几种常见的二次曲面
常用的二次曲面方程及其图形
这些交线都是椭圆。
3) 再看这个曲面平行于 xoy 的平面 z= z1 ( z1 c )的交线
x 2 y 2 z12 1 a2 b2 c2
a2 c2
x2 (c2
z
2 1
)
b2 c2
y2 (c2
z12 )
1
z= z 1
4) 如果 a=b,那么方程变为:
x2 a2
y2 a2
z2 c2
1
x2 y2 a2
4、 双曲面
方程为: 单叶双曲面
x2 a2
y2 b2
z2 c2
1
1) 当 z=0 时,为过原点的圆,圆点在原点上。
x2 y2 1 a2 b2
2) 当用平行与 z=0 的平面 z= z1 截双曲面时,
x2 y2 z2 1 a2 b2 c2
Z= z1
x 2 y 2 1 z12
a2 b2
c2
-------------椭圆
3) 当 y=0 时,在 xoz 平面上为一双曲线
x2 z2 1 a2 c2
4) 当用平行 y=0 的平面 y= y1( y1 ≠±b)截得曲面为中心在 y 轴上的双曲线
x2 a2
z2 c2
1
y12 b2
双曲线知识回顾:
双曲线定义 图形
m MF1 MF2 2a2a F1F2
常用的二次曲面方程及其图形
旋转曲面:L 是 XOZ 平面内的一个曲面
p0
P
f (x, z) 0
y0
其方程是:
得到旋转面的方程为: f ( x2 y2 , z) 0
柱面: 是空间的一个曲线,直线 L 沿着 平行移动 所形成的曲面,叫做柱面, 称作柱面的准线,L 称作柱面的母线。
第八节二次曲面
z
(c z1 )
2
1
z z1
同样 y y1 ( y1 b ) 及 也为椭圆. (4) 当 a=b 时为旋转椭球面; 当a=b=c 时为球面. 的截痕
x2 y2 z2 椭球面的伸缩法: 2 2 2 1 a b c
x 2 y2 (1)将xoy面上的椭圆 2 1 2 a b
可以证明, 椭圆①上任一点与原点的连线均在曲面上.
(椭圆锥面也可由圆锥面经 x 或 y 方向的伸缩变换 得到)
5 柱面
x 2 y2 2 1 椭圆柱面 2 a b
双曲柱面
抛物柱面 母线平行于 z 轴
x2 y2 2 1 2 a b
x2 a y
母线平行于 z 轴
母线平行于 z 轴
内容小结
( p, q 同号)
思考与练习
1. 指出下列方程的图形:
方 程
x5
x y 9
2 2
平面解析几何中
空间解析几何中
平行于 y 轴的直线 平行于 yoz 面的平面 圆心在(0,0) 半径为 3 的圆 斜率为1的直线 以 z 轴为中心轴的 圆柱面 平行于 z 轴的平面
y x 1
高数A
c
a
x
O
b y
2. 抛物面
x2 y2 (1) 椭圆抛物面 2 2 z a b
x2 由xoz面上的抛物线: 2 z a 2 2 x y z 绕z轴旋转,得一旋转抛物面: 2 a b a 再将其沿y轴方向伸缩 倍: y y, b a
即得椭圆抛物面:
x2 y2 z 2 p 2q ( p , q 同号)
结论1:将平面曲线 C :F ( x , y ) = 0 沿 y 轴方向伸缩 倍而得到平面曲线C´的平面方程为: y F ( x, ) 0
高等数学常用二次曲面图形.ppt
围成的图形如下:
y 0,
y2
12024/9/27
图30:由 z x2 y2 , z x2 y2 围成的图形如下:
z x2 y2 , z x2 y2
22024/9/27
图31:由 z x2 y2 , x2 y2 1, z 0
围成的图形:
图32: 32024/9/27
图14:函数 函
z
1 ey
cos x yey
有无穷多个
极大值,但无极小值。
z 1 ey cos x yey
图15: 62024/9/27
抛物面 z x2 y2 被平面 x y z 1
截成一椭圆。
图16: 72024/9/27
椭球面
x2 a2
y2 b2
z2 c2
1 在
点
3 a, 3
x2 y2 2x
02024/9/27
图39:由曲面 z x2 y2 和平面
z 0, x 1, y 1 围成图形如下:
z 0, x 1, y 1
12024/9/27
图40:双曲抛物面 z xy 被柱面 x2 y2 1
所截得的图形如下:
x2 y2 1
图41: 22024/9/27
62024/9/27
图1(2):x2 y2 z2 4, x2 y2 2x
的图形在第一卦限部分如下:
x2 y2 z2 4, x2 y2 2x
图2: 72024/9/27
(2)、曲线
xyz 1
y
21
处的切线
图3: 82024/9/27
(3) 曲线
2x2 y2 z2 16
图46:曲线 x2 y2 z2 1 y z 0
的图形如下:
几种常见的二次曲面共36页文档
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
几种常见的ห้องสมุดไป่ตู้次曲面
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
常见的二次曲面
用平行于Oxy面的平面z=h截所给曲面,截痕为
x2 y2 1, 2 ph 2qh z h.
当h<0时,是实轴与y轴平行的双曲线.
用Oxz坐标面截所给曲面,截痕为抛物线
2 x 2 pz, y 0. 它是以z轴为对称轴,开口朝上的抛物线.
用Oyz坐标面截所给曲面,截痕为抛物线
因此,椭球面介于 a x a .
二、单叶双曲面
x2 y2 z 2 由方程 2 2 2 1 a b c
所确定的曲面称为单叶双曲面.
(2)
用平行于Oxy坐标面的平面截所给曲面,得截 痕为椭圆
x2 y2 h2 1 2 , 2 2 a b c z h.
当|h|=a时,截痕为一个点;
当|h|<a时为虚椭圆,即无图形. 可见所给图形介于| x | a 的范围内,因此图形为
两支. 常称(a,0,0)和(–a,0,0)为双叶双曲面的顶点.
用Oxz坐标面截所给曲面,得截痕为双曲线
x2 z 2 2 2 1, a c y 0.
用平面y=h截所给曲面,得截痕为双曲线
2 x2 z 2 h 2 2 1 2 , a c b y h.
由上述截痕的分析,可画出双叶双曲面的图形.
四、二次锥面
x2 y2 z 2 方程 2 2 0 2 a b c 所确定的曲面称为二次锥面. (4)
五、椭圆抛物面
当|h|<a时,截痕为双曲线.它的实轴平行于y轴, 虚轴平行于z轴.
当|h|>a时,截痕为双曲线,它的实轴平行于z轴,
虚轴平行于y轴.
当|h|=a时,截痕为两条直线
y z y z 0, 0. b c b c
河海大学理学院《高等数学》常用二次曲面图形
椭球面是一种中心在某一点的平面距 离都相等的点集,其形状类似于椭圆, 但具有三个不同轴。在几何学中,椭 球面常用于描述某些天体的形状。
在物理学中的应用
旋转抛物面
旋转抛物面是抛物线绕其对称轴旋转形成的曲面,在物理学中常用于描述光学透镜的形状和光学系统的成像原理。
双曲面
双曲面是中心在某一点的平面距离不相等的点集,分为椭圆双曲面和双曲线双曲面两种。在物理学中,双曲面常 用于描述电磁波的传播和波动现象。
性分析。
05
总结与展望
总结
二次曲面图形分类
二次曲面图形是高等数学中一个重要的知识点,根据其方程形式的不同可以分为椭球面、 抛物面和双曲面等类型。这些不同类型的曲面在几何形状、性质和应用方面都有所不同。
二次曲面图形的性质
每种类型的二次曲面图形都有其独特的性质,如对称性、曲率、渐近线等。了解这些性质 有助于更好地理解二次曲面图形的几何特征,为后续的学习和应用打下基础。
二次曲面图形在科技领域的应用前景
随着科技的发展,二次曲面图形在科技领域的应用前景将更加广阔。例如,在计算机图形学中,二次曲面图形可以用 于制作更加逼真的三维模型;在航天工程中,可以利用二次曲面图形来设计更加优化的飞行器外形。
二次曲面图形的教育价值
在高等数学教育中,二次曲面图形是一个重要的知识点,对于培养学生的空间想象能力和几何直觉具有 重要意义。未来,随着教育理念和教学方法的改进,二次曲面图形的教育价值将得到更加充分的体现。
04
几何特性
双曲面的几何特性包括对称性和 旋转对称性,它在三维空间中呈 现出规则的形状。
01 03
总结词
双曲面是一种常见的二次曲面图 形,它由两个主轴和两个副轴组 成,形状类似于马鞍形。
几种常见的二次曲面
o x
y
1 单叶双曲面 x2 y2 z2 2 2 2 a b c 1 双叶双曲面
图形
内容小结
1. 空间曲面 • 旋转曲面 三元方程 F ( x , y , z ) 0
平行 z 轴的直线 l , 对任意 z , 点M ( x , y , z ) 的坐标也满足方程
x
M
C
o
y
M1
l
沿曲线C平行于 z 轴的一切直线所形成的曲面,所以为 柱面. 其上所有点的坐标都满足此方程,故在空间 表示柱面
zl 2
方程 G ( y , z ) 0 表示 柱面,
母线 平行于 x 轴; 准线 yoz 面上的曲线 l2.
二、柱面
定义. 平行定方向的动直线 l沿定曲线C 移动的 产生的曲面叫做柱面, C 叫做准线, l 叫做母线. 一般地,在三维空间 方程 F ( x , y ) 0 表示 柱面, 母线 平行于 z 轴; 准线 xoy 面上的曲线 l1.
z
y
C
l1
x
z
在 xoy 面上, 表示曲线C, 在C上任取一点 M1 ( x , y ,0) , 过此点作
x2 z2 y12 2 1 2 2 a c b y y1
(实轴平行于x 轴; 虚轴平行于z 轴)
z
2) y1 b 时, 截痕为相交直线: x z 0 a c y b (或 b) 3) y1 b时, 截痕为双曲线:
x2 z2 y12 2 1 2 2 a c b y y1
2 2 2
( a 0) 表示的图形称为二次曲面.
i 1 2 i
6
以下给出几例常用的二次曲面.
9-9二次曲面
二、单叶双曲面
x y z 2 2 1 单叶双曲面 2 a b c
2
2
2
x y z 当 a b时, 2 2 1 a c
2 2 2
y2 z2 2 2 1 c a 双曲线 x 0 x2 y2 z2 2 1 绕 z 轴旋转 2 a c
单叶旋转双曲面
六、双曲抛物面
2
2
b
b 即直线:y x a
2
a
2
z o x
y
用平面x 0 截之:
y2 2 z 抛 物 线 b x 0 x 2 z 抛 物 线 a y 0
2
x y 2 2 z a b
用平面 y 0 截之:
2
2
z o x
y
x2 y2 用平面z z1 截之: 2 2 z1 a b
2 2 2
2) x 2 ( z 1) 2 0
x 0 点: y 0 (0,0,1) z 1
退化的二次曲面
x 0 直线: z 1
适当选取直角坐标系,可得到二次曲面的标 准方程,除退化的之外,共有9种标准方程。
除以前讲过的椭球面、单叶双曲面、双叶双曲面、 二次锥面、椭圆抛物面、双曲抛物面外其余三种二次曲 面就是我们所熟悉的三种二次柱面:
它的轴平行于 z 轴
y12 顶点 0, y1 , 2 b
z
(3)用坐标面 yoz ( x 0), x x1与曲面相截
均可得抛物线.
x
o
y
椭圆抛物面的图形如下:
z
x z o y
x
o
y
x y z 2 2 a b
几种常见的二次曲面
2020年5月13日星期三
21
(0,0,0) y
2、 双曲抛物面(马鞍面)
x2 y2 a2 b2 z
z
o
x
y
z xy 也是双曲抛物面。
2020年5月13日星期三
22
八、一般的二次曲面
在研究一般的二次曲面时,要利用坐标变换将其方程变为标准方程。 1、坐标系的平移
k0 k0 k0
z
xo
y
2020年5月13日星期三
19
2、双叶双曲面
x2 y2 z2 a2 b2 c2 1
z y
0
或者
x2 y2 z2 a2 b2 c2 1
xzΒιβλιοθήκη o xy当 a=c 时为旋转双叶双曲面。
2020年5月13日星期三
20
七、抛物面
1、 椭圆抛物面
x2 a2
y2 b2
z
z
x
x y z a b
旋转单叶双曲面
x2 y2 z2 a2 b2 1
旋转双叶双曲面
14
例5
x2 y2 z2 1 是怎样形成的?
4 94
解:是由
x y xoy :
绕 y 轴转成
或 yoz : z2 y2 1 绕 y 轴转成 49
z
思考:方程 表示怎样的曲面?
x2
y2
R2
z
1、怎样形成? 2、什么曲面?
解: 母线平行于 y 轴,准线为 xoz 面上的曲线(抛物线) 的抛物柱面。
x z
2020年5月13日星期三
5
G(x, z)
z
x z
xo
y
3)一般地,只含 y, z 而缺 x 的方程 H(y, z)=0在空间直角坐标系中表 示母线平行于 x 轴的柱面,其准线为 yoz 面上的曲线
几种常见的二次曲面 曲面方程的概念
柱面举例
z
z
y2 2x
o
y
o
x
x
抛物柱面
(2)椭圆
a
2
z2 c2
1绕
y 轴和
z 轴;
x 0
绕 y 轴旋转
y2 a2
x2 c2
z2
1
旋 转
椭
绕z 轴旋转
x2 a2
y2
z2 c2
1
球 面
(3)抛物线
y
2
2 pz绕
z 轴;
x 0
x2 y2 2 pz 旋转抛物面
15
三、柱面
在平面坐标系 x2 y2 1表示中心在原点的单位圆
如图 设 M( x, y, z),
z
d M1(0, y1, z1)
M F( y, z) 0
(1) z z1
(2)点 M 到 z 轴的距离
o
y
x
d x2 y2 | y1 |
将 z z1, y1 x2 y2 代入
F( y1, z1) 0
10
将 z z1, y1 x2 y2 代入 F( y1, z1) 0
F x, y2 z2 0.
12
例5.试建立顶点在原点,旋转轴为z轴,半顶角为
的圆锥面方程.
解:在yoz面上,直线 L的方程为
z y cot
z
L
M (0, y, z)
绕 z 轴旋转时, 圆锥面的方程为
z x2 y 2 cot
y
令a cot ,两边平方 x
得方程 F x2 y2 , z 0,
二次曲面的方程和图形
( a, b 为正数)
在平面 z t 上的截痕为椭圆
x2 (at)2
y2 (bt)2
1,
zt
①
z
z
O yy xx
在平面 x=0 或 y=0 上的截痕为过原点的两直线 .
可以证明, 椭圆①上任一点与原点的连线均在曲面上. (椭圆锥面也可由圆锥面经 x 或 y 方向的伸缩变换
得到)
内容小结 二次曲面
z
(1) 椭圆抛物面
x2 y2 z ( p , q 同号)
2p 2q
Oy
特别,当 p = q 时为绕 z 轴的旋转抛物面. x
(2) 双曲抛物面(鞍形曲面)
z
x2 y2 z ( p , q 同号) 2p 2q
O
x
y
椭圆抛物面
x2 a2
y2 b2
z
双曲抛物面
y2 b2
x2 a2
z
所表示的曲面称为双曲抛物面或马鞍面.
研究二次曲面特性的基本方法: 截痕法
1. 椭球面
x2 a2
y2 b2
z2 c2
1
( a,b, c为正数)
(1)范围:
x a, y b, z c
(2)与坐标面的交线:椭圆
x2 a2
y2 b2
1,
z 0
y2 b2
z2 c2
1,
x 0
x2 a2
z2 c2
1
y 0
x2 a2
y2 b2
3. 双曲面
z
(1)单叶双曲面
x2 a2
y2 b2
z c
2 2
1
( a,b,c 为正数)
x
O
y
平面 z z1 上的截痕为椭圆.
3.3常见二次曲面
解 设动点为P(x,y,z),所求的轨迹为S,由题意可得
x 12 y2 z2 1 x 4 ,
2
化简得
x2 y2 z2 1
433
,
故动点的轨迹S为一椭球面.
例2 已知椭球面的轴与坐标轴重合,且通过椭圆 x2 y2 1 ,与 9 16
点P0(1, 2, 23),求这个椭球面的方程.
和短轴,而 a,b, c 依次称为椭球的长半轴、中半轴和短半轴.
(3) 范围及有界性
由曲面的方程出发,讨论x,y,z的取值范围,若均有界,则曲面
为有界曲面,否则为无界曲面.
从椭球面的方程可以看出,对于椭球面上任何一点,均有
x a, y b, z c
,
因此椭球面被完全封闭在一个长方体的内部,此长方体由6 个平面:
椭球面的参数方程
ìïïïïíïïïïî
x= y= z=
a sin j b sin j cosj ,
cos q, sin q,
( 0 #j p , 0 #q 2p ).
(3.3-6)
由(3.3-6)消去参数 θ 和 即得椭球面的标准方程(3.3-1).
例1 设动点与点(1,0,0)的距离等于从这点到平面x=4的距离的一 半,试求此动点的轨迹.
x a , y b , z c
围成,这6个平面都与椭球面相切,切点就是椭球面的6个 顶点.由此可知,椭球面是一个有界曲面.
3) 椭球面的图形(形状)
(1) 平行截割法 为了解曲面的大致形状,考虑曲面与一族平行平面的交线,
这些交线都是平面曲线.如果知道了这些平面曲线的形状和变 化趋势,那么曲面的大致形状也就知道了.这种方法称为平行截 割法或等值线法.
常见的九种二次曲面方程
常见的九种二次曲面方程二次曲面方程是解析几何的重点内容,它被广泛涉及于数学、物理、工程、计算机等多个学科中。
本文将介绍九种常见的二次曲面方程,以帮助读者更好的理解和应用。
一、圆锥面方程圆锥面方程可以表示为 F(x,y,z)=0,其中 F(x,y,z)是二次型方程,或表示为 (x/a)^2+(y/b)^2-(z/c)^2=1,其中a、b、c分别为锥面三个坐标轴上椭圆截面的半轴长度,这种圆锥面称为椭圆锥面。
当a=b时,圆锥面变成圆锥面;当a=b=c时,称为圆锥体。
二、双曲面方程双曲面方程可以表示为 F(x,y,z)=0,其中 F(x,y,z)是二次型方程,或表示为 (x/a)^2+(y/b)^2-(z/c)^2=1,其中a、b、c分别为双曲面三个坐标轴上双曲截面的半轴长度,这种双曲面称为双曲抛物面或椭圆双曲面。
当a=b时,双曲面变成双曲抛物面;当a=b=c时,称为双曲球面。
三、抛物面方程抛物面方程可以表示为 F(x,y,z)=0,其中 F(x,y,z)是二次型方程,或表示为 z=ax^2+by^2+c,这种抛物面被称为旋转抛物面。
四、球面方程球面方程可以表示为 (x-a)^2+(y-b)^2+(z-c)^2=r^2,其中(a,b,c)是球中心坐标,r是球半径。
球面是最常见的几何形体,可以在多个方面得到应用。
五、椭球面方程椭球面方程可以表示为 (x/a)^2+(y/b)^2+(z/c)^2=1,其中a、b、c分别为椭圆三个坐标轴上椭圆截面的半轴长度。
与圆锥体类似,当a=b=c时,椭球面变成球面。
六、单叶双曲面方程单叶双曲面方程可以表示为 (x/a)^2+(y/b)^2-(z/c)^2=1,其中a、b、c分别为双曲面三个坐标轴上双曲截面的半轴长度。
单叶双曲面只有一个部分,并非所有双曲面都是单叶的。
七、双叶双曲面方程双叶双曲面方程可以表示为 (x/a)^2+(y/b)^2-(z/c)^2=-1,其中a、b、c分别为双曲面三个坐标轴上双曲截面的半轴长度。
二次曲面
2. 几种常见二次曲面.
x z2 (1) 椭球面 2 + 2 + 2 = 1 a b C
y
3° 类似地, 依次用平面x = 0,平面y = 0截割, 得椭圆:
y2 z2 2 + 2 =1 , b c x =0
x 2 z 2 + a c y = 0
2 2
=1
.
特别: 当a=b=c时, 方程x2 + y2 + z2 = a2 , 表示 球心在原点o, 半径为a的球面.
2
z
y2
O 1° 用平面z = 0去截割, 得椭圆 o 2 x2 y 2 + 2 =1 x a b z =0 2° 用平面z = k去截割(要求 |k | ≤ c), 得椭圆 x2 y2 k2 2 + 2 = 1− 2 a b c z = k 当 |k | ≤ c 时, |k |越大, 椭圆越小; 当 |k | = c 时, 椭圆退缩成点.
3° 类似地,用平面 x = k 去截割, 截线是抛物线.
k 2 y2 2 + 2 =z a b x = k
当k = 0 时 , 为 z =
y b
2 2
.
x (2) 椭圆抛物面: 2 + 2 = z a b
2
y2
z
7.常见的二次曲面
2 2 2
o x
y
2
由于椭球面方程只含 x , y, z的平方项, 因此,椭球面关于原点 、坐标面、坐标轴 都是对称的,原点是椭 球面的中心.
(1)范围:
x a,
y b,
z c,
y b, z c
椭球面包含在由平面x a ,
围成的长方体内. 因此椭球面是有界曲面.
§7 常见的二次曲面
三元二次方程所表示的曲面称为二次曲面. 我们将用坐标面和平行于坐标面的平面与二次 曲面相截,考察其截痕的形状和性质,从而了 解二次曲面的图形,这种方法称为截痕法.
1
一、椭球面
x y z 方程 2 2 2 1 (a 0, b 0, c 0) a b c 表示的曲面叫做椭 球 面.
6
x2 y2 z2 2 2 1. 2 a b c
z
如果 a b, 椭球面是由 y2 z2 平面上的椭圆 2 2 1 绕 x b c z 轴旋转而成的, 叫做旋 转 椭球面.
o
y
如果 a b c, 则 x y z a , 此时
2 2 2 2
方程表示一个球面 .
(1)
用平面x x0 去截曲面( 1 ),得
2 x0 这是x x0面上的抛物线.顶点在 x , 0 , , 0 2 p 对称轴平行于z轴,开口朝下.
27
x y z 2 p 2q
图形如下:
2
2
设 p 0, q 0
z
y
o
x
28
2 2
当z变动时,这种椭圆的中心都 在z轴上. 与平面 z z1 ( z1 0) 不相交.
x
o
CH8-5+几种常见的二次曲面
点,两直线的夹角 (0 ) 叫做圆锥面的半顶角。
2
试建立圆锥面方程。
z
解: 在yoz面上直线L 的方程为
L
绕z 轴旋转时, 圆锥面的方程为
两边平方,则有
z2 a2( x2 y2 )
M (0, y, z)
y x
机动 前页 后页 返回
例2.
求坐标面
xoz
上的双曲线
y2 b2
x2
y2
2 pz1
z z1
当 z1变动时,这种圆 的中心都在 z 轴上.
机动 前页 后页 返回
x2 y2 z( p 与 q 同号) 2 p 2q
双曲抛物面(马鞍面) 用截痕法讨论:
设 p 0, q 0
z 图形如下:
o y
x
机动 前页 后页 返回
五、双曲面
z
(1)单叶双曲面
机动 前页 后页 返回
平面方程可用一个三元一次方程:
Ax+By+Cz+D=0(A、B、C不全为零) 来表示。
反过来,任何一个关于x,y,z的三元一次方程 的空间图形一定是一张平面。
一般地,任何一个曲面都可用一个三元方程
表示。
F(x,y,z)=0
特别地,一个三元二次方程
A1x2 A2 y2 A3z2 A4xy A5 yz A6zx A7 x A8 y A9z A10 0
机动 前页 后页 返回
z
● x2 y2 R2表示母线平行于 z 轴的圆柱面.
y
●
表示抛物柱面, 母线平行于 z 轴; x
准线为xoy 面上的抛物线.
z
●
二次曲面类型
二次曲面类型
二次曲面是三维欧氏空间中,由三元二次方程所表示的曲面。
其一般方程为\(Ax^2+By^2+Cz^2+2Fxy+2Gxz+2Hyz=D\)。
二次曲面有很多类型,常见的包括:
1.平面:所有平面的方程都可以写成\(Ax+By+Cz=D\)的形式,其中\(A,B,C,D\)是常数。
2.球面:球面的方程可以写成\(x^2+y^2+z^2=R^2\)的形式,其中\(R\)是球的半径。
3.椭球面:椭球面的方程可以写成\(\frac{x^2}{a^2}+\frac{y ^2}{b^2}+\frac{z^2}{c^2}=1\)的形式,其中\(a,b,c\)是椭球的半轴长度。
4.抛物面:抛物面的方程可以写成\(x^2+y^2=2az\)或\(x^2+z^ 2=2ay\)的形式,其中\(a\)是抛物面的开口大小。
5.双曲面:双曲面的方程可以写成\(x^2+y^2-z^2=1\)或\(\fra c{x^2}{a^2}-\frac{y^2}{b^2}=1\)的形式,其中\(a,b\)是双曲面的半轴长度。
高等数学7.9 二次曲面
这是平面zz 1内的椭圆,
其中心在z轴上.
以平面yy1(| y1| b), 或xx1(| x1| a)去截椭球 面,分别可得与上述类 似的结果.
椭球面与平面的交线: 椭球面与三个坐标面的交线分别为 x2 y2 y2 z2 x2 z 2 2 2 1, 2 2 1, 2 2 1, a b b c a c z 0; x 0; y 0. 这些交线都是椭圆.
椭球面与平面zz 1(| z 1|<c)的交线
截痕是圆
x 2 y 2 2 pz1 , z z1.
双曲抛物面: 由方程
x2 y2 z (p与q同号) 2 p 2q
所表示的曲面叫做双曲抛物面或鞍形曲面.
三、双曲面
单叶双曲面:
x2 y2 z 2 由方程 2 2 2 1 所表示的曲面叫做单叶双曲面. a b c
§7.9 二次曲面
一、椭球面
二次曲面、截痕法 椭球面、椭球面与平面的交线、 特殊的椭球面
二、抛物面
椭圆抛物面、椭圆抛物面与平面的交线 旋转抛物面、双曲抛物面
三、双曲面
单叶双曲面、单叶双曲面与平面的交线 双叶双曲面
一、椭球面
二次曲面:
我们把三元二次方程所表示的曲面叫做二次曲面.
截痕法: 用坐标面和平行于坐标面的平面与曲面相截,考察其交线 的形状,然后加以综合,从而了解曲面的立体形状.这种方法 叫做截痕法.
二、抛物面
x2 y2 z (p q>0) 所表示的曲面叫做椭圆抛物面. 由方程 2 p 2q
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
④ 当 c=b 时,此时为旋转曲面
x2 a2
y2 c2
z2 c2
1
2020年6月26日星期五
《高等数学》第九章
17
六、双曲面
1、单叶双曲面
x2 y2 z2 a2 b2 c2 1
z
x
当 a=b 时为旋转单叶双曲面。
2020年6月26日星期五
《高等数学》第九章
o y
18
x2 y2 z2 a2 b2 c2 k
第四节 几种常见的二次曲面
一、问题的提出 二、柱面 三、锥面 四、旋转曲面 五、椭球面 六、双曲面 七、抛物面 八、一般的二次曲面 九、小结与思考判断题
2020年6月26日星期五
《高等数学》第九章
1
一、问题的提出 (Introduction)
三元二次方程表示的曲面,称为二次曲面。 如球面 ( x 1)2 ( y 2)2 (z 3)2 4
27
5)x2 y2 2 x
)z x y
z
)z x y )z x y
z
xo
y
(6)
o x (5)
z y
x
o
y (7)
x
2020年6月26日星期五
《高等数学》第九章
z
o
y
(8)
28
)z x y
11) y x2
z
z
)z x y x y
)
z
(9) o
y
x
z
o
例5 x2 y2 z2 1 是怎样形成的?
4 94
解:是由
xoy :
x y
绕 y 轴转成
或 yoz : z2 y2 1 绕 y 轴转成
49
z
思考:方程 x2 y2 R2 z 表示怎样的曲面?
1、怎样形成? 2、什么曲面?
0
y
x
2020年6月26日星期五
《高等数学》第九章
15
五、椭球面
在新坐标系下的坐标为 o
(X, Y, Z),则
x0
x
O •
X X
P•
Y
y
X
Y
x y
x0 y0
Z z z0
x
或
x y
X Y
x0 y0
坐标系平移时
z Z z0 坐标变换公式
2020年6月26日星期五
《高等数学》第九章
24
例6
用坐标系的平移化去方程
x2
y2 z2
x 2z 1
x2 y2 z2 a2 b2 c2 1
z y
x
特殊情形:① 当 a=b=c 时,此时为球面 x y z a
2020年6月26日星期五
《高等数学》第九章
16
② 当 a=b 时,此时为旋转曲面
x2 y2 z2 a2 a2 c2 1
③ 当 a=c 时,此时为旋转曲面
x2 y2 z2 a2 b2 a2 1
x
y
o x
2020年6月26日星期五
(11)
y
(10)
《高等数学》第九章
o
y
x (12)
29
九、小结
二次曲面的识别 旋转曲面的概念及求法 常见的二次曲面
2020年6月26日星期五
《高等数学》第九章
30
思考判断题
指出下列方程在平面解析几何中和空 间解析几何中分别表示什么图形?
() y ;
() x y ;
x2 y2 z2 a2 b2 1
旋转椭球面
x2 z2 y2 a2 b2 1
旋转椭球面
zox 面上的双曲线
x2 z2 a2 b2 1
绕
z
轴转得曲面:
x y a
z b
旋转单叶双曲面
绕
x
轴转得曲面:
x2 a2
y2 z2 b2
1
旋转双叶双曲面
2020年6月26日星期五
《高等数学》第九章
14
9
当曲线C绕 z 轴旋转时,点 M 也绕 z 轴转动到
另一点M( x, y, z), 此时,z z1保持不变,
点M到 z 轴的距离 d x y y , 将z z1,
y x y 代入 f ( y, z) 得 f ( x y , z)
z
d M1(0, y1,z1)
M f ( y,z) 0
二次曲面的研究方法:(不能用描点法,而用截痕法) 用平行于坐标面的平面去截曲面,由所得
截痕来勾画曲面的大体形状及如下一些特性。 1)对称性:关于坐标面,坐标轴 2)存在范围 3)曲面与坐标轴、坐标面的关系
2020年6月26日星期五
《高等数学》第九章
2
二、柱面
1、柱面的定义: 一般地,平行于定直线并沿定曲线C移
例2、 x z 表示怎样的曲面?
z
解:母线平行于 y 轴,准线为
xoz 面上的曲线(抛物线)
x z 的抛物柱面。
xo
x z
y
2020年6月26日星期五
《高等数学》第九章
5
3)一般地,只含 y, z 而缺 x 的方程 H(y, z)=0 在空间直角坐标系中表示母线平行于 x 轴的柱 面,其准线为 yoz 面上的曲线 H( y, z) 2、练习题:
4 94
的一次项。
解:将方程变形为:
( x 2)2 y2 (z 4)2 1 16 36 16
取平移变换:
则方程变为:
X x2 Y y Z z 4
X2 Y2 Z2 1 16 36 16
为旋转椭球面
2020年6月26日星期五
《高等数学》第九章
25
2、坐标系的旋转 (略)
2020年6月26日星期五
《高等数学》第九章
26
例7、指出下列方程所表示的曲面。
1)x2 y2 (z 1)2 1
2) x2 y2 z2 1 49
3) x2 y2 z2 1
49
z
4) x2 y2 z2 1 49
z
x
oy (1)
o
y
z
x
(2)
z
xo
y
o
x (4)
(3)
y
2020年6月26日星期五
《高等数学》第九章
f (y , x z )
2020年6月26日星期五
《高等数学》第九章
11
2)xoy
面上的曲线C
:
f z
( x, y) 0
0
绕 x 轴 f (x , y z )
绕 y 轴 f ( x z , y)
3)zox
面上的曲线C
:
f y
( x,z) 0
0
绕 x 轴 f (x , y z )
此即为所求旋转曲面的方程。
o x
y
2020年6月26日星期五
《高等数学》第九章
10
注:求旋转曲面的方程的技巧:
在曲线C
的方程
f ( y, z) x0
0
的第一个方程
中,只要将 y 改成 x2 y2 , z 不变,便得曲
线C绕 z 轴旋转所成的旋转曲面的方程。
同理,曲线C绕 y 轴旋转所成的旋转曲面的 方程为:
x2 a2
y2 b2
z
z
x
a=b 时,成为旋转抛物面。
2020年6月26日星期五
《高等数学》第九章
(0,0,0) y
21
2、 双曲抛物面(马鞍面)
x2 y2 a2 b2 z
z
o x
z xy 也是双曲抛物面。
2020年6月26日星期五
《高等数学》第九章
y
22
八、一般的二次曲面
在研究一般的二次曲面时,要利用坐标变换 将其方程变为标准方程。
() y x ; () x y .
作业: P40. 1(1)、8(2、3)
2020年6月26日星期五
《高等数学》第九章
31
下列方程在平面、空间直角坐标系中各表 示什么图形,并画出其草图。
) x
z
o y
x
x2
) y x
z
o
x
y
y x1
) x z
z
x2 y2 4
o y
x
2020年6月26日星期五
《高等数学》第九章
6
三、锥面
z
椭圆锥面: x2 y2 z2 a2 b2 c2 0
y o x
曲面与平面 z = t 相交,得截痕为不同高度、
解:yoz面 上 的 直 线L的 方 程 为:
z
z y cot (0 )
2
旋转面为 z x y cot
0
x
即 z ( x y) cot
直线L
y
2020年6月26日星期五
《高等数学》第九章
13
x2 y2
例4 xoy 面上的椭圆 a2 b2 1
绕 x 轴转得曲面: 绕 y 轴转得曲面:
k0 k0 k0
z
xo
y
2020年6月26日星期五
《高等数学》第九章
19
2、双叶双曲面
x2 y2 z2 a2 b2 c2 1
z y
或者
0
x
x2 y2 z2 a2 b2 c2 1
z
o x
y
当 a=c 时为旋转双叶双曲面。
2020年6月26日星期五
《高等数学》第九章
20
七、抛物面
1、 椭圆抛物面
例1、 x y R 表示怎样的曲面?
解:母线平行于 z 轴,准线为 xoy 面上的
曲线(圆) x y R 的圆柱面。