2.2基本不等式求最值方法(解析)

合集下载

用基本不等式求最值六种方法

用基本不等式求最值六种方法

用基本不等式求最值六种方法基本不等式是求解数学问题中常用的工具,可以通过基本不等式来求解最值问题。

下面将介绍六种使用基本不等式求解最值问题的方法。

方法一:两边平方法若要求一个式子的最大值或最小值,在不改变问题的本质情况下,可以通过平方的方式将问题转化为一个更容易处理的形式。

例如,我们要求a+b 的最小值,可以通过平方的方式将其转化为一个更易处理的问题,即(a+b)^2=a^2+b^2+2ab,然后应用基本不等式,得到(a+b)^2≥ 2ab。

由此可见,通过两边平方后,可使用基本不等式求得 a+b 的最小值。

方法二:四平方法四平方法指的是对式子的四个项分别平方,将一些复杂的问题转化为四个简单展开的项的和,然后再应用基本不等式进行推导。

例如,我们要求 a^2 + b^2 的最小值,可以采用四平方法将其转化为 a^2/2 + a^2/2 + b^2/2 + b^2/2 的和,即 (a^2/2 + b^2/2) + (a^2/2 + b^2/2),然后应用基本不等式,得到(a^2/2 + b^2/2) + (a^2/2 + b^2/2) ≥2√[(a^2/2)(b^2/2)] = ab。

方法三:绝对值法绝对值法是将问题中的绝对值项用不等式进行替代,然后使用基本不等式进行求解。

例如,我们要求,x-2,的最小值,可以将其转化为不等式形式,即x-2≥0或x-2≤0。

然后根据这两个不等式分别求解x的取值范围,得到最小值。

方法四:极值法极值法是将要求最值的式子看作一个函数,通过求函数的极值点来确定最值。

例如,我们要求 f(x) = x^2 的最小值,可以求函数的极值点。

对于二次函数 f(x) = ax^2 + bx + c,其极值点的横坐标是 -b/2a,通过求解方程 -b/2a = 0,可以得到 x = 0。

因此,f(x) = x^2 的最小值是 f(0) = 0。

方法五:辅助不等式法辅助不等式法是引入一个辅助不等式,通过该不等式来推导求解最值问题。

利用基本不等式求最值(解析版)-高中数学

利用基本不等式求最值(解析版)-高中数学

利用基本不等式求最值题型梳理【题型1直接法求最值】【题型2配凑法求最值】【题型3常数代换法求最值】【题型4消元法求最值】【题型5构造不等式法求最值】【题型6多次使用基本不等式求最值】【题型7实际应用中的最值问题】【题型8与其他知识交汇的最值问题】命题规律基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点.题型通常为选择题或填空题,但它的应用范围很广,涉及到函数、三角函数、平面向量、立体几何、解析几何、导数等内容,它在高考中常用于大小判断、求最值、求最值范围等.在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点.在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用.知识梳理【知识点1利用基本不等式求最值的方法】1.利用基本不等式求最值的几种方法(1)直接法:条件和问题间存在基本不等式的关系,可直接利用基本不等式来求最值.(2)配凑法:利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式.(3)常数代换法:主要解决形如“已知x+y=t(t为常数),求的最值”的问题,先将转化为,再用基本不等式求最值.(4)消元法:当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.(5)构造不等式法:构建目标式的不等式求最值,在既含有和式又含有积式的等式中,对和式或积式利用基本不等式,构造目标式的不等式求解.【知识点2基本不等式的实际应用】1.基本不等式的实际应用的解题策略(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值.(2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数的最值时,若等号取不到,则可利用函数的单调性求解.举一反三【题型1直接法求最值】1(2023上·北京·高一校考阶段练习)已知a>0,则a+1a+1的最小值为()A.2B.3C.4D.5【解题思路】用基本不等式求解即可.【解答过程】因为a>0,所以a+1a+1≥2a⋅1a+1=3,当且仅当a=1a即a=1时取等号;故选:B.【变式训练】1(2023·北京东城·统考一模)已知x>0,则x-4+4x的最小值为()A.-2B.0C.1D.22【解题思路】由基本不等式求得最小值.【解答过程】∵x>0,∴x+4x-4≥2x×4x-4=0,当且仅当x=4x即x=2时等号成立.故选:B.2(2023上·山东·高一统考期中)函数y=x2-x+9x(x>0)的最小值为()A.1B.3C.5D.9【解题思路】利用均值不等式求最小值即可.【解答过程】y=x2-x+9x=x+9x-1≥2x⋅9x-1=5,当且仅当x=9x,即x=3时等号成立,故选:C.3(2023下·江西·高三校联考阶段练习)3+1 x21+4x2的最小值为()A.93B.7+42C.83D.7+43【解题思路】依题意可得3+1 x21+4x2=7+1x2+12x2,再利用基本不等式计算可得.【解答过程】3+1 x21+4x2=7+1x2+12x2≥7+21x2⋅12x2=7+43,当且仅当1x2=12x2,即x4=112时,等号成立,故3+1 x21+4x2的最小值为7+4 3.故选:D.【题型2配凑法求最值】1(2023·浙江·校联考模拟预测)已知a>1,则a+16a-1的最小值为()A.8B.9C.10D.11【解题思路】运用基本不等式的性质进行求解即可.【解答过程】因为a>1,所以由a+16a-1=a-1+16a-1+1≥2a-1⋅16a-1+1=9,当且仅当a-1=16a-1时取等号,即a=5时取等号,故选:B.【变式训练】1(2023上·吉林·高一校考阶段练习)已知x>3,则y=2x-3+2x的最小值是()A.6B.8C.10D.12【解题思路】利用基本不等式求和的最小值,注意取值条件.【解答过程】由x-3>0,则y=2x-3+2(x-3)+6≥22x-3⋅2(x-3)+6=10,当且仅当x=4时等号成立,故最小值为10.故选:C.2(2023上·海南省直辖县级单位·高三校联考阶段练习)设x>2,则函数y=4x-1+4x-2,的最小值为()A.7B.8C.14D.15【解题思路】利用基本不等式求解.【解答过程】因为x>2,所以x-2>0,所以y=4x-1+4x-2=4x-2+4x-2+7≥24x-2⋅4x-2+7=15,当且仅当4x -2 =4x -2,即x =3时等号成立,所以函数y =4x -1+4x -2的最小值为15,故选:D .3(2023上·辽宁·高一校联考期中)若x >0,y >0且满足x +y =xy ,则2xx -1+4y y -1的最小值为()A.6+26B.4+62C.2+46D.6+42【解题思路】结合条件等式,利用基本不等式求和的最小值.【解答过程】若x >0,y >0且满足x +y =xy ,则有1x +1y=1,所以x >1,y >1,2x x -1+4y y -1=2x -1 +2x -1+4y -1 +4y -1=6+2x -1+4y -1≥6+22x -1⋅4y -1=6+28xy -x +y +1=6+42,当且仅当2x -1=4y -1,即x =1+22,y =1+2时等号成立.所以2x x -1+4y y -1的最小值为6+4 2.故选:D .【题型3 常数代换法求最值】1(2023上·内蒙古通辽·高三校考阶段练习)已知a >0,b >0,若2a +3b=1,则2a +b3的最小值是()A.8B.9C.10D.11【解题思路】利用基本不等式“1”的应用即可求解.【解答过程】由题意得a >0,b >0,2a +3b=1,所以2a +b 3=2a +b 3 2a +3b =4+1+2b 3a +6ab ≥5+22b 3a ×6a b=9,当且仅当2b 3a =6ab 时,即a =3,b =9,取等号,故B 项正确.故选:B .【变式训练】1(2023·河南·校联考模拟预测)已知正实数a ,b ,点M 1,4 在直线xa +y b=1上,则a +b 的最小值为()A.4B.6C.9D.12【解题思路】根据题意可得1a+4b=1,结合基本不等式运算求解.【解答过程】由题意得1a+4b=1,且a>0,b>0,故a+b=a+b⋅1a+4b=5+b a+4a b≥5+2b a×4a b=9,当且仅当ba=4ab,即a=3,b=6时,等号成立.故选:C.2(2023上·重庆·高一统考期末)若正实数x,y满足2x+8y-xy=0,则2x+y的最大值为()A.25B.16C.37D.19【解题思路】根据等式计算得出1,再结合常值代换求和的最值,计算可得最大值.【解答过程】∵x>0,y>0,2x+8y-xy=0,∴2y+8x=1,x+y=x+y2y+8x=2x y+8+2+8y x≥22x y×8y x+10=18,∴2 x+y ≤218=19.故选:D.3(2023·重庆·统考一模)已知a,b为非负实数,且2a+b=1,则2a2a+1+b2+1b的最小值为()A.1B.2C.3D.4【解题思路】首先根据题意求出0≤a<12,0<b≤1,然后将原式变形得2a2a+1+b2+1b=2a+1+1b-1,最后利用1的妙用即可求出其最值.【解答过程】∵2a+b=1,且a,b为非负实数,b≠0,则a≥0,b>0则b=1-2a>0,解得0≤a<12,2a=1-b≥0,解得0<b≤1,∴2a2 a+1+b2+1b=2(a+1)2-4(a+1)+2a+1+b2+1b=2(a+1)-4+2a+1+b+1b=(2a+b-2)+2a+1+1b=2a+1+1b-12 a+1+1b=42a+2+1b=13(2a+2)+b⋅42a+2+1b=135+4b2a+2+2a+2b≥135+24b2a+2⋅2a+2b=3,当且仅当4b2a+2=2a+2b即2a+2=2b,2a+b=1时,即b=1,a=0时等号成立,故2a+1+1b-1min=2,故选:B.【题型4消元法求最值】1(2023上·江苏·高一校联考阶段练习)已知正数x,y满足3x-4=9y,则x+8y的最小值为12.【解题思路】根据指数方程,得出x,y的关系式,运用消元法将所求式化成关于y的关系式,再利用基本不等式求解.【解答过程】由3x-4=9y,可得x-4=2y,即x=2y+4,代入x+8y中,可得2y+4+8y=2y+8y+4≥22y⋅8y+4=12,当且仅当y=2,x=8时,取等号,所以x+8y的最小值为12.故答案为:12.【变式训练】1(2023上·安徽池州·高一统考期中)已知x,y∈R+,若2x+y+xy=7,则x+2y的最小值为62-5.【解题思路】根据题意,化简得到x+2y=x2-3x+14x+1,设t=x+1,求得x2-3x+14x+1=t+18t-5,结合基本不等式,即可求解.【解答过程】由x,y∈R+,且2x+y+xy=7,可得y=7-2xx+1,则x+2y=x+2×7-2xx+1=x2-3x+14x+1,设t=x+1,可得x=t-1且t>1,可得x2-3x+14x+1=t2-5t+18t=t+18t-5≥2t⋅18t-5=62-5,当且仅当t=18t时,即t=32时,等号成立,所以x+2y的最小值为62-5.故答案为:62-5.2(2023上·山东淄博·高一校考阶段练习)已知正实数a,b,且2a+b+6=ab,则a+2b的最小值为13.【解题思路】根据基本不等式即可求解.【解答过程】由2a+b+6=ab可得a=b+6b-2>0,由于b>0,所以b>2,故a+2b=b+6b-2+2b=8b-2+2b-2+5,由于b>2,所以8b-2+2b-2≥216=8,当且仅当b=4时等号成立,故a+2b=8b-2+2b-2+5≥13,故a+2b的最小值为13,故答案为:13.3(2023·上海崇明·统考一模)已知正实数a, b, c, d满足a2-ab+1=0,c2+d2=1,则当(a-c)2+(b-d)2取得最小值时,ab=22+1.【解题思路】将(a-c)2+(b-d)2转化为a,b与c,d两点间距离的平方,进而转化为a,b与圆心0,0的距离,结合基本不等式求得最小值,进而分析求解即可.【解答过程】可将(a-c)2+(b-d)2转化为a,b与c,d两点间距离的平方,由a2-ab+1=0,得b=a+1 a,而c2+d2=1表示以0,0为圆心,1为半径的圆,c,d为圆上一点,则a,b与圆心0,0的距离为:a2+b2=a2+a+1 a2=2a2+1a2+2≥22a2⋅1a2+2= 22+2,当且仅当2a2=1a2,即a=±412时等号成立,此时a,b与圆心0,0的距离最小,即a,b与c,d两点间距离的平方最小,即(a-c)2+(b-d)2取得最小值.当a=412时,ab=a2+1=22+1,故答案为:22+1.【题型5构造不等式法求最值】1(2023下·河南·高三校联考阶段练习)已知2a+b=ab(a>0,b>0),下列说法正确的是()A.ab的最大值为8B.1a-1+2b-2的最小值为2C.a+b有最小值3+2D.a2-2a+b2-4b有最大值4【解题思路】根据基本不等式运用的三个条件“一正、二定、三相等”,可知ab≥8,所以A错误;将原式化成a-1b-2=2,即可得1a-1+2b-2=1a-1+a-1≥2,即B正确;不等式变形可得2b+1a=1,利用基本不等式中“1”的妙用可知a+b≥3+22,C错误;将式子配方可得a2-2a+b2 -4b=(a-1)2+(b-2)2-5,再利用基本不等式可得其有最小值-1,无最大值,D错误.【解答过程】对于A选项,ab=2a+b≥22ab,即ab≥22,故ab≥8,当且仅当a=2,b=4时等号成立,故ab的最小值为8,A错误;对于B选项,原式化为a-1b-2=2,b=2aa-1>0,故a-1>0;a=bb-2>0,故b-2>0;所以1a-1+2b-2=1a-1+a-1≥2,当且仅当a=2,b=4时等号成立,B正确;对于C选项,原式化为2b+1a=1,故a+b=a+b2b+1a=2a b+1+2+b a≥3+22,当且仅当a=2+1,b=2+2时等号成立,C错误;对于D选项,a2-2a+b2-4b=(a-1)2+(b-2)2-5≥2a-1b-2-5=-1,当且仅当a=1+2,b=2+2时等号成立,故有最小值-1,D错误.故选:B.【变式训练】1(2022上·山东青岛·高一青岛二中校考期中)已知x>0,y>0,且x+y+xy-3=0;则下列结论正确的是()A.xy的最小值是1B.x+y的最小值是2C.x+4y的最小值是8D.x+2y的最大值是42-3【解题思路】利用基本不等式得x+y+xy-3≥(xy+3)(xy-1)、x+y+xy-3≤(x+y)24+(x+y)-3分别求xy、x+y的最值,注意取等条件;由题设有x=3-yy+1且0<y<3代入x+4y、x+2y,结合基本不等式求最值,注意取等条件.【解答过程】由x+y+xy-3≥xy+2xy-3=(xy+3)(xy-1),当且仅当x=y=1时等号成立,即(xy+3)(xy-1)≤0,又x>0,y>0,故0<xy≤1,仅当x=y=1时等号成立,所以0<xy≤1,故xy的最大值是1,A错误;由x+y+xy-3≤(x+y)24+(x+y)-3,当且仅当x=y=1时等号成立,所以(x+y)24+(x+y)-3≥0,即(x+y+6)(x+y-2)≥0,又x>0,y>0,则x+y≥2,仅当x=y=1时等号成立,故x+y的最小值是2,B正确;由x+y+xy-3=0,x>0,y>0,可得x=3-yy+1,且0<y<3,所以x +4y =3-y y +1+4y =4y 2+3y +3y +1=4(y +1)2-5(y +1)+4y +1=4(y +1)+4y +1-5≥24(y +1)⋅4y +1-5=3,当且仅当y +1=1,即y =0、x =3时等号成立,故x +4y >3,C 错误;同上,x +2y =3-y y +1+2y =2y 2+y +3y +1=2(y +1)2-3(y +1)+4y +1=2(y +1)+4y +1-3≥22(y +1)⋅4y +1-3=42-3,当且仅当y +1=2,即y =2-1、x =22-1时等号成立,故x +2y ≥42-3,D 错误;故选:B .2(2023上·江苏·高一专题练习)下列说法正确的是()A.若x >2,则函数y =x +1x -1的最小值为3B.若x >0,y >0,3x +1y =5,则5x +4y 的最小值为5C.若x >0,y >0,x +y +xy =3,则xy 的最小值为1D.若x >1,y >0,x +y =2,则1x -1+2y的最小值为3+22【解题思路】选项A :将函数变形再利用基本不等式进行判断最值即可,选项B :由基本不等式进行判断即可,选项C :结合换元法与基本不等式求最值进行判断即可,选项D :对式子进行变形得到1+yx -1+2x -1 y+2,再利用基本不等式进行判断即可.【解答过程】解:选项A :y =x +1x -1=x -1+1x -1+1≥2x -1·1x -1+1=3,当且仅当x -12=1时可以取等号,但题设条件中x >2,故函数最小值取不到3,故A 错误;选项B :若x >0,y >0,3x +1y =5,则5x +4y =153x +1y 5x +4y =1519+5x y +12y x ≥1519+25x y ·12y x=19+4155,当且仅当5xy =12y x时不等式可取等号,故B 错误;选项C :3-xy =x +y ≥2xy ⇒xy +2xy -3≤0当且仅当x =y 时取等号,令xy =t t ≥0 ,t 2+2t -3≤0,解得-3≤t ≤1,即0<xy ≤1,故xy 的最大值为1,故C 错误;选项D :x +y =2,(x -1)+y =1,1x -1+2y =1x -1+2y·x -1 +y =1+y x -1+2x -1 y+2≥3+2y x -1·2x -1y=3+22,当且仅当y =2x -2时取等号,又因为x +y =2,故x =2y =2-2 时等号成立,即1x -1+2y最小值可取到3+22,故D 正确.故选:D .3(2023上·广东中山·高三校考阶段练习)设正实数x ,y 满足x +2y =3,则下列说法错误的是()A.y x +3y 的最小值为4 B.xy 的最大值为98C.x +2y 的最大值为2D.x 2+4y 2的最小值为92【解题思路】根据基本不等式以及“1”的妙用判断各选项.【解答过程】对于A ,y x +3y =y x +x +2y y =y x +x y +2≥2yxxy+2=4,当且仅当x =y =1时取等号,故A 正确;对于B ,xy =12⋅x ⋅2y ≤12×x +2y 2 2=12×94=98,当且仅当x =2y ,即x =32,y =34时取等号,故B 正确;对于C ,(x +2y )2=x +2y +22xy ≤3+22×98=3+3=6,则x +2y ≤6,当且仅当x =2y ,即x =32,y =34时,故C 错误;对于D ,x 2+4y 2=(x +2y )2-4xy ≥9-4×98=92,当且仅当x =32,y =34时取等号,故D 正确.故选:C .【题型6 多次使用基本不等式求最值】1(2023·河南·校联考模拟预测)已知正实数a ,b ,满足a +b ≥92a +2b,则a +b 的最小值为()A.5B.52C.52D.522【解题思路】先根据基本不等式求出92a +2ba +b ≥252.然后即可根据不等式的性质得出a +b2≥92a +2ba +b ≥252,列出两个等号同时成立的条件,即可得出答案.【解答过程】由已知可得,a >0,b >0,a +b >0.因为92a+2ba+b=92+2+9b2a+2ab≥29b2a×2ab+132=6+132=252,当且仅当9b2a=2ab,即2a=3b时等号成立.所以,a+b2≥92a+2ba+b≥252,当且仅当2a=3ba+b=92a+2b,即a=322b=2时,两个等号同时成立.所以,a+b≥322+2=522.故选:D.【变式训练】1(2023·山东菏泽·统考一模)设实数x,y满足x+y=1,y>0,x≠0,则1x+2xy的最小值为()A.22-1B.22+1C.2-1D.2+1【解题思路】分为x>0与x<0,去掉绝对值后,根据“1”的代换,化简后分别根据基本不等式,即可求解得出答案.【解答过程】当x>0时,1x+2xy=x+yx+2xy=yx+2xy+1≥2yx⋅2xy+1=22+1,当且仅当yx=2xy,即x=2-1,y=2-2时等号成立,此时有最小值22+1;当x<0时,1x+2xy=x+y-x+-2xy=y-x+-2xy-1≥2y-x⋅-2xy-1=22-1.当且仅当y-x=-2xy,即x=-1-2,y=2+2时等号成立,此时有最小值22-1.所以,1x+2xy的最小值为22-1.故选:A.2(2023·河北衡水·衡水市第二中学校考模拟预测)已知实数x,y,z>0,满足xy+zx=2,则当4y+1z取得最小值时,y+z的值为()A.1B.32C.2 D.52【解题思路】两次应用基本不等式,根据两次不等式等号成立的条件列方程求解即可.【解答过程】因为实数x,y,z>0,满足xy+zx=2,所以xy +zx=2≥2xy ×z x =2yz ⇒yz ≤1,当且仅当z =yx 2时,yz =1,所以4y +1z≥24y ×1z=24yz≥241=4,当且仅当4y =1z且yz =1时,等号成立;所以当yz =1且4y =1z 时,4y +1z取得最小值4,此时解得y =2z =12 ⇒y +z =52,故选:D .3(2023上·辽宁大连·高一期末)若a >0,b >0,a +b =1,则a 2+3ab a +2b +2b +1-1b 的最大值为()A.2B.2-2C.3-2D.3-22【解题思路】由已知可得a 2+3ab a +2b +1b +1=3-2b -1b +1,进而有a 2+3ab a +2b +2b +1-1b =3-2b -1b,结合基本不等式求最大值,注意取值条件.【解答过程】由题设,a 2+3ab a +2b +1b +1=a (a +3b )+1b +1=a (2b +1)+1b +1,而a =1-b >0,b >0,所以a (2b +1)+1b +1=2+b -2b 2b +1=1+1-2b 2b +1=1+2(1-b 2)-1b +1=3-2b -1b +1,所以a 2+3ab a +2b +2b +1-1b =3-2b -1b 且0<b <1,又2b +1b≥22b ⋅1b =22,当且仅当b =22时取等号,所以a 2+3ab a +2b +2b +1-1b ≤3-22,当且仅当a =1-22,b =22时取等号,即目标式最大值为3-2 2.故选:D .【题型7 实际应用中的最值问题】1(2023上·四川眉山·高一校联考期中)如图,高新区某居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为400m 2的十字形地域.计划在正方形MNPQ 上建一座花坛,造价为8400元/m 2;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为420元/m 2;再在四个空角(图中四个三角形)上铺草坪,造价为160元/m 2.设总造价为y (单位:元),AD 长为x (单位:m ).(1)用x表示AM的长度,并求x的取值范围;(2)当x为何值时,y最小?并求出这个最小值.【解题思路】(1)由题意可得矩形AMQD的面积,即可得出AM=400-x2 4x;(2)先表示出总造价y,再由基本不等式求解即可.【解答过程】(1)由题意可得,矩形AMQD的面积为S AMQD=400-x24,因此AM=400-x24x,∵AM>0,∴0<x<20.(2)y=8400x2+420×400-x2+160×4×12×400-x24x2=8000x2+3200000x2+152000,0<x<20,由基本不等式y≥28000x2×3200000x2+152000=472000,当且仅当8000x2=3200000x2,即x=25时,等号成立,故当x=25时,总造价y最小,最小值为472000元.【变式训练】1(2023上·山东·高一校联考期中)某校地势较低,一遇到雨水天气校园内会有大量积水,不但不方便师生出行,还存在严重安全问题.为此学校决定利用原水池改建一个深3米,底面面积16平方米的长方体蓄水池.不但能解决积水问题,同时还可以利用蓄水灌溉学校植被.改建及蓄水池盖儿固定费用800元,由招标公司承担.现对水池内部地面及四周墙面铺设公开招标.甲工程队给出的报价如下:四周墙面每平方米150元,地面每平方米400元.设泳池宽为x米.2≤x≤6(1)当宽为多少时,甲工程队报价最低,并求出最低报价.(2)现有乙工程队也要参与竞标,其给出的整体报价为900a x+2x元(a>0)(整体报价中含固定费用).若无论宽为多少米,乙工程队都能竞标成功,试求a的取值范围.【解题思路】(1)根据题意,列出函数关系式,结合基本不等式代入计算,即可得到结果;(2)根据题意,列出不等式,分离参数,再结合基本不等式代入计算,即可得到结果.【解答过程】(1)设甲工程队的总造价为y 元,则y =150×2x +16x×3+400×16+800=900x +16x+7200≥900×2x ⋅16x +7200=14400当且仅当x =16x时,即x =4时等号成立.即当宽为4m 时,甲工程队的报价最低,最低为14400元.(2)由题意可得900x +16x +7200>900a x +2 x.对∀x ∈2,6 恒成立.即a <x 2+8x +16x +12令y =x 2+8x +16x +2=x +2 +4x +2+4∵2≤x ≤6,∴4≤x +2≤8.令t =x +2,t ∈4,8 ,则y =t +4t+4在4,8 上单调递增.且t =4时,y min =9.∴0<a <9.即a 的取值范围为0,9 .2(2023上·江苏苏州·高一校考阶段练习)因新冠疫情零星散发,某实验中学为了保障师生安全,同时考虑到节省费用,拟借助校门口一侧原有墙体建造一间高为4米、底面积为24平方米、背面靠墙体的长方体形状的隔离室.隔离室的正面需开一扇安全门,此门高为2米,且此门高为此门底的13.因此室的后背面靠墙,故无需建墙费用,但需粉饰.现学校面向社会公开招标,甲工程队给出的报价:正面为每平方米360元,左右两侧面为每平方米300元,已有墙体粉饰为每平方米100元,屋顶和地面以及安全门报价共计12000元.设隔离室的左右两侧面的底边长度均为x 米(1≤x ≤5).(1)记y 为甲工程队整体报价,求y 关于x 的关系式;(2)现有乙工程队也要参与此隔离室建造的竞标,其给出的整体报价为4800t (x +1)x元,问是否存在实数t ,使得无论左右两侧底边长为多少,乙工程队都能竞标成功(注:整体报价小者竞标成功),若存在,求出t 满足的条件;若不存在,请说明理由.【解题思路】(1)根据题意分别计算正面和侧面以及其它各面的费用,相加,可得答案;(2)由题意可得不等关系240184x +10x-3120>4800t (x +1)x,对任意x ∈[1,5]都成立,进而转化t <10x 2-13x +18420(x +1)恒成立,采用换元法,结合基本不等式求得答案.【解答过程】(1)由题意,隔离室的左右两侧的长度均为x米(1≤x≤5),则底面长为24x米,正面费用为3604×24x-2×6,故y=3604×24x-2×6+4×24x×100+2×300×4x+1200=240184x +10x-3120,1≤x≤5.(2)由题意知, 240184x +10x-3120>4800t(x+1)x,对任意x∈[1,5]都成立,即t<10x2-13x+18420(x+1)对任意x∈[1,5]恒成立,令k=x+1,则x=k-1,k∈[2,6],则t<10(k-1)2-13(k-1)+18420k=10k2-33k+20720k=k2+20720k-3320,而k2+20720k≥2k2⋅20720k=20710,当且仅当k=20710∈[2,6]取等号,故0<t<20710-3320,即存在实数0<t<20710-3320,无论左右两侧长为多少,乙工程队都能竞标成功.3(2023上·重庆·高一校考阶段练习)为宜传2023年杭州亚运会,某公益广告公司拟在一张面积为36000cm2的矩形海报纸(记为矩形ABCD,如图)上设计四个等高的宣传栏(栏面分别为两个等腰三角形和两个全等的直角三角形),为了美观,要求海报上所有水平方向和竖直方向的留空宽度均为10cm,设DC=xcm.(1)将四个宣传栏的总面积y表示为x的表达式,并写出x的范围;(2)为充分利用海报纸空间,应如何选择海报纸的尺寸(AD和CD分别为多少时),可使用宣传栏总面积最大?并求出此时宣传栏的最大面积.【解题思路】(1)根据题意列出总面积y表示为x的表达式即可.(2)根据(1)利用基本不等式求可使用宣传栏总面积最大时AD和CD的值.【解答过程】(1)根据题意DC=xcm,矩形海报纸面积为36000cm2,所以AD=36000xcm,又因为海报上所有水平方向和竖直方向的留空宽度均为10cm,所以四个宣传栏的总面积y =CD -5×10 AD -2×10 =x -50 36000x-20 ,其中x -50>036000x -20>0 所以x ∈50,1800 .即y =x -50 36000x-20,x ∈50,1800 .(2)由(1)知y =x -50 36000x-20 ,x ∈50,1800 ,则y =x -50 36000x -20 =37000-20x +1800000x,x ∈50,1800 20x +1800000x≥220x ×1800000x =12000,当且仅当x =300时取等号,则y =37000-20x +1800000x≤25000,当且仅当x =300时取等号,即CD =300cm ,AD =36000300=120cm 时,可使用宣传栏总面积最大为25000cm 2.【题型8 与其他知识交汇的最值问题】1(2023上·安徽·高三校联考阶段练习)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足c +b cos2A =2a cos A cos B A ≤B .(1)求A ;(2)若角A 的平分线交BC 于D 点,且AD =1,求△ABC 面积的最小值.【解题思路】(1)由已知结合正弦定理边化角即可求解;(2)表示出所求面积后运用基本不等式即可求解.【解答过程】(1)由已知和正弦定理可得:sin C +sin B cos2A =2sin A cos A cos B ,所以sin C =sin2A cos B -sin B cos2A =sin (2A -B )>0.又因为C ∈(0,π),2A -B ∈(0,π),所以C =2A -B 或者C +2A -B =π.当C =2A -B 时,A +B +2A -B =π,A =π3;当C +2A -B =π时,A =2B 与题设A ≤B 不符.综上所述,A =π3.(2)△ABC 面积S =12bc sin π3=34bc ,由AD 是角平分线,∠BAD =∠CAD =π6,因为S △ABC =S △ABD +S △ADC ,得12bc sin π3=12b sin π6+12c sin π6,即b +c =3bc ,由基本不等式3bc ≥2bc ,bc ≥43,当且仅当b=c=233时等号成立.所以面积S=34bc≥34×43=33.故△ABC面积的最小值3 3.【变式训练】1(2023上·安徽铜陵·高二校联考期中)已知圆C的圆心在坐标原点,面积为9π.(1)求圆C的方程;(2)若直线l,l 都经过点(0,2),且l⊥l ,直线l交圆C于M,N两点,直线l 交圆C于P,Q两点,求四边形PMQN面积的最大值.【解题思路】(1)根据面积解出半径,再应用圆的标准方程即可;(2)根据几何法求出弦长,再应用面积公式计算,最后应用基本不等式求最值即可.【解答过程】(1)由题可知圆C的圆心为C(0,0),半径r=3.所以圆C的方程为x2+y2=9.(2)当直线l的斜率存在且不为0时,设直线l的方程为y=kx+2,圆心到直线l的距离为d,则d=2k2+1,|MN|=232-d2=29-4k2+1,同理可得|PQ|=29-41k2+1=29-4k2k2+1,则S PMQN=12|MN|⋅|PQ|=12×29-4k2+1×29-4k2k2+1=29-4k2+19-4k2k2+1≤9-4 k2+1+9-4k2k2+1=14,当且仅当9-4k2+1=9-4k2k2+1,即k2=1时等号成立.当直线l的斜率不存在时,|MN|=6,|PQ|=232-22=25,此时S PMQN=12|MN|⋅|PQ|=12×6×25=65.当直线l的斜率为0时,根据对称性可得S PMQN=65.综上所述,四边形PMQN面积的最大值为14.2(2023上·江苏盐城·高一校考阶段练习)已知在定义域内单调的函数f x 满足f f x +12x+1-ln x=23恒成立.(1)设f x +12x+1-ln x=k,求实数k的值;(2)解不等式f7+2x>-2x2x+1+ln-ex;(3)设g x =f x -ln x,若g x ≥mg2x对于任意的x∈1,2恒成立,求实数m的取值范围.【解题思路】(1)由题意列方程求解;(2)由函数的单调性转化后求解;(3)参变分离后转化为最值问题,由换元法结合基本不等式求解.【解答过程】(1)由题意得f x =ln x-12x+1+k,f k =ln k-12k+1+k,由于y=ln k-12k+1+k在k∈0,+∞上单调递增,观察ln k-12k+1+k=23,可得k=1;(2)由于f x 在定义域内单调,所以f x +12x+1-ln x为常数,由(1)得f x =ln x-12x+1+1,f x 在x∈0,+∞上单调递增,f-x=ln-x-12-x+1+1=ln-ex-2x2x+1,故原不等式可化为f7+2x>-2x2x+1+ln-ex=f-x,由2x+7>0-x>07+2x>-x,解得-73<x<0,故原不等式的解集为-7 3 ,0;(3)g x =f x -ln x=-12x+1+1=2x2x+1>0,g x ≥mg2x可化为m≤2x2x+1⋅4x+14x=4x+14x+2x=1+-2x+14x+2x对于任意的x∈1,2恒成立,设t=-2x+1∈-3,-1,则-2x+14x+2x=t1-t2+1-t=1t+2t-3,t∈-3,-1,由基本不等式得t+2t=--t+2-t≤-22,当且仅当-t=2-t即t=-2时等号成立,故当t=-2时1t+2t-3min=22-3,故m≤22-2,当且仅当x=log22+1等号成立.实数m的取值范围为-∞,22-2.3(2023下·湖南长沙·高三长沙一中校考阶段练习)如图,在长方体ABCD-A1B1C1D1中,点P是长方形A1B1C1D1内一点,∠APC是二面角A-PD1-C的平面角.(1)证明:点P 在A 1C 1上;(2)若AB =BC ,求直线PA 与平面PCD 所成角的正弦的最大值.【解题思路】(1)由二面角定义知AP ⊥PD 1,CP ⊥PD 1,利用线面垂直的判定及性质可证PD 1⊥面APC 、PD 1⊥面ACC 1A 1,结合面APC 与面ACC 1A 1有交线,确定它们同平面,进而证结论;(2)构建空间直角坐标系,令P 12,12,k且k >0,C (1,1,0),D (0,1,0),求直线方向向量、平面法向量,应用空间向量夹角坐标表示、基本不等式求线面角正弦值的最大值,注意取值条件.【解答过程】(1)由∠APC 是二面角A -PD 1-C 的平面角,则AP ⊥PD 1,CP ⊥PD 1,又AP ∩CP =P ,AP ,CP ⊂面APC ,则PD 1⊥面APC ,又AC ⊂面APC ,即PD 1⊥AC ,由长方体性质知A 1C 1⎳AC ,故PD 1⊥A 1C 1,由长方体性质:AA 1⊥面A 1B 1C 1D 1,又PD 1⊂面A 1B 1C 1D 1,则PD 1⊥AA 1,又A 1C 1∩AA 1=A 1,A 1C 1,AA 1⊂面ACC 1A 1,故PD 1⊥面ACC 1A 1,而面APC ∩面ACC 1A 1=AC ,且PD 1⊥面APC 、PD 1⊥面ACC 1A 1,根据过AC 作与PD 1垂直的平面有且仅有一个,所以面APC 与面ACC 1A 1为同一平面,又P ∈面A 1B 1C 1D 1,面ACC 1A 1∩面A 1B 1C 1D 1=A 1C 1,所以点P 在A 1C 1上;(2)构建如下图示的空间直角坐标系A -xyz ,令AB =BC =1,AA 1=k ,由题设,长方体上下底面都为正方形,由(1)知PD 1⊥A 1C 1,则P 为A 1C 1中点,所以P 12,12,k且k >0,C (1,1,0),D (0,1,0),则AP =12,12,k ,PC =12,12,-k ,PD =-12,12,-k ,若m =(x ,y ,z )是面PCD 的一个法向量,则m ⋅PC =12x +12y -kz =0m ⋅PD =-12x +12y -kz =0,令y =2,则m =0,2,1k,所以|cos ‹AP ,m ›|=|AP ⋅m||AP ||m |=212+k 2⋅4+1k 2=23+4k 2+12k 2≤23+22=2(2-1),仅当k =422时等号成立,故直线PA 与平面PCD 所成角的正弦的最大值为2(2-1).直击真题1(2022·全国·统考高考真题)若x ,y 满足x 2+y 2-xy =1,则()A.x +y ≤1B.x +y ≥-2C.x 2+y 2≤2D.x 2+y 2≥1【解题思路】根据基本不等式或者取特值即可判断各选项的真假.【解答过程】因为ab ≤a +b 2 2≤a 2+b 22(a ,b ∈R ),由x 2+y 2-xy =1可变形为,x +y 2-1=3xy ≤3x +y 2 2,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1可变形为x 2+y 2-1=xy ≤x 2+y 22,解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确;因为x 2+y 2-xy =1变形可得x -y 2 2+34y 2=1,设x -y 2=cos θ,32y =sin θ,所以x =cos θ+1 3sinθ,y=23sinθ,因此x2+y2=cos2θ+53sin2θ+23sinθcosθ=1+13sin2θ-13cos2θ+13=43+23sin2θ-π6∈23,2,所以当x=33,y=-33时满足等式,但是x2+y2≥1不成立,所以D错误.故选:BC.2(2020·山东·统考高考真题)已知a>0,b>0,且a+b=1,则()A.a2+b2≥12B.2a-b>12C.log2a+log2b≥-2D.a+b≤2【解题思路】根据a+b=1,结合基本不等式及二次函数知识进行求解.【解答过程】对于A,a2+b2=a2+1-a2=2a2-2a+1=2a-1 22+12≥12,当且仅当a=b=12时,等号成立,故A正确;对于B,a-b=2a-1>-1,所以2a-b>2-1=12,故B正确;对于C,log2a+log2b=log2ab≤log2a+b22=log214=-2,当且仅当a=b=12时,等号成立,故C不正确;对于D,因为a+b2=1+2ab≤1+a+b=2,所以a+b≤2,当且仅当a=b=12时,等号成立,故D正确;故选:ABD.3(2020·全国·统考高考真题)设O为坐标原点,直线x=a与双曲线C:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点,若△ODE的面积为8,则C的焦距的最小值为() A.4 B.8 C.16 D.32【解题思路】因为C:x2a2-y2b2=1(a>0,b>0),可得双曲线的渐近线方程是y=±bax,与直线x=a联立方程求得D,E两点坐标,即可求得|ED|,根据△ODE的面积为8,可得ab值,根据2c=2a2+b2,结合均值不等式,即可求得答案.【解答过程】∵C:x2a2-y2b2=1(a>0,b>0)∴双曲线的渐近线方程是y=±bax∵直线x=a与双曲线C:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点不妨设D为在第一象限,E在第四象限联立{x=ay=bax,解得{x=ay=b故D(a,b)联立{x=ay=-bax,解得{x=ay=-b故E(a,-b)∴|ED|=2b∴△ODE面积为:S△ODE=12a×2b=ab=8∵双曲线C:x2a2-y2b2=1(a>0,b>0)∴其焦距为2c=2a2+b2≥22ab=216=8当且仅当a=b=22取等号∴C的焦距的最小值:8故选:B.4(2021·天津·统考高考真题)若a>0,b>0,则1a+ab2+b的最小值为22.【解题思路】两次利用基本不等式即可求出.【解答过程】∵a>0,b>0,∴1 a +ab2+b≥21a⋅ab2+b=2b+b≥22b⋅b=22,当且仅当1a=ab2且2b=b,即a=b=2时等号成立,所以1a+ab2+b的最小值为2 2.故答案为:2 2.5(2020·天津·统考高考真题)已知a>0, b>0,且ab=1,则12a+12b+8a+b的最小值为4【解题思路】根据已知条件,将所求的式子化为a+b2+8a+b,利用基本不等式即可求解.【解答过程】∵a>0,b>0,∴a+b>0,ab=1,∴12a+12b+8a+b=ab2a+ab2b+8a+b=a+b2+8a+b≥2a+b2×8a+b=4,当且仅当a+b=4时取等号,结合ab=1,解得a=2-3,b=2+3,或a=2+3,b=2-3时,等号成立.故答案为:4.6(2020·江苏·统考高考真题)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是45.【解题思路】根据题设条件可得x 2=1-y 45y 2,可得x 2+y 2=1-y 45y 2+y 2=15y 2+4y 25,利用基本不等式即可求解.【解答过程】∵5x 2y 2+y 4=1∴y ≠0且x 2=1-y 45y 2∴x 2+y 2=1-y 45y 2+y 2=15y2+4y 25≥215y 2⋅4y 25=45,当且仅当15y2=4y 25,即x 2=310,y 2=12时取等号.∴x 2+y 2的最小值为45.故答案为:45.7(2019·天津·高考真题)设x >0, y >0, x +2y =5,则(x +1)(2y +1)xy的最小值为43【解题思路】把分子展开化为2xy +6,再利用基本不等式求最值.【解答过程】∵(x +1)(2y +1)xy =2xy +x +2y +1xy,∵x >0, y >0, x +2y =5,xy >0,∴2xy +6xy ≥2⋅23xyxy =43,当且仅当xy =3,即x =3,y =1时成立,故所求的最小值为43.8(2017·江苏·高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是30.【解题思路】得到总费用为4x +600x ×6=4x +900x,再利用基本不等式求最值.【解答过程】总费用为4x +600x ×6=4x +900x≥4×2900=240,当且仅当x =900x,即x =30时等号成立.故答案为30.。

基本不等式放缩法求最值

基本不等式放缩法求最值

基本不等式放缩法求最值1. 引言在数学中,不等式是描述数值关系的一种重要工具。

解决不等式问题的一个基本目标是确定变量的取值范围,或者找到使得不等式成立的最大或最小值。

在这个过程中,基本不等式放缩法是一种常用且有效的方法,可以帮助我们求解最值问题。

2. 基本不等式放缩法的原理基本不等式放缩法通过对给定的不等式进行变形和简化,得到与原不等式等价但更易求解的新不等式。

这种方法通常涉及到以下三种基本类型:加减、乘除和代入。

2.1 加减类型对于给定的不等式f(x)≥g(x),我们可以通过在两边同时加上或减去某个数来得到一个新的不等式f(x)+c≥g(x)或者f(x)−c≥g(x),其中c是一个实数。

例如,对于不等式x2+3x≥2,我们可以将其转化为x2+3x+1≥3或者x2+3x−1≥1。

这样做可以使得不等式的右边变得更容易处理。

2.2 乘除类型对于给定的不等式f(x)≥g(x),我们可以通过在两边同时乘以或除以某个正数来得到一个新的不等式af(x)≥ag(x)或者af(x)≤ag(x),其中a是一个正实数。

例如,对于不等式1x ≥2,我们可以将其转化为1≥2x或者12≥x。

这样做可以使得不等式的左边变得更容易处理。

2.3 代入类型对于给定的不等式f(x)≥g(x),我们可以通过将某个表达式代入其中来得到一个新的不等式。

例如,如果我们知道ℎ(x)=f(x)−g(x),那么原始的不等式可以转化为ℎ(x)≥0。

这样做可以将原问题转化为求解方程的问题。

3. 基本不等式放缩法的应用基本不等式放缩法在解决最值问题时具有广泛的应用。

下面将介绍三个常见的例子,展示了如何利用基本不等式放缩法来求解最值问题。

3.1 求函数极值考虑一个函数f(x)在区间[a,b]上的最大值问题。

我们可以通过以下步骤来求解:1.求出函数的一阶导数f′(x)和二阶导数f″(x)。

2.找到函数的临界点,即满足f′(x)=0或者f′(x)不存在的点。

基本不等式求最值(解析)

基本不等式求最值(解析)

高一秋季第2讲: 基本不等式求最值题型概览一. 基本不等式1.1 应用最值定理求最值; 1.2 幂指式内隐和积互化; 1.3 最值定理对“定值”的要求.二. 十种变形技巧2.1 整体处理求最值;2.2 凑系数(乘、除变量系数); 2.3 凑项(加、减常数项); 2.4 连续使用基本不等式求最值;2.5 分离 (分子)常数法求最值问题; 2.6 1y aa b=+ 型函数的最值; 2.7 变用公式;2.8 常数代换(逆用条件).三.不能使用基本不等式的情况3.1 应用函数单调性求最值;一. 基本不等式1.1应用最值定理求最值【典例】设函数1()21(0)f x x x x=+-<,则()f x () A. 有最大值 B.有最小值 C.是增函数 D.是减函数【答案】A【解析】由0x <,得20x ->,10x ->,所以()2f x x =+111(2)1221x x x ⎡⎤⎛⎫-=--+---- ⎪⎢⎥⎝⎭⎣⎦,当且仅当2x =时等号成立,所以()f x 有最大值,故选A . 【评注】:在使用基本不等式求最值时,要坚持“一正二定三等”这三项原则,藴着不等式的最值定理"积定和最小,和定积最大”.计算最值时我们常说的利用基本不等式求最值,即使用最值定理. 变式题组【变式1】下列不等式一定成立的是() A.21lg lg (0)4x x x ⎛⎫+>> ⎪⎝⎭B.12x x+C.212||()x x x +∈RD.211()1x x >∈+R 1.【答案】 C【解析】选项 A 中,当 12x =时,214x x +=; 选项 B 中,0x >时 ,12x x + ,0x <时, 12x x +-; 选项C中, 222||1(||1)0()x x x x -+=-∈R ; 选项 D 中,211x ∈+(0,1]()x ∈. 故选 C .【变式2】两个正数的和为定值时,则可求其积的最大值,即“和定积最大" 已知,x y +∈R ,且满足134x y+=,则xy 的最大值为_________________. 2.【答案】3 【解析】,x y +∈R,123434x y x y∴+=⨯=即3xy , 当且仅当 34x y = 即 32x =,2y =时取等号,∴xy 的最大值为 3.【变式3】若两个正数的积为定值时,则可求其和的最小值,即“积定和最小" 已知函数()4(0,0)af x x x a x=+>>在3x =时取得最小值,则a =___________.3.【答案】 36 【解析】∵()424a a f x x x x x =+⋅=当且仅当 4x =ax, 即 24a x = 时取等号,由 3x =, 得 36a =.【变式4】已知12x y a a +=+,12xy b b =,则()21212a ab b +的取值范围是______.4. 【答案】(,0][4,)-∞+∞【解析】由题可知 12x y a a +=+,12xy b b =所以 ()22221212()22a a x y x y xy x yb b xy xy y x++++===++, 当 ,x y 同号时,24x yy x++, 当 ,x y 异号时,2220x y y x ++-+=,故所求的取值范围是 (,0][4,)-∞+∞.【变式5】已知三个数a ,b ,c 成等比数列,若1a b c ++=,则b 的取值范围为_______. 5.【答案】1[1,0)0,3⎛⎤- ⎥⎝⎦【解析】设等比数列的公比为q ,则有111b q q =⎛⎫++ ⎪⎝⎭,由 12q q +或 12q q+-, 可得 b 的取值范围为1[1,0)0,3⎛⎤- ⎥⎝⎦.【变式6】已知,a b 均为正实数,且1a b +=,求1y a a ⎛⎫=+ ⎪⎝⎭.1b b ⎛⎫+ ⎪⎝⎭的最小值.6.【答案】254【解析】22111b a a b y ab ab ab a bab ab ab ab +=+++=++=++2()222a b ab ab ab ab +-=+-令 t ab =, 则 10,4t ⎛⎤∈ ⎥⎝⎦,2()f t t t =+在 10,4⎛⎤⎥⎝⎦上单调递减, ∴ 当 14t =时,min min 25()24y f t =-=.1.2 幂指式内隐和积互化【典例】若221x y +=,则x y +的取值范围是()A.[0,2]B.[2,0]-C.[2,)-+∞D.(,2]-∞-【答案】D【解析】由22222x y x y +⋅=y12(2x y ⇒+-当且仅当1x y ==-时取等号).故选D . 【评注】:利用最值定理求最值,首先要在条件中找到定值.同底幂的和为定值,隐藏着其积即指数和存在最大值. 变式题组【变式1】若实数,a b 满足2a b +=,则633a +的最小值是_____________. 1.【答案】 6【解析】332336a b a b +⋅=, 当且仅当 1a b == 时取等号,故 33a b + 的最小值是 6.【变式2】若241x y +=,则2x y +的取值范围是______________. 2.【答案】 6【解析】由222x y +==,得22x y +- (当且仅当 222x y = 时取等号) .【变式3】若实数,,a b c 满足222a b a b ++=,222a b c ++=2a b c ++,求c 的是大值. 3.【答案】22log 3-【解析】 由 222222a b a b a b +=-⋅=得 12a ba b+++, 即2a b +, 所以 (*22222222a b c a b a b c a b a b c ++++++=--=-=-1) 22(21)424r c -=⋅-, 所以 324c ⋅, 解得 22log 3c - (当且.仅当 1a b == 时取等号). 故所求 c 的最大值为 22log 3-.1.3最值定理对“定值”的要求【典例】已知1x >,则21y x x =+-的最小值为_______________.【答案】1【解析】221122111y x x x x =+=-+++--,当且仅当211x x -=-即1x =时等号成立,∴21y x x =+-的最小值为1+. 变式题组【变式1】函数212(0)y x x x=+>的最小值是______________.1. 【答案】2【解析】222311112232222y x x x x x x =+=++⋅==, 当且仅当 2122x x=, 即 x = 时等号成立,所以函数的最小值是 2.【变式2】已知0x >,0y >,且191x y+=,则x y +的最小值是____________. 【答案】16 【解析】由191x y +=, 得 19()10x y x y x y ⎛⎫+=+⋅+=+ ⎪⎝⎭910216y x y x y x ++=, 当且仅当 9y x x y =, 即当 4x =,12y = 时取等号,故 x y + 的最小值为 16.【变式3】已知实数0a >,0b >,11111a b +=++,则2a b +的最小值是( )A. B. C.3D.2解析: 借助换元,“1”的代换 令1a m +=,1b n +=, 则1m >,1n >,且111m n+=,则()()212123a b m n m n +=-+-=+-,又()112221233n m m n m n m n m n ⎛⎫+=+⋅+=+++≥+=+⎪⎝⎭所以22333a b m n +=+-≥+-=当且仅当2n m m n =,即1m =,12n =+时,取到最小值B.【变式4】已知,a b 为正实数,且2a b +=,则22221a b a b ++-+的最小值为 . 解析1:22222112121221211111a b b a a b a b a b a b a b +-++-=++-=++-+-=+-++++ 2(1)2(1)121111(1)()1(21)1()3131313b b a a a b a b a b a b ++=+++-=+++-=+≥⋅+++当且仅当2(1)1b a a b +=+,即1)a b =+,即64a b =-=时等号成立.【变式5】若正数,a b 满足1a b +=,则11a ba b +++的最大值是_____ 解析:(分母换元+常数替换):令1,1x a y b =+=+,则3x y +=(1,1x y >>)1111211a b x y a b x y x y ⎛⎫--∴+=+=-+ ⎪++⎝⎭,而()11111142333y x x y x y x y x y ⎛⎫⎛⎫+=+⋅+=++≥ ⎪ ⎪⎝⎭⎝⎭ 1122113a b a b x y ⎛⎫∴+=-+≤ ⎪++⎝⎭,则11a b a b +++的最大值是23.二. 十种变形技巧2.1整体处理求最值【典例】若实数,a b 满足12a b+=则ab 的最小值等于()A B.2C. D.4【答案】C【解析】12a b =+≥,当且仅当2b a =时取等号,整理得22ab .故选C . 【评注】:遇到求a b +,ab 的最值,一般可以对题设条件直接使用基本不等式,获得关于,a b ab +的不等式,进而化简变形,即可顺利获解.变式题组【变式1】利用基本不等式将条件式转化为关于目标式的不等式若正实数,x y 满足++=26x y xy ,则xy 的最小值是 ,则+x y 的最小值是 【答案】18【解析】26226xy x y xy =+++, 则 2--60, 解得2xy - (舍去)或32xy , 从而18xy (当且仅当 3x = ,6y =时取等号).【变式2】已知>>++=0,0,228x y x y xy 则+2x y 的最小值是 【答案】4【解析】2228(2)82x y x y x y +⎛⎫+=-⋅- ⎪⎝⎭, 得 2(2)x y ++4(2)320x y +-, 即 24x y +( 当且仅当 2x y = 时取等号).【变式3】已知实数,x y 满足3xy x y -=+,且1x >则(8)y x +的最小值是()A.33B.26C.25D.21 解析1: 转化为单变量问题3xy x y-=+31x y x +∴=- 336(8)(8)1132511x y x x x x x +∴+=⋅+=-++≥-- 解析2:因式分解3(1)(1)4xy x y x y -=+∴--=,令41,1x t y t -=-=4(1)(9)25t t∴++≥【变式4】由+=±222()2x y x y xy 的关系结合基本不等式转化若实数,x y 满足++=221x y xy ,则+x y 的最大值是【答案】【解析】 由 2()1x y xy +=+ 得 22()12x y x y +⎛⎫++ ⎪⎝⎭, 则233x y +( 当且仅当 x y == 时取等号).2.2 凑系数(乘、除变量系数)【典例】设<<302x ,则函数=-4(32)y x x 的最大值是【答案】92【解析】2232922(32)222x x y x x +-⎛⎫=⋅-= ⎪⎝⎭, 当且仅当232x x =-, 即 34x = 时等号成立. 所以函数的最大值是92. 变式题组【变式1】已已知<<103x ,则-(13)x x 取得最大值时x 的值是【答案】16【解析】 211313(13)3(13)332x x x x x x +-⎛⎫-=⋅-⋅= ⎪⎝⎭112, 当且仅当 313x x =- 即 16x = 时取等号. 故 (13)x x - 取得最大值时 x 的值是16.【变式2】配凑系数,活用不等式+222a b ab设+=220,0,12y x y x ,则的最大值为【答案】4【解析】2221222y x ++=⋅=2212224y x ++=, 当且仅当 x =,y = 取等 号, 故的最大值为【变式3】设>0x ,则3(1)x x -的最大值为 【解析】【变式4】设>,,0x y z ,则+++222xy yzx y z 的最大值为【答案】2【解析】因为2222x y y +⋅2222z y y +⋅所以222y y x y z ⋅+⋅≤++,所 以222xy yz x y z +=++.22222212xy z x y z++⋅=++,当且仅y ==时等号成立,故222xy yz x y z +++的最大值为2.2.3 凑项(加、减常数项)【典例】已知<54x ,求函数=-+-1()4245f x x x 的最大值.解:由->540x ,得⎡⎤=--++⎢⎥-⎣⎦1()(54)354f x x x -+=231,当且仅当=1x 时等号成立,故函数()f x 的最大值为5.评注:求解本题需要关注两点:一是对已知条件的适当变形,由<54x 得到->540x ;二是对目标函数解析式的适当变形,以便活用结论“若<0x,则⎡⎤⎛⎫+=--+- ⎪⎢⎥⎝⎭⎣⎦11()x x x x -=-2”.变式题组【变式1】若函数=+>-1()(2)2f x x x x 在=x n 处取得最小值,则=n 【解析】因为 11()(2)2422f x x x x x =+=-++--, 当且仅当1202x x -=>-, 即 3x = 时等号成立, 即函数在 3x = 处取得最小 值, 故 3n =.【变式2】函数⎛⎫-+=> ⎪-⎝⎭2211212x x y x x 的最小值是12【解析】221(21)11212121x x x x y x x x x -+-+===+=---111(21)2212x x -++-, 又因为 111(21)22212x x -+=- 当且仅当x 取等号 ), 所以函数的最小值是12.2.4连续使用基本不等式求最值 【典例】若>>0a b ,求+-216()a b a b 的最小值为【解析】++=+-⎡⎤+-⎢⎥⎣⎦2222216166416()()2a a a b a b a b a b (当且仅当=-b a b 且=8a a,即==2a b 时等号成立),故+-216()a b a b 的最小值为16.评注:此处第一次运用基本不等式,实质也是化二元为一元的消元过程.连续多次使用基本不等式求最值时,要注意等号成立的条件是否一致,否则就会出错。

2.2.2 利用基本不等式解决最值问题【课时教学设计】-高中数学人教A版必修第一册

2.2.2 利用基本不等式解决最值问题【课时教学设计】-高中数学人教A版必修第一册

2.2 基本不等式第2课时 利用基本不等式解决最值问题(一)教学内容:基本不等式的应用(简单的数学情境和实际情境)(二)教学目标1.通过数学情境中的应用,能够利用基本不等式求简单的最值问题,发展数学运算、数据分析等核心素养.2.通过实际情境中的应用,能求解一些简单最优化问题,解决实际问题中的最值,发展学生的数学建模、逻辑推理等核心素养。

(三)教学重点及难点1. 重点:运用基本不等式解决简单的最值问题.2. 难点:对实际问题的分析建模和使用基本不等式的结构观察。

.(四)教学过程设计1.复习回顾,铺垫引入师:根据上一节课的知识,回顾一下基本不等式的内容是什么?它有何作用?如何利用基本不等式求最值?需要注意什么?生:已知x ,y 都是正数,则①如果积xy 等于定值P(积为定值),那么当x =y 时,和x +y 有最小值2P. ②如果和x +y 等于定值S(和为定值),那么当x =y 时,积xy 有最大值14S 2. 利用基本不等式可以求最值,验证等号成立是求最值的必要条件,即运用“一正、二定、三相等”的方法可以解决最值问题.【设计意图】回顾上节课所学知识,对基本不等式的形式加强记忆以及熟悉其使用条件.例1:;24,21的最小值求)设(++->x x x(2)已知10<<x ,求()x x 31-的最大值及相应的x 值。

(1)师:大家观察结构,我们应该如何求这个和的最小值?生:可以式子先变形,2242-+++x x ,变成两个正数的和,再通过两个正数的积是定值来求解。

学生板演. (2)师:我们再来看这题,应该如何求它的最大值?生:式子乘以3再来变形,31)31(3⨯-x x ,变成两个正数的和是定值从而得到解决。

师追问:还有别的解法吗?生:这个式子其实是二次函数,可以利用配方法求解。

【设计意图】培养学生转化化归的数学思想,把不熟悉的问题向熟悉的问题转化.2.合作学习,建模探究例2:(1)用篱笆围一个面积为1002m 的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为36 m 的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?师:第(1)题已知什么条件,我们求什么?生:已知矩形的面积,求周长的最小值(教师在黑板上画图)师:如果设矩形菜园相邻两条边的长分别为x m, y m (在图上标出),则周长为2(x+y) m,那如何求周长的最小值?生:用基本不等式求最值。

高一数学复习知识讲解课件15 基本不等式(第2课时)

高一数学复习知识讲解课件15 基本不等式(第2课时)

2.2基本不等高一数学复习知本不等式(第2课时)
复习知识讲解课件
探究1 利用基本不等式求最值的关键条件和欲求的式子,运用适当的“拆项、基本不等式的条件,具体可以归纳为:一不向;二不定,应凑出定和或定积;三不等数的单调性.
的关键是获得定值条件.解题时应对照已知、添项、配凑、变形”等方法创设使用一不正,用其相反数,改变不等号方不等,一般需用其他方法,如尝试利用函
探究2 (1)拼凑法的实质在于代数式的利用拼凑法求解最值应注意以下几个方面的①拼凑的技巧,以整式为基础,注意利整,做到等价变形.
②代数式的变形以拼凑出和或积的定值③拆项、添项应注意检验利用基本不等(2)常数代换法求最值的方法步骤: 常数代换法适用于求解条件最值问题为:
数式的灵活变形,拼系数、凑常数是关键,方面的问题:
注意利用系数的变化以及等式中常数的调的定值为目标. 本不等式的前提.
问题.应用此种方法求解最值的基本步骤
①根据已知条件或其变形确定定值②把确定的定值(常数)变形为1.
③把“1”的表达式与所求最值的表达式式.
④利用基本不等式求解最值.
(3)对含有多个变量的条件最值问题,尝试减少变量的个数,即用其中一个变量表只含有一个变量的最值问题.
(常数). 表达式相乘或相除,进而构造和或积的形,若无法直接利用基本不等式求解,可变量表示另一个,再代入代数式中转化为

后 巩 固
自 助 餐。

2.2基本不等式(二)

2.2基本不等式(二)

例4 某工厂要建造一个长方体无盖贮水池,其容积为4800 m3, 深为3m,如果池底每1 m2的造价为150元,池壁每1m2的造价为 120元,问怎样设计水池能使总造价最低?最低总造价是多少元?
解:设水池底面一边的长度为x m, 的总造价为y元,根据题意,得
则水池的宽为1600
x
m
,水池
y 150 4800 120(23x 23 1600)
(2)一段长为36 m的篱笆围成一个一边靠墙的矩形菜园, 问这个矩形的长、宽各为多少时,菜园的面积最大.最大面 积是多少?
例3 (1)用篱笆围成一个面积为100 m2的矩形菜园,问这 个矩形的长、宽各为多少时,所用篱笆最短.最短的篱笆长 是多少?
解: (1)设矩形菜园的长为x m,宽为y m,则xy=100,篱 笆的长为2(x+y) m.
小结
本节课我们用两个正数的算术平均数与几何平均数的 关系顺利解决了函数的一些最值问题。
在用基本不等式求函数的最值,是值得重视的一种方 法,但在具体求解时,应注意考查下列三个条件:
(1)函数的解析式中,各项均为正数;
(2)函数的解析式中,含变数的各项的和或积必须有一个为 定值;
(3)函数的解析式中,含变数的各项均相等,取得最值即用 均值不等式求某些函数的最值时,应具备三个条件:一正 二定三取等。
解: 设矩形菜园的长为x m,宽为ym,则2 (x+y)=36,
其中x+y=18,矩形的面积为xy m. 2
由 xy x y 18 9, 22
可得xy 81,
当且仅当x y 9时,等号成立.
题后反思:通 过这道例题的 学习,你有什 么收获?
即菜园长、宽都为9m时,菜园面积最大,最大面 积为81 m2.

2.2 基本不等式(精讲)(解析版)

2.2 基本不等式(精讲)(解析版)

x

y
满足
1 y
3 x
5
,则
3x
4
y
的最小值
是( )
24
A.
5
【答案】C
28
B.
5
C.5
D.25
【解析】 正数 x , y 满足 1 3 5 ,则 yx
3x
4y
1 5
(3x
4 y)(
1 y
3) x
1 5
13
3x y
12 y x
1 5
13
3
2
x y
4y x
5
,当且仅当
x
2
y
1
时取等
号.3x 4 y 的最小值是 5.故选:C.
思维导图
2.2 基本不等式
常见考法
考点一 公式的直接运用
【例 1】(1)(2020·全国高一课时练习)若 0 a 1 ,则 a 1 2a 的最大值是
2
1
A.
8
1
B.
4
1
C.
2
D.1
(2)(2020·全国高一课时练习)已知
x
1 ,求函数
y
x
1
的最小值是
x 1
A.4
B.3
C.2
D.1
() ()
【答案】(1)A(2)D
C
2.(2020·上海高一开学考试)已知 x 2 ,函数 y
x
4
2
x
的最小值是(

A.5
B.4
C.8
D.6
【答案】D
【解析】因为该函数的单调性较难求,所以可以考虑用不等式来求最小值,

2.2 基本不等式(重难点突破)解析版 2023-2024学年高一数学重难点突破

2.2 基本不等式(重难点突破)解析版 2023-2024学年高一数学重难点突破

2.2 基本不等式【基本不等式(或)均值不等式】知识点一:基本不等式1.对公式222a b ab +≥及2a b+≥的理解.(1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;(2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”.2a b+≤的证明方法一:几何面积法如图,在正方形ABCD 中有四个全等的直角三角形.方法二:代数法∵2222()0a b ab a b +-=-≥,当a b ≠时,2()0a b ->;当a b =时,2()0a b -=.所以22()2a b ab +≥,(当且仅当a b =时取等号“=”).2a b+≤的几何意义如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD .易证~Rt ACD Rt DCB ∆∆,那么2CD CA CB =⋅,即CD =.这个圆的半径为2a b +,它大于或等于CD ,即2a b+≥其中当且仅当点C 与圆心重合,即a b =时,等号成立.知识点诠释:在数学中,我们称2a b+为,a b 的算术平均数,称,a b 的几何平均数. 因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.2a b+≤求最大(小)值在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等.① 一正:函数的解析式中,各项均为正数;② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值;③ 三取等:函数的解析式中,含变数的各项均相等,取得最值.【基本不等式的变形与拓展】1.(1)若R b a ∈,,则ab b a 222≥+;(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”).2.(1)若00a ,b >>,则ab ba ≥+2;(2)若00a ,b >>,则ab b a 2≥+(当且仅当b a =时取“=”);(3)若00a ,b >>,则22⎪⎭⎫⎝⎛+≤b a ab (当且仅当b a =时取“=”).3.若0x >,则12x x +≥(当且仅当1x =时取“=”);若0x <,则12x x+≤-(当且仅当1x =-时取“=”);若0x ≠,则12x x+≥,即12x x +≥或12x x +≤-(当且仅当b a =时取“=”).4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”);若0ab ≠,则2a b b a +≥,即2a b b a +≥或2a bb a +≤-(当且仅当b a =时取“=”).5.一个重要的不等式链:2112a b a b+≤≤≤+.6.函数()()0,0bf x ax a b x=+>>图象及性质(1)函数()0)(>+=b a xbax x f 、图象如右图所示:(2)函数()0)(>+=b a xbax x f 、性质:①值域:(),⎡-∞-+∞⎣;②单调递增区间:,,⎛⎫-∞+∞ ⎪ ⎪⎝⎭;单调递减区间:0,,0⎛⎡⎫- ⎪⎢ ⎪⎝⎣⎭.7.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”;(2)求最值的条件“一正,二定,三相等”;(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.重难点突破(一) 基本不等式的简单应用重难点突破(二) 利用基本不等式求最值例2.(1)、(2022·陕西·榆林市第十中学高一期末)函数()4111y x x x =++>-+的最小值为______.【答案】4【解析】【分析】利用基本不等式直接求解即可【详解】因为1x >-,所以10x +>,所以4141y x x =++≥=+,当且仅当411x x +=+,即1x =时取等号,所以()4111y x x x =++>-+的最小值为4,故答案为:4【变式训练2-2】.(2023·山东烟台·统考三模)(多选题)已知0,0a b >>且42a b +=,则( )【变式训练3-1】、(2022·四川资阳·高一期末)已知正实数x ,y 满足111x y +=,则4x y +最小值为______.【答案】9【解析】【分析】利用基本不等式的性质直接求解即可.【详解】正数x ,y 满足:111x y+=,∴()11444559y x x y x y x y x y ⎛⎫+=+⋅+=++≥+= ⎪⎝⎭,当且仅当4y x x y =,即2x y =,233x y ==,时 “=”成立,故答案为:9.重难点突破(四) 不等式的证明技巧与综合处理技巧重难点突破(五) 均值不等式在实际问题中的应用【答案】()800f x ⎛=⨯ ⎝价为36000元.重难点突破(六) 挑战满分(压轴题)【点睛】本题考查了“乘1法”与基本不等式的性质的应用,同时考查转化思想和计算能力.。

2.2 基本不等式 -(必修第一册) (教师版)

2.2 基本不等式 -(必修第一册) (教师版)

基本不等式1 基本不等式若a>0 ,b>0,则a+b≥2√ab(当且仅当a=b时,等号成立).①a+b2叫做正数a ,b的算术平均数,√ab叫做正数a ,b的几何平均数.②基本不等式的几何证明(当点D、O重合,即a=b时,取到等号)③运用基本不等式求解最值时,牢记:一正,二定,三等.一正指的是a>0 ,b>0;二定指的是ab是个定值,三等指的是不等式中取到等号.2 基本不等式及其变形21 a+1b≤√ab≤a+b2≤√a2+b22(当且仅当a=b时等号成立) (调和均值≤几何均值≤算术均值≤平方均值)以上不等式把常见的二元关系(倒数和,乘积,和,平方和)联系起来,我们要清楚它们在求最值中的作用.①a+b≥2√ab,积定求和;②ab≤(a+b2)2,和定求积:③a2+b2≥(a+b)22(联系了a+b与平方和a2+b2)④ab≤a 2+b22(联系了ab与平方和a2+b2)3 对勾函数①概念形如y=x+ax (a>0)的函数.②图像③性质函数图像关于原点对称,在第一象限中,当0<x<√a时,函数递减,当x>√a时,函数递增.④与基本不等式的关系由图很明显得知当x>0时,x=√a时取到最小值y min=2√a,其与基本不等式x+ax ≥2√x∙ax=2√a (x=√a时取到最小值)是一致的.【题型一】对基本不等式“一正,二定,三等”的理解情况1 一正:a>0 ,b>0求函数y=x+1x(x<0)的最值.【误解】x+1x ≥2√x∙1x=2,故最小值是2.【误解分析】误解中套用基本不等式,a=x ,b=1x,当忽略了a>0,b>0的前提条件!【正解】∵x<0∴−x>0 ,−1x>0,∴−x+(−1x )≥2√−x∙(−1x)=2(当x=−1取到等号)∴x+1x =−(−x−1x)≤−2,故函数y=x+1x(x<0)的最大值为−2,没有最小值.情况2二定:ab定值求函数y=x+1x−1(x>1)的最值.【误解】y=x+1x−1≥2√x∙1x−1【误解分析】套用基本不等式a=x ,b=1x−1,满足a、b均为正数,但是最后求不出最值,因为ab=x∙1x−1不是一定值.【正解】y=x+1x−1=x−1+1x−1+1≥2√(x−1)∙1x−1+1=3.(当x=2时取到等号)(通过凑项得到定值“(x−1)∙1x−1=1”)故函数y=x+1x−1(x>1)的最小值为2,没有最大值.情况3 三等:取到等号求函数y=2√x2+4的最值.【误解】y=2√x2+4=2√x2+4=√x2+4√x2+4≥2√√x2+4√x2+4=2,即最小值为2.【误解分析】在误解中把a=√x2+4 ,b=√x2+4,满足了“一正二定”,但忽略了能否取到等号?若a=b,则√x2+4=√x2+4⇒√x2+4=1⇒x2=−3显然方程无解,即不等式取不到等号,只能说明√x2+4+√x2+4>2,那它有最小值么?【正解】y=2√x2+4=2√x2+4=√x2+4√x2+4,令t=√x2+4,则t≥2,因为对勾函数y=t+1t 在[2 ,+∞)上单调递增,当t=2时,取得最小值52.故y=2√x2+4的最小值为52,无最大值.【题型二】基本不等式运用的常见方法方法1 直接法【典题1】设x>0、y>0、z>0,则三个数1x +4y、1y+4z、1z+4x ()A.都大于4B.至少有一个大于4 C.至少有一个不小于4D.至少有一个不大于4【解析】假设三个数1x +4y<4且1y+4z<4且1z+4x<4,相加得:1x +4x+1y+4y+1z+4z<12,由基本不等式得:1x +4x≥4;1y+4y≥4;1z+4z≥4;(直接使用基本不等式)相加得:1x +4x+1y+4y+1z+4z≥12,与假设矛盾;所以假设不成立,三个数1x +4y、1y+4z、1z+4x至少有一个不小于4.故选:C.【点拨】本题利用了反证法求解,当遇到“至少”“至多”等的字眼可考虑反证法:先假设,再推导得到矛盾从而证明假设不成立.【典题2】设x>0,y>0,下列不等式中等号能成立的有()①(x+1x )(y+1y)≥4;②(x+y)(1x+1y)≥4;③2√x2+5≥4;④x+y√xy≥4;A.1个B.2个C.3个D.4个【解析】∵x>0,y>0,∴x+1x ≥2,y+1y≥2,当x=y=1时取到"=",所以①成立,(x+y)(1x +1y)=2+xy+yx≥4,当x=y时取到"=",显然②成立,2√x2+5=√x2+5√x2+5,运用基本不等式不能取等号,此时x2+5=4,显然不成立,x+y+√xy ≥2√xy√xy≥4,当x=y=1时成立,故正确的有三个,故选:C.【点拨】①直接使用基本不等式求解最值时,一是要做到“一正二定三等”,二是要选择适当的式子充当"a ,b".② 连等问题 本题中④ x +y +√xy≥2√xy √xy≥4,当x =y =1时成立,这里连续用到基本不等式,这要注意连等问题,即要确定两个等号是否能同时取到, x +y ≥2√xy 是当x =y 时取到等号,2√xy +√xy≥4是当xy =1时取到等号,即要同时满足方程组{x =yxy =1 (∗)才行,而方程组(∗)有解x =y =1, 即x +y √xy≥4是成立的,当x =y =1取到等号.再看一例子:设x,y ∈R ∗,x +y =1,求(x +1x )(y +1y )的最小值. 误解1:∵x +1x ≥2 ,y +1y ≥2,∴(x +1x )(y +1y )≥4.误解2:∵(x +1x )(y +1y )=xy +1xy +x y +y x ≥2√xy ∙1xy +2√x y ∙yx =4.以上两种解法问题在哪里呢?【典题3】已知实数a ,b 满足ab >0,则a a+b −aa+2b 的最大值为 . 【解析】a a+b −aa+2b =a (a+2b−a−b )(a+b )(a+2b )=ab a 2+3ab+2b 2=1ab +2b a+3 (分子、分母均为二次项同除ab )∵ab >0 ∴a b +2b a≥2√2,当且仅当ab =2b a⇒a =√2b 时取等号,∴1ab +2ba+3≤2√2+3=3−2√2,故最大值为3−2√2.【点拨】要用基本不等式的直接法求解需要寻找“乘积为定值的两个式子”,比如x 与1x ,ab 与2b a,2√xy 与√xy之类的.方法2 凑项法【典题1】若x >1,则函数y =4x +1x−1的最小值为 .【解析】y =4x +1x−1=4(x −1)+1x−1+4≥2√4+4=8,当且仅当x =32时取等号. ∴函数y =4x +1x−1的最小值为8.【点拨】把4x 凑项成4(x −1),目的是使得4(x −1)与1x−1的乘积为定值.【典题2】若x >1,则2x +9x+1+1x−1的最小值是 .分析:2x 、9x+1、1x−1三项都不能乘积为定值,而与9x+1、1x−1乘积为定值的分别是x +1与 x −1,而它们的和刚好是2x ,故想到令2x =(x +1)+(x −1),完成凑项. 【解析】2x +9x+1+1x−1=x +1+9x+1+x −1+1x−1≥2√(x +1)⋅9(x+1)+2√(x −1)⋅(1x−1)=8当且仅当x +1=3,x -1=1,即x =2时取等号, (用了两次基本不等式,要注意是否能同时取到等号) 故2x +9x+1+1x−1的最小值是8.【典题3】设a >b >0,则ab +4b2+1b(a−b)的最小值是 .【解析】∵a >b >0 ∴a −b >0; ∴ab +4b2+1b (a−b )=ab −b 2+1b(a−b)+b 2+4b2(这里巧妙地"−b 2+b 2"完成凑项)=[b (a −b )+1b (a−b )]+[b 2+4b2]≥2√b(a −b)×1b(a−b)+2√b 2×4b2=2+4=6.当且即当b(a −b)=1b(a−b)且b 2=4b2,即a =3√22,b =√2 时取等号, ∴ab +4b2+1b(a−b)的最小值为6.【点拨】凑项的目的是使得“ab 为定值”,它需要一定的技巧!本题观察到4b 2、1b(a−b)的分母之和b 2+b (a −b )=ab ,刚好是所求式子的第三项ab .方法3 凑系数【典题1】若0<a <12,则a(1−2a)的最大值是 . 【解析】∵0<a <12,∴a >0且1−2a >0, 则a (1−2a )=2a (1−2a )2≤12(2a+1−2a 2)2=18,当且仅当2a =1−2a ,即a =14时等号成立,即a(1−2a)的最大值为18. 【点拨】基本不等式的变形ab ≤(a+b 2)2,和定求积(若a +b 为定值,可求ab 的最值).本题中a +(1−2a )不是定值,故通过凑系数,使得2a +(1−2a )=1为定值从而求出最值. 本题仅是二次函数最值问题,这里重在体会下“和定求积”.【典题2】已知a ,b 为正数,4a 2+b 2=7,则a√1+b 2的最大值为 . 【解析】因为4a 2+b 2=7, 则a√1+b 2=12(2a )√1+b 2≤12×(2a)2+(√1+b 2)22=12×4a 2+1+b 22=2,(这里用到了不等式ab ≤a 2+b 22,遇到二次根式可利用平方去掉根号)当且仅当4a2=1+b2时,取得最大值.【点拨】①不等式ab≤a 2+b22把ab,a2+b2两者联系在一起,知和a2+b2为定值,可求积ab的最值.②平时做题要多注意常见二元关系:倒数和、积、和、平方和,能够灵活使用以下不等式能够达到快速解题的效果.21 a+1b≤√ab≤a+b2≤√a2+b22(当且仅当a=b时等号成立)方法4 巧“1”法【典题1】已知x>0,y>0,x+y=2,则√x+√y的最大值是.【解析】∵x+1≥2√x ,y+1≥2√y(当x=y=1时取到等号)(加“1” 巧妙的把x与√x,y与√y联系起来)相加得x+y+2≥2√x+2√y即2(√x+√y)≤4⇒√x+√y≤2,故最大值为2.【典题2】已知x>0,y>0,且2x +1y=2,则x+2y的最小值是.【解析】∵2x +1y=2∴12(2x+1y)=1x+2y=(x+2y)∙1=12(x+2y)(2x+1y)=12(2+xy+4yx+2)≥12(4+2√xy⋅4yx)=4,当且仅当xy =4yx时,即x=2,y=1时等号成立,故 x+2y的最小值为4.【点拨】本题的方法很多,比如消元法、换元法等,但属巧"1"法最简洁了!【典题3】设a>2,b>0,若a+b=3,则1a−2+1b的最小值为.【解析】若a+b=3,则(a−2)+b=1,(凑项再利用巧"1"法)则1a−2+1b=(1a−2+1b)×[(a-2)+b]=2+(ba−2+a−2b),又由a>2 ,b>0,则ba−2+a−2b≥2√ba−2∙a−2b=2,当a=52,b=12时取到等号,则1a−2+1b=2+(ba−2+a−2b)≥4,即1a−2+1b的最小值为4.方法5 换元法【典题1】若x>1,则y=x−1x2+x−1的最大值为.【解析】令t =x −1,则x =t +1,t >0, 原式=t(t+1)2+(t+1)−1=t t 2+3t+1=1t+1t +3≤√t⋅1t+3=15,当且仅当t =1即x =2时等号成立. 故y =x−1x 2+x−1的最大值为15.【点拨】本题是属于求函数y =a 1x 2+b 1x+c 1a 2x 2+b 2x+c 2的最值问题,它常用到基本不等式或对勾函数,换元法是常见手段.【典题1】若a,b ∈R ∗,a +b =1,则√a +12+√b +12的最大值 .【解析】设s =√a +12,t =√b +12,(遇到二次根式,用换元法达到去掉根号的目的)则a =s 2−12 ,b =t 2−12, ∵a +b =1 ∴s 2+t 2=2(这相当已知s 2+t 2=2求s +t 的最大值,想到算术均值≤平方和均值a+b 2≤√a 2+b 22)∴s+t 2≤√s 2+t 22=1⇒s +t ≤2即√a +12+√b +12≤2,故最大值为2. 【点拨】① 本题本来是“已知a +b =1求√a +12+√b +12的最大值 (1)”,通过换元法后变成“已知s 2+t 2=2求s +t 的最大值 (2)”.显然问题(2)比问题(1)看起来更舒服些,故换元法就能把问题的表示形式转化为令人“顺眼”些.你说√a+12+√b+122≤√(√a+12)2+(√b+12)22=√a+12+b+122=1⇒√a +12+√b +12≤2不更简洁?是的,它们的解法本质是一样的,换元法本质是“整体思想”.用上换元法更容易找到解答思路. ② 本题还有其他的解法,可多思考体会下数学思维的魅力!【典题2】设a 、b 是正实数,且a +2b =2,则a 2a+1+4b 22b+1的最小值是 .【解析】令a +1=s ,2b +1=t ,则a =s −1,2b =t −1; 由题意得s ,t 为正实数,且s −1+t −1=2⇒s +t =4; ∴a 2a+1+4b 22b+1=(s−1)2s+(t−1)2t=s +t −4+1s +1t =1s +1t(以上纯是运算,没太大难度,作到这就相当于“已知s +t =4,求1s +1t 最小值”,较易想到巧“1”法)=14(1s+1t)(s +t)=14(2+ts+st)≥14(2+2√t s⋅st)=1.当且仅当s =t =2即a =1 ,b =12取到等号,即a 2a+1+4b 22b+1的最小值是1.【点拨】本题再次让你体验到换元法能把问题转化为更简单的形式,本题是分母“换元”,“宁愿分子复杂些,也想分母简单些”就这么朴素的想法!方法6 不等式法【典题1】已知a ,b ∈(0,+∞),且1+2ab=9a+b,则a +b 的取值范围是 .分析:1+2ab=9a+b相当是“关于ab 与a +b 的方程”,而由基本不等式a +b ≥2√ab 又确定了“关于ab 与a +b 的不等关系”,那用“消元思想”不就得到a +b 的不等式么?!其范围就有了! 【解析】∵a ,b ∈(0,+∞),∴a +b ≥2√ab (∗), 由1+2ab=9a+b得ab =2(a+b)9−(a+b)代入不等式(∗)可得a +b ≥2√2(a+b )9−(a+b ), 整理可得,(a +b )2-9(a +b)+8≤0, 解得1≤a +b ≤8.【典题2】 已知2a +b +2ab =3,a >0,b >0,则2a +b 的取值范围是 . 【解析】∵a >0,b >0,∴0<2ab ≤(2a+b)24(这要确定2ab 与2a +b 的关系,想法与上题相似,利用2ab 与2a +b 的等式关系与不等关系最终得到关于2a +b 的不等式) 而3−(2a +b)=2ab ∴0<3−(2a +b)≤(2a+b)24,解得2≤2a +b <3,∴2a +b 的取值范围是[2,3). 巩固练习1 (★★) 已知a +b +c =2,则ab +bc +ca 与2的比较 . 【答案】 ab +bc +ca <2 【解析】已知a +b +c =2,因为(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca =4,且a 2+b 2+c 2≥ab +bc +ca , 所以3(ab +bc +ca)≤4, 解得ab +bc +ca ≤43,所以ab +bc +ca 的值小于2.2 (★★) 已知x ,y ∈R +,若x +y +xy =8,则xy 的最大值为 . 【答案】 2【解析】∵正数x ,y 满足x +y +xy =8,∴8-xy =x +y ≥2√xy ,xy +2√xy −8≤0, 解得0<√xy ≤2,故xy ≤4,当且仅当x =y =2时取等号. ∴xy 的最大值为43 (★★) 若x ,y ∈R +,且3x+1y =5,则3x +4y 的最小值是 .【答案】5【解析】∵x ,y ∈R ∗,且3x+1y =5,∴3x +4y =15(3x +4y )(3x +1y )=15(9+4+3x y+12y x)=135+35(x y +4y x)≥135+35⋅2√x y⋅4y x=5,当且仅当xy =4yx,3x +1y =5即x =1,y =12时等号成立, 4 (★★) 函数y =x 2+x−5x−2(x >2)的最小值为 .【答案】 7【解析】令x -2=t ,t >0; y =f(x)=x 2+x−5x−2=(t+2)2+t+2−5t=t 2+5t+1t=t +1t +5≥7(当且仅当t =1,即x =3时,等号成立), 故函数f(x)=x 2+x−5x−2,x ∈(2,+∞)的最小值为7,5(★★) 已知实数a 、b ,ab >0,则aba 2+b 2+a 2b 2+4的最大值为 . 【答案】 16【解析】由于a 2+b 2≥2ab >0, 所以ab a 2+b 2+a 2b 2+4≤ab 2ab+a 2b 2+4,故:ab 2ab+a 2b 2+4=12+ab+4ab≤2+2√ab⋅4ab=16,(当且仅当a =b 时,等号成立).6 (★★) [多选题]下列说法正确的是( ) A .x +1x (x >0)的最小值是2 B 2√x 2+2的最小值是√2C 2√x 2+4的最小值是2 D .2−3x −4x 的最大值是2−4√3【答案】 AB【解析】由基本不等式可知,x >0时,x +1x≥2,当且仅当x =1x即x =1时取等号,故A 正确; B :2√x 2+2=√x 2+2≥√2,当x =0时取得等号,故B 正确; C :2√x 2+4=√x 2+4+√x 2+4,令t =√x 2+4,则t ≥2,因为y =t +1t在[2,+∞)上单调递增,当t =2时,取得最小值52,故C 错误; D :2−(3x +4x )在x <0时,没有最大值,故D 错误. 故选:AB .7 (★★★) [多选题]设a >0,b >0,且a +2b =4,则下列结论正确的是( ) A .1a +1b 的最小值为√2 B .2a +1b 的最小值为2C .1a +2b 的最小值为94 D .ba+1+ab+1>87恒成立【答案】 BC【解析】因为a >0,b >0,且a +2b =4, 对于A ,1a+1b=14(1a+1b)(a +2b)=14(3+2b a+a b)≥14(3+2√2),当且仅当a =4√2−4,b =4−2√2时取等号,故选项A 错误; 对于B ,2a+1b=14(2a+1b)(a +2b)=14(4+4b a+a b)≥14(4+4)=2,当且仅当a =2,b =1时取等号,故选项B 正确; 对于C ,1a +2b =14(1a +2b )(a +2b)=14(5+2b a+2ab)=14(5+4)=94, 当且仅当a =43,b =43时取等号,故选项C 正确; 对于D ,当a =43,b =43时,a +2b =4,但ba+1+ab+1=4343+1+4343+1=87,故选项D 错误.故选:BC .8(★★★)若实数m ,n >0,满足2m +n =1,以下选项中正确的有( ) A .mn 的最小值为18 B .1m +1n 的最小值为4√2 C .2m+1+9n+2的最小值为5 D .4m 2+n 2的最小值为12【答案】 D【解析】∵实数m ,n >0,∴2m +n =1≥2√2mn ,整理得:mn ≤18,当且仅当{n =12m =14时取“=“,故选项A 错误;∵1m +1n =(2m +n)(1m +1n )=3+nm +2m n≥3+2√2,当且仅当{m =2−√22n =√2−1时取“=“,故选项B 错误;∵2m +n =1,∴2(m +1)+(n +2)=5, ∴2m+1+9n+2=15[2(m +1)+(n +2)](2m+1+9n+2) =15[13+2(n+2)m+1+18(m+1)n+2]≥15(13+2√36)=5,当且仅当{m =0n =1时取“=“,∴2m+1+9n+2>5,故选项C 错误; ∵2m +n =1,∴1=(2m +n )2=4m 2+n 2+4mn =4m 2+n 2+2√4m 2•√n 2≤2(4m 2+n 2), ∴4m 2+n 2≥12,当且仅当{n =12m =14时取“=“,故选项D 正确,故选:D .9 (★★★) 已知正实数a ,b 满足a +b =1,则2a 2+1a+2b 2+4b的最小值为 .【答案】 11【解析】正实数a ,b 满足a +b =1, 则2a 2+1a+2b 2+4b =2a +2b +1a +4b =2+(1a +4b )(a +b)=7+b a +4a b≥7+4=11,当且仅当ba=4a b且a +b =1即b =23,a =13时取等号,10 (★★★) 若正数x 、y 满足x +4y −xy =0,则4x+y 的最大值为 . 【答案】 49【解析】∵正数x 、y 满足x +4y −xy =0, ∴y =x x−4>0,解得x >4,∴4x+y=4x+x x−4=4x+1+4x−4=4x−4+4x−4+5≤2√(x−4)⋅4x−4+5=49,当且仅当x -4=4x−4时等号成立, ∴4x+y的最大值为49.11 (★★★) 已知0<a <1,则11−a +4a 的最小值是 . 【答案】 9【解析】0<a <1,则11−a+4a=(11−a+4a)[(1-a)+a]=5+a1−a +4(1−a)a≥5+4=9,12 (★★★) 已知a ,b ∈R ,a +b =2,则1a 2+1+1b 2+1的最大值为 . 【答案】 √2+12【解析】a ,b ∈R ,a +b =2.则1a 2+1+1b 2+1=a 2+b 2+21+a 2+b 2+(ab)2=(a+b)2−2ab+21+(a+b)2−2ab+(ab)2=6−2ab5−2ab+(ab)2=4−2(ab−1)(ab−1)2+4, 令t =ab -1=a(2-a)-1=-(a -1)2≤0, 则4−2(ab−1)(ab−1)2+4=4−2tt 2+4,令4-2t =s(s ≥4),即t =4−s 2,可得4−2tt 2+4=s 4+(4−s)24=4s+32s−8,由s +32s ≥2√s ⋅32s=8√2,当且仅当s =4√2,t =2-2√2时上式取得等号, 可得4s+32s−8≤8√2−8=√2+12, 则1a 2+1+1b 2+1的最大值为√2+12, 13 (★★★) 若正数a ,b 满足1a +1b =1,则aa−1+4bb−1的最小值为 . 【答案】 9【解析】∵正数a ,b 满足1a +1b =1,∴a >1,且b >1;1a+1b=1变形为a+b ab=1,∴ab =a +b ,∴ab −a −b =0,∴(a -1)(b -1)=1,∴a -1=1b−1;∴a -1>0,∴aa−1+4bb−1=5+1a−1+4b−1=5+1a−1+4(a −1)≥5+2√1a−1×4(a −1)=9, 当且仅当1a−1=4(a -1),即a =1±12时取“=”(由于a >1,故取a =32), ∴a a−1+4bb−1的最小值为9;14 (★★★★) 已知实数a >0,b >-2,且满足2a +b =1,则2a 2+1a+b 2−2b+2的最小值是 .【答案】 53【解析】∵实数a >0,b >-2,且满足2a +b =1, ∴b +2>0,2a +(b +2)=3, 又∵2a 2+1a +b 2−2b+2=1a+2a +b −2+2b b+2=1a+1-2+2b+2=−1+1a+2b+2,∴2a 2+1a +b 2−2b +2=−1+13[2a +(b +2)](1a +2b +2)=-1+13(b+2a +4ab+2+4)≥-1+13(2√4+4)=53,当且仅当{a =34b =−12时取“=“,故答案为:53.15 (★★★★) 已知x >0,y >0,则2xyx 2+8y 2+xy x 2+2y 2的最大值是 .【答案】 23【解析】2xy x 2+8y 2+xyx 2+2y 2=3x 3y+12xy 3x 4+10x 2y 2+16y 4 =3(x y +4yx)(x y )2+16(yx)2+10=3(x y +4yx )(x y +4yx)2+2=3(x y +4y x)+2x y +4y x,令t =x y +4yx,则t ≥2√xy ⋅4y x=4,当且仅当x =2y 时取等号,∵函数y =t +2t ,在[4,+∞)上单调递增,∴y =t +2t的最小值为:92,∴y =t +2t ≥92, ∴3(x y +4y x)+2x y +4y x=3t+2t≤23.∴2xyx 2+8y 2+xyx 2+2y 2的最大值为:23. 故答案为:23.16 (★★★★) 设实数x,y 满足x 24−y 2=1,则3x 2−2xy 的最小值是 .【答案】 6+4√2【解析】方法1 3x 2−2xy =3x 2−2xyx 24−y 2=3−2y x 14−(y x)2令t =yx ,∵x 24−y 2=1 ∴x 24−t 2x 2=1⇒t 2=14−1x2<14⇒−12<t <12, 则3x 2−2xy =3−2t14−t 2再令u =3−2t (2<u <4) 则3x 2−2xy =u14−(3−u 2)2=4u −u 2+6u−8=4−(u+8u)+6≥−4√2+6=6+4√2当且仅当u =2√2时取到等号, 方法2 ∵x 24−y 2=1 ∴(x 2−y)(x2+y)=1令t =x2+y ,则x2−y =1t , ∴x =t +1t ,y =12(t −1t )∴3x 2−2xy =3(t +1t )2−2(t +1t )(t −1t )=2t 2+4t 2+6≥4√2+6=6+4√2 当且仅当t 2=√2时取到等号.挑战学霸方程(x 2018+1)(1+x 2+x 4+⋯+x 2016)=2018x 2017的实数解的个数为 . 【答案】1【解析】由题意知x>0,设S=1+x2+x4+⋯+x2014+x2016①,则S=x2016+x2014+x2012+⋯+x2+1②,所以①+②得2S=(x2016+1)+(x2+x2014)+(x4+x2012)+⋯+(x2014+x2)+(x2016+1)≥2√x2016∙1+2√1∙x2016+2√x2∙x2014+⋯+2√x2016∙1=2018x1008(当且仅当x=1时等号成立)所以S≥1009x1008,又因为x2018+1≥2√x2018∙1(当且仅当x=1时等号成立),所以(x2018+1)(1+x2+x4+⋯+x2014+x2016)≥2√x2018∙1×1009x1008=2018x2017当且仅当x=1时等号成立,因此实数解的个数为1.。

2.2基本不等式 (第1课时)(课件)高一数学必修第一册(人教A版2019)

2.2基本不等式 (第1课时)(课件)高一数学必修第一册(人教A版2019)

1.教材P46练习第 2,5题;
2.P48-49习题2. 2,复习巩固第1,2题
(二)探究性作业:
教材P46 练习及参考答案
当ab为定值时,便可求a+b的最小值. (定)
(3)当且仅当a=b时,等式成立. (取等)
应用新知
12
练习(1) 当 x 0 时,求 4x 的最大值;
x
【解析】 x 0, x 0.
利用基本不等式求最值的注意事项
一正:各项必须都是正值.
12
12
( 4 x ) 2
(4 x) 8 3 ,

通常称不等式②为基本不等式(basicinequality).
ab
其中,
叫做正数 a, b 的算术平均数,
2
ab 叫做正数 a, b 的几何平均数.
文字语言:两个正数的算数平均数不小于它们的几何平均数。
认识新知
重要不等式: a 2 b 2 2ab ;
基本不等式:
ab
ab
2
.
问题3 基本不等式是在重要不等式基础上转化出来的,
B.最小值 9 C.最大值-3 D.最小值-3
【答案】C
2
【解析】
x ,3x 2 0 ,
当遇见负数时,
3
先应该乘以负
1,再适当配

9
9
9
3 3 . 凑构造倒数型,
f ( x) 3 x 2
3 (2 3x)
3 2 (2 3x)
【解析】 x 0, x 0,
2
分式进行整式分离——分离成整式与“真分式”的
2
1
1
1

高中试卷-专题2.2 基本不等式(含答案)

高中试卷-专题2.2 基本不等式(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!专题2.2 基本不等式知识点①基本不等式1≤a +b22.基本不等式成立的条件:a >0,b >0.3.等号成立的条件:当且仅当a =b 时,等号成立.4.其中a +b2叫做正数a ,b a ,b 的几何平均数.知识点②几个重要的不等式1.a 2+b 2≥2ab (a ,b ∈R ).2.b a +ab≥2(a ,b 同号).3.ab ≤22⎪⎭⎫ ⎝⎛+b a (a ,b ∈R ).4.a 2+b 22≥22⎪⎭⎫⎝⎛+b a (a ,b ∈R ).以上不等式等号成立的条件均为a =b .知识点③利用基本不等式求最值1.已知x ,y 都是正数,如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值2.已知x ,y 都是正数,如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.注意:利用不等式求最值应满足三个条件“一正、二定、三相等”.(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.题型一解法突破:两种常数处理方法(),kaa ab b a a=+-=.例1 求12x x +-的最小值(2x >). 解: ()1112222222x x x x x x ⎛⎫+=-++=-++ ⎪---⎝⎭因为2,20x x >->所以()122242x x ⎛⎫-++³+=⎪-⎝⎭令122x x -=-解得3,1x x ==(舍)例2 求1142x x +-的最小值(2x >).解:()()111111112242422422x x x x x x ⎛⎫+=-++=-++ ⎪---⎝⎭因为2,20x x >->所以()11113242222x x ⎛⎫-++³+= ⎪-⎝⎭令11(2)42x x -=-解得4,0x x ==(舍)1.以分式分母为主进行配凑使其定积2.注意变量范围,是否满足一正和三相等题型二解法突破: “1”的代换例1已知0,0x y >>,21x y +=求12xy+的最小值解:()1212122212149y xx y xy x y x y x y g ⎛⎫⎛⎫+=+=++=+++³ ⎪ ⎪⎝⎭⎝⎭例2 已知0,0,1x y x y >>+=求1412x y +++的最小值解:()()1124,x y x y Q +=\+++=,()()141411212124x y x y x y ⎛⎫+=++++éù ⎪ëû++++⎝⎭()41129144124x y x y +⎛⎫+=+++³ ⎪++⎝⎭【审题要津和评注】此类题型主要核心是“1”的等价代换,以及以分式分母为依据构造倒数形式,注意例5,例6两个题目题型三 消元法解法突破:此类题目特点是有多个变量,且变量间满足等式关系例1已知0,0,39x y x y xy >>++=求3x y +的最小解:()939,39,3x x y xy y x x y x -++=+=-=+,931233333x x x y x x x x -+-+=+=-++1212313910233x x x x =-+=++-³++题型四 换元法:一般求谁最值换谁为t例1已知0,0,39x y x y xy >>++=求3x y +的最小解:()23312x y x y xy Q ++³£()()223333,931212x y x y x y xy x y x y ++\++£++£++令3x y t +=则29,612t t t +³³或18t £-(舍)即3x y +的最小是6【审题要津和评注】1.题型二的例三和题型三题型四比较类似注意区分2.若一个题目在连用多个基本不等式时需注意取等时自变量取值是否相同题型五 基本不等式的使用条件解法突破:使用基本不等式前要注意验证使用条件是否满足例1已知5,4x <求14245x x -+-的最大值解:11424534545x x x x -+=-++--54504x x Q <\-<,11453543,4554x x x x ⎛⎫-++=--++ ⎪--⎝⎭1540,54254x x x ->-+³-1543154x x ⎛⎫--++£ ⎪-⎝⎭一、单选题1.下列说法正确的为( )A .12x x+³B .函数y =4C .若0,x >则(2)x x -最大值为1D .已知3a>时,43+³-a a 当且仅当43=-a a 即4a =时,43+-a a 取得最小值8【答案】C【解析】对于选项A ,只有当0x >时,才满足基本不等式的使用条件,则A 不正确;对于选项B,y ===(t t =³,即(22y t t t =+³在)+¥上单调递增,则最小值为min y =,则B 不正确;对于选项C ,()()22(2)211111x x x x x -=--++=--+£,则C 正确;对于选项D ,当3a >时,44333733a a a a +=-++³+=--,当且仅当433a a -=-时,即5a =,等号成立,则D 不正确.故选:C .2.函数2455()()22x x f x x x -+=³-有( )A .最大值52B .最小值52C .最大值2D .最小值2【来源】福建省莆田第一中学2021-2022学年高一上学期期末考试数学试题【答案】D【解析】(方法1)52x Q …,20x \->,则2245(2)11(2)222(2)x x x x x x x -+-+==-+---…,当且仅当122x x -=-,即3x =时,等号成立.(方法2)令2x t -=,52x Q …,12t \…,2x t \=+.将其代入,原函数可化为22(2)4(2)5112t t t y t t t t +-+++===+=…,当且仅当1t t =,即1t =时等号成立,此时3x =.故选:D3.已知1x >,则41x x +-的最小值是( )A .5B .4C .8D .6【来源】广东省梅州市梅江区梅州中学2021-2022学年高一上学期月考一数学试题【答案】A【解析】∵1x >,∴10x ->∴()44111511x x x x +=-++³=--,当且仅当411x x -=-,即3x =时等号成立,∴41x x +-的最小值是5.故选:A .4.已知a b >,且8ab =,则222a b a b +--的最小值是( )A .6B .8C .14D .16【来源】湘鄂冀三省益阳平高学校、长沙市平高中学等七校联考2021-2022学年高一下学期期末联考数学试题【答案】A【解析】因为8ab =,所以()222216a b ab a b a b a b a b a b-++==-+---.因为a b>,所以0a b ->,所以168a b a b -+³=-,即28a b a b +³-,当且仅当4a b -=时,等号成立,故222a b a b +--的最小值是6.故选:A5.设0a >,0b >,且1a b +=,则4aba b+的最大值为( ).A .110B .19C .227D .15【来源】四川省成都外国语学校2021-2022学年高一下学期6月月考数学(文)试题【答案】B【解析】∵1a b +=,1414ab a b a b=++,()41414559a b a b a b a b b a ⎛⎫+=++=++³+= ⎪⎝⎭,当且仅当23a =,13b =时取等号,∴149ab a b £+.故选:B .6.下列不等式恒成立的是( )A .2b a a b +³B .22a b ab +⎛⎫³ ⎪⎝⎭C .a b +³D .222a b ab+³-【来源】广东省深圳市2021-2022学年高一下学期期末数学试题【答案】D【解析】:对于A :若1a =、1b =-时2b aa b +=-,故A 错误;对于B :因为()20a b -³,所以222a b ab +³,所以2224a b abab ++³,即22a b ab +⎛⎫³ ⎪⎝⎭,当且仅当a b =时取等号,故B 错误;对于C :若1a =-、1b =-时,22a b +=-<,故C 错误;对于D :因为()20a b +³,所以2220a b ab ++³,即222a b ab +³-,当且仅当a b =时取等号,故D 正确;故选:D7.已知正实数a 、b 满足4a b +=,则11a b b a ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( )A .2B .4C .254D .1+【来源】四川省内江市2021-2022学年高一下学期期末数学文科试题【答案】B【解析】∵正实数a 、b 满足4a b +=,∴111224a b ab b a ab ⎛⎫⎛⎫++=++= ⎪⎪⎝⎭⎝⎭³,当且仅当1ab ab=,即1,4ab a b =+=时,取等号,故选:B.8.已知 x ,y >0,当x +y =2时,求41x y+的最小值( )A .52B .72C .92D .112【来源】浙江省金华市曙光学校2021-2022学年高一下学期第一次阶段考试数学试题【答案】C【解析】由题,()411411419552222y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=++³+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4y x x y =,即2x y =,即42,33x y ==时取等号故选:C9.已知,a b 为正实数,且196a b a b+=++,则a b +的最小值为( )A .6B .8C .9D .12【来源】2.2基本不等式B 卷【答案】B【解析】由题意,可得()()()()21996610616b a a b a b a b a b a b a b ⎛⎫+=+++=++++³++ ⎪⎝⎭,则有()()26160a b a b +-+-³,解得8a b +³,当且仅当2a =,6b =取到最小值8.故选:B.10.已知x ,y 都是正数,若2x y +=,则14x y +的最小值为( )A .74B .92C .134D .1【来源】青海省西宁市大通回族土族自治县2021-2022学年高一下学期期末数学试题【答案】B【解析】因为2x y +=,所以1414141422x y y x x y x y x y ⎛⎫⎛⎫++=+×=+++ ⎪ ⎪⎝⎭⎝⎭.因为x ,y都是正数,由基本不等式有:44y x x y +³=,所以141491422y x x y x y ⎛⎫+=+++³ ⎪⎝⎭,当且仅当2, 2,y x x y =ìí+=î即2,343x y ì=ïïíï=ïî时取“=”.故A ,C ,D 错误.故选:B .11.已知0x >,0y >,且2x y xy +=,则2x y +的最小值为( )A .8B .C .9D .【来源】湖南省长沙市周南中学2021-2022学年高一下学期分班考试数学试题【答案】C【解析】因为2x y xy +=,0x >,0y >,所以211y x+=,∴()1222221459y x x y x y x y x y ⎛⎫+=++=+++³+= ⎪⎝⎭,当且仅当3x y ==取得等号,则2x y +的最小值为9.故选:C12.已知正实数a 、b 满足11m a b +=,若11a b b a ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为4,则实数m 的取值范围是( )A .{}2B .[)2,+¥C .(]0,2D .()0,¥+【来源】四川省内江市2021-2022学年高一下学期期末数学理科试题【答案】B【解析】:因为,a b11a b b a ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=12ab ab ++24³=,当1ab ab=,即1ab =时等号成立,此时有1b a=,又因为11m a b+=,所以1a m a+=,由基本不等式可知12a a+≥(1a =时等号成立),所以2m ³.故选:B.13.若0,0a b >>,且24a b +=,则下列不等式中成立的是( )A .2ab < B .2244b a +³C .22log log 1a b +<D .9318a b +³【来源】内蒙古赤峰市2021-2022学年高一下学期期末考试数学试题【答案】D【解析】0,0a b >>Q,24a b \+=³,解得2ab £,当且仅当1,2a b ==时取等号,故选项A 错误;()()22222142282a b a b a b +=+³+=Q ,2224b a \+³,当且仅当1,2a b ==时取等号,故选项B 错误;由A 可得2ab £,222log log log 1a b ab \+=£,当且仅当1,2a b ==时取等号,故选项C错误;2393318a b b a +³==+,当且仅当1,2a b ==时取等号,故选项D 正确;故选:D14.已知实数,1x y >)A .1BC .2D.【来源】浙江省浙南名校联盟2021-2022学年高一下学期返校考数学试题【答案】C³x y =时取等号,=2³=,=2x y ==时取等号,2,故选:C15.已知a ,b 为正实数,且21a b +=,则22a a b +的最小值为( )A .1B .6C .7D .【来源】广东省韶关市武江区市实验中学2021-2022学年高一下学期第一次月考数学试题【答案】B【解析】由已知条件得,2422446222a a b a b a a b a b a b +⎛⎫+=+=++³= ⎪⎝⎭,当且仅当22b a a b =,即25a =,15b =时取等号,∴22aa b+ 的最小值为6;故选:B.16.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ^,设AC a =,BC b =,则该图形可以完成的无字证明为( )A .0,0)2a ba b +³>>B .220,0)a b a b +³>>C .20,0)aba b a b £>>+D .0,0)2a b a b +£>>【解析】【分析】设,AC a BC b ==,可得圆O 的半径为122a br OF AB +===,又由22a b a bOC OB BC b +-=-=-=,在直角OCF △中,可得2222222(()222a b a b a b FC OC OF -++=+=+=,因为FO FC £,所以2a b +£,当且仅当a b =时取等号.故选:D.17.若2a >,3b >,则2223a b a b +--的最小值是( )A .16B .18C .20D .22【来源】湖北省恩施州高中教育联盟2021-2022学年高一下学期期末联考数学试题【答案】C【解析】因为2a >,3b >,所以49231023a b a b -++-++--1020=(当且仅当4,6a b ==时,等号成立),所以2223a b a b +--的最小值是20.故选:C18.已知实数x ,y 满足()212x x y y +=+,则227x y -的最小值为( )A B C D 【答案】A【解析】:实数x ,y 满足()212x x y y +=+化为:()()21x y x y +-=令2x y m +=,x y n -=,则1mn =解得:23m nx +=,3m n y -=则:27===³=所以7故选:A.19.若对任意实数0,0x y >>,不等式()x a x y £+恒成立,则实数a 的最小值为( )A B 1C 1D【答案】D【解析】由题意可得,a0,0x y >>(0)t t=>211t t +=+,再设1(1)t m m +=>21(1)m m==+-212222m m m m m=-++-£=21m m=Þ=时取得“=”.所以a a 故选:D.20.已知实数0,1a b >>满足5a b +=,则2a )A B D 【来源】湖南省湘西自治州2021-2022学年高一上学期期末质量检测数学试题【答案】A【解析】:因为0,1a b >>满足5a b +=,则()21211()1114a b a b a b +=++-´éùëû--()21113(3414b a a b -éù=++³+êú-ëû,当且仅当()211b aa b -=-时取等号,故选:A .。

高考数学专题--基本不等式求最值的常用方法(解析版)

高考数学专题--基本不等式求最值的常用方法(解析版)

基本不等式求最值的常用方法一、常数代换法1、直接“1”代换例1. 已知正数x 、y 满足12=+y x ,求yx 11+的最小值. 解析:223221)11)(2(+≥+++=++yxx y y x y x当且仅当yxx y =2 即12-=x ,222-=y 时取“=” 变式. 已知正数x 、y 满足32=+y x ,求yx 11+的最小值. 解析:3221)223(31)221(31)11)(2(31+=+≥+++=++y x x y y x y x当且仅当y x x y =2 即)12(3-=x ,2)22(3-=y 时取“=”2、间接“1”代换例1. 若x 、y 为正实数且082=-+xy y x ,求y x +的最小值.解析:082=-+xy xy y x 即182=+x y ,188********)82)((=⨯+≥+++=++xyy x x y y x当且仅当xyy x 82= 即12=x ,6=y 时取“=”例2.若正数x 、y 满足xy y x 53=+,求y x 43+的最小值.解析:553==+xy xy xy y x 即531=+xy5)123213(51)12349(51)31)(43(51=⨯+≥+++=++x y y x x y y x当且仅当x y y x 123=即1=x ,21=y 时取“=” 例3.已知x 、y 均为正数,且111=+y x ,求1914-+-y yx x 的最小值. 解析:25362139413)11)(94(1914119114=+≥++=++=+=-+-y x x y y x x y xy yx当且仅当y x x y 94= 即35=x ,25=y 时取“=”例4. 已知函数x a y -=1的图像恒过定点A ,若点A 在直线1=+ny mx (0,0>>n m )上,求nm 11+的最小值. 解析:由题意可得A 的坐标为(1,1) 则有1=+n m41222))(11(11=+≥++=++=+nmm n n m n m n m当且仅当n m m n = 即21==n m 时取“=”例5. 已知函数xm y log 1+= (0>m 且1≠m )的图像恒过点M ,若直线1=+bya x (0,0>>b a )经过点M ,则b a +的最小值是多少?解析:由题意得M (1,1) 则111=+ba 41222))(11(=+≥++=++=+b aa b b a b a b a当且仅当baa b = 即2==b a 时取“=”3.部分“1”代换例. 若正数x 、y 满足1=+y x ,求yx y 4+的最小值.解析:844244)(44=+≥++=++=+yx x y y x y x y y x y 当且仅当y x x y 4= 即31=x ,32=y 时取“=”二、双换元法1.有两项分母较长例1. 已知正数x 、y 满足1=+y x ,求1124+++y x 的最小值. 解析:令2+=x m ,1+=y n 则412=+=+++n m y x49)425(41)414(41)14)((411124=+≥+++=++=+++n m m n n m n m y x 当且仅当n m m n =4 即31=y ,32=x 时取“=”变式1. 若0,0>>b a ,且11121=+++b b a ,则b a 2+的最小值为多少? 解析:令b a m +=2, 1+=b n 可得21+-=n m a ,1-=n b ,111=+nm23)232)(11(2323222212-++=-+=-++-=+n m n m n m n n m b a321232122123221+=⨯+≥++=m n n m 当且仅当nmm n 223=即n m 3=,213+-=b b a 时取“=”变式2. 已知0>>y x ,且2≤+y x ,求yx y x -++132的最小值. 解析:令⎩⎨⎧=-=+n y x m y x 3 可得 ⎪⎩⎪⎨⎧-=+=443n m y m n x 由0>>y x 得443n m m n ->+ 即0>>n m ∴22422443≤+=+=-++=+n m n m n m n m y x得4≤+n m )0(>>n m ∴nm y x y x 12132+=-++ ∴223212))(12(+≥+++=++nmm n n m n m ∴n m n m ++≥+223124≤+n m ∴422322312+≥++≥+n m n m 当且仅当nmm n =2 即n m 2= 即248-=m ,424-=n 时取“=”2.有一项分母较长例. 已知y x 、为正实数,求yx xx y ++216的最小值. 解析:令⎩⎨⎧=+=n y x m x 2 可得⎩⎨⎧-==m n y mx 2∴62162216162216=-≥-+=+-=++nm m n n m m m n y x x x y 当且仅当nmm n 16=即m n 4= 即x y 2=时取“=”三、主元思想法:当要求的元素在条件里出现的时候例1. 已知0>x ,0>y ,y x xy 2+=,若2-≥m xy 恒成立,求实数m 的最大值.解析:xy y x y x xy 22222=⋅≥+= 两边平方得xy xy 8)(2≥,8≥xy2-≥m xy 恒成立 即82≤-m ∴10≤m (本题将xy 作为主元) 当且仅当y x 2=即4=x ,2=y 时取“=”例2. 若正实数y x 、满足xy y x =++62,则xy 的最小值是多少?解析: 62262262+⋅=+⋅≥++=xy y x y x xy 令0>=xy t可得6222+≥t t 解得2-≤t (舍去) 23≥t 18≥∴xy 得xy 的最小值是18 当且仅当x y 2=即3=x ,6=y 时取“=”例3. 已知0>x ,0>y ,822=++xy y x ,求y x 2+的最小值.解析:822=++xy y x 4)2(222y x y x xy +≤⋅=由上面两式得4)2()2(822y x y x xy +≤+-= 令02>=+t y x得482t t ≤- 解得4≥t 即y x 2+的最小值为4当且仅当x y 2=即3=x ,6=y 时取“=”例4.已知y x 、均为正数,且1)(=+-y x xy ,求y x +的范围解析:4)(1)(2y x y x xy +≤++=,令0>=+t y x ,可得412t t ≤+解得222222+≤≤-t 0>t ∴2220+≤+<y x 当且仅当x y =即21+==y x ,时取“=”例5.已知0>x ,0>y ,且12)1)(3(=++y x ,求y x 3+的最小值.解析:1233)1)(3(=+++=++x y xy y x ,即93=++y x xy4)3(31)3(93312y x y x y x xy +⋅≤+-=⋅⋅= ,令03>=+t y x得1292t t ≤- 解得6≥t 即y x 3+的最小值为6当且仅当x y =3即3=x ,1=y 时取“=”四、拼凑法1.项数拼凑例1.求函数222163x x y ++=的最小值. 解析:63816326216)2(322-=⨯≥-+++=x x y当且仅当216)2(322+=+x x 即3634-=x ,时取“=”变式1. 求函数2162++=x x y 在),2(+∞-∈x 上的最小值. 解析:428416224216)2(2-=-⨯≥-+++=x x y当且仅当216)2(2+=+x x 即222-=x ,时取“=”变式2. 已知关于x 的不等式722≥-+ax x 在),(+∞∈a x 上恒成立,求a 的最小值.解析:a a a a x a x 2424222)(2+=+≥+-+-,∴只需724≥+a 即可,23≥a例2. 求函数1216++=x x y (),21(+∞-∈x )的最小值.解析:21242182211216212-=-≥-+++=x x y当且仅当1216212+=+x x 即2124-=x ,时取“=”变式. 已知0>x ,a 为大于x 2的常数,求x xa y --=21的最小值.解析:22221222221aa a x a x a y -=-≥--+-=当且仅当xa x a 2122-=-即22-=a x ,时取“=”2.系数拼凑例1. 当210<<x 时,求)21(21x x y -=的最大值. 解析:1614)212(41)21(241)21(212=-+⋅≤-⋅⋅=-=x x x x x x y当且仅当x x 212-=即41=x ,时取“=”例2. 已知0>a ,0>b ,且3222=+b a ,求212b a +的最大值.解析:224)12(2)1(22)1(41222222222=++⋅≤+⋅=+=+b a b a b a b a 当且仅当2212b a +=即1=a ,1=b 时取“=”五、分子分母不齐次1.低次换元法例1. 求313)(2-+-=x x x x f )3(>x 的最小值.解析:令3-=x t ,则3+=t x则 531231131)3(3)3()(22=+≥++=++=++-+=t t t t t t t t t f当且仅当tt 1=即1=t ,4=x 时取“=”例2.求2122+++=x x x y )2(->x 的值域.解析:令2+=x t ,则2-=t x 0211)2(2)2(2≥-+=+-+-=∴tt t t t y当且仅当tt 1=即1=t ,1-=x 时取“=”2.分子常数法例1. 求函数4342+=x x y 的最大值.解析:4342343432242=≤+=+=x x x x y (将分子化成常数)当且仅当224xx =即22=x 时取“=”例2.若对任意0>x ,a x x x≤++132恒成立,则a 的取值范围是多少?解析:513121311132=+≤++=++x x x x x 51≥∴a当且仅当xx 1=即1=x 时取“=”六、两元消参法例1. 若x ,),0(+∞∈y ,302=++xy y x ,求y x +的最小值. 解析:30)2(2=++=++y x x xy y x 2321232)2(230++-=+-+-=+-=∴x x x x x y 则328323221232-≥-+++=-++=+x x x x y x 当且仅当2322+=+x x 即224-=x 时取“=”例2. 已知41=ab ,a ,)1,0(∈b ,则b a -+-1211的最小值是多少? 解析:41=ab )1,0(∈a )1,0(41∈=∴a b ,),1(4+∞∈a ,则 ),41(+∞∈a)1,41(∈∴a 142281114811411211-+-+-=-+-=-+-a a a a a a a a 214211142)14(211+-+-=-+-+-=a a a a a令)43,0(1∈-=a m )3,0(14∈-=a n 则34=+n m 原式可化为:2)824(312)4)(21(31221++++=+++=++nmm n n m n m n m324482314)8(314+=⨯+≥++=n m m n 当且仅当nmm n 8=即m n 22=,4)22(3-=m ,323-=n 时取“=”例3. 已知正实数b a 、满足042≤+-b a ,则ba ba u ++=32的最小值为多少?解析:由042≤+-b a 得42+≥a b141343333322++-=++-≥+-=+-+=++=aa a a ab a a b a a b a b a b a u 51414213=+-≥ 当且仅当2=a 即时取“=”例4. 若正数x ,y 满足0162=-+xy x ,则y x 2+的最小值是多少?解析:由0162=-+xy x 得 661612xx x x y -=-=32292231323312=≥+=-+=+x x x x x y x 当且仅当xx 3132=即22=x ,122=y 时取“=”例5. 已知0>>b a ,求)(12b a b a -+的最小值.解析:44)()(22a b a b b a b =-+≤- 442441)(122222=≥+=+≥-+∴aa a ab a b a 当且仅当224a a = 即2=a 时取“=”七、三元消参法(“相等”、“不相等”)1.“相等”关系例1. 正数a ,b ,c 满足)(4b a abc +=,求c b a ++的最值.解析:由)(4b a abc +=⇒ab ab b ac 44)(4+=+=842424444=+≥+++=+++=++b b a a a b b a c b a当且仅当a a 4= ,bb 4=即2=a ,2=b ,4=c 时取“=”例2. 设正实数x ,y ,z 满足04322=-+-z y xy x ,求zxy的最大值.解析:由04322=-+-z y xy x ⇒ 2243y xy x z +-=134213414322=-≤-+=+-=xy y x y xy x xy z xy 当且仅当xy y x 4=,即y x 2=时取“=”例3.设正实数x ,y ,z 满足 032=+-z y x ,求xzy 2的最小值.解析:由032=+-z y x ⇒ 23223zx z x y +=+=3234941223494)232(22=+⨯≥++=+=x z z x xz z x xz y 当且仅当 xzz x 494=,即z x 3=时取“=”例4.设正实数x ,y ,z 满足12=++z y x ,求zy y x y x ++++)(91的最小值. 解析:由 12=++z y x ⇒ y x z 21--=1191)(1)(91)(91-+++=+-+++=++++∴yx y x y x y x y x z y y x y x1119)11(+-++-+=yx yx 令t yx =-+11上式可写成 719219=+≥++t t 当且仅当 t t 1=,即21=+y x 时取“=”2.“不相等”关系例1.正数a 、b 、c 满足a c b ≥+,求ba cc b ++的最小值. 解析:由a c b ≥+ ⇒ c b a +≤ cb cc b b a c c b ++≥++∴2 令⎩⎨⎧=+=y c b x c 2 ⇒ ⎪⎩⎪⎨⎧-==2x y b x c 2122121221222-=-≥-+=+-≥++≥++∴y x x y y x x x y c b c c b b a c c b 当且仅当 y x x y =2,即c b 2)12(-=时取“=”例2.正数x ,y ,z 满足1222=++z y x ,求xyzz S 21+=的最小值. 解析:由题意,xy z y x 21222≥-=+ 即212z xy -≤ 44)1(1)1(1)1(12122=+-≥⋅-=⋅-+≥⋅+=z z z z z z z z xy z S 当且仅当 z z =-1,即21=z 时取“=” 例3.二次函数0)(2≥++=c bx ax x f (b a <)对任意x 恒成立,求ab c b a -++4的最小值. 解析:由题意得:0>a ,042≤-=∆ac b ⇒ a b c 42≥ 11444222-++=-⋅++≥-++ab a b a b a b a b b a a bc b a 令1-=a b t 则1+=t a b 上式33233331)1()1(22+≥++=++=++++=tt t t t t t t 当且仅当 t t 3=,即13+=ab 时取“=”八、不能直接用均值不等式(一负二定三不等)1.为负值时(负)例1.已知10<<x ,求xx y lg 4lg +=的最大值. 解析:10<<x ,0lg <∴x 4)42()lg (4)lg (-=-≤⎥⎦⎤⎢⎣⎡-+--=∴x x y 当且仅当 x x lg 4lg -=-,即1001=x 时取“=”例2.当23<x 时,求函数328-+=x x y 的最大值.解析:23<x ⇒ 032<-x 2523821223))32(8(2)32(328-=+⨯-≤+⎥⎦⎤⎢⎣⎡--+---=-+=x x x x y 当且仅当328232-=-x x ,即21-=x 时取“=”例3.已知45<x ,求函数54124-+-=x x y 的最大值. 解析:45<x ⇒054<-x 354154+-+-=x x y 3)54(1)54(+⎥⎦⎤⎢⎣⎡--+---=x x 1312=+-≤ 当且仅当 54154-=-x x ,即1=x 时取“=”2.取不到等号(不等)例. 求函数4522++=x x y (R x ∈)的最小值.解析:令242≥=+t x ⇒ 422-=t x则tt t t t t y 115422+=+=+-=,2≥t 取不到1 2=∴t 时y 最小 即25212=+≥y九、调几算平2211222b a b a ab b a +≤+≤≤+例1.设a ,0>b ,5=+b a ,求31+++b a 的最大值.解析:223292)31(231==+++≤+++b a b a 即2331≤+++b a 当且仅当 31+=+b a ,即27=a ,23=b 时取“=”例2.已知x 、y 均为正数,且y x a y x +≤+恒成立,求a 的最小值.解析:由y x a y x +≤+ ⇒ y x yx a ++≥ y x y x y x +=+≤+2222 ⇒ y x y x +⋅≤+2可得2≤++y x yx 2≥∴a例3.设实数a ,x ,y 满足⎩⎨⎧-+=+-=+3212222a a y x a y x ,求a 的取值范围. 解析:2222y x y x +≤+ 当且仅当y x =时“=”成立 2322122-+≤-∴a a a 即232414422-+≤+-a a a a 得07822≤+-a a ⇒ 222222+≤≤-a 例4.设实数a ,b ,c 满足122≤≤+c b a ,求c b a ++的最大值.解析:2222b a b a +≤+ 2122222=⋅≤+≤+∴b a b a 1≤c 12+≤++∴c b a 当且仅当b a =时“=”成立十、柯西不等式:①222122212211y y x x y x y x +⋅+≤+②232221232221332211y y y x x x y x y x y x ++⋅++≤++ 例1.设a ,b ,m ,R n ∈,且522=+b a ,5=+nb ma ,求22n m +的最小值. 解析:22225b a n m nb ma +⋅+≤+= 522≥+∴n m例2.设a ,b ,),0(+∞∈c ,且1=++c b a ,求c b a ++的最大值.解析:3111111222=++⋅++≤⋅+⋅+⋅=++c b a c b a c b a例3.已知a ,b ,c 均为正数,若632=++c b a ,求222c b a ++的最小值. 解析:222222321326c b a c b a ++⋅++≤++= 718222≥++∴c b a十一、拆分法求最值例1.已知x ,y ,+∈R z ,求222z y x yz xy U +++=的最大值. 解析:22)(2212212212122222222=++=++≤++++=yz xy yz xy z y y x yz xy z y y x yz xy U 当且仅当y z x 22==时“=”成立变式 .已知x ,y ,+∈R z ,(1)求222zy x zx yz xy U ++++=的最大值 (2)求2222z y x yz xy U +++=的最大值解析:(1))(21)222(21222222222z z y y x x zx yz xy z y x zxyz xy U +++++++=++++= 1)222(21=++++≤xz yz xy zxyz xy 当且仅当z y x ==时“=”成立(2)2554522545122222=++≤++++=yz xy yz xy z y y x yz xy U 当且仅当z y x ==5522时“=”成立例2.已知0>x ,求221xx +的最小值. 解析:23212232122213222=⋅⋅⋅≥++=+xx x x x x x x ,当且仅当1=x 时“=”成立十二、元素整体代换法:一般先分解因式,研究条件与问题关系,整体代换例1.若a ,b ,0>c ,且324)(-=+++bc c b a a ,求c b a ++2的最小值.解析:324))(()()()(-=++=+++=+++c a b a c b a b a a bc c b a a令⎩⎨⎧+=+=c a y b a x ⇒ 324-=xy 232324222-=-=≥+=++xy y x c b a当且仅当c b =时“=”成立例2.若a ,b ,0>c ,且124222=+++bc ac ab a ,求c b a ++的最小值.解析:12)2)(2()2(2)2(4222=++=+++=+++c a b a b a c b a a bc ac ab a令⎩⎨⎧+=+=c a y b a x 22 ⇒ 12=xy , 3212222==≥+=++xy y x c b a 当且仅当c b =时“=”成立例3.已知c b a >>,N n ∈,且ca n cb b a -≥-+-11恒成立,求n 的最大值. 解析:令⎩⎨⎧-=-=c b y b a x ⇒y x c a +=-,由c a n c b b a -≥-+-11 得y x n y x +≥+11,即42))(11(≥++=++≤yx x y y x y x n 当且仅当b c a 2=+时“=”成立十三、不等式证明例1.已知c b a >>,求证ca cb b a ->-+-111. 证明:令m b a =-,nc b =- ⇒c a n m -=+ 12))(11(>++=++n m m n n m n m ,1))(11(>--+-∴c a cb b a ca cb b a ->-+-∴111得证例2.设a ,b ,+∈R c ,求证4)11)((≥++++cb ac b a . 证明:令m a =,n c b =+,)11)(()11)((nm n m c b a c b a ++=++++ 42≥++=n m m n 4)11)((≥++++∴cb ac b a 当且仅当c b a +=时“=”成立例3.已知a ,b ,+∈R c ,求证c b a ac c b b a ++≥++222. 证明:c b a c b a a ac c c b b b a 222222222222++=++≥+++++ 当且仅当c b a ==时“=”成立c b a ac c b b a ++≥++∴222 得证。

求基本不等式最值的方法

求基本不等式最值的方法

求基本不等式最值的方法基本不等式最值的求解方法是数学中的重要内容,它在解决实际问题和数学推导中具有广泛的应用。

下面将介绍几种常见的方法来求解基本不等式的最值。

1. 利用二次函数性质:对于一元二次函数 f(x) = ax^2 + bx + c,其中 a、b、c 分别是实数,当 a>0 时,函数开口向上,最小值为 f(-b/2a);当 a<0 时,函数开口向下,最大值为 f(-b/2a)。

2. 利用数轴和符号的方法:以不等式的变量为基准,将不等式化简为一维数轴上的问题。

首先找到不等式的解集,并根据不等式中的符号(大于号或小于号)确定最值的类型(最大值或最小值)。

然后,根据最值的要求,找到数轴上对应的点,即最值点。

3. 利用 AM-GM 不等式:AM-GM 平均值不等式是一种用于估计数值大小的方法。

对于非负实数 a1, a2, ..., an,其几何平均值 GM = (a1 * a2 * ... * an)^(1/n),算术平均值 AM = (a1 + a2 + ... + an)/n,不等式表达式为GM ≤ AM。

通过利用 AM-GM不等式,将给定的不等式进行转换和化简,可以求解不等式的最值。

4. 利用导数和极值:对于连续函数 f(x) 在某个区间内,如果 f'(x) 存在且连续,可以通过求解 f'(x) = 0 的根来找到函数 f(x) 的极值点。

然后根据极值的类型(极大值或极小值)来确定最值。

以上是一些常见的方法来求解基本不等式的最值。

根据具体的不等式形式和要求的最值类型,我们可以选择合适的方法进行求解。

在实践中,掌握这些方法并灵活运用它们,将能够有效地解决各种不等式最值的问题。

不等式专题:基本不等式求最值的6种常用方法(解析版)

不等式专题:基本不等式求最值的6种常用方法(解析版)

基本不等式求最值的6种常用方法知识梳理:一、基本不等式常用的结论1、如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a b =时取等号“=”)推论:ab ≤a 2+b 22(a ,b ∈R ) 2、如果a >0,b >0,则a +b ≥2ab ,(当且仅当a =b 时取等号“=”).推论:ab ≤⎝ ⎛⎭⎪⎫a +b 22(a >0,b >0);a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 223、a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0)二、利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 三、利用基本不等式求最值的方法1、直接法:条件和问题间存在基本不等式的关系2、配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。

3、代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法; 类型2:分母为多项式时方法1:观察法 适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系; 方法2:待定系数法,适用于所有的形式,如分母为3a +4b 与a +3b ,分子为a +2b ,设a +2b =λ(3a +4b )+μ(a +3b )=(3λ+μ)a +(4λ+3μ)b∴ ⎩⎪⎨⎪⎧3λ+μ=1,4λ+3μ=2.解得:⎩⎨⎧λ=15,μ=25.4、消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。

5、构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式中常见的方法求最值一、例题选讲 题型一、消参法消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!例1、(2017苏北四市期末). 若实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12,则3x +1y -3的最小值为________. 【答案】 8【解析】解法1 因为实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12,所以y =3x-3(y >3), 所以3x +1y -3=y +3+1y -3=y -3+1y -3+6≥2(y -3)·1y -3+6=8,当且仅当y -3=1y -3,即y =4时取等号,此时x =37,所以3x +1y -3的最小值为8.解法2 因为实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12,所以y =3x -3(y >3),y -3=3x-6>0, 所以3x +1y -3=3x +13x -6=3x -6+13x -6+6≥2⎝⎛⎭⎫3x -6·13x -6+6=8,当且仅当3x -6=13x -6,即x =37时取等号,此时y =4,所以3x +1y -3的最小值为8.例2、(2013徐州、宿迁三检)若0,0a b >>,且11121a b b =+++,则2a b +的最小值为 .【解析】由已知等式得222122a b ab a b b ++=+++,从而212b b a b-+=,21222b b a b b b -++=+131222b b=++1122≥+=题型二、双换元若题目中含是求两个分式的最值问题,对于这类问题最常用的方法就是双换元,分布运用两个分式的分母为两个参数,转化为这两个参数的不等关系例3、(2015苏锡常镇、宿迁一调)已知实数x ,y 满足x >y >0,且x +y ≤2,则2x +3y +1x -y的最小值为________.【答案】3+224【解析】设⎩⎪⎨⎪⎧x +3y =m ,x -y =n .解得⎩⎨⎧x =m +3n4,y =m -n4.所以x +y =m +n 2≤2,即m +n ≤4.设t =2x +3y +1x -y =2m +1n,所以4t ≥⎝⎛⎭⎫2m +1n (m +n )=3+2n m +m n ≥3+2 2.即t ≥3+224,当且仅当2n m =mn ,即m =2n 时取等号.例4、(2013徐州、宿迁三检)若0,0a b >>,且11121a b b =+++,则2a b +的最小值为. 【解析】12,211m n a b m a b n b n --⎧+==⎧⎪⎨⎨+=⎩⎪=-⎩解得 所以111,m n +=332222m n a b +=+-,因为33113()()22222222m n m n m n m n n m+=++=++≥所以332222m n a b +=+-≥题型三、1的代换1的代换就是指凑出1,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值,凑的过程中要特别注意等价变形。

例5、(2019苏锡常镇调研)已知正实数a ,b 满足a +b =1,则bb a a 421222+++的最小值为 . 【答案】.11【解析】思路分析:由于目标式比较复杂,不能直接求最小值,需要对该式子进行变形,配凑出使用基本不等式的条件,转化为熟悉的问题,然后利用基本不等式求解.1174274))(41()(24212421222=+⨯≥++=++++=+++=+++baa b b a a b b a b a b a b b a a b b a a 当且仅当b a a b 4=,即⎪⎩⎪⎨⎧==3231b a 时取“=”,所以b b a a 421222+++的最小值为.11例6、(2019年苏州学情调研)若正实数x y ,满足1x y +=,则4y x y+的最小值是 . 【答案】8【解析】因为正实数x y ,满足1x y +=, 所以4()444y y x y y xx y x y x y ⨯++=+=++4448≥=+=,当且仅当4y x x y =,即2y x =,又1x y +=,即12,33x y ==,等号成立,即4yx y +取得最小值8.题型四、齐次化齐次化就是含有多元的问题,通过分子、分母同时除以得到一个整体,然后转化为运用基本不等式进行求解。

例7、(2019通州、海门、启东期末)已知实数a>b>0,且a +b =2,则3a -ba 2+2ab -3b 2的最小值为________.【答案】3+54思路分析2 注意到所求的代数式的分子与分母分别为一次式、二次式,为此想到将它们转化为齐次式来加以处理,即将分子利用条件a +b =2,通过常数代换转化为二次式,进而将齐次式化为单变量的问题来加以处理.解析:(化齐次式法):因为a +b =2,所以3a -b a 2+2ab -3b 2=(a +b )(3a -b )2(a 2+2ab -3b 2)=32+2(-ab +2b 2)a 2+2ab -3b 2=32+2(2-ab )(a b )2+2·a b -3,令u =2-a b ,因为a +b =2,a>b>0,所以2-b>b>0,故0<b<1,从而u =2-ab =2-2-b b =3-2b ∈(-∞,1),则3a -b a 2+2ab -3b 2=32+2u u 2-6u +5=32+2u +5u-6 当u ∈(0,1)时,u +5u -6>0,此时3a -b a 2+2ab -3b 2>32;仅当u =-5时等号成立.因此3a -b a 2+2ab -3b 2的最小值为3+54.二、达标训练1、(2019年苏州学情调研)若正实数x y ,满足1x y +=,则4y x y+的最小值是 . 【答案】8【解析】因为正实数x y ,满足1x y +=, 所以4()444y y x y y xx y x y x y ⨯++=+=++4448≥=+=,当且仅当4y x x y =,即2y x =,又1x y +=,即12,33x y ==,等号成立,即4yx y +取得最小值8.2、(2018苏锡常镇调研) 已知a>0, b>0,且2a +3b =ab ,则ab 的最小值是________.【答案】 26【解析】思路分析 利用基本不等式,化和的形式为积的形式.因为ab =2a +3b ≥22a ·3b ,所以ab ≥26,当且仅当2a =3b=6时,取等号.3、(2018苏锡常镇调研) 已知a b ,为正实数,且()234()a b ab -=,则11a b+的最小值为 .【答案】【解析】因为223()()44()4a b a b ab ab ab +=-+=+,所以3222114()44()()48()a b ab ab ab a b ab ab ab +++===+≥,故11a b +≥21()4ab a b =⎧⎨-=⎩,即11a b ⎧=⎪⎨=⎪⎩时取得等号,所以11a b +的最小值为.224、(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调)已知a ,b ,c 均为正数,且abc =4(a +b),则a +b +c 的最小值为________.【答案】 8【解析】由a ,b ,c 均为正数,abc =4(a +b),得c =4a +4b ,代入得a +b +c =a +b +4a +4b =⎝⎛⎭⎫a +4a +⎝⎛⎭⎫b +4b ≥2a ·4a+2b ·4b=8,当且仅当a =b =2时,等号成立,所以a +b +c 的最小值为8. 5、(2019苏北三市期末) 已知a>0,b>0,且a +3b =1b -1a ,则b 的最大值为________.【答案】 13【解析】由a +3b =1b -1a ,得1b -3b =a +1a .又a>0,所以1b -3b =a +1a ≥2(当且仅当a =1时取等号),即1b -3b ≥2,又b>0,解得0<b ≤13,所以b 的最大值为13.6、(2019扬州期末)已知正实数x ,y 满足x +4y -xy =0,若x +y ≥m 恒成立,则实数m 的取值范围为_________.【答案】 (-∞,9]【解析】 m ≤x +y 恒成立,m ≤(x +y)min .解法1(消元法) 由x +4y -xy =0,得y =x x -4,因为x ,y 是正实数,所以y>0,x>4,则x +y =x +xx -4=x +x -4+4x -4=x +4x -4+1=(x -4)+4x -4+5≥2(x -4)·4x -4+5=9,当且仅当x =6时,等号成立,即x +y 的最小值是9,故m ≤9.解法2(“1”的代换) 因为x ,y 是正实数,由x +4y -xy =0,得4x +1y =1,x +y =(x +y)·⎝⎛⎭⎫4x +1y =4y x +x y +5≥24y x ·xy+5=9,当且仅当x =6,y =3时,等号成立,即x +y 的最小值是9,故m ≤9. 解法3(函数法) 令t =x +y ,则y =t -x ,代入x +4y -xy =0,得x 2-(3+t)x +4t =0.Δ=(t +3)2-16t =t 2-10t +q ≥0,得t ≤1或t ≥9.又y =xx -4>0,且x>0,则x>4,故t>4,从而t ≥9.所以m ≤9. 7、(2017苏州期末) 已知正数x ,y 满足x +y =1,则4x +2+1y +1的最小值为________.【答案】 94【解析】 解法1 令x +2=a ,y +1=b ,则a +b =4(a >2,b >1),4a +1b =14(a +b )⎝⎛⎭⎫4a +1b =14⎝⎛⎭⎫5+4b a +a b ≥14(5+4)=94,当且仅当a =83,b =43,即x =23,y =13时取等号.8、(2019宿迁期末)已知正实数a ,b 满足a +2b =2,则1+4a +3b ab的最小值为________.【答案】252【解析】解法1(消元法) 由a +2b =2得a =2-2b >0,所以0<b <1,令f(b)=1+4a +3b ab =9-5b2b -2b 2,f ′(b)=-10b 2+36b -18(2b -2b 2)2=-2(5b -3)(b -3)(2b -2b 2)2.当b ∈⎝⎛⎭⎫0,35时,f ′(b)<0,f(b)单调递减;当b ∈⎝⎛⎭⎫35,1时,f ′(b)>0,f(b)递增, 所以当b =35时,f(b)有唯一的极小值,也是最小值f ⎝⎛⎭⎫35=252. 解法2(齐次化) 因为a +2b =2,所以1+4a +3b ab =12a +b +4a +3bab =9a +8b 2ab =(9a +8b )(a +2b )4ab =9a4b +4b a +132≥29a 4b ·4b a +132=252,当且仅当a =45,b =35时取等号,所以所求的最小值为252.。

相关文档
最新文档