C7.【第01章】下面的数据挖掘的任务中,()将决定所使用的数据挖掘功能。
A 选择任务相关的数据B 选择要挖掘的知识类型C 模式的兴趣度度量D 模式的可视化表示正确答案:B8.【第01章】假设现在的数据挖掘任务是解析数据库中关于客户的一般特征的描述,通常所使用的数据挖掘功能是()。
A 关联分析B 分类和预测C 孤立点分析D 演变分析E 概念描述正确答案:E9.【第02章】下列哪种可视化方法可用于发现多维数据中属性之间的两两相关性?A 空间填充曲线B 散点图矩阵C 平行坐标D 圆弓分割正确答案:B10.【第02章】计算一个单位的平均工资,使用哪个中心趋势度量将得到最合理的结果?A 算术平均值B 截尾均值C 中位数D 众数正确答案:B11.【第02章】字段Size = {small, medium, large}属于那种属性类型?A 标称属性B 二元属性C 序数属性D 数值属性正确答案:C12.【第02章】字段Hair_color = {auburn, black, blond, brown, grey, red, white}属于那种属性类型?A 标称属性B 二元属性C 序数属性D 数值属性正确答案:A13.【第03章】哪种数据变换的方法将数据沿概念分层向上汇总?A 平滑B 聚集C 数据概化D 规范化正确答案:C14.【第03章】下面哪种数据预处理技术可以用来平滑数据,消除数据噪声?A 数据清理B 数据集成C 数据变换D 数据归约正确答案:A15.【第03章】()通过将属性域划分为区间,从而减少给定连续值的个数。
2015秋浙江大学网络学院《数据挖掘》在线作业及答案
2015秋浙江大学网络学院《数据挖掘》在线作业及答案单选题1.置信度(confidence)是衡量兴趣度度量()的指标。
A 简洁性B 确定性C 实用性D 新颖性正确答案:B 单选题2.哪种OLAP操作可以让用户在更高的抽象层,更概化的审视数据?A 上卷B 下钻C 切块D 转轴正确答案:A 单选题3.下列几种数据挖掘功能中,()被广泛的用于购物篮分析。
A 关联分析B 分类和预测C 聚类分析D 演变分析正确答案:A 单选题4.下列哪个描述是正确的?A 分类和聚类都是有指导的学习B 分类和聚类都是无指导的学习C 分类是有指导的学习,聚类是无指导的学习D 分类是无指导的学习,聚类是有指导的学习正确答案:C单选题5.计算一个单位的平均工资,使用哪个中心趋势度量将得到最合理的结果?A 算术平均值B 截尾均值C 中位数D 众数正确答案:B 单选题6.规则:age(X,”19-25”) ∧buys(X, “popcorn”) => buys(X, “coke”)是一个()。
A 单维关联规则B 多维关联规则C 混合维关联规则D 不是一个关联规则正确答案:B 单选题7.假设现在的数据挖掘任务是解析数据库中关于客户的一般特征的描述,通常所使用的数据挖掘功能是()。
A 关联分析B 分类和预测C 孤立点分析D 演变分析 E概念描述正确答案:E 单选题8.下面哪种数据预处理技术可以用来平滑数据,消除数据噪声?A 数据清理B 数据集成C 数据变换D 数据归约正确答案:A 单选题9.进行数据规范化的目的是()。
A 去掉数据中的噪声B 对数据进行汇总和聚集C 使用概念分层,用高层次概念替换低层次“原始”数据D 将属性按比例缩放,使之落入一个小的特定区间正确答案:D 单选题10.平均值函数avg()属于哪种类型的度量?A 分布的B 代数的C 整体的D 混合的正确答案:B 单选题11.下面哪种分类方法是属于统计学的分类方法?A 判定树归纳B 贝叶斯分类C 后向传播分类D 基于案例的推理正确答案:B 单选题12.下列几种数据挖掘功能中,()被广泛的用于购物篮分析。
数据挖掘习题及解答-完美版
Data Mining Take Home Exam学号: xxxx 姓名: xxx 1. (20分)考虑下表的数据集。
(1)计算整个数据集的Gini 指标值。
(2)计算属性性别的Gini 指标值(3)计算使用多路划分属性车型的Gini 指标值 (4)计算使用多路划分属性衬衣尺码的Gini 指标值(5)下面哪个属性更好,性别、车型还是衬衣尺码?为什么? 解:(1) Gini=1-(10/20)^2-(10/20)^2=0.5 (2)Gini=[{1-(6/10)^2-(4/10)^2}*1/2]*2=0.48 (3)Gini={1-(1/4)^2-(3/4)^2}*4/20+{1-(8/8)^2-(0/8)^2}*8/20+{1-(1/8)^2-(7/8)^2}*8/2 0=26/160=0.1625(4)Gini={1-(3/5)^2-(2/5)^2}*5/20+{1-(3/7)^2-(4/7)^2}*7/20+[{1-(2/4)^2-(2/4)^2}*4/ 20]*2=8/25+6/35=0.4914(5)比较上面各属性的Gini值大小可知,车型划分Gini值0.1625最小,即使用车型属性更好。
2. (20分)考虑下表中的购物篮事务数据集。
(1) 将每个事务ID视为一个购物篮,计算项集{e},{b,d} 和{b,d,e}的支持度。
(2)使用(1)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
(3)将每个顾客ID作为一个购物篮,重复(1)。
应当将每个项看作一个二元变量(如果一个项在顾客的购买事务中至少出现一次,则为1,否则,为0)。
(4)使用(3)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
答:(1)由上表计数可得{e}的支持度为8/10=0.8;{b,d}的支持度为2/10=0.2;{b,d,e}的支持度为2/10=0.2。
(2)c[{b,d}→{e}]=2/8=0.25; c[{e}→{b,d}]=8/2=4。
机器学习与数据挖掘作业指导书
机器学习与数据挖掘作业指导书一、概述机器学习与数据挖掘是当前计算机科学领域备受关注的重要研究方向之一。
它们通过对大量数据的处理和分析,自动发现数据中的模式和规律,并基于此作出预测和决策。
本次作业将引导学生了解机器学习与数据挖掘的基本概念和方法,并通过实践项目,提升学生的实际应用能力。
二、作业内容1. 学习基本概念和理论在开始实践之前,学生应当对机器学习与数据挖掘的基本概念和理论有一定的了解。
包括但不限于机器学习算法(如决策树、支持向量机、神经网络等)、数据预处理方法(如数据清洗、特征选择、特征变换等)以及模型评估指标(如准确率、精确率、召回率等)。
2. 完成实践项目学生应当选择一个合适的数据集,根据实际情况设计机器学习或数据挖掘的任务,并在给定的时间内完成相应的实践项目。
项目应包括但不限于以下步骤:(1)数据收集与预处理:学生需要查找并获取与任务相关的数据集,并进行必要的数据预处理,包括数据清洗、特征选择和特征变换等。
(2)模型选择与建立:根据任务的特点和数据集的属性,学生需要选择合适的机器学习或数据挖掘模型,并进行建立和调整。
同时,学生需要解释为什么选择该模型以及模型的参数设置等。
(3)模型评估与结果分析:学生需要使用适当的评估指标对模型进行评估,并对结果进行深入的分析和讨论,解释模型的性能和可行性等。
3. 撰写实验报告学生应当根据实践项目的完成情况,撰写相应的实验报告。
报告应包含但不限于以下内容:(1)引言:介绍实验的背景和目的,阐述实验的重要性和意义。
(2)数据集介绍:详细描述实验所使用的数据集,包括数据的来源、属性以及预处理方式等。
(3)方法与实现:详细阐述所选择的机器学习或数据挖掘方法,包括模型原理、算法步骤以及实现过程等。
(4)实验结果与分析:展示实验的结果及其分析,包括模型的性能评估指标,以及对结果的深入分析和讨论。
(5)总结与展望:对实验进行总结,并展望进一步的研究方向和改进方法等。
数据挖掘作业
证明决策树生长的计算时间最多为 m D log( D ) 。
3.4 考虑表 3-23 所示二元分类问题的数据集。 表 3-23 习题 3.4 数据集
A
B
类标号
T
F
+
T
T
+
T
T
+
T
F
-
T
T
+
F
F
-
F
F
-
F
F
-
T
T
-
T
F
-
(1) 计算按照属性 A 和 B 划分时的信息增益。决策树归纳算法将会选择那个属性?
y ax 转换成可以用最小二乘法求解的线性回归方程。
表 3-25 习题 3.8 数据集
X 0.5 3.0 4.5 4.6 4.9 5.2 5.3 5.5 7.0 9.5
Y-
-
+++-
-
+-
-
根据 1-最近邻、 3-最近邻、 5-最近邻、 9-最近邻,对数据点 x=5.0 分类,使用多数表决。
3.9 表 3-26 的数据集包含两个属性 X 与 Y ,两个类标号“ +”和“ -”。每个属性取三个不同值策略: 0,1 或
记录号
A
B
C
类
1
0
0
0
+
2
0
0
1
-
3
0
1
1
-
4
0
1
1
-
5
0
0
1
+
6
1
0
1
+
7
1
数据挖掘大作业例子
数据挖掘大作业例子1. 超市购物数据挖掘呀!想想看,如果把超市里每个顾客的购买记录都分析一遍,那岂不是能发现很多有趣的事情?比如说,为啥周五晚上大家都爱买啤酒和薯片呢,是不是都打算周末在家看剧呀!2. 社交媒体情感分析这个大作业超有意思哦!就像你能从大家发的文字里看出他们今天是开心还是难过,那简直就像有了读心术一样神奇!比如看到一堆人突然都在发伤感的话,难道是发生了什么大事情?3. 电商用户行为挖掘也很棒呀!通过分析用户在网上的浏览、购买行为,就能知道他们喜欢什么、不喜欢什么,这难道不是很厉害吗?就像你知道了朋友的喜好,能给他推荐最适合的礼物一样!4. 交通流量数据分析呢!想象一下,了解每个路口的车流量变化,是不是就能更好地规划交通啦?难道这不像是给城市的交通装上了一双明亮的眼睛?5. 医疗数据挖掘更是不得了!能从大量的病例中找到疾病的规律,这简直是在拯救生命啊!难道这不是一件超级伟大的事情吗?比如说能发现某种疾病在特定人群中更容易出现。
6. 金融交易数据挖掘也超重要的呀!可以知道哪些交易有风险,哪些投资更靠谱,那不就像有个聪明的理财顾问在身边吗!就好比能及时发现异常的资金流动。
7. 天气数据与出行的结合挖掘也很有趣呀!根据天气情况来预测大家的出行选择,真是太神奇了吧!难道不是像有了天气预报和出行指南合二为一?8. 音乐喜好数据挖掘呢!搞清楚大家都喜欢听什么类型的音乐,从而能更好地推荐歌曲,这不是能让人更开心地享受音乐吗!好比为每个人定制了专属的音乐播放列表。
9. 电影票房数据挖掘呀!通过分析票房数据就能知道观众最爱看的电影类型,这不是超厉害的嘛!就像知道了大家心里最期待的电影是什么样的。
我觉得数据挖掘真的太有魅力了,可以从各种看似普通的数据中发现那么多有价值的东西,真是让人惊叹不已啊!。
数据挖掘作业2
数据挖掘作业2 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN智能信息处理第二次作业费洋 20设数据库有5个事务。
设min_sup =60%, min_conf=80%(a)分别使用Apriori和FP增长算法找出所有频繁项集。
比较两种挖掘过程的效率。
Null{}K:5E:4 M:1O:3 OM:1 OY:1M:1 OY:1Y:1效率比较:Apriori需多次扫描数据库而FP增长建立FP树只需一次的扫描。
在Apriori算法中产生候选是昂贵的(由于联接),而FP增长不产生任何候选,但是FP消耗了大量的内存,当数据量很大时。
(b)列举所有与下面的元规则匹配的强关联规则(给出支持度S和置信度C),其中,X是代表顾客的变量,item是表示项的变量(如:“A”、“B”等):i答: k,o e [,1]e,o k [,1].数据库有4个事务,设min_sup =60%, min_conf=80%(a)在item_category粒度(例如,item可以是“Milk”),对于下面的规i则模板对最大的k,列出频繁k项集包含最大的k的频繁k项集的所有强关联规则(包括它们的支持度S和置信度c).可以是“Sunset-Milk”)对于下面的规则模板(b)在粒度(例如:itemi对最大的k,列出频繁k项集(但不输出任何规则)。
K=3频繁1项集{Wonder-Bread}下面的相依表汇总了超级市场的事务数据。
其中,hot dogs表示包含热狗的事务,hot dogs表示不包含热狗的事务,hamburgers表示包含汉堡包的事务,hamburgers表示不包含汉堡包的事务,(a)假定挖掘出了关联规则。
给定最小支持度阀值25%,最小置信度阀值50%,该关联规则是强规则吗(a)支持度=2000/5000*100%=40%>25%,置信度=2000/3000*100%=%>50%则该关联规则是强规则(b)根据给定的数据,买 hot dogs独立于买humburgers吗如果不是,二者之间存在何种相关联系。
数据挖掘作业
1.下表由雇员数据库的训练数据组成,数据已泛化。
例如,年龄“31…35”表示31到35的之间。
对于给定的行,count表示department, status, age和salary在该行上具有给定值的元组数。
status是类标号属性。
1)如何修改基本决策树算法,以便考虑每个广义数据元组(即每个行)的count。
Status 分为2个部分:Department分为4个部分:Senior 共计52 Sales 共计110Junior 共计113 Systems 共计31Marketing 共计14Secretary 共计10Age分为6个部分:Salary分为6各部分:21…25 共计20 26K…30K 共计4626…30 共计49 31K…35K 共计4031…35 共计79 36K…40K 共计436…40 共计10 41K…45K 共计441…45 共计3 46K…50K 共计6346…50 共计4 66K…70K 共计8Info(D)=−52165log252165−113165log2113165=0.889位Info(departmet)=−110165∗(−30110log230110−80110log280110)+31165∗(−831log2831−23 31log22331)+14165∗(−1014log21014−414log2414)+10165∗(−410log2410−610log2610)=0.8504位Gain(department)=Info(D)−Info(department)=0.0386位Info(age)=−20165∗(−020log2020−2020log22020)+49165∗(−049log2049−4949log24949)+79165∗(−3579log23575−3479log23479)+10165∗(−1010log21010−010log2010)+3165∗(−33log233−03log203)+4 165∗(−44log244−04log204)=0.4998位Gain(age)=Info(D)−Info(age)=0.3892位Info(salary)=−46165∗(−046log2046−4646log24646)+40165∗(−040log2040−4040log24040)+4165∗(−44log244−04log204)+63165∗(−3063log23063−3363log23363)+8165∗(−88log288−08log208)=0.3812位Gain(salary)=Info(D)−Info(salary)=0.5078位由以上的计算知按信息增益从大到小对属性排列依次为:salary、age、department,所以定由这个表可知department和age的信息增益将都为0。
数据挖掘作业
1、给出K D D的定义和处理过程。
KDD的定义是:从大量数据中提取出可信的、新颖的、有用的且可以被人理解的模式的高级处理过程。
因此,KDD是一个高级的处理过程,它从数据集中识别出以模式形式表示的知识。
这里的“模式”可以看成知识的雏形,经过验证、完善后形成知识:“高级的处理过程”是指一个多步骤的处理过程,多步骤之间相互影响反复调整,形成一种螺旋式上升的过程。
KDD的全过程有五个步骤:1、数据选择:确定发现任务的操作对象,即目标数据,它是根据用户的需要从原始数据库中抽取的一组数据;2、数据预处理:一般可能包括消除噪声、推到技术却只数据、消除重复记录、完成数据类型转换等;3、数据转换:其主要目的是消减数据维数或降维,即从初始特征中找出真正有用的特征以减少数据开采时要考虑的特征或变量个数;4、数据挖掘:这一阶段包括确定挖掘任务/目的、选择挖掘方法、实施数据挖掘;5、模式解释/评价:数据挖掘阶段发现出来的模式,经过用户或机器的评价,可能存在冗余或无关的模式,需要剔除;也有可能模式不满足用户的要求,需要退回到整个发现阶段之前,重新进行KDD过程。
2、阐述数据挖掘产生的背景和意义。
数据挖掘产生的背景:随着信息科技的进步以及电子化时代的到来,人们以更快捷、更容易、更廉价的方式获取和存储数据,使得数据及信息量以指数方式增长。
据粗略估计,一个中等规模企业每天要产生100MB以上的商业数据。
而电信、银行、大型零售业每天产生的数据量以TB来计算。
人们搜集的数据越来越多,剧增的数据背后隐藏着许多重要的信息,人们希望对其进行更高层次的分析,以便更好的利用这些数据。
先前的数据库系统可以高效的实现数据的录入、查询、统计等功能,但无法发现数据中存在的关系与规则,无法根据现有的数据来预测未来的发展趋势。
缺乏挖掘数据背后隐藏的知识的手段。
导致了“数据爆炸但知识贫乏”的现象。
于是人们开始提出“要学会选择、提取、抛弃信息”,并且开始考虑:如何才能不被信息淹没?如何从中及时发现有用的知识、提高信息利用率?如何从浩瀚如烟海的资料中选择性的搜集他们认为有用的信息?这给我们带来了另一些头头疼的问题:第一是信息过量,难以消化;第二是信息真假难以辨别;第三是信息安全难以保证;第四是信息形式不一致,难以统一处理面对这一挑战,面对数量很大而有意义的信息很难得到的状况面对大量繁杂而分散的数据资源,随着计算机数据仓库技术的不断成熟,从数据中发现知识(Knowledge Discovery in Database)及其核心技术——数据挖掘(Data Mining)便应运而生,并得以蓬勃发展,越来越显示出其强大的生命力。
中科院数据挖掘作业2
HW2Due Date: Nov. 23Submission requirements:Please submit your solutions to our class website. Only hand in what is required below.Part I: written assignment1.a) Compute the Information Gain for Gender, Car Type and Shirt Size.b) Construct a decision tree with Information Gain.2. (a) Design a multilayer feed-forward neural network (one hidden layer) for thedata set in Q1. Label the nodes in the input and output layers.(b) Using the neural network obtained above, show the weight values after oneitera tion of the back propagation algorithm, given the training instance “(M,Family, Small)". Indicate your initial weight values and biases and the learning rate used.3.a) Suppose the fraction of undergraduate students who smoke is 15% and thefraction of graduate students who smoke is 23%. If one-fifth of the college students are graduate students and the rest are undergraduates, what is the probability that a student who smokes is a graduate student?b) Given the information in part (a), is a randomly chosen college student more likelyto be a graduate or undergraduate student?c) Suppose 30% of the graduate students live in a dorm but only 10% of theundergraduate students live in a dorm. If a student smokes and lives in the dorm, is he or she more likely to be a graduate or undergraduate student? You can assume independence between students who live in a dorm and those who smoke.4. Suppose that the data mining task is to cluster the following ten points (with(x, y, z) representing location) into three clusters:A1(4,2,5), A2(10,5,2), A3(5,8,7), B1(1,1,1), B2(2,3,2), B3(3,6,9), C1(11,9,2),C2(1,4,6),C3(9,1,7), C4(5,6,7)The distance function is Euclidean distance. Suppose initially we assign A1,B1,C1 as the center of each cluster, respectively. Use the K-Means algorithm to show only(a) The three cluster center after the first round execution(b) The final three clustersPart II: LabQuestion 1Assume this supermarket would like to promote milk. Use the data in “transactions” as training data to build a decision tree (C5.0 algorithm) model to predict whether the customer would buy milk or not.1. Build a decision tree using data set “transaction s” that predicts milk as a function of theother fields. Set the “type” of each field to “Flag”, set the “direction” of “milk” as “out”, set the “type” of COD as “Typeless”, select “Expert” and set the “pruning severity” to 65, and set the “minimum records per child branch” to be 95. Hand-in: A figure showing your tree.2. Use the model (the full tree generated by Clementine in step 1 above) to make apredic tion for each of the 20 customers in the “rollout” data to determine whether the customer would buy milk. Hand-in: your prediction for each of the 20 customers.3. Hand-in: rules for positive (yes) prediction of milk purchase identified from the decisiontree (up to the fifth level. The root is considered as level 1). Compare with the rules generated by Apriori in Homework 1, and submit your brief comments on the rules (e.g., pruning effect)Question 2: Churn ManagementThe goal of this assignment is to introduce churn management using decision trees, logistic regression and neural network. You will try different combinations of the parameters to see their impacts on the accuracy of your models for this specific data set. This data set contains summarized data records for each customer for a phone company. Our goal is to build a model so that this company can predict potential churners.Two data sets are available, churn_training.txt and churn_validation.txt. Each data set has 21 variables. They are:State:Account_length: how long this person has been in this planArea_code:Phone_number:International_plan: this person has international plan=1, otherwise=0Voice_mail_plan: this person has voice mail plan=1, otherwise=0Number_vmail_messages: number of voice mailsTotal_day_minutes:Total_day_calls:Total_day_charge:Total_eve_minutes:Total_eve_calls:Total_eve_charge:Total_night_minutes:Total_night_calls:Total_night_charge:Total_intl_minutes:Total_intl_calls:Total_intl_charge:Number_customer_service_calls:Class: churn=1, did not churn=0Each row in “churn_training” represents the customer record. The training data contains 2000 rows and the validation data contains 1033 records.1. Perform decision tree classification on training data set. Select all the input variablesexcept state, area_code, and phone_number (since they are only informative for this ana lysis). Set the “Direction” of class as “out”, “type” as “Flag”. Then, specify the “minimum records per child branch”as 40, “pruning severity” as 70, click “use global pruning”. Hand-in the confusion matrices for validation data.2. Perform neural network on training data set using default settings. Again, select all the input variables except state, area_code, and phone_number. Hand-in the confusion matrix for validation data.3. Perform logistic regression on training data set using default settings. Again, select all the input variables except state, area_code, and phone_number. Hand-in the confusion matrix for validation data.4. Hand-in your observations on the model quality for decision tree, neural network and logistic regression using the confusion matrices.。
南开19春学期(1709、1803、1809、1903)《数据挖掘》在线作业-2(答案)
南开19春学期(1709、1803、1809、1903)《数据挖掘》在线作业-2一、单选题共20题,40分1、( )用替代的、较小的数据表示形式替换原数据。
A维归约B数量归约C离散D聚集【南开】答案是:B2、只有非零值才重要的二元属性被称作( )。
A计数属性B离散属性C非对称的二元属性D对称属性【南开】答案是:C3、职位可以按顺序枚举,对于教师有:助教、讲师、副教授、教授。
职位属性是( )。
A标称属性B序数属性C数值属性D二元属性【南开】答案是:B4、( )去掉数据中的噪声,这类技术包括分箱、回归和聚类。
A光滑B聚集C规范化D属性构造【南开】答案是:A5、在基于规则分类器的中,依据规则质量的某种度量对规则排序,保证每一个测试记录都是由覆盖它的“最好的”规格来分类,这种方案称为( )。
A基于类的排序方案B基于规则的排序方案C基于度量的排序方案D基于规格的排序方案【南开】答案是:B6、分位数是取自数据分布的每隔一定间隔上的点,把数据划分成基本上大小相等的连贯集合。
如:4-分位数是( )个数据点,它们把数据分布划分成4个相等的部分,使得每部分表示数据分布的四分之一。
A1B2C3D4【南开】答案是:C7、决策树学习:决策树算法对数据处理过程中,将数据按( )结构分成若干分枝形成决策树,从根到树叶的每条路径创建一个规则。
A树状B网状C星形D雪花形【南开】答案是:A8、以下属于可伸缩聚类算法的是( )。
ACUREBDENCLUECCLIQUEDOPOSSUM【南开】答案是:A9、( )将两个簇的邻近度定义为不同簇的所有点对的平均逐对邻近度,它是一种凝聚层次聚类技术。
AMIN(单链)BMAX(全链)C组平均DWard方法【南开】答案是:C10、如果规则集R中不存在两条规则被同一条记录触发,则称规则集R中的规则为( )。
A无序规则B穷举规则C互斥规则D有序规则【南开】答案是:C11、( )是KDD。
A数据挖掘与知识发现B领域知识发现C文档知识发现D动态知识发现【南开】答案是:A12、在有关数据仓库测试,下列说法不正确的是( )。
数据挖掘技术平时作业
数据挖掘技术平时作业第一次:1.什么是数据挖掘?当把数据挖掘看作知识发现过程时,描述数据挖掘所涉及的步骤。
【参考答案】数据挖掘是指从大量数据中提取有趣的(有价值的、隐含的、先前未知的、潜在有用的)关系、模式或趋势,并用这些知识与规则建立用于决策支持的模型,提供预测性决策支持的方法。
很多学者把数据挖掘当作另一术语KDD的同义词,而另一些学者把数据挖掘看作KDD的一个步骤。
当把数据挖掘看作知识发现过程时,数据挖掘的过程大致有以下几步:!)数据清理与集成2)任务相关数据分析与选择3)数据挖掘实施4)模式评估5)知识理解与应用第二次:1.在现实世界中,元组在某些属性上缺少值是常有的。
描述处理该问题的各种方法。
【参考答案】处理空缺的属性值有以下几种方法:1)忽略元组2)人工填写空缺值3)自动填充(1)使用全局常量,如用Unknown 或-∞(2)使用属性的平均值(3)使用与给定元组属于同一类的所有样本的平均值(4)使用可能的值:这些值可以用回归、判定树、基于推导的贝叶斯形式化方法等确定2.假定用于分析的数据包含属性age,数据元组中age的值如下:13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70a)使用最小-最大规范化,将age值35转换到[0.0,1.0]区间。
【参考答案】根据公式min'(_max_min)_minmax minAA A AA AVV new new new-=-+-进行计算。
根据提供的数据,maxA=70,minA=13,将将age值35转换到[0.0,1.0]区间,有:V’=(35-13)/(70-13)*(1.0-0.0)+0.0=0.386所以,将值35映射到区间[0.0,1.0]后的值为0.386。
b)使用Z-Score规范化转换age值,其中age的标准差为12.94。
实验报告范例
2
算法背景知识
2.1 贝叶斯理论 18 世纪 Thomas Bayes 提出了贝叶斯公式, 它告诉了我们如何在已经一个事件 A 发生, 预测 B 发生 de 概 率。我们约定 P(A)表示 A 发生的概率,P(A|B)表示 B 发生的前提下,A 发生的概率,也称条件 B 下 A 的后 验概率 (posterior probability) 。与之对应的 P(A)称为 A 的先验概率 (prior probability) 。后验概率 P(A|B)比先验 概率 P(A)基于更多的信息, P(A)独立与 A 的。贝叶斯公司告诉我们如何计算后验概率, P(A|B)=
Abstract: This article discusses a naive Bayesian classifier ’s realization., including feature selection. I try to add some of my own ideas, for the purpose that forecasting more accurate label. This article first describes the background of the application of the problem, and general ideas, then gives process of establishing the classification model, and at last some ideas who may help is given. Key words: data mining; feature selection; naive bayes; classifier 摘 要: 本文基于一个应用背景,讨论了一个基于朴素贝叶斯的分类器的实现。包括属性选择等。在实现贝叶
大工19秋《数据挖掘》在线作业2(参考答案)
大工19秋《数据挖掘》在线作业2试卷总分:100 得分:100一、单选题 (共 10 道试题,共 50 分)1.程序语句len(str('3.1415')) 的输出结果为()A.7B.6C.5D.4答案:B2.关于Python中异常处理,以下描述错误的是()A.编程语言中的异常和错误完全是相同的概念B.程序异常发生后经过异常处理,程序可以继续执行C.异常语句可以与else和finally关键字配合使用D.Python通过try、except等关键字提供异常处理功能答案:A3.以下那个关键字不是异常处理语句的关键字()A.tryB.finallyC.exceptD.elif答案:D4.以下选项中不是Python关键字的是()A.whileB.inC.exceptD.do答案:D5.以下选项中用来捕获特定类型异常的关键字是()A.whileB.passC.exceptD.do答案:C6.以下不属于Python的关键字的是()A.returnB.markC.globalD.del答案:B7.Python中定义函数的关键字是()A.functionB.defuncC.defineD.def答案:D8.以下选项对Python文件操作描述错误的是()A.文件使用结束后要用close()方法关闭,释放文件的使用授权B.当文件以文本方式打开时,读写会按照字节流方式进行C.Python能通过内置的open()函数打开一个文件进行操作D.Python能以文本和二进制两种方式处理文件答案:B9.下列不是Python对文件进行读操作的方法是()A.readtextB.readlinesC.readlineD.read答案:A10.Python中操作集合时,可以使用哪个函数来对集合进行增加元素的操作()A.putB.popC.appendD.add答案:D二、判断题 (共 10 道试题,共 50 分)11.函数的名称可以任意字符组合形成的。
数据挖掘作业
HW1Due Date: Nov. 8Submission requirements:Please submit your solutions to our class website.Part I: written part:1. Suppose that a data warehouse consists of four dimensions, date, spectator, location, and game, andtwo measures, count and charge, where charge is the fare that a spectator pays when watching a game on a given date. Spectators may be students, adults, or seniors, with each category having its owncharge rate.(a) Draw a star schema diagram for the data warehouse.(b)(b) Starting with the base cuboid [date, spectator, location, game],what specific OLAPoperations should one perform in order to list the total charge paid by student spectators in Los Angeles?(c)(c) Bitmap indexing is a very useful optimization technique. Please present the pros and cons ofusing bitmap indexing in this given data warehouse.2.某电子邮件数据库中存储了大量的电子邮件。
数据挖掘作业答案
数据挖掘作业答案数据挖掘作业题⽬+答案华理计算机专业选修课第⼆章:假定⽤于分析的数据包含属性age。
数据元组中age值如下(按递增序):13 ,15 ,16 ,16 ,19 ,20 ,20,21 ,22 ,22,25 ,25 ,25 ,25 ,30 ,33 ,33 ,35 ,35 ,35,35,36,40,45,46,52,70.分别⽤按箱平均值和边界值平滑对以上数据进⾏平滑,箱的深度为3.使⽤最⼩-最⼤规范化,将age值35转换到[0.0,1.0]区间使⽤z-Score规范化转换age值35 ,其中age的标准差为12.94年。
使⽤⼩数定标规范化转换age值35。
画⼀个宽度为10的等宽直斱图。
该数据的均值是什么?中位数是什么?该数据的众数是什么?讨论数据的峰(即双峰,三峰等)数据的中列数是什么?(粗略地)找出数据的第⼀个四分位数(Q1 )和第三个四分位数(Q3 )给出数据的五数概括画出数据的盒图第三章假定数据仓库包含三个维:time doctor和patient ;两个度量:count和charge;其中charge是医⽣对病⼈⼀次诊治的收费。
画出该数据仓库的星型模式图。
由基本⽅体[day, doctor, patient]开始,为列出2004年每位医⽣的收费总数,应当执⾏哪些OLAP操作。
如果每维有4层(包括all ),该⽴⽅体包含多少⽅体(包括基本⽅体和顶点⽅体)?第五章数据库有4个事务。
设min_sup=60%,min_conf=80%TID Itmes_boughtT100 {K,A,D,B}T200 {D,A,C,E,B}T300 {C,A,B,E}T400 {B,A,D}分别使⽤Apriori和FP-增长算法找出频繁项集。
列出所有的强关联规则(带⽀持度s和置信度c ),它们不下⾯的元规则匹配,其中,X是代表顼客的变量,itmei是表⽰项的变量(例如:A、B等)下⾯的相依表会中了超级市场的事务数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.下表由雇员数据库的训练数据组成,数据已泛化。
例如,年龄“31…35”表示31到35的之间。
对于给定的行,count表示department, status, age和salary在该行上具有给定值的元组数。
status是类标号属性。
department status age salary count
sales senior 31...35 46K...50K 30
sales junior 26...30 26K...30K 40
sales junior 31...35 31K...35K 40
systems junior 21...25 46K...50K 20
systems senior 31...35 66K...70K 5
systems junior 26...30 46K...50K 3
systems senior 41...45 66K...70K 3
marketing senior 36...40 46K...50K 10
marketing junior 31...35 41K...45K 4
secretary senior 46...50 36K...40K 4
secretary junior 26...30 26K...30K 6
1)如何修改基本决策树算法,以便考虑每个广义数据元组(即每个行)的count。
Status 分为2个部分:Department分为4个部分:
Senior 共计52 Sales 共计110
Junior 共计113 Systems 共计31
Marketing 共计14
Secretary 共计10
Age分为6个部分:Salary分为6各部分:
21…25 共计20 26K…30K 共计46
26…30 共计49 31K…35K 共计40
31…35 共计79 36K…40K 共计4
36…40 共计10 41K…45K 共计4
41…45 共计3 46K…50K 共计63
46…50 共计4 66K…70K 共计8
位
位
位
位
由以上的计算知按信息增益从大到小对属性排列依次为:salary、age、department,所以定
department status age salary count
sales senior 31...35 46K...50K 30
systems junior 21...25 46K...50K 20
systems junior 26...30 46K...50K 3
marketing senior 36...40 46K...50K 10
由这个表可知department和age的信息增益将都为0。
所以第二层可以为age也可以为department。
2)构造给定数据的决策树。
由上一小问的计算所构造的决策树如下:
3)给定一个数据元组,它在属性department, age和salary上的值分别为“systems”,“26...30”和“46...50K”。
该元组status的朴素贝叶斯分类结果是什么?
P(status=senior)=52/165=0.3152
P(status=junior)=113/65=0.6848
P(department=systems|status=senior)=8/52=0.1538
P(department=systems|status=junior)=23/113=0.2035
P(age=26…30|status=senior)=1/52=0.0192
P(age=26…30|status=junior)=49/113=0.4336
P(salary=46K…50K|status=senior)=40/52=0.7692
P(salary=46K…50K|status=junior)=23/113=0.2035
使用上面的概率,得到:
P(X|status=senior)=P(department=systems|status=senior)*P(age=26…30|status=senior)* P(salary=46K…50K|status=senior)=0.0023
P(X|status=junior)=P(department=systems|status=junior)*P(age=26…30|status=junior)* P(salary=46K…50K|status= junior)=0.0180
P(X|status=senior)* P(status=senior)= 7.2496e-004
P(X|status=junior)* P(status=junior)=0.0123
因此,对于元组X,朴素贝叶斯分类预测元组X的类为status=junior
2. 运用决策树或者贝叶斯算法,对鸢尾花数据集进行分类,显示分类结果。
(可以采用Weka工具或者其他方法)
在weka上运用决策树算法对鸢尾花数据集进行分类,分类结果如下图所示:
在weka上运用贝叶斯算法对鸢尾花数据进行分类,结果的具体情况如下:。