第三章 流体运动学

合集下载

第三章流体运动学

第三章流体运动学
第三章 流体运动学
机械工程学院
第三章 流体运动学
研究内容:流体运动的位移、速度、加速度和转速等随时间和 空间坐标的变化规律,不涉及力的具体作用问题。但从中得出 的结论,将作为流体动力学的研究奠定基础。
第1节 研究流体运动的两种方法
第2节 流体运动学的基本概念 第3节 流体运行的连续方程 第4节 相邻点运动描述――流体微团的运动分析
特点:流场内的速度、压强、密度等参量不仅是坐标的函数,而且 还与时间有关。
即:
() 0 t
3.2 基本概念
二、均匀流动与非均匀流动
1. 均匀流动
流场中各流动参量与空间无关,也即流场中沿流程的每一个断面 上的相应点的流速不变。位不变
v v ( x, y, z, t ) p p( x, y, z, t ) ( x, y, z, t )
由于空间观察点(x,y,z)是固定的,当某个质点
从一个观察点运动到另外一个观察点时,质点位移是 时间t的函数。故质点中的(x,y,z,t)中的x,y,z不是 独立的变量,是时间的函数:
x x (t ) y y (t ) z z (t )
所以,速度场的描述式:
u x u x {x(t) , y(t) , z(t) , t} u y u y {x(t) , y(t) , z(t) , t} u z u z {x(t) , y(t) , z(t) , t}
v2
s1
s2
v1
折点
v2
s
强调的是空间连续质点而不是某单个质点
1. 定义 流动参量是几个坐标变量的函数,即为几维流动。 v v ( x) 一维流动 v v ( x, y ) 二维流动 v v ( x, y , z ) 三维流动

第三章 流体运动学.ppt

第三章 流体运动学.ppt
1786年,他接受法王路易十六的邀请, 定居巴黎,直至去世。近百余年来,数学领 域的许多新成就都可以直接或间接地溯源于 拉格朗日的工作。
欧拉简介
瑞士数学家及自然科学家。1707年4月 15日出生於瑞士的巴塞尔,1783年9月18日 於俄国彼得堡去逝。欧拉出生於牧师家庭, 自幼受父亲的教育。13岁时入读巴塞尔大学, 15岁大学毕业,16岁获硕士学位。
流线不能是折线,是一条光滑的连续曲线。
在定常流动中,流线不随时间改变其位置和形状,流线和迹 线重合。在非定常流动中,由于各空间点上速度随时间变化, 流线的形状和位置是在不停地变化的。
3、流线微分方程 速度矢量 u uxi uy j uzk
通过该点流线上的微元线段
流体质点的位移
x x(a,b,c,t) y y(a,b,c,t) z z(a,b,c,t)
速度表达式 加速度表达式
ux
ux (a,b, c,t)
x(a,b, c,t) t
y(a,b, c,t)
uy uy (a,b, c,t)
t
uz
uz (a,b, c,t)
z(a,b, c,t) t
ax
欧拉是18世纪数学界最杰出的人物之一, 他不但为数学界作出贡献,更把数学推至几 乎整个物理的领域。他是数学史上最多产的 数学家,平均每年写出八百多页的论文,还 写了大量的力学、分析学、几何学、变分法 等的课本,《无穷小分析引论》、《微分学 原理》、《积分学原理》等都成为数学中的 经典著作。欧拉对数学的研究如此广泛,因 此在许多数学的分支中也可经常见到以他的 名字命名的重要常数、公式和定理。
第三章流体运动学
§3-1研究流体运动的方法 §3-2流场的基本概念 §3-3流体的连续性方程 §3-4流体微团的运动 §3-5速度势函数及流函数 §3-6简单平面势流 §3-7势流叠加原理

流体力学-第三章

流体力学-第三章
空间各点只要有一个运动要素随时间变化,流体运动称为非恒 定流。
二 均匀流和非均匀流 渐变流和急变 流
按各点运动要素(主要是速度)是否随位置变化,可将流体 运动分为均匀流和非均匀流。在给定的某一时刻,各点速度 都不随位置而变化的流体运动称均匀流。均匀流各点都没有 迁移加速度,表示为平行流动,流体作匀速直线运动。反之, 则称为非均匀流。
按限制总流的边界情况,可将流体运动分为有压流、无压流和射 流。
边界全为固体的流体运动称为有压流或有压管流。 边界部分为固体、部分为气体,具有自由表面的液体运动称为 无压流或明渠流。 流体经由孔口或管嘴喷射到某一空间,由于运动的流体脱离了 原来限制他的固体边界,在充满流体的空间继续流动的这种流 体运动称为射流。
四 三维流(三元流)、二维流(二元流)、一维流(一元流)
按决定流体的运动要素所需空间坐标的维数或空间坐标变量的 个数,可将流体运动分为三维流、二维流、一维流。
若流体的运动要素是空间三个坐标和时间t的函数,这种流体运 动称为三维流或三元流。
若流体的运动要素是空间两个坐标和时间t的函数,这种流体运 动称为二维流或二元流。
拉格朗日法来研究流体运动,就归结为求出函数x(a, b, c, t), y (a, b, c, t), z (a, b, c, t)。(1)由于流体运动的复杂,要想求 出这些函数是非常繁复的,常导致数学上的困难。(2)在大多 数实际工程问题中,不需要知道流体质点运动的轨迹及其沿轨迹 速度等的变化。(3)测量流体运动要素,要跟着流体质点移动 测试,测出不同瞬时的数值,这种测量方法较难,不易做到。
3 脉线
脉线又称染色线,在某一段时间内先后流过同一空间点的所 有流体质点,在既定瞬时均位于这条线上。
在恒定流时,流线和流线上流体质点的迹线以及脉线都相互 重合。

第3章1 流体运动学基础

第3章1 流体运动学基础

2、拉格朗日坐标:
在某一初始时刻t0,以不同的一组数(a,b,c)
来标记不同的流体质点,这组数 (a,b,c)就叫
拉格朗日变数。或称为拉格朗日坐标。
物理量的表示形式:若以f表示流体质点的某 一物理量,其拉格朗日描述的数学表达是: f=f(a,b,c,t)
如任意时刻t,任何质点在空间的位置(x,y,z) 都可以看成为拉格郎日变数和时间t的函数
流进的流体质量:
1u1dA1
在单位时间内从 2-2断面 流出的流体质量:
2u2 dA2
在单位时间内流入控制体的流体质量为:
dM 1u1dA1 2u2 dA2
对稳定流,各点的运动要素不随时间变化,且流体又是 无空隙的连续介质,由质量守恒定律得:
dM 0

1u1dA1 2u2 dA2
求:(1)流线方程以及t=0,1,2时的流线图
(2)迹线方程以及t=0时通过(0,0)点的迹线 dx dy dz dx dy 解:(1)由流线方程 得: 。 ux uy uz a bt 对自变量x,y积分,得: ay btx C bt y xC a 因此,流线为一簇平行的斜线。在不同的瞬时,流线的斜率不同。
后三项反映了在同一瞬时(即t不变)流体质点从 一个空间转移到另一个空间点,即流体质点所在空 间位置的变化而引起的速度变化率,称迁移加速度。

欧拉法的优越性:
1. 利用欧拉法得到的是场,便于采用场论这一数学工具来研究。
2. 采用欧拉法,加速度是一阶导数,而拉格朗日法,加速度是二 阶导数,所得的运动微分方程分别是一阶偏微分方程和二阶偏 微分方程,在数学上一阶偏微分方程比二阶偏微分方程求解容
p p( x, y, z, t )

工程流体力学-第三章

工程流体力学-第三章

四、有效断面、流量和平均流速
1. 有效断面 流束中处处与速度方向相垂直的横截面称为该流束的有效断面, 又称过流断面。 说明:
(1)所有流体质点的
速度矢量都与有效断面 相垂直,沿有效断面切
向的流速为0。
(2)有效断面可能是 平面,也可能是曲面。
2. 流量
(1) 定义:单位时间内通过某一过流断面的流体量称为流量。
压强的拉格朗日描述是:p=p(a,b,c,t)
密度的格朗日描述是:
(a, b, c, t)
二、欧拉法(Euler)
1. 欧拉法:以数学场论为基础,着眼于任何时刻物理量在场上 的分布规律的流体运动描述方法。 2. 欧拉坐标(欧拉变数):欧拉法中用来表达流场中流体运动 规律的质点空间坐标(x,y,z)与时间t变量称为欧拉坐标或欧拉变 数。
(1)x,y,z固定t改变时, 各函数代表空间中某固
定点上各物理量随时间
的变化规律; (2)当t固定x,y,z改变 时,它代表的是某一时 刻各物理量在空间中的 分布规律。
密度场
压力场
( x, y , z , t )
p p ( x, y , z , t ) T T ( x, y , z , t )
u y du z du z ( x, y , z , t ) u z u z u z az ux uy uz dt dt t t t t du u a (u )u dt t
在同一空间上由于流动的不稳定性引起的加速度,称 为当地加速度或时变加速度。 在同一时刻由于流动的不均匀性引起的加 速度,称为迁移加速度或位变加速度。
一元流动
按照描述流动所需的空间坐标数目划分
二元流动
三元流动

流体运动学

流体运动学
在流体运动的某一初始时刻t = t。每一个流体质点都占有唯一确 定的空间位置,这样,我们就可以用这一质点在t = t。时刻的空间坐 标(X,Y,Z)来标记它。如对于某一流体质点,当t = t。时的坐标 为 ,则该点的轨迹 。 对于任一质点:
流体在初始时刻的坐标或(X,Y,Z)就称为拉格朗日坐标,显然,在以 上描述中 ,或
4. 在定常流中,流线和迹线重合。
所以在定常流中,可以用烟线来显示流谱,问题:在非定常流 场中,烟线是流线还是迹线?——脉线
例2:给定欧拉描述的速度场:u=x+t,v=-y-t。求: 1)t=1时过x=1,y=1点的流体质点的迹线方程;
2)过该点的流线方程。
解:由迹线的微分方程,
积分得: 1)代入t=1时过x=1,y=1点的质点的条件可确定积分常数:
将其代入数度场的关系即可得到数度场的欧拉描述:
对上式求质点到数可得加速度:
与前面得到的结果相同。
那么我们究竟采用那种描述方法呢,仿佛拉格朗日法更符合我们 的习惯,事实是,在流体力学里,除了极特殊的情况,我们一般都采 用欧拉法而不是拉格朗日法。虽然因为拉氏法对运动的描述与理论力 学相同使我们感到熟悉,虽然欧氏法的加速度表述比较复杂,但是:
第二节 迹线和流线
一、 迹线
流体质点运动的轨迹叫迹线。在拉格 朗日法中,流体质点的位移方程就是迹线 方程: 。在欧拉法中,流体质 。 点运动的微分方程为:
可知,迹线是基于拉格朗日观点的流 体运动描述。 欧拉法在直角坐标中的分量表述可以写成:
所以:
二、 流线
流线是这样的一条空间曲线,在某一 时刻,此曲线上任一点的切线方向与流体 在该点的速度方向一致。(场,如电力线、
任一不与流管侧面平行的面被流管截

工程流体力学-第三章

工程流体力学-第三章

三、流管、流束和总流
1. 流管:在流场中任取一不是流 线的封闭曲线L,过曲线上的每 一点作流线,这些流线所组成的 管状表面称为流管。 2. 流束:流管内部的全部流体称 为流束。 3. 总流:如果封闭曲线取在管道 内部周线上,则流束就是充满管 道内部的全部流体,这种情况通 常称为总流。 4. 微小流束:封闭曲线极限近于 一条流线的流束 。
ax

dux dt

dux (x, y, z,t) dt

ux t
ux
ux t
uy
ux t
uz
ux t
ay

du y dt

duy (x, y, z,t) dt

u y t
ux
u y t
uy
u y t
uz
u y t
az

du z dt

duz (x, y, z,t) dt
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
欧拉法中的迹线微分方程
速度定义
u dr (dr为质点在时间间隔 dt内所移动的距离) dt
迹线的微分方程
dx dt

ux (x, y, z,t)
dy dt uy (x, y, z,t)
dz dt uz (x, y, z,t)
说明: (1)体积流量一般多用于表示不可压缩流体的流量。 (2)质量流量多用于表示可压缩流体的流量。
(3) 质量流量与体积流量的关系
Qm Q
(4) 流量计算 单位时间内通过dA的微小流量
dQ udA
通过整个过流断面流量
Q dQ udA A

水力学 第三章 流体运动学

水力学 第三章  流体运动学
§3-1 描述流体运动的两种方法
4
2、速度(velocity)
x xa , b, c, t ux t t y y a , b, c, t uy t t z z a , b, c, t uz t t
(1)若(a,b,c)为常数,t 为变数,可得某个指定质点在任何 时刻的速度变化情况 。 (2)若 t 为常数,(a,b,c)为变数,可得某一瞬时流体内部各 质点的速度分布。
ux
u y
uy
u y
uz
u y
斯托克斯(Stokes) 表示式
Du u a (u )u Dt t
全加速度, 随体导数, 质点导数, (material derivative) 当地加速度, 时变导数 (Local derivative) 迁移加速度, 位变导数 (Convective derivative)
拉格朗日法的优点:物理意义较易理解 。 拉格朗日法的缺点:函数求解繁难;测量不易做到。
§3-1 描述流体运动的两种方法
6
3-1-2 欧拉法
一、欧拉法(Euler Method)
从分析通过流场中某固定空间点的流体质点的运动着手,设法 描述出每一个空间点上流体质点运动随时间变化的规律。 运动流体占据的空间,称流场(flow field)。通过流场中所有 空间点上流体质点的运动规律研究整个流体运动的状况,又称流场 法。
15
例3-1 已知流体质点的运动,由拉格朗日变数表示为: (t ) (t ) x a cos 2 b sin 2 2 a b a b2 (t ) (t ) y b cos 2 a sin 2 2 a b a b2 式中, (t ) 为时间,的某一函数。试求流体质点的迹线。

第三章流体运动学

第三章流体运动学

于是,对(3-1)式,速度表示为
d x x x(a, b, c, t ) vx x(a, b, c, t ) d t t t d y y y (a, b, c, t ) vy y(a, b, c, t ) d t t t d z z z (a, b, c, t ) vx z (a, b, c, t ) d t t t
vz 0
解:由vz=0,为二元流动,代入流线方程
dx 2 dy 2 2 (x y ) (x y2 ) ky kx
y v vy vx o x
k 0, x d x y d y 0
积分:
x y C
2 2
为以原点为圆心的圆。 因k>0,则 当x 0, y 0时
vx 0, v y 0
4、过流断面、湿周、水力半径、当量直径
与流束或总流中所有流线均垂直的断面,称过 流断面,面积用A表示。 在总流的过流断面上,与流体相接触的固体壁 面边壁周长称湿周,用χ表示[kai]。 总流过流断面积与湿周之比称水力半径,用R表 示。
4倍总流过流断面积与湿周之比称当量直径,用 de表示。
对圆管半充满
(3-4)
在不同时刻,给点上的原质点由其它质点替换而 出现不同,欧拉法不随质点走,只固定位置。 欧拉法应先确定v的表达式,而拉格朗日法先确 定x,y,z的关系式,然后给出速度。虽然变量 不同,但描述的核心不变,只是方法不同,数 学表达不同罢了。
其向量表示为:a v (v )v t
( vx ) v x vx x x x
( v y ) y vy y y v y
(3-9)
即为直角坐标系下的连续性方程。

李玉柱流体力学课后题答案第三章

李玉柱流体力学课后题答案第三章

李玉柱流体力学课后题答案第三章第三章流体运动学3-1 已知某流体质点做匀速直线运动,开始时刻位于点A(3,2,1),经过10秒钟后运动到点B(4,4,4)。

试求该流体质点的轨迹方程。

tt3t解:3-2 已知流体质点的轨迹方程为试求点A(10,11,3)处的加速度α值。

解:由10,解得15.2把代入上式得-3 已知不可压缩流体平面流动的流速场为,其中,流速、位置坐标和时间单位分别为m/s、m和s。

求当t,l s时点A(1,2)处液体质点的加速度。

解:根据加速度的定义可知:当t,l s时点A(1,2) 处液体质点的加速度为:于是,加速度a加速度a与水平方向(即x方向)的夹角: 的大小:-4 已知不可压缩流体平面流动的流速分量为。

求(1) t,0时,过(0,0)点的迹线方程;(2) t,1时,过(0,0)点的流线方程。

解:(1) 将带入迹线微分方程dt得 uvt2解这个微分方程得迹线的参数方程:将时刻,点(0,0)代入可得积分常数:。

将代入得:t3所以:,将时刻,点(0,0)代入可得积分常数:。

6 联立方程,消去得迹线方程为:(2) 将带入流线微分方程dxdy得y2t被看成常数,则积分上式得,c=0 2y2时过(0,0)点的流线为3-5 试证明下列不可压缩均质流体运动中,哪些满足连续性方程,哪些不满足连续性方程(连续性方程的极坐标形式可参考题3—7)。

解:对于不可压缩均质流体,不可压缩流体的连续方程为。

直角坐标系中不可压缩流体的连续性方程为:。

,因,满足,因,满足,因,满足,满足,因,满足,因,满足,因在圆柱坐标系中不可压缩流体的连续性方程为:。

,满足,因,满足,因,不满足,因,仅在y=0处满足,因其中,k、α和C均为常数,式(7)和(8)中3-6 已知圆管过流断面上的流速分布为,umax为管轴处最大流速,r0为圆管半径,r为某点到管轴的距离。

试求断面平均流速V与umax之间的关系。

2解:断面平均速度Ar0Ar02r04r3r024r0umax3-7 利用图中所示微元体证明不可压缩流体平面流动的连续性微分方程的极坐标形式为解:取扇形微元六面体,体积,中心点M密度为,速度为,r向的净出质量dmr 为类似有若流出质量,控制体内的质量减少量dmV可表示为。

北航水力学第三章—流体运动学

北航水力学第三章—流体运动学
第三章 流体运动学
自然界和工程实际中,流体大多数处于流动状态,流体 的流动性是流体在存在状态上与固体的最基本区别。
本章介绍研究流体运动的两种方式;以及相应的运动要素表达;迹线流线 等概念;连续性方程;有旋运动与无旋运动;环量与涡量概念
第三章 流体运动学
第一节 描述流体运动的方法
描述流体运动形态和方式:拉格朗日法和欧拉法
三元流:流动参数是三个空间坐标函数, ux ux (x, y, z,t) uy uy (x, y, z,t) uz uz (x, y, z,t)
实际流动一般都是三元流动。 三元流分析时分析起来十分复杂,一般我们设法将其简化为二元流或一元 流。简化过程中要引进修正系数,修正系数可通过实验方法来确定。
ux uy uz 0 x y z

uz (ux uy ) 2(x y)
z
x y
积分得

uz z
dz

2(x

y)dz
得 uz 2(x y)z c 其中,c可为某一常数,也可以是与 z 无关的某一函数 f (x, y)
所以 uz 2(x y)z f (x, y)
(3)
ux 2ln(xy)
uy


3y x
uz 4
(4) ux x2 z2 5 uy y2 z2 3
解: (1)
ux uy uz 2 11 0 x y z
满足
(2)
ux uy uz 2x y 2 y 0
x y z
三维定常流:流动参数是三个空间坐标函数,与时间无关
ux ux (x, y, z) uy uy (x, y, z) uz uz (x, y, z)

水力学-第3章流体运动学 - 发

水力学-第3章流体运动学 - 发
【解】由于 uz=0,所以是二维流动,其流线方程微分为
dx dy ux (x, y, z,t) uy (x, y, z,t)
将两个分速度代入流线微分方程(上式),得到
dx dy ky kx
xdx ydy 0 积分 x2 y2 c
即流线簇是以坐标原点为圆心的同心圆。
流线的基本特性
• 流线的特性 – 流线一般不相交
§3.1 研究流体运动的两种方法
怎样描述整个流体的运动规律呢?
拉格朗日法
欧拉法
§3.1 研究流体运动的两种方法
1.拉格朗日法
拉格朗日法: 从分析流体质点的运动入手,设法描述出每一 流体质点自始至终的运动过程,即它们的位置随时间变化的 规律,综合流场中所有流体质点的运动情况,来获得整个流 体运动的规律。
§3.1 研究流体运动的两种方法 迹线、流线和脉线
• 迹线
– 一个流体质点在一段连续时间内在空间运动的轨迹
线,它给出同一质点在不同时刻的速度方向
• 迹线方程
拉格朗日法
欧拉法
x x(a,b,c,t) y y(a,b,c,t)
z z(a,b,c,t)
a,b,c确定后,消去t 后可得迹线方程
dx uxdt dy uydt dz uzdt
(x, y, z) :
(a, b, c , t ) :
质点起始坐标 任意时刻 质点运动的位置坐标 拉格朗日变数
欧拉法
(x, y, z) : t:
(x, y, z , t ) :
空间固定点(不动) 任意时刻 欧拉变数
§3.1 研究流体运动的两种方法
液体质点通过任意空间坐标时的加流速
a x
du ( x, y, z, t) x dt

第三章-流体运动学

第三章-流体运动学
1.连续性方程的微分形式(元流)
实质:质量守恒
o点的速度为 u(x, y, z), 其分量为 u x,u y,u z 分析在dt时间内,沿ox方向流入和流出控制体的流体质量。
abcd面,M点沿ox方向的速度用泰勒级数前两项表示
uMx
ux
1 2
u x x
dx
dt时间内,由abcd面流入控制体的流体质量为:
(2)迹线方程及t=0时过(0,0)点的迹线。
解:(1)流线: y bt x c a
积分: dx dy
a bt
——流线方程
y c=2
c=1
c=0
o
x
t=0时流线
y c=2
c=1
c=0
o
x
t=1时流线
c=2
y
c=1
c=0
o
x
t=2时流线
(2)迹线:dx dy dt
a bt

dx dt a
第三章 流体运动学
主要内容 流体运动的描述 欧拉法的基本概念 连续性方程
流体运动的描述
§3-1 描述流体运动的两种方法 流体运动实际上就是大量流体质点运动的总和。
描述流体的运动参数在流场中各个不同空间位置上随时间 连续变
化的规律。
1.拉格朗日法 着眼于流场中具体流体质点的运动,即跟踪每一个流体质点,分
运动参数只是一个空间坐标和时间变量的函数,仅沿着流 动方向变化的流动,比如管道和渠道内的流动。
(2)二元(二维)流动
运动参数只是两个空间坐标和时间变量的函数,比如 水流绕过很长的圆柱体。
(3)三元(三维)流动
以空间为标准,各空间点上的运动参数是三个坐标和 时间变量的函数。
3.流线 : 某时刻流动方向的曲线,该曲线上各质点的速度矢量都

《水力学》课件——第三章 流体运动学

《水力学》课件——第三章 流体运动学

是否是接
均匀流 否

渐变流
流线虽不平行,但夹角较小; 流线虽有弯曲,但曲率较小。
急变流
流线间夹角较大; 流线弯曲的曲率较大。
• 渐变流和急变流是工程意义上对流动是否符合均匀流条件的
划分,两者之间没有明显的、确定的界限,需要根据实际情况
来判定
急变流示意图
五. 流动按空间维数的分类
一维流动 二维流动 三维流动
• 根据流线的定
• 在非恒定流情况下,流
义,可以推断:除
线一般会随时间变化。在
非流速为零或无穷
恒定流情况下,流线不随
大处,流线不能相
时间变,流体质点将沿着
交,也不能转折。
流线走,迹线与流线重
合。
• 迹线和流线最基本的差别是:迹线是同一流
体质点在不同时刻的位移曲线,与拉格朗日观
点对应,而流线是同一时刻、不同流体质点速
• 由确定的流体质点组成
的集合称为系统。系统在 运动过程中,其空间位 置、体积、形状都会随时 间变化,但与外界无质量 交换。
• 有流体流过的固定不变
的空间区域称为控制 体,其边界叫控制面。 不同的时间控制体将被 不同的系统所占据。
• 通过流场中某曲面 A 的流速通量
u nd A
A
称为流量,记为 Q ,它的物理意 义是单位时间穿过该曲面的流体 体积,所以也称为体积流量,单 位为 m3/s .
n A
dA
u
• u n d A 称为质量流量,记为Qm,单位为 kg/s . 流量计算
A
公式中,曲面 A 的法线指向应予明确,指向相反,流量将反
s s — 空间曲线坐标
元流是严格的一维流动,空间曲线坐标 s 沿着流线。

第3章流体运动学上PPT课件

第3章流体运动学上PPT课件

3.2 描述流体运动的两种方法
3.2.1 Lagrange法
1.基本思想:跟踪每个流体质点的运动全过程,记录 它们在运动过程中的各物理量及其变化
2.拉格朗日变数:(a,b,c,t)——区分流体 质点的标志
3.质点物理量:B(a,b,c,t), 如:
pp(a,b,c,t) (a,b,c,t)
3.2 描述流体运动的两种方法
3.2 描述流体运动的两种方法
3.2.0 流体质点和空间点
•流体质点:是个物理点,它是在 两者相互关系:流场
连续介质中取出的,在几何尺寸 中空间某一点,先后由 上无限小,可以看作一点,但包 不 同 的 流 体 质 点 所 占 含许多分子,具有一定物理量。 据;流体质点物理量会
发生变化,而空间点是
•空间点:几何点,表示空间位置 不动的。
Reynolds数的物理意义:
惯性力 Re 粘性力
惯性使扰动放大,导致湍流,粘性抑制扰动使流动保持稳定。 当 Re 时,流动趋于理想流体运动。
2. 机翼绕流风洞试验
机翼绕流流场的特点:
流线(streamline): 上翼面:流线密 下翼面:流线稀
(a) Re~1
3. 卡门涡街(Karman vortex street)
第3章 流体运动学
(Fluid Kinematics)
第3章 流体运动学
从几何的观点研究流体的运动,不 讨论运动产生的动力学原因。
ma F
rrx,y,z,t vvx,y,z,t aax,y,z,t
3.1 流动图形观察 (flow visualization)
观察几个典型流动,感受实际流动现象和特征。 圆管流动——流动状态 机翼绕流——升力、阻力 圆柱绕流——涡激振荡

3工程流体力学 第三章流体运动学基础

3工程流体力学 第三章流体运动学基础
总流: 由无数元流构成的大的流束,包括整
个流动区域上的所有质点的流动。
§3-3 迹线、流线和染色线,流管(续16)
三、湿周、水力半径
1.湿周x 在总流过流断面上,液体与固体相接触的线
称为湿周。用符号x 表示。
2.水力半径R
总流过流断面的面积A与湿周的比值称为水Βιβλιοθήκη 力半径。R A x
注意:水力半径与几何半径是完全不同的两个概念。
这是两个微分方程,其中 t 是参数。 可求解得到两族曲面,它们的交线就是 流线族。
§3-3 迹线、流线和染色线,流管(续10)
例3-1 已知直角坐标系中的速度场 u=x+t; v= -y+t;w=0,
试求t = 0 时过 M(-1,-1) 点的流线。
解:由流线的微分方程:
dx d y dz u vw
§3-3 迹线、流线和染色线,流管(续5)
因为u不随t变,所以同一点的流线 始终保持不变。即流线与迹线重合。
某点流速的方向是
流线在该点的切线方向 A
B
流速的大小由流 线的疏密程度反映
uA=uB ?
§3-3 迹线、流线和染色线,流管(续6)
迹线与流线方程 采用拉格朗日方法描述流动时,质
点的运动轨迹方程:
试求t = 0 时过 M(-1,-1) 点的迹线。
解:由迹线的微分方程:
dx d y dz dt u vw
u=x+t;v=-y+t;w=0
dx xt dt
d y y t
dt
求解
x C1 et t 1
t = 0 时过 M(-1,-1):C1 = C2 = 0 y C2 et t 1 x= -t-1 y= t-1 消去t,得迹线方程: x+y = -2

第三章:流体运动学

第三章:流体运动学
或:
欧拉型连续方程式的积分形式,物理意义是:单位时间内控制体内流体质量的增减,等于同一时间内进出控制面的流体质量净通量。
使用高斯定理,将其面积分变为体积分:
第一项的微分符号移入积分号内得
所以得:
积分域τ是任取的,必有:
上式即欧拉型连续方程的微分形式。
§3-4流体微团运动的分析
流体微团的运动比较复杂,具有平移,转动,变形运动。微团的运动速度也相应地由平移速度、变形速度和转动角速度所组成。
过水断面:流管的垂直截面,
流量:每秒钟通过过水断面的体积。
微小流管的流量积分:
平均流速:
用实验方法量出体积流量Q,除以σ得平均流速U。
五、条纹线
举例烟囱的流动来说明。
轨迹线、流线、条纹线这三条线中,流线最为重要。
§3-3连续性方程式
连续性方程式:质量守恒定律在流体力学中的表达式。
一、一元运动的连续性方程式
§3-2几个基本概念
一、定常运动与非定常运动
定常运动:任意固定空间点处所有物理量均不随时间而变化的流动,反之称为非定常运动。
对于定常运动,所有的物理量不随时间而变化,仅是空间坐标(x,y,z)的函数:
vx=vx(x,y,z)
vy=vy(x,y,z)
vz=vz(x,y,z)
p=p(x,y,z)
ρ=ρ(x,y,z)
3)质点的加速度
4)由质点一般运动规律
可求得拉格朗日变数a与b的表达式为
代回拉格朗日法表示的速度表达式,得欧拉法表示的速度表达式:
欧拉法表示的加速度:
应用欧拉法研究流体运动,又有两种处理方法。一种是在流场空间取一微元体(如六面体),分析流体通过该微元体时流体微团的运动规律,建立流体运动时各种微分方程式。因此这种方法叫微分法。另一种方法是在流场中取一有限的任意形状的固定控制体(其边界封闭曲面称为控制面),分析流体通过该控制体时的运动规律,建立流体运动时各种整体关系式(即积分方程式),这种方法叫控制体方法,或称积分方法。

内科大水力学课件03流体运动学

内科大水力学课件03流体运动学

(3—6) (3—7)
当t为常数,x,y,z为变数时,我们可以求得在同一时刻流场 中不同空间点上流体质点的速度分布情况(流速场)。当x,y,
z 为常数,t为变数时,我们可以求得在某一坐标点上,不同时 刻通过的流体的速度变化情况。
流场中,不同坐标点上的流速分布在同一时刻是不同的,另 一方面,同一坐标点上,不同时刻通过的流体质点流速也是不 同的。
图3—2
若出水管是等直径的直管,且水位H保持不变(图3—3),
则管内流动的液体质点,既无当地加速度,也无迁移加速
度, ax 。0
(3—12)
图3—3等直径直管出流
[例3-1] 已知速度场 ux 2t 2,x 2y u,y t y ,z 试uz求 t x时,z 位 于 t 3s 处质点的(加0.速8,0度.8。,0.4)
[解] 将 t 3s, x 0.8m, y 代0.入8m速, z度场0方.4m程,得:
§3.1流动描述
流体运动学研究流体的运动规律,包括描述流体 运动的方法、质点速度、加速度的变化和所遵循的 规律。本章不涉及流体的动力学性质,所研究的内 容及其结论,对无粘性流体和粘性流体均适用。
流体和固体不同,流体运动是由无数质点 构成的连续介质的流动。怎样用数学物理 的方法来描述流体的运动?这是从理论上 研究流体运动规律首先要解决的问题。
的表达式,求质点的加速度,就要跟踪观察这个质点沿程速度的
变化,这样一来,速度表达式中的坐标x,y,z是质点运动轨迹 上的空间点坐标,不能视为常数,而是时间t的函数,即x=x(t)、 y=y(t)、z=z(t)。因此,加速度需按复合函数求导法则导出:
a du u u dx u dy u dz dt t x dt y dt z dt u u u u

第三章流体运动学与动力学基础主要内容基本概念欧拉运动微分方程

第三章流体运动学与动力学基础主要内容基本概念欧拉运动微分方程

第三章流体运动学与动力学基础主要内容z基本概念z欧拉运动微分方程z连续性方程——质量守恒*z伯努利方程——能量守恒** 重点z动量方程——动量守恒** 难点z方程的应用第一节研究流体运动的两种方法z流体质点:物理点。

是构成连续介质的流体的基本单位,宏观上无穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许多流体分子的统计学特性)。

z空间点:几何点,表示空间位置。

流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。

拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。

一、拉格朗日法(跟踪法、质点法)Lagrangian method1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。

2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。

3、方程:设任意时刻t,质点坐标为(x,y,z) ,则:x = x(a,b,c,t)y = y(a,b,c,t)z = z(a,b,c,t)4、适用情况:流体的振动和波动问题。

5、优点:可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。

缺点:不便于研究整个流场的特性。

二、欧拉法(站岗法、流场法)Eulerian method1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。

2、欧拉变数:空间坐标(x ,y ,z )称为欧拉变数。

3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。

位置: x = x(x,y,z,t) y = y(x,y,z,t) z = z(x,y,z,t) 速度: u x =u x (x,y,z,t ) u y =u y (x,y,z,t ) u z =u z (x,y,z,t )同理: p =p (x,y,z,t ) ,ρ=ρ(x,y,z,t) 说明: x 、y 、z 也是时间t 的函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

均匀流与非均匀流划分在流管中的划分
均匀流、非均匀流划分
均匀流 渐变流 非均匀流 均匀流 急变流 非均匀流 均匀流
均 匀 流
非均匀流 急变流
返回
均匀流、渐变流过水断面的重要特性
均匀流是流线为彼此平行的直线,应具有以下特性: •过水断面为平面,且过水断面的形状和尺寸沿程不变; •同一流线上不同的流速应相等,从而各过水断面上的 流速分布相同,断面平均流速相等;
图3—18变直径水管
[例3—8] 输水管道经三通管分流(图3—19).已知管径d1 100 =d2=200mm, d 3 mm.断面平均流速 =3mv/ , =2m 1 v/s。试求断面的平均流速 2 s v2 。 v3 [解] 流入和流出三通管的流量应相等,
非均匀流——流线不是平行直线的流动。
特征:非均匀流中流场中相应点的流速大小
或方向或同时二者沿程改变,即沿流程方向
速度分布不均。(非均匀流又可分为急变流
和渐变流)
例:流体在收缩管、扩散管或弯管中的流动
渐变流与急变流 非均匀流中如流动变化缓慢,流线的曲率很小接近平 行,过流断面上的压力基本上是静压分布者为渐变流 (gradually varied flow),否则为急变流。
1
2
2
x
uy
1
z
方程一般式计算。
( u x ) 2 2t , ( y x 2 ) 2 x, x x t
( u z ) ( 2tz ) 2t z z
此流动满足连续性条件。
( u x ) ( u y ) ( u z ) 将以上各项代人式(3—30)得:t x y z 0,
udA
A
A
返回
第三节
连续性方程
连续性方程是流体力学基本方程之一,是质量守恒原理的 流体力学表达式。
一、连续性微分方程
在流场中取微小直角六面体空间为控制体, 正交的三个边长dx,dy,dz,分别平行于x,y, z坐标轴(图3—16)。控制体是流场中划定的空间, 图3—16 形状、位置固定不变,流体可不受影响地通过。 dt时间x方向流出与流入控制体的质量差,即x方向净流出质 量为:
O
O
在均匀流,与流线正交的n方向上无加速度,所以有 Fn 0
即: pdA ( p dp) dA gdAdn cos 0
dp gdz 0
积分得:
z
g
p
C
返回
流管、微小流束、总流和过水断面
流管——由流线构成的 一个封闭的管状曲面
dA
微小流束——充满以流 管为边界的一束液流
即有: dQ1 dQ2
设 1 2 ,则 u1dA1 u2dA2 微小流束的连续性方程 恒定总流的连续性方程
积分得: Q1 Q2
也可表达为: V1 A1 V2 A2
适用条件:恒定、不可压缩的总流且没有支汇流。
若有支流:
Q1 Q2 Q3 Q1 Q3 Q2
Q1 Q2 Q3
Q1 Q3 Q2
前进
本章主要研究流体的运动规律
主要内容:
流体运动的描述 欧拉法的基本概念 连续性方程 流体微团运动分析
结束
流体运动的描述
1.拉格朗日法 ——以研究单个液体质点的运动过程 作为基础,综合所有质点的运动,构 图示 成整个液体的运动。 又称为质点系法(轨迹法)。 用于研究流体的波动和震荡等 2.欧拉法 ——以考察不同液体质点通过固定的空间 点的运动情况作为基础,综合所有空间点 图示 上的运动情况,构成整个液体的运动。 又称为流场法。 在研究工程流体力学时主要采用欧拉法
返回
欧拉法的若干基本概念
•恒定流动和非恒定流动 •迹线与流线 •均匀流与非均匀流 •流管、微小流束、总流和过水断面
•流量和断面平均流速
•水流的分类
返回
一、恒定流(steady flow)和非恒定流 (unsteady flow) 1. 恒定流
在流场中,流体质点的一切运动要素都不随时间
改变而只是坐标的函数,这种流动为恒定流
z
t (x,y,z) (t0)
O
M (a,b,c)
x
y
x x(a, b, c, t ) y y (a, b, c, t ) z z (a, b, c, t )
x x(a, b, c, t ) t t y y (a, b, c, t ) uy t t z z (a, b, c, t ) uz t t ux
若x,y,z为常数,t为变数, 若t 为常数, x,y,z为变数, 若针对一个具体的质点,x,y ,z ,t均为 变数,且有 x(t),y (t) ,z (t) ,
质点通过流场中任意点的加速度
返回
A
Q udA
即为旋转抛物体的体积
旋转抛物面
A
V A Q 即为柱体的体积
断面平均流速V
V
c
[例3—6] 已知速度场 u x cx2 yz, u y y 2 z cx2 yz, u z 为常数。 其中 试求坐标 z 方程的速度分量 u z 。 [解]:流动为不可压缩流体空间流动 u y u x u y u z u x 2 yz 2cxyz 2cxyz z ( x y ) 2 yz y x 由不可压缩流体连续性微分式方程式(3—22)积分得:
(3—29)
(3—30) (3—31)
式(3—30)或式(3—31)是连续性微分方程的一般形式。 对于均质的不可压缩流体,密度 =常数,式(3—30)化简为: 按场论的定义,速度场的散度 不可压缩流体的连续性微分方程可表示为:
ux uy uz 0 x y z
u y u z u div(u ) x x y z
过水断面——与微 小流束或总流的流 线成正交的横断面
总流——在一定边界内 具有一定大小尺寸的实 际流动的水流,它是由 无数多个微小流束组成
过水断面的形状可以 是平面也可以是曲面。
返回
流量和断面平均流速
流量——单位时间内通过某一过水断面的液体体积, 常用单位m3/s,以符号Q表示。
dA
udA dQ
渐变流——沿程逐渐改变的流动。
特征:流线之间的夹角很小即流 线几乎是平行的,同时流线的曲率 半径又很大(即流线几乎是直线), 其极限是均匀流,过水断面可看作 是平面。渐变流的加速度很小,惯 性力也很小,可以忽略不计。
急变流——沿程急剧改变的流动。
特征:流线间夹角很大或曲率半径较小或二者兼而有之, 流线是曲线,过水断面不是一个平面。急变流的加速度较大, 因而惯性力不可忽略。
u p 表示为 0 ,流体运动与时间无 t t t
关。即p = p(x,y,z)
u = u(x,y,z)
观看录像>>
如:离心式水泵,如果其转
速一定,则吸水管中流体的
运动就是恒定流;
恒位水箱出水口的稳定泄流
也是恒定流。 恒定流动的流场中任何点的 流动参量不随时间改变,但 不同点的流动参量可以不同。
条光滑曲线,其上所有各点的速度向量都与该
曲线相切。
流线能反映瞬时的流动方向 恒定流与非恒定流的流线和迹线 流线性质 流线图
流线图
返回
二者区别:流线是某一瞬时处在流线上的无数流体质点的 运动情况;而迹线则是一个质点在一段时间内运动的轨迹。
恒定流中,流线形状不随时间改变,流线与迹 线重合。在非恒定流中,流线的形状随时间而改变,流线 与迹线不重合。
u
Q dQ udA
Q A
图示
断面平均流速——是一个想像的流速,如果过水断 面上各点的流速都相等并等于V,此时所通过的流量 与实际上流速为不均匀分布时所通过的流量相等, 则该流速V称为断面平均流速。
V
udA
A
A
返回
A
Q udA
即为旋转抛物体的体积
旋转抛物面
A
V A Q 即为柱体的体积
2.非恒定流
运动要素是时间和坐
标的函数,即
p = p(x,y,z,t) u = u(x,y,z,t)
如:水箱中的水位随着水 的泄出而不断下降的孔 口出流就是非恒定流 闸门突然关闭时出现的水击现象是非恒定流
迹线与流线
迹线——是指某液体质点在运动过程中,不同
时刻所流经的空间点所连成的线。
流线——是指某一瞬时,在流场中绘出的一
若给定a,b,c,即为某一质点的 运动轨迹线方程。
液体质点在任意时刻的速度。
返回
z
t时刻
M (x,y,z) O
x
y
u x u x ( x, y , z , t ) u y u y ( x, y , z , t ) u z u z ( x, y , z , t )
dux ( x, y, z, t ) ax dt du y ( x, y, z, t ) ay dt du ( x, y, z, t ) az z dt
•均匀流(包括渐变流)过水断面上的动水压强分布规律 与静水压强分布规律相同,即在同一过水断面上各点的 测压管水头为一常数;
推论:均匀流过水断面上动水总压力的计算方法与静水总 压力的计算方法相同。
返回
p+dp dA
dn
(z
p ) C1 g 1
p
α
z
z dz
(z
p ) C2 g 2
返回
(3—35) (3—36)
[例3—7] 变直径水管(图3—18),已知粗管段直径 d1=200mm, 断面平均流速度v1=0.8m/s,细管直径d 2 =100mm。试求细管 段的断面平均流速。 [解] 由液体总流连续性方程式(3—33)
v1 A1 v2 A2
相关文档
最新文档